N

N

Subformula Linking for Intuitionistic Logic with
Application to Type Theory
Kaustuv Chaudhuri

» To cite this version:

Kaustuv Chaudhuri. Subformula Linking for Intuitionistic Logic with Application to Type Theory.
CADE 2021 - 28th International Conference on Automated Deduction, Jul 2021, Pittsburgh, PA
(Virtual), United States. pp.200-216, 10.1007/978-3-030-79876-5_12 . hal-03528659

HAL Id: hal-03528659
https://inria.hal.science/hal-03528659

Submitted on 18 Jan 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-03528659
https://hal.archives-ouvertes.fr

Subformula Linking for Intuitionistic
Logic with Application to Type Theory

Kaustuv Chaudhuri
Inria and LIX/Ecole polytechnique, Palaiseau, France
kaustuv.chaudhuri@inria.fr

January 17, 2022

Abstract

Subformula linking is an interactive theorem proving technique that was initially proposed for (classical)
linear logic. It is based on truth and context preserving rewrites of a conjecture that are triggered by a
user indicating links between subformulas, which can be done by direct manipulation, without the need of
tactics or proof languages. The system guarantees that a true conjecture can always be rewritten to a known,
usually trivial, theorem. In this work, we extend subformula linking to intuitionistic first-order logic with
simply typed lambda-terms as the term language of this logic. We then use a well known embedding of
intuitionistic type theory into this logic to demonstrate one way to extend linking to type theory.

1 Introduction

Suppose you want to prove a conjecture such as:

(V:z:. Ely.a(f(:r),y)) A (Vz.a(f(f(c)),z) o) b(z)) D Ju. b(f(u))

or to find replacements for the 7s that would allow a dependent type such as the following to be inhabited:
Mu:(Iz:a. My:(bz).cxy). Mv:(Mxia. bx). Hw:a. (c? 7).

In a mainstream interactive theorem proving system you would attempt it by giving instructions to a
carefully constructed proof verification engine using a formal proof language, often with a read-eval-print loop
for immediate feedback. Your instructions would guide the verifier through the twists and turns of a formal
derivation until it is satisfied that all formal obligations have been established. Your language of instructions
could be tactics-based (such as in Coq), or it could be a programming language itself (such as in HOL-Light or
Agda); it could also have a formal structure or be declarative (such as Isabelle/Isar).i Despite these superficial
differences, all such systems can broadly be called linguistic because the internal state of the verifier can only be
modified by means of the formal proof language (and the whims—or semantics, if you prefer—of the interpreter
of the language).

An alternative to such a linguistic system would be a system of direct manipulation, wherein there is a
tangible representation of the state of the verifier that one can modify directly using such tools as one’s fingers,
pointing devices, or eye movements. The verifier’s job is then to make sure that the direct manipulation attempts
are allowed when they are logically permissible and prevented when they are not. A prominent example of such
a direct manipulation system is the proof by pointing technique [3], where mouse clicks on the representation of
a proof state (in a version of Coq) are given a meaning: a click on a connective deep in a formula is interpreted
as a sequence of Coq tactics that bring the connective to the top, at which point it could be made to interact
with the other hypotheses or the conclusion in the usual manner.

A generalization of this idea, called proof by linking, was proposed in [4]. It allows the user not only to point
but also to link different subformulas, say with a multi-touch input device or with a drag-and-drop metaphor.
There are two immediate benefits of linking over pointing: (1) the surrounding context of a formula is not
destroyed because the linked subformulas are not brought to the top, and (2) the interaction mode is easier
to describe to complete novices. For instance, a novice could be instructed to “match the atoms” for the first
example above, in which case they might start by attempting the following link:

(Va. Ely.a(f(a\;),y)) A (Vz.a(f(fgc)),z) 2 b(2)) 2 Fu.b(f(u)).

! These are just illustrative examples of mainstream proof systems and should not be read as assigning them a position of privilege
or authority.

The linking procedure would interpret this link as a desire to “bring” the source atom “to” the destination atom.
Without touching any other part of the conjecture except the smallest subformula containing both the source
and the destination of the link, the conjecture would be rewritten to a different one:

Jz. Vy. Vz. ((a(f(x),y) S a(f(f(c)),z))> b(z)) D Ju. b(f(u)).

The surrounding context of the link is preserved as nothing is brought to the top; instead, the source moves
through the formula tree to meet the destination. The rewrites that underlie the transformation are provability
preserving: if the rewritten conjecture is provable, then so is the original conjecture. Eventually, the conjecture
(if true) would be reduced to a trivial theorem such as T. Note that the novice user does not need to know any
proof language to draw these links, not even a conceptual proof system such as the sequent calculus.

The original proof by linking technique was proposed for classical linear logic and freely exploited the calculus
of structures [17]. In this paper we show how to adapt the technique to intuitionistic logics and intuitionistic
type theories, where the calculus of structures is not so well behaved [18, 8] (or, in the case of dependent type
theory, entirely missing), and where preserving the context of the rewrites is a more delicate task. We do this by
first defining the technique for intuitionistic first-order logic over A-terms, and then we use an existing complete
(shallow) embedding of dependent type theory in this logic [6, 15]. A secondary contribution is to give some
insight into what a deep inference formalism might look like for dependent type theory.

2 Subformula Linking for Intuitionistic First-Order Logic

This section will serve both as an introduction to the subformula linking procedure, and as evidence that the
technique can be applied to intuitionistic logics. Let us do this in two phases: first for the the propositional
fragment, and then extended with first-order quantification.

2.1 The Propositional Fragment

We will use the following grammar of formulas (written A, B, ...), where atomic formulas are written in lowercase

(a,b,...).

AB,...:=a|AANB|T|AvB|LlL|ADB
Following usual conventions, the connectives A and V are left-associative, while D is right-associative; the binding
priority from strongest to weakest is A, Vv, D.

The true formulas of this calculus can be defined in terms of derivability in a variety of formal systems such
as with the sequent calculus LJ or G3ip [11]. In this paper the precise sequent calculus is not of primary concern;
however, we will use the notation I' = C' where IT' is a multiset of formulas to denote that the formula C is
derivable from the assumptions I' using any such calculus.

A positively signed formula context (written C{}) is a formula with a single occurrence of a hole {} in the
place where a positively signed subformula may occur; it is defined mutually recursively with an negatively signed
formula context (written A{}) by the following grammar, where * € {A, V}.

C{y s=={31AxCc{}|C{}*B|ADC{}|A{}>B
A} s=Ax A} | A *B|ADA{} | C{}>B

The replacement of the hole in C{} (resp. A{}) with a formula A yields a new formula, which we write as C{A}
(resp. A{A}). For instance, if C{} isa A ((bD{}) v d), then C{cD> L} isa A ((bD(cD L)) Vvd).

Theorem 1. Suppose that A + B. Then:

e for any positively signed context C{}, it is the case that C{A} F C{B}; and
e for any negatively signed context A{}, it is the case that A{B} + A{A}.

Proof. Induction on the structure of the contexts C{} or A{}. O O

In order to define the subformula linking procedure for this calculus, we work with interaction formulas; an
interaction formula is a formula where:

e either a single occurrence of D is replaced with >,
e or a single occurrence of A is replaced with o.

Terminal rules
c{T} C{A> B}

m in m rel
(the conclusion of rel is understood as not overlapping that of in)
Positively signed rules
C{(A> B) A F} 5 C{F A (Av> B)}
C{A> (BAF)} C{Av> (F A B)}
C{(A> B)A(F>B)} vb C{(Fo>B)A(A» B)}

C{(Av F)»> B} ! C{FvA)» B 2
C{(AeB)>F} _ C{F>(ApB)} _
C{A>(Bo>F)} ' C{Av(F>B)} °

C{A> B} by C{A> B} by
C{Av(BVF)} ' C{As(FvB) °

C{A»> B} Ab C{Av> B} Ab C{F A (Av> B)}
AN »B) ' C{FAA)sBY % C{(FoA)sB} >
Negatively signed rules

M(AeB)VFY AMFv(4eB)}
A{Ao(BVF)) ' A{Ao(FvB)} °

A{AoB} A{A o B} .

A{Ao(FAB)

A{F > (Ao B)} o
A{Ao (F > B)}

A{Ao (B A F)}

A{(A> B) > F} .
A{Ao (B> F)}

1 2

(plus all the symmetric variants)

Figure 1. Inference rules for interaction formulas

We will define an inference system for interaction formulas that consist of inference rules with a single
conclusion and a single premise, both of which are either formulas or interaction formulas. The inference rule
represents an admissible rule of intuitionistic logic: if the premise is a theorem, then so is the conclusion. The full
collection of rules is shown in fig. 1. There are three kinds of rules, explained below in an upwards (conclusion to
premises) reading.

o Terminal rules are used to terminate a >-interaction in a positively signed context. In the case where the
>-interaction links two occurrences of the same atom, the result is T; otherwise the > turns back into D.
These are the only rules that can transition out of interaction formulas.

e Positively signed rules operate on a >-interaction in a positively signed context. The rules are written in
fig. 1 in such a way that the subformulas A and B are brought together in the premise, and occurrences of
F (if they exist) are side formulas.

o Negatively signed rules operate on a o-interaction in an negatively signed context. Fig. 1 only shows one of
the two symmetric variants for each case; the other variant is built by permuting A with B and transposing
the operands of o. For instance, ov; has the following symmetric variant.

A{(AoB) v F} .
A{(A v F) o B}

1’
We will use primes to systematically name the symmetric variants of rules.

Proposition 2 (Soundness). Interpreting > as D and o as A, each rule of fig. 1 with premise P and conclusion
Q@ has the property that P F+ Q.

Interaction creation rules Contraction
C{A»> B} A{A o B} C{ADADF}
C{A>B} A{AAB} CiA-Fy oM
Simplification rules
c{T} c{B} c{T}
C{AD>T} C{T > B} C{L>B}
C{F'} C{F} A{F'} A{F}
C{TAF} C{F AT} A{LVvF} A{Fv.l}
A{Ll} A{Ll} c{T} c{T}
A{LAF} A{F A1} C{TVF} C{FvT}

Figure 2. Link creation, contraction, and simplification. The conclusion in each case must not be an interaction formula.

ad(anaATAT)

aD(aAa/\T/\ch) n

o>X3

ad(@d2ad>TDc)pe
>y X2

(adadTD¢)padc
(aDaDTDc)DaDc

T
: simplification
TATATAT

n
TAabaANTAT
PALX2,>A,

(ad>adbebdc)dadc “D(TA‘”‘TAT)D
0D

(ad>ad(bde)ob)dadec ' ad(TAanTAT) i
0ol

(ad>(adbde)ob)dadec : ad(apananTAT) bALX3
oD

(adbdc)o(adb)dadc 2 ada>(anaATAT)

(adbdc)p(adb)dadc adad(ananTAT) ;
> con

(ad>bde)d(adb)dadec ad(anhaAnTAT)

Figure 3. Lnip derivation fragment for the S-combinator
Proof. Straightforward consequence of theorem 1. O O

Two further administrative steps remain to complete the technique. First, since the rules of fig. 1 always
contain an interaction formula in the conclusion, we need to add some rules that can conclude ordinary (non-
interaction) formulas. Since we read each inference rule from conclusion to premise, we will call these the
interaction creation rules, which are shown in the first part of fig. 2. To incorporate non-linearity, we add a
separate contraction rule; this keeps the interaction creation rules simple, but it needs to be explicitly invoked.
These interaction creation rules are obviously sound under the interpretation of proposition 2.

The final step is to detect when a proof is complete. Since every inference rule presented so far has a single
premise, we will say that a proof is complete when the final (again reading bottom to top) premise is, effectively,
T. What do we mean by “effectively”? One candidate definition could be that a purely algorithmic procedure
can detect when a proof is finished in linear time. For instance, we can say that a proof is complete if its premise
can be established using only the simplification rules shown in the second part of fig. 2. These rules may be
applied in any arbitrary order and at any time. An implementation of the technique may choose to apply these
simplification rules on the fly.

Definition 3. The collection of rules in figures 1 and 2 will be known as the proof system Lnip. If A and B are
formulas or interaction formulas, we write A L22s B to mean that either A = B or there is an Lnip derivation
where the topmost rule has premise A and the bottom-most rule has conclusion B. O

Theorem 4 (Completeness of Lnip). If + F, then T 22 F.

Sketch. There are many ways to prove this, both syntactic and semantic. An instructive syntactic proof goes as
follows. For a small variant of the G3ip sequent calculus [11], we show that every inference rule is admissible in
Lnip under a suitable formula interpretation of sequents. Thus, any sequent proof is recoverable in terms of Lnip
inferences. We then just appeal to completeness of the sequent calculus. O O

Example 5. A Lnip derivation of the S-combinator formula, (a2b2¢) D (adb)Ddadc, is shown in fig. 3. The
interaction connectives > and o take the precedence and associativity of O and A respectively. The locus where a
Lnip rule is applied is depicted with a highlight. Of course, the S-combinator formula cannot be proved without
appealing to contraction at least once, which is seen by the appeal to cont in the derivation.

An extremely interesting aspect of this example Lnip derivation is that it begins by considering the first
two assumptions, (a 2 bDc¢) and (a D b), of the S-combinator formula. The user might have indicated this
consideration by drawing a link between the two occurrences of b, highlighted in orange and blue in fig. 3. The
effect of this consideration is to perform a “composition” of the two assumptions into the stronger assumption
(a2 a> T Dc), which could of course have been simplified to (a D a D ¢) immediately. In shallow proof systems
such as the sequent calculus or natural deduction this kind of compositional step cannot be taken as such, and
would require cuts or lemmas.

As explained in the introduction, this kind of composition might have been discovered in the process of
exploration by the simple strategy of drawing a link between the two occurrences of b. Such a link is legal
because in the common context that contains both occurrences of b, their ancestral connective is D, which can
be turned into a > interaction using the > rule. Once these two occurrences are linked, we can interpret the
interaction rules (fig. 1) as trying to bring the two ends of the link closer. Indeed, in each of the rules of fig. 1, we
can say that one of the ends of the link is in the formula A and the other is in the formula B. We are therefore
ready to formulate the linking procedure.

Definition 6 (Subformula Linking Procedure). Repeat the following sequence of steps until the conjecture
formula (i.e., end-formula) F is transformed to T (success), no fruitful progress can be made (failure), or the
proof attempt is aborted by the user.

1. (Optional) Ask the user to indicate negatively signed subformulas of F' that need to be contracted using the
cont rule.

2. Ask the user to indicate two different subformulas of F'; this is the link.

3. If the first common ancestor connective of the two linked subformulas is a D that occurs in a positively
signed context, use the > rule to turn it into a >; likewise, if the ancestor is a A in an negatively signed
context, use the o rule to turn it into a o. If neither case applies, then the user indicated an invalid link,
so we return immediately to step 2.

4. Use the interaction rules (fig. 1) in such a way that the endpoints of the link stay in the same interaction
from conclusion to premise.

5. Fventually, one of the terminal rules in or rel will be applicable to remove the interaction; at this point we
say that the link is resolved.

6. After resolving a link, the simplification rules may be applied eagerly in an arbitrary order.

The most important step in the inner loop of the procedure is step 4. The rules for interaction are not
unambiguous because the conclusions of different rules can overlap. Let us start by examining the positively
signed rules; as an example, consider the interaction C{(F > A) > (G > B)}, with the understanding that the
endpoints of the indicated link in step 2 are present in A and B. There are two possible ways to resolve this link:

C{EA(GD(Ap B} _ C{GD(FA(A>B)))
C{F A (A> (G>B))} 3: C{G>((F>A) v B)}
C{(F>A)» (G>B)} C{(F>A)» (G>B)}

Does the choice matter? Yes, because the formulas FF A (G2 H) and G D> (F A H) are not intuitionistically
equivalent; indeed, the former strictly entails the latter. Hence, one of the two alternatives produces a strictly
stronger—and potentially unprovablel—premise. Which one should the procedure pick?

This ambiguity also existed in the original formulation of the formula linking procedure for classical linear
logic [4], and we can use the same answer used in that work. The key insight is that many of the ambiguous
cases can be resolved by a simple analysis of polarities. A detailed discussion of polarity (and the oft-associated
focusing discipline [1]) is not relevant to this work, howeveri We will instead just use the observation that
some of the interaction rules of fig. 1 are asynchronous, meaning that the premise of the rule is equiderivable as
the conclusion—assuming we replace > and o with D and A respectively—while other rules are synchronous,
which means that the premise strictly entails the conclusion. For the specific example above, the >D, rule is
asynchronous, because the order of assumptions in an implication is immaterial (at least in intuitionistic logic),

20ur choice of connectives here has only negative polarity connectives except 3 and V. In intuitionistic logic it is also possible to
have a positive A and atoms of both polarities [5, 10], but this generality is not necessary for the present work.

Terminal rules

c{s=t}
C{a-5> a-t} "
Quantifier rules
C{Vz.(A»> B)} C{3z.(A> B)} A{Vy. (Ao B)}
C{Ab> Vo B} c{(Vz.A) v BY 0 A{Aovy.B} °
C{3y.(A»> B)} C{Vz.(A> B)} A{Jy. (Ao B)}

C{Av3y. B} © c{(3z. A)> B} ° A{Aoc3y.B)
(in each rule, z#B and y#A)

Simplification and instantiation rules

c{T} ory c{5=1) C{t term} C{[t/z]A}
C{Vz. T} C{z=a} ¢ C{f-5=f4) C{3z. A}

Figure 4. System Lni: rules for quantifiers and terms

while the Db rule is synchronous since its conclusion cannot justify the premise. We can draw up this table for
all the positively signed rules.

asynchronous rules: D>A7, DAy, VD>q, Vbo, DDy, PDy
synchronous rules: >Vi, PVy, ADy, Abgy, D>

Whenever there is a choice between a synchronous and an asynchronous rule to apply first (reading from
bottom to top), we should pick the asynchronous rule, since that does not destroy derivability. If we have
a choice of two asynchronous rules, then the choice is immaterial, as derivability is preserved regardless; the
procedure can pick arbitrarily. Different choices would just lead to associative-commutative variants of the same
ultimate premise. Finally, for a choice between two synchronous rules, we can consider all such pairs from the
table above to see that the choice is immaterial: all choices have the same result.

The story is not quite as simple for the negatively signed rules of fig. 1, where every single rule would be
synchronous by our definition. Unlike in the positively signed case, here we have a critical pair.

A{(F> (Ao B))v G} oo A{F>(AoB)VvG@G)}
A{((F>A)oB) Vv G} ov2 A{F> (Ao (BvVGQ))}
AM(F2A)o(BVG)} ° A{(F>A)o(BvG)}

1

o

As before, the premises are not equiderivable. Resolving this ambiguity is going to be as hard as fully automated
proof search, which will therefore not be recursively solvable as soon as we introduce quantifiers. The subformula
linking procedure needs further guidance from the user to resolve the ambiguity. A variant of this ambiguity
can also be found in the original subformula linking work for classical linear logic [4]; there, the solution was
to make the links directed. Then, whenever there is a choice to be made—which will necessarily have to be a
choice between one subformula containing the source of the link and the other containing the destination—the
procedure can choose to perform the rule corresponding to the destination first. In the above critical pair, for
instance, if A contained the source and B the destination, then we would perform the ov; step first (i.e., follow
the left derivation). This choice is made to evoke the intuition that the source is brought to the destination; the
context of the destination swallows the context of the source.

Definition 7 (Directed Subformula Linking Procedure). We modify the procedure of definition 6 by making the
links in step 2 directed, and in the resolution step 4 we break synchronous/synchronous ties for negatively signed
rules by performing the rule for the destination first.

2.2 Quantifiers

Extending Lnip with first-order quantifiers can be done in a number of ways. Here we present a parsimonious
extension that avoids any up front commitments with regard to the strength of the term language. Our terms
(written s,t,...) have the following grammar:

s,t,...u=x|fs

where we write 5 to stand for a list of terms [s1, s2,...,5,]. We use z,%,... to range over variables and f,g, ...
to range over function symbols, and we abbreviate f-[] to f. We also extend atomic formulas: they are now

T

Vy (TAT
v.() congXx2,refl

Vy. (f[c]=flc]ry=y) o
Vy.3z. (f-[c]=f[c]Ay=2) et

Jz. Vy. Az. (z=f-[c]Ay=2) cong Jz.Vy. z.YVw. (z=w Ay =2) o
Jz. Vy. Az (f-[z] = f-[f-[c]] Ay =2) . Jz. Vy. 3z. Yw. (a:[z,y] > a-[w, z]) N
Jz. Vy. 3z. (a-[f-[z], y] > a-[f-[f-[c]], z]) N Jz. Vy. 3z. (a-[z,y] > (Vz.a [z, 2])) .
Jz. Yy. (a-[f-[z],y] > (Fz. a-[f-[f-[c]], 2])) N Jz. Vy. (a-[z,y] > (Fy. V. a[z,y]))
Jz. ((Jy. a-[f-[z], y]) > (Fz. a-[f-[f-[c]], 2])) o Jz. ((Jy-a-[z,y]) > (Jy. Va.a:[,y])) e
(Vz. Jy. a-[f-[z],y]) > (2. a-[f-[f-[c]], 2]) N (Vz.Jy.a-[z,y]) > (Jy. Vz.a-[z, y])
(Vz. Jy. a[f-[z],y]) 2 (3= a-[f-[f[c]], 2]) (Vz.3y.a-[z,y]) 5 (Fy. Vz. a:[,y])

(a) (6)

Figure 5. Two example Lni derivations

written a-s where a is a predicate symbol, and we again abbreviate a-[] to a. To formulas and contexts we now
add the two quantifiers, V and 3, to give the following extended grammars, where * € {A, vV} and Q € {V, 3}.

AB,...:=as| ANB|T|AVB|L|A>B| V2. A|3z. A
Clu={}1AxC{}|1C{}*xB|QuC{}| AdC{} | A{}> B
A= Ax A |AD*B | Qe A} | ADA{} | C{} o B

We write C{t term} to assert that the term ¢ is well-formed for the hole in C{}, i.e., all the (free) variables of
t are bound by some quantifier that the hole in C{} is in the scope of. We also write x#t or z#A to indicate
that the variable x is not free in ¢ or A respectively. Finally, the capture-avoiding substitution of ¢ for x in a
term u or formula A is written [¢/x]u or [t/x]A respectively. The replacement of formulas in contexts, on the
other hand, is not capture-avoiding C{A}; instead, this replacement is considered to be well-formed whenever
every free variable x of A has the property that C{z term}.

In order to give ourselves maximum freedom in the definition of the first-order extension, we will use
the additional binary predicate symbol = to denote equality. Given two lists of terms s = [sq,...,s,] and
t = [t1,...,t,] of equal length, we will write § = ¢ to stand for (s; =t;) A === A (s, =t,,) if n > 0 and for T
otherwise. Using this additional predicate, the terminal rule in of Lnip is modified to account for the term
arguments.

Definition 8 (System Lni). The system Lni is an extension of Lnip by removing the in rule of Lnip and adding
the rules of fig. 4.

Theorem 9 (Completeness of Lni). If = F in a complete sequent calculus for first-order intuitionistic logic
(e.g., G3i [11]) then T L5 F.

Sketch. We can follow the same strategy as for theorem 4. Note that for any term ¢, the rules refl and cong
suffice to reduce C{t =t} to C{T}. A transitivity rule for = is not needed: no = is created in an negatively signed
context. O 0

Example 10. Two example Lni derivations are shown in fig. 5.

(a) This is a derivation for a provable formula where the user may have linked the two occurrences of a.
Observe that the simplification rules {cong, inst, refl} help to implement first-order unification under a
mized quantifier prefix. However, since Lni simplification rules can be applied at any time, we can solve
unification problems incrementally, in tandem with logical reasoning.

(b) This is a derivation for an unprovable formula containing an illegal quantifier exchange, where once again
the indicated link is between the two occurrences of a. This derivation cannot be completed because there is
no instantiation for x for which Yw.x = w is true.

3 Incorporating Arity-Typed A-Terms

To make the calculus Lni of the previous section suitable to host a type theory as an object language, we will
need to generalize from first-order terms to general A-terms. We will follow a standard technique known variously
as higher-order abstract syntax (HOAS) [12] or A-tree syntax [7] that treats the pure A-calculus—together with

afn-equality as its equational theory—to represent object languages. To keep things computable, we will use
simply typed A-terms with only one basic type, which is sometimes known as arity typing. Arity types (o, f,...)
and terms (s,t,...) have the following grammar.

a,f,...u=%|a—f hu=x|k s,t,...u=hes | Azia.t

where x,y, ... range over variables, and sans-serif identifiers such as k range over term constants. For formulas,
we also change the quantifiers Qx. F' to their arity typed forms Qx:a. F', where Q € {V, 3}.

We keep A-terms in canonical spine form, where the head (h) of an application is identified and separated; in
more usual notation, h+[sy,..., s,] would be written as the iterated application (---(h s1) -+ s,,). The definition
of substitution, [¢/x]s, must be modified to retain spine forms, which is usually done by removing redexes on
the fly; for example (using @ as an auxiliary operation):

[t/x]k = k-[] [t/z]z =t [t/z]y = y[] (where z and y are different)

[t/z](Myia. s) = Aya. [t]x]s
[t/x](h[s1,. .. s,]) = ([¢/x]h) @[[t/x]sq1, ..., [t/x]s,]
(AI:OA 5) Q@ [tlatQa s 7tn] = ([tl/I]S) Q@ [t2a cee 7tn:|
(h'[sla s asm]) Q [tla s atn] = h'[sla s avatlv e 7tn]
Most of the inference rules of system Lni generalize easily to this setting. The immediate differences will be
with respect to the simplification rules. For the inst rule, we use a variant judgement C{¢ : a} to mean that the

A-term t is well-typed at type a based on the type assumptions of its free variables that are bound in the scope
of the hole in C{}. It is possible to view this judgement as being defined by inference rules; for instance (for

Q € {Vv,3}):
C{Vz:a.(t:)}
C{Qz:a.C{z:a}} C{(Azia.t):a — B}
C{h:aqy = > a, > B} C{s;:a;}
C{(h.[sla) Sn]) : ﬁ}

The rules refl and cong of Lni are replaced with:

c{s=1t} ng C{Vz:a. (s = t)} X
C{h3 = i) C{Ozia.s) = Oz)} °0°
C{(Axz:a.h-[s1,...,8n,7]) = (Az:. 1)}

C{h-[s1,...,8,]1= (Az:a.t)}

7-exp (and its symm. variant)

Definition 11 (System Lni)X). The system LniX is a modification of Lni with the ¥ rules, cong, abs, n-exp, and
in above.

Theorem 12 (Completeness of Lni\). For any formula F in the language of first-order logic over A-terms but
without any occurrence of =, if F F in a complete sequent calculus then T L0 F.

Sketch. Once again, this is a straightforward extension of the proof of theorem 9. Since there are no occurrences
of = in F, and in particular no occurrence of it in a negatively signed context, the rules cong, abs and n-exp are
sufficient to implement af8n-equivalence. O O

4 Application: Embedding Intuitionistic Type Theories

The first-order language over arity-typed A-terms of the previous section has enough expressive power for a
complete encoding of any pure type system [6, 15]. To keep things simple in this paper, we will demonstrate the
case for LF (aka AIIl) using the simple embedding from [15]. Expressions in LF belong to one of the following
three syntactic categories: kinds, types, or terms.

K u=type | Ix:A. K (kinds)
AB,...u=a M, --- M, | Iz:A. B (types)
M,N,...:=z|k| A M|MN (terms)

The LF type system is formally specified using inference rules in [9] and will not be repeated here. Instead, we
will directly present a complete encoding of LF expressions using the language of LniA.

Vu.Vz. 3k. z-[u] = k
Vu.Vz. 3k u=u A z-[u] =k Ab-[u] =b-[u]
Vu.Vz. dk. dz.u=z A z-[z] =k Ab-[z] = b-[u]
Vu.Vz. 3k.3z.u =z A (has:[z-[z], b-[x]] > has:[k, b-[«]])
Vu.Vz. k. (Vx.u = z D has-[z:[z], b-[2]]) > has-[k, b-[u]]
Vu.Vz. 3k. (Vx.u = x D has-[2+[z],b-[2]]) D has:[k, b-[u]]
Vu.Vz. k. (Vz. (u=x A a=a)Ddhas[z-[x],b-[x]]) D has-[k, b-[u]]

Yu. Vz. 3k. (V. (has-[u,a] > has:[z,a]) D has-[z-[z],b-[x]]) D has-[k, b-[u]]
Vu.Vz. k. (Vx. has-[u,a] o has:[z,a] D has-[2-[z], b-[2]]) D has-[k, b-[u]]
Yu. Vz. k. has-[u,a] o (Vz. has:-[x,a] D has:[z-[x], b-[x]]) D has:[k, b-[u]]
Vu. Vz. 3k. has-[u,a] > (Vz. has:[z,a] D has:[2-[z], b-[x]]) D has-[k, b-[u]]
Yu.Vz. has-[u,a] > (Vz. has-[x,a] D has-[z-:[x], b-[x]]) D k. has-[k, b-[u]]
Yu.has-[u,a] > Vz. (Vz. has:[z,a] D has:[2:[z],b-[2]]) D Tk. has-[k, b-[u]]
Vu.has:[u,a] > Vz. (Vx. has:[x,a] D has-[z-[x], b-[2]]) D Tk. has-[k, b-[u]]

inst[u/z]

Figure 6. A Lni) derivation of an embedded LF type (example 16). Some type ascriptions are elided, and doubled lines
denote simplifications.

The encoding proceeds in two steps. First, we transform the dependently typed terms of LF into their simply
typed forms, normalizing them as necessary. However, since LF terms can mention their types, we simultaneously
transform LF types into simple types. This transformation erases not just the type dependencies but also the
identities of the types by collapsing all of them to the same base type *.

Definition 13. The forgetful map ¢ specified below transforms LF terms into Lnix A-terms and LF types and
kinds into Lni\ types.

oK) = k] oa My - M) = x
é(z) = o-[] ¢o(Ilz:A. B) = (4) ~ ¢(B)
Sz A. M) = Az:p(A). p(M) H(type) = *
¢(M N) = ¢(M) @ [¢(N)] P(lz:A. K) = ¢(A) » ¢(K)

The second stage of the transformation recovers the information that was lost in the ¢ map by means of one
atomic propositions, has. Using this we define a mapping [] that transforms types and kinds to formulas in such
a way that if M : A holds then [A]l¢(M) is true.

Definition 14. The mapping [] transforms an LF type/kind and a Lni\ A-terms into a Lni\ formula, specified
recursively as follows.

[[a Ml Mn]]m = has-[m, a'[QS(Ml)a cee (b(Mn)]]
[type]m = has-[m, type]
[Mx:A. Jlm = Va:¢(A). [A]z > [J](m @ [x])

(where J can be a LF type or kind).

Proposition 15 (Completeness [15]). If the judgement x1:Jy, ..., x,:J, M : A is derivable in LF [9], then the
following formula is provable in Lnix: Vx:¢(J1). [Ji1(z1-[1) D -+ 2 Va,,:0(). [T (zn-[1) 2 [Al@(M). O

The converse of proposition 15 does not necessarily hold, since the forgetful map ¢ is injective, not
surjective.i In particular, since the encoding of atomic types forgets the term arguments, we have that
o(Ax:Aq.s) = ¢p(Ax:Ay.s) if ¢(A;) = ¢(As); however, the latter does not guarantee that A; = A,. Thus,
[Tiz:A;. B]¢p(Az:As. s) may hold even when A; # A,. To guarantee surjectivity, we must use the canonical
LF variant of the LF type theory where the type ascription on A is omitted and the type system is made
bidirectional [19]; this will guarantee that only II-types will ascribe types to bound variables, removing the issue
highlighted above.

3This issue, pointed out in [16], is a mistake in earlier papers such as [6, 15].

Example 16. Consider the following LF type A = Iu:a. Iz:(Ilz:a. ba). bu. By definition 14, we have:

[AJk =Vu:x. has-[u,a] D
Vzix = . (Vzix.has:[x,a] D has-[z-[z],b-[z]]) D
has-[k, b-[u]].

Fig. 6 has an example Lni\ derivation of this formula where k is existentially quantified. As usual, highlights are
used to indicate the two links the user indicated in the two > rules. The derivation can be complete with the
instantiation [z-[u]/k]; this means that the LF type A is inhabited by some LF term M for which ¢(M) = z-[u].

Note that the fact that we have not discovered a LF term for k using the Lni) derivation is not a problem. Given
a LniX term k for which [A]k is derivable, it is possible to find a term M for which ¢(M) = k and M : A holds
in LF. One way to do this would be to use bidirectional type checking [14, 19] to recreate—deterministically—the
missing LF types.

While the encoding of LF in Lni) suffices to implement the proof by linking technique, it is a leaky encoding.
As the derivation in fig. 6 proceeds, the conjecture resembles the image of the [] map less and less; in particular,
the conjecture starts to accumulate things that are not fundamentally present in the LF type system, such as term
equations, conjunctions, and existential quantifiers. The purported novice user mentioned in the introduction
thus needs to be familiar with at least two languages: LF and (a somewhat esoteric variant of) first-order logic.
One way to improve matters would be to try to define the linking procedure directly on the LF type system, but
this example seems to indicate that the LF language is not expressive enough to capture all the structures that
will occur when resolving a link. At the very least, it seems that some kind of pairing construct—i.e., 3-types—is
essential. Moreover, to capture free floating has assumptions, the language of LF might need to be extended
further with judgemental expressions of the form (M:A).

5 Conclusion and Future Directions

We have presented a formal system of proof by linking for intuitionistic logic and a derived system for the
dependent type theory LF. We are currently in the process of implementing this system as a variant of the
Profound tool, which was initially developed for classical linear logic in [4].

In order for this system to be usable in a general purpose interactive theorem prover based on first-order
logic (such as Abella [2]) or dependent type theory (such as Twelf [13]), the most important missing ingredient
is support for inductive definitions and reasoning by induction. The first step in a proof by structural induction
is to indicate which assumption(s) will drive the analysis, which is closer to a pointing than a linking. Thus,
proof by linking and pointing will need to co-exist.

A further improvement that would be made as a matter of course in an implementation would be the use of
a unification engine to remove the clutter of = formulas. It is worth investigating (in future work) if the linking
metaphor can also be used for algebraic operations on terms based on =. In many systems =-assumptions can
be used to rewrite terms, which is readily incorporated into the linking scheme: just link a term to one side of a
=. We can in fact see it as variants of the inst rule:

c{[t/=1C{T}} A{[t/=] AT}
C{Ax.C{x=t}} A{Va. A{z=t}}

It is worth investigating if such variants of inst can make the embedding of LF into LniX less leaky.

Note that proof by linking, like proof by pointing, can easily be incorporated as a tactic in an existing proof
system. After all, each of the inference rules of Lni\ is logically motivated, and can therefore be established as a
certifying tactic. The quality of the formal proof terms produced in this way will be poor since most proof term
languages are not designed for deep rewriting — indeed, the proof term for each Lni) inference rule may have a
size that is exponential in that of the conjecture. It is perhaps better to see proof by linking as a proof exploration
tool for quickly testing out logical properties of a conjecture before attempting a traditional structured proof. In
the hands of an expert user, this exploration mode can also help to discover useful lemmas to bridge the gap
between an existing collection of proved theorems and a desired target theorem.

References

[1] J.-M. Andreoli. Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and Computation,
2(3):297-347, 1992.

[2] D. Baelde, K. Chaudhuri, A. Gacek, D. Miller, G. Nadathur, A. Tiu, and Y. Wang. Abella: A system for
reasoning about relational specifications. Journal of Formalized Reasoning, 7(2), 2014.

10

3]

[4]

[14]

[15]

[16]

Y. Bertot, G. Kahn, and L. Théry. Proof by pointing. In Theoretical Aspects of Computer Software, pages
141-160, 1994.

K. Chaudhuri. Subformula linking as an interaction method. In S. Blazy, C. Paulin-Mohring, and
D. Pichardie, editors, 4th Conference on Interactive Theorem Proving (ITP), volume 7998 of LNCS, pages
386—401. Springer, July 2013.

K. Chaudhuri, F. Pfenning, and G. Price. A logical characterization of forward and backward chaining in
the inverse method. Journal of Automated Reasoning, 40(2-3):133-177, Mar. 2008.

A. Felty and D. Miller. Encoding a dependent-type A-calculus in a logic programming language. In CADE,
volume 449 of LNAI pages 221-235. Springer, 1990.

A. Gacek, D. Miller, and G. Nadathur. A two-level logic approach to reasoning about computations. Journal
of Automated Reasoning, 49(2):241-273, 2012.

N. Guenot. Nested Deduction in Logical Foundations for Computation. Ph.d. thesis, Ecole Polytechnique,
2013.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the ACM, 40(1):143-184,
1993.

C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and classical logics. Theoretical
Computer Science, 410(46):4747-4768, 2009.

S. Negri and J. von Plato. Structural Proof Theory. Cambridge University Press, 2001.

F. Pfenning and C. Elliott. Higher-order abstract syntax. In ACM-SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 199-208. ACM Press, June 1988.

F. Pfenning and C. Schiirmann. System description: Twelf — A meta-logical framework for deductive
systems. In H. Ganzinger, editor, 16th International Conference on Automated Deduction (CADE), number
1632 in LNAI, pages 202-206, Trento, 1999. Springer.

B. C. Pierce and D. N. Turner. Local type inference. ACM Transactions of Programming Language Systems,
22(1):1-44, 2000.

Z. Snow, D. Baelde, and G. Nadathur. A meta-programming approach to realizing dependently typed logic
programming. In Principles and Practices of Declarative Programming (PPDP), pages 187198, 2010.

M. Southern. A Framework for Reasoning about LF Specifications. PhD thesis, University of Minnesota,
Mar. 2021. Defended; final version to appear.

L. Stralburger. Linear Logic and Noncommutativity in the Calculus of Structures. PhD thesis, Technische
Universitat Dresden, 2003.

A. Tiu. A local system for intuitionistic logic. In Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR), volume 4246 of LNCS, pages 242-256. Springer, 2006.

K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical framework I: The propositional
fragment. In Post-proceedings of TYPES 2003 Workshop, number 3085 in LNCS. Springer, 2003.

11

