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A Novel Multimodal Approach for Studying the
Dynamics of Curiosity in Small Group Learning

Tanmay Sinha1, Zhen Bai2, Justine Cassell3

Abstract—Curiosity is a vital metacognitive skill in educational
contexts, leading to creativity, and a love of learning. And while
many school systems increasingly undercut curiosity by teaching
to the test, teachers are increasingly interested in how to evoke
curiosity in their students to prepare them for a world in which
lifelong learning and reskilling will be more and more important.
One aspect of curiosity that has received little attention, however,
is the role of peers in eliciting curiosity. We present what we
believe to be the first theoretical framework that articulates an
integrated socio-cognitive account of curiosity that ties observable
behaviors in peers to underlying curiosity states. We make
a bipartite distinction between individual and interpersonal
functions that contribute to curiosity, and multimodal behaviors
that fulfill these functions. We validate the proposed framework
by leveraging a longitudinal latent variable modeling approach.
Findings confirm a positive predictive relationship between the
latent variables of individual and interpersonal functions and
curiosity, with the interpersonal functions exercising a compara-
tively stronger influence. Prominent behavioral realizations of
these functions are also discovered in a data-driven manner.
We instantiate the proposed theoretical framework in a set of
strategies and tactics that can be incorporated into learning
technologies to indicate, evoke, and scaffold curiosity. This work
is a step towards designing learning technologies that can recog-
nize and evoke moment-by-moment curiosity during learning in
social contexts and towards a more complete multimodal learning
analytics. The underlying rationale is applicable more generally
for developing computer support for other metacognitive and
socio-emotional skills.

Index Terms—Curiosity, Learning in Social Contexts, Multi-
modal Human Behavior Analyses, Scaffolding

I. INTRODUCTION

CURIOSITY is defined as a strong desire to learn or know
more about something or someone, and is an important

metacognitive skill to prepare students for lifelong learning
[1]. Because curiosity is increasingly rare in students in class-
rooms, perhaps because increasingly rare in curricula [2], [3],
large-scale attempts exist to help teachers bring back children’s
curiosity1. Traditional accounts of curiosity in psychology and
neuroscience focus on how it can be evoked via underlying
mechanisms such as novelty (features of a stimulus that have
not yet been encountered), surprise (violation of expectations),
conceptual conflict (existence of multiple incompatible pieces
of information), uncertainty (the state of being uncertain), and
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anticipation of new knowledge [4], [5]. These knowledge-
seeking experiences create a positive impact on student’s be-
liefs about their competence in mastering scientific processes,
in turn promoting greater breadth and depth of exploration [6].

Such theories have inspired the development of computer
systems for facilitating task performance by enhancing an in-
dividual’s curiosity (e.g., [6], [7], [8]), and simulating human-
like curiosity in autonomous agents [9]. Evoking curiosity
here mainly focuses on directing an individual to a specific
new knowledge component, followed by facilitating knowl-
edge acquisition through exploration. Such a linear approach
largely ignores how learning is influenced by social contexts.
Here, a child’s intrinsic motivation, exploratory behaviors, and
subsequent learning outcomes may be informed not only by
materials available to the child, but also the active work of
other children, and the presence of facilitators [10], [11]. For
instance, an expression of uncertainty or a hypothesis made by
one child may cause peers to realize that they too are uncertain
about the topic under discussion. This may initiate working
together to overcome the cause of uncertainty, in turn having
a positive impact on the individuals’ curiosity [12].

Although substantial literature exists on the intrapersonal
origins of curiosity, with rare exceptions (cf. [3], [13]) a lacuna
exists concerning how peer-driven social factors contribute to
moment by moment changes in curiosity. Peer influence is
important because even in classrooms where teachers teach
to the test, group work is encouraged, and such participation
structures remain a core part of classrooms [10]. Thus, peers
may be one of the few ways that curiosity is elicited. This
makes it critical to understand curiosity beyond the individual
level to an integrated knowledge-seeking phenomenon shaped
by the individual, physical and social environment. Embodied
Conversational Agents (ECAs) - particularly child-like ECAs
called virtual peers - have demonstrated a special capacity in
supporting learning and collaborative skills for young children
[14]. Knowing how social factors influence curiosity allows the
design of ECAs and other technologies to support curiosity-
driven learning before children naturally support each other.

To address the goal of a framework that accounts for both
individual and social influences on curiosity, our work takes
a novel approach. We look at the impact of individuals on
other individuals in group work by focusing on the observ-
able behaviors that peers use - both language and nonverbal
behavior - and using latent variable modeling to connect
those observable behaviors to the students’ inner curiosity
states. Our work is unique in moving from a theoretical
model to building arguments and evidence, relying on ma-
chine learning and human annotation, concerning verbal and
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nonverbal indicators that curiosity exists in a given student
(and verbal and nonverbal behaviors that are most successful
in eliciting curiosity, to building a statistical model that tests
the theoretical assumptions.

More specifically, we propose an integrated socio-cognitive
account of curiosity based on literature spanning psychology,
learning sciences and group dynamics, and empirical anal-
yses of a group informal learning environment. We make
a bipartite distinction between functions that contribute to
curiosity, and multimodal behaviors that fulfill these func-
tions. Such functions are latent and therefore not directly
knowable, and we must therefore hypothesize or presume
them based on observable phenomena that index them. We
therefore refer to them as putative functions. These functions
comprise (i)“knowledge identification and acquisition (helps
humans realize that there is something they desire to know,
and leads to the acquisition of the desired new knowledge),
and (ii) “knowledge intensification” (escalates the process of
knowledge identification or acquisition by providing favorable
environment) - at the individual and interpersonal level. We
perform statistical validation of this framework to illumi-
nate predictive relationships between multimodal behaviors,
functions (latent variables because they cannot be directly
observed), and ground truth curiosity (as judged by naive
annotators). Longitudinal latent variable modeling is used to
explicitly account for group structure and differentiate fine-
grained behavioral dynamics.

The main contributions of this work are three-fold: First, it
begins to fill the research gap of how social factors, especially
interpersonal peer dynamics in group work, influence curiosity
(section 6.B, 6.C). Second, the model is designed to lay a
theoretical foundation to inform the design of learning tech-
nologies, a virtual peer in the current study, that can employ
pedagogical strategies to evoke and maintain curiosity in social
environments (section 6.C). Findings derived from the current
analyses of human-human interaction can be informative in
guiding the learning technology (human-agent interaction)
design (section 7.A), and in decision making for multimodal
analyses of behavior (section 7.B). Third, at the methodolog-
ical level, our research (i) introduces novel approaches for
collecting rich multimodal data in group settings (section 3.A),
which is key to making fine-grained behavioral inferences,
(ii) advances the use of crowdsourcing platforms for efficient
ground truth annotation, which is important in human behavior
analysis for educational research and beyond (section 5.A),
(iii) provides a rigorous and reproducible semi-automatic be-
havior annotation approach, which combines complementary
strengths of state-of-the-art machine learning methods and
advantages of human judgment (section 5.B, 5.C and 5.D).

In what follows, Section 2 discusses related work. Sec-
tion 3 discusses data collection (pre-studies and main study)
across multiple learning contexts. Section 4 describes our
combination of theory-driven and data-driven process for the
development of the theoretical framework of curiosity. Section
5 describes the annotation of ground truth curiosity, verbal
and nonverbal behaviors, and turn-taking metrics. Section
6 discusses statistical validation of the proposed theoretical
framework of curiosity, with a discussion of the model fit to

our corpus, identified causal interpersonal and intrapersonal
behavior influence patterns that result in increase or mainte-
nance of curiosity, and initial implementations of our theory-
and-data driven approach in a virtual peer that is a co-player
of a science game with children. In section 7, we describe the
implications of this work for learning technology design and
multimodal learning analytics. We end with limitations, future
work and conclusion in sections 8, 9 and 10.

II. RELATED WORK

For clarity, we divide related work into discussions about
curiosity in the psychology, group dynamics and learning
sciences literature and end with a brief overview of existing
computational modeling approaches.

A. Curiosity in the Psychology Literature
Researchers in psychology describe curiosity as a psycho-

logical and behavioral state that “responds to an inconsistency
or a gap in knowledge” [15], and raises “feelings of mystery, of
strangeness, and of wonder” [16]. Like hunger and thirst, cu-
riosity is considered a critical internal drive for human beings
that causes us to explore our environment, acquire knowledge
and learn skills. It is generally described as an intrinsically mo-
tivated desire, passion or appetite for information, knowledge
and learning [11], [17]. Several theoretical lenses explain the
cause of curiosity. For instance, the incongruity theory argues
that curiosity arises from the human tendency to make sense
of the world on observing violated expectations [18], [19].
Theories of conflict arousal consider curiosity as a drive that
leads to the simultaneous occurrence of incompatible response
tendencies. Main determinant factors for psychological conflict
include both perceptual factors (e.g., novelty, surprise etc) and
epistemic factors (e.g., incongruity, confusion etc) [20].

The information-gap perspective, another dominant view
in the field, proposes that curiosity is raised when people
attend to a gap in their knowledge, and the intensity depends
on importance, salience and surprisingness of the desired
information [21], [22], [4]. Other research in psychology has
conceived of curiosity as desirable feelings associated with the
anticipation of acquiring new knowledge. As described further
below, our perspective adds to these causal factors verbal
challenges, incompatible hypotheses, and negative evaluations
of the target child’s ideas Previous literature also reveals
several behavioral cues for curiosity. These include physical
exploration such as orientation, locomotion and manipulation
towards objects of interest, epistemic investigation such as
question asking, experimentation, reasoning about observed
phenomena, as well as expressions of surprise, excitement,
wonder, confusion and attentiveness [20], [23], [24].

Existing behavior-based measures of children’s curiosity
mainly rely on physical exploration and simple verbal behav-
iors such as question asking and commenting (e.g., [25], [26]).
There is, however, a lack of rigorous operational measures of
curiosity that incorporate the verbal and nonverbal behaviors
displayed in real-time interaction.

B. Curiosity in the Group Dynamics Literature
Social accounts for curiosity remain largely unexplored

in the psychology literature, and relevant research primarily
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focuses on parent-child or teacher-student interaction [27], [3],
instead of peer-peer interaction. Knowledge dissonance, social
comparison and social information-seeking are three closely-
knit factors related to curiosity and exploration which have
been studied in prior work. First, compared to teacher-led
learning where a teacher holds higher power/status in terms
of knowledge possession, peer-peer learning is more likely
to result in challenging different opinions or ideas from one
another and active resolution of such knowledge incongruity
or dissonance [28]. This is one of the main sources of curiosity
[29]. Controversy, instantiated as conflict or disagreement, has
also been identified as one of the social causes of dissonance
- the simultaneous existence of cognitions that in one way or
another do not fit together. When individuals working in a
small group experience dissonance, they might work towards
reducing or eliminating dissonance via different means. One
important means is attempt to seek additional social support
for the held opinion by emphasizing its importance, lucrative-
ness, etc., in turn triggering curiosity [28].

Second, through social comparison, students are more eager
to evaluate the correctness of their own opinion via group
discussion and coming to know their peers’ opinions, com-
pared to knowing an expert’s opinion [30]. When individuals
face a question with no clear solution and they cannot reduce
the uncertainty by consulting objective sources of information,
they turn to views endorsed by others in the group and evaluate
the accuracy of their beliefs by comparing themselves to others
[28]. Also, cognitive and affective changes are more likely
when observing others who are perceived as friends or similar
to the observer [10]. Also, students are more likely to actively
seek information and solutions when their uncertainty is shared
or at least considered as warranted, reasonable, or legitimate
by their peers [12]. Such joint hardship [31] is likely to
impact group member’s behavior positively, due to the trigger
it provides for engaging in cooperative/joint effort to overcome
the obstacle by reasoning or physical exploration.

Third, social information seeking, or a general interest
in gaining new social information (how others behave, act
and feel) promotes acceptance (a non-evaluative feeling with
unconditional positive regard towards another) [31] and cre-
ates mutually shared cognition in the group [32]. It creates
space for group members to learn from others’ preferences
and viewpoints [33]. Increased group member familiarity and
knowledge awareness can increase willingness to work jointly
and lead to consideration of more alternatives. Our research is
meant to fill the research gap that exists concerning the role of
individuals in social contexts, by incorporating theories from
peer learning and group dynamics. Note that this perspective
is quite separate from and complementary to more holistic
accounts of group work, such as Cress’ [34] account of the
co-evolution of collaborative knowledge, that describes the
interplay between individual learning and group learning and
its impact on group-level curiosity. Curiosity at the level of
the group is surely at work in the contexts we analyzed as
well, however, our focus on verbal and nonverbal behaviors
produced by individuals and affecting other individuals’ un-
derlying psychological states precluded an analysis at the level
of the group.

C. Curiosity in the Learning Sciences Literature
Discussions about curiosity can be traced back to [35],

who differentiated extensive curiosity (that widens a learner’s
interest) and particular curiosity (that helps a learner acquire
detailed knowledge). [36] tied these notions to the literature on
knowledge awareness in collaborative learning settings. They
posited that when a learner’s activities are oriented towards
the “same knowledge” that the peer is looking at, discussing
or changing, particular curiosity is excited. We find, on the
contrary, that when a learner’s activities are oriented towards
“different knowledge” than their peer, extensive curiosity can
be evoked and collaboration possibilities are enhanced.

Curiosity has also been discussed under the umbrella of
intrinsic motivation [37]. Intrinsically motivated learners de-
rive pleasure from the task itself, while learners with extrinsic
motivation rely on external rewards. [38] considers curiosity
as a motivational aspect in the design of learning technologies,
and discusses surprising students as a central instructional
tactic to lead them to explore new areas of the subject for
constructing coherent explanations. Curiosity is also proposed
as one of seven dimensions of the construct of “learning
power” [39], which refers to a form of consciousness, or crit-
ical subjectivity leading to growth. Critically curious learners
are comparatively less likely to accept what they are told
uncritically, and more willing to reveal their questions and
uncertainties. It is important to note, however that, the focus
of the learning sciences literature has been fundamentally
cognitive, whereas we seek to understand the social scaffolding
of curiosity along with its cognitive roots.

In the field of artificial intelligence in education, there is
scarce research on how the dynamics of social interaction
may influence student’s intrinsic learning motivation. Some
applications of curiosity can be seen in the development of
pedagogical agents. For example, [40] found that a curious
peer (that keeps questioning) can problematize the interaction,
and direct learner’s attention to spot the contradiction in
their knowledge structure, thereby inducing curiosity. [41]
also discovered that if a computer agent displays curiosity
by pro-actively responding to novel conflicting stimuli, it can
discover interesting learning concepts. Interaction with such a
computer agent was shown to lead human learners to engage in
greater task exploration of the learning environment, enhanced
attention, and improved learning outcomes. The underlying
model of interpersonal influence that is common to both
these research strands is “modeling”. These systems implicitly
assume human learners to spontaneously pick up on social
cues of the “curious” pedagogical agent. We aim to develop
a more nuanced understanding of curiosity, without directly
equating behaviors to curiosity, or, relying solely on a single
theoretical lens of looking at curiosity.

D. Computational Models of Curiosity
In general, curiosity has been computationally modeled [42]

using an appraisal process where the incoming stimuli are first
evaluated for their potential to provide an appropriate stimu-
lation level. Subsequently, the stimulation level is mapped to
a non-linear emotion curve called the Wundt curve [43] for
deriving the curiosity level. The Wundt curve postulates too
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little stimulation to result in boredom, too much stimulation
to result in anxiety, and only an optimal stimulation level to
result in curiosity. We, however focus not just on perceptual,
but also on the epistemic dimension of curiosity. Further, our
computational model is meant to serve as an input into a
human-pedagogical agent interaction in group work, unlike
the goals of prior computational models of curiosity.

III. DATA CORPUS

To capture the simultaneous dynamic of fine-grained behav-
iors of multiple participants (Figure 1), a novel human behav-
ior recording apparatus was developed. Recording equipment
comprised four Logitech C920 Pro Webcam devices for the
egocentric recording (frontal view), eight camcorder recorders
for the exocentric recording (single and group view), and four
lapel-microphones (Sennheiser ew100 G2 and Samson UHF
Micro 32) to separate individual’s speaking (Figure 2). We
were able to get a frontal view of participants for automated
detection of facial expression, head and gaze gesture, and
single view and group view for analyzing other individual
and social behaviors (Figure 3). Our goal in collecting such
rich multimodal data was to be able to then annotate ground
truth curiosity, detect verbal and nonverbal behaviors that
fulfill putative functions of curiosity (see section 4.A, 4.B),
and subsequently, statistically verify predictive relationships
between them (see section 6).

A. Pre-study 1 (In-School)
Twenty participants in 6th grade (usually 11 to 12 years old)

participated in our first pre-study. Participants were recruited
by teachers in a local public school. There was no remunera-
tion. The study took place in the 6th grade science class and
STEAM class for two weeks. There were eight observation
sessions in total, four sessions for science class and four
sessions for STEAM class, with each session lasting about 45
minutes. The science class was focused on the topic of earth
science learning, while the main activities of the STEAM class
included robotics, programming, and crafting. Both classes
were divided into small groups with 3-4 students. There were
several constraints for data collection in a classroom, including
large-scale observation (3-4 groups of students at the same
time), noisy environments, and confined space and time for
equipment set up. To accommodate the above constraints,
we used a lightweight recording setup that included two
camcorder recorders to capture students from the opposite
sides of the table, and one lapel microphone in the middle
of the table. Researchers also took field notes to describe
student’s interpersonal learning behaviors relating to curiosity.

B. Pre-study 2 (Science Summer Camp)
Thirty-one participants aged 9-14 participated in our second

pre-study. Participants were recruited by teachers. The study
took place in two science summer camp sessions hosted in
a local child maker-space, with each summer camp lasting
one week. We observed 30 hours in total. There was a wide
variation of hands-on activities in the summer camp, spanning
topics from physics, chemistry, biology, life science, robotics,
and crafting. The class was divided into four to five groups.

Compared to pre-study 1, the summer camp observation was
longer and noisier, with more diverse (and less structured)
activities. The class layout also changed frequently. We used
one camcorder recorder and one lapel-microphone fixed on
the table for each group of children. Similar to pre-study 1,
researchers took field notes to describe peer-peer interaction
associated with curiosity.

C. Main Study (In-Lab)
Our main study, which built upon the two pre-studies,

was conducted in a semi-controlled adult-free lab setting.
It comprised forty-four participants in 5th or 6th grade (16
male and 28 female, aged between 10-12, average age 11.2),
who collaboratively built a Rube Goldberg machine (RGM)
for about 35-40 minutes. The RGM task included building
several chain reactions meant to be triggered automatically
to trap a ball in the cage (without external human support).
The machine was created using a variety of simple objects
such as rubber bands, pipe cleaners, toy cars, clothespin, etc.
We employed the RGM building activity because it supports
learning of key science knowledge for students in 5th and 6th
grade as defined by the Pennsylvania Department of Education
[44] such as force, motion and energy transfer, and enables
collaborative hands-on learning and creative problem solving
[45] without need for adult intervention.

Participants were recruited through flyers sent to local
public schools, parent mailing-lists of the university, and
advertisements on social media and in public spaces. All
participants were remunerated with $30 cash. 12 study sessions
were videotaped, each one including a group of three to four
students, and lasting for one and half hours. The procedure
for each study session was as follows: (1) 10 minutes for an
ice-breaking game; (2) 5 minutes free exploration of materials
easily found at home; (3) 5 minutes of introducing participants
to Rube Goldberg machines (RGM); (4) 30 minutes for
collaboratively building the RGM; (5) a 5-minute opportunity
to demonstrate the built RGM; (6) a 10-minute interview, and
optionally (7) 5 minutes free exploration of a pre-made RGM;
(8) 20 minutes for dispensing remuneration.

IV. THEORETICAL FRAMEWORK DEVELOPMENT

We take a socio-cognitive view of curiosity whereby we
acknowledge social influences but also try to isolate the
individual mind as a cognitive unit of analysis by controlling
for these external influences. This theoretical stance is partly
borne out of our interest in studying individual curiosity (as
opposed to a construct that is defined at the dyadic or group
level like rapport). Adopting such a view also serves the
practical goal of using behavioral cues of the other individuals
to influence the curiosity of a given individual.

We define curiosity-driven learning in social contexts to be
situations where particular forms of interaction among people
trigger or facilitate behaviors associated with high curiosity. To
leverage this notion for developing an integrated psychological
and social framework of curiosity, a combination of theory-
driven and data-driven approaches was used. From the theory-
driven perspective, several iterations of the literature review
were conducted with a gradual shift from individual- to



5

Fig. 1. Empirical observation across learning contexts. Left: in-lab RGM building; Middle: in-school STEAM class; Right: science summer camp

Fig. 2. In-lab study data collection apparatus. Left: equipment arrangement; Middle: real arrangement; Right: fixture of four Webcam devices.

Fig. 3. Illustration of video recording in the In-lab study. Left: frontal view; Middle: single view; Right: group view.

interpersonal-level curiosity. Starting with research on curios-
ity at the individual level in psychology, we fanned out to
critically investigate existing research on the social influence
of curiosity within the group dynamics and the Learning
Sciences literature. Informed by these theoretical lenses, we
developed (i) a set of putative functions that contribute to
curiosity, and (ii) multimodal behaviors that provide evidence
for the potential presence of an individual’s curiosity in the
current time-interval because they fulfil these functions.

From the data-driven perspective, we carried out empirical
observation of small groups of 9-14 year old children en-
gaged in hands-on learning activities across lab, science and
STEAM class, and informal learning environments (section 3).
Qualitative analyses were conducted in an exploratory manner
first based on notes, videos and audio data collected during
field observations [46]. The pre-studies helped in identifying a
list of curiosity-related individual and interpersonal behaviors
during small group science learning, based on our initial
literature review. Building on these diverse pre-study contexts,
we conducted follow-up qualitative/quantitative analyses on
our in-lab data (but not constrained by the initial behavior list),
to empirically validate and extend curiosity-related behaviors
while minimizing confirmation bias.

Overall, this mixed-methods approach involving the class-
room, science summer camp, and lab as study contexts al-
lowed us to (i) obtain familiarity to describe and explain the
phenomenon of curiosity in different small group learning
contexts, (ii) develop the integrated theoretical framework

of curiosity with in-depth empirical evidence, and (iii) form
relevant hypotheses based on the empirical exploration for
follow-up quantitative validation of the theoretical framework.

We originally hoped to use both the pre-studies and main
study data for quantitative analyses, but then discovered that
adults in the classroom and summer program systematically
obviated contexts in which curiosity might appear. The adults
asked leading questions, rhetorical questions, and other kinds
of classroom moves that left little room for exploration, cre-
ativity and curiosity. That in itself is an interesting finding, but
one which we would like to address in subsequent work. While
it is often said that classrooms represent more ecologically
valid learning situations than do labs, we were interested
in peer-peer interaction without adult intervention. Thus, in
the current work, we looked at contexts in which curiosity
might naturally occur in the absence of adults and examined
the interpersonal triggers of that curiosity. For that reason,
we also designed a lab context with open-ended activities
where children were free to behave as they wished in the
absence of adult supervision. This, we believe, was as close
to ecologically valid as possible, given the presence of video
cameras and adult (non-participating) observers.

A. Putative Functions Contributing to Curiosity
The iterative process described above led to the emergence

of three function groups at the individual and interpersonal
level. Because curiosity has traditionally been described as
an inherently individual and stable disposition toward seeking
novelty and approaching unfamiliar stimuli, we first outline
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TABLE I
CORPUS EXAMPLES OF BEHAVIOR SEQUENCES. P1 IS THE CHILD WITH HIGH CURIOSITY (SEE SECTION 5.A FOR HOW WE ANNOTATED CURIOSITY)

Behavior Cluster Empirical Observation (Example 1) Empirical Observation (Example 2)

Cluster 1,2

P1: Hey let’s..wait I have an idea [idea verbalization]
P1: Let’s see what this is, but let me just, let me just.. [proposes joint action,
co-occurs with physical demonstration, initiates joint inquiry]
P2: I have no idea how to do this, but it’s making my brain think
[positive attitude towards task]

P1: So the chain has to be like this [idea verbalization with iconic gesture]
P1: How would that be? [question asking followed by orienting towards
stimulus]
P1: Well, I don’t want it to break, so I want it to be about...no, let’s say
half an...half an inch [causal reasoning to justify actions being taken]

Cluster 1,3

P1: Wait we need to raise it a bit higher [making suggestions]
P1: Maybe if we put it on..Umm..this thing maybe..this is high enough?
[co-occurs with joint stimulus manipulation]
P2: Why? W-Why do we need to make it that high? [disagreement and
asking for evidence]

P2: And the funnel can drop it into one of um..those things
P1: If the funnel can drop it
P1: Okay but then..even if it hits this, then we need what is this going to
hit? [challenge]
P1: Here- let- just- make sure that it’s going to hit it [followed by physical
demonstration/verification]

Cluster 2,3,4
P1: Roll off into here and go in there [hypothesis generation]
P1: Okay, so how are we going to do that? [question asking]
P2: It looks like something should hit the ball [making suggestion]

P2: We could use this if we wanted [making suggestion]
P1: Let’s figure this quickly...so we at least have this part done [preceded
by expression of surprise and followed by trying to connect multiple objects
to create a more complex object]

individual aspects of curiosity for each function. We then flesh
out interpersonal aspects of curiosity for every function. Each
function can be realized in several different behavioral forms.

We call the first function group Knowledge Identification.
As curiosity arises from a strong desire to obtain new knowl-
edge that is missing or doesn’t match with one’s current
beliefs, a critical precondition of this desire is to realize the ex-
istence of such knowledge. At an individual level, knowledge
identification contributes to curiosity by increasing awareness
of gaps in knowledge [21], and highlighting relationships with
related or existing knowledge to assimilate new information
[47]. Further, exposure to novel and complex stimulus can
raise uncertainty, subsequently resulting in conceptual conflict
[20], [29]. At an interpersonal level, knowledge identification
contributes to curiosity by developing awareness of somebody
else in the group having conflicting beliefs [20] and awareness
of the knowledge they possess [36], so that a shared conception
of the problem can be developed [32].

We call the second function group Knowledge Acquisition.
Knowledge-seeking behaviors driven by curiosity not only
contribute to the satisfaction of the initial desire for knowl-
edge but also potentially lead to further identification of new
knowledge. For example, question asking may help close one’s
knowledge gap by acquiring desired information from another
peer. Depending on the response received, however, it may also
lead to escalated uncertainty or conceptual conflict relating to
the original question, thus reinforcing curiosity. At an indi-
vidual level, knowledge acquisition involves finding sensible
explanation and new inference for facts that do not agree with
existing mental schemata [48], [47], and can be indexed by
the generation of diverse problem-solving approaches [48],
[49]. It also comprises comparison with existing knowledge
or search for relevant knowledge through external resources
to reduce simultaneous opposing beliefs stemming from the
investigation [28]. At an interpersonal level, knowledge acqui-
sition comprises revelation of uncertainties in front of group
members [39], joint creation of new interpretations and ideas,
engagement in argument to reduce dissonance among peers
[50], and critical acceptance of what is told [39].

Finally, we call the third function group Intensification of
Knowledge Identification and Acquisition. The intensity of
curiosity or the desire for new knowledge is influenced by
factors such as the confidence required to acquire it [21], its

incompatibility with existing knowledge and existence of a
favorable environment [28]. At an individual level, intensi-
fication of knowledge identification and acquisition can stem
from factors such as anticipation of knowledge discovery [31],
interest in the topic [38], willingness to try out tasks beyond
ability without fear of failure [49], taking ownership of own
learning and being inclined to see knowledge as a product of
human inquiry [39]. These factors can subsequently result in a
state of increased pleasurable arousal [20]. At an interpersonal
level, intensification of knowledge identification and acquisi-
tion is influenced by the willingness to get involved in group
discussion and the tendency to be part of a cohesive unit in
pursuit of instrumental objectives and/or for the satisfaction of
a group member’s affective needs [28].

Such willingness can span from the spectrum of merely
continuing interacting to pro-actively reacting to the informa-
tion others present [32]. Various interpersonal factors play out
along this spectrum. Salient ones include interest in knowing
more about a group member [51], promotion of unconditional
non-evaluative regard towards them [31], the tendency of
spontaneous pickup of behavior initiated by a group member
(where the initiator did not display any communicated intent
of getting the others to imitate) [28], and awareness of one’s
own uncertainty being shared or considered legitimate by those
peers [12]. All these factors can result in a cooperative effort
to overcome common blocking points for the group [31].

B. Behaviors Fulfilling Putative Functions of Curiosity
Behavioral episodes including language and associated mul-

timodal communicative signals (e.g., facial expressions, gaze)
serve as both communicative markers, i.e they provide evi-
dence for the presence of curiosity of group members, and
mind markers, i.e they shape group member’s understanding
and expectation of how to approach the task, along with
conceptualization and construction of the associated knowl-
edge [52]. They can (i) contain a single action or multiple
co-occurring or contingent actions made by one or more
individuals, (ii) be purposeful or non-purposeful because the
underlying human strategy that governs the sequence of behav-
iors is unknown. Our review of prior research in psychology
and learning sciences led us to link the behaviors with their
putative functions in evoking curiosity, and organize these
behaviors into four clusters. Table 1 illustrates examples of
these behavior clusters from our empirical observations.



7

Cluster 1 corresponds to behaviors that enable an individual
to get exposed to and investigate physical situations, which
may spur socio-cognitive processes beneficial to curiosity-
driven learning [20], [47]. Examples include orientation (using
eye gaze, head, torso) and interacting with stimuli (e.g.,
manipulation of objects). When looking at video segments
tagged with high curiosity in our empirical data, these be-
haviors occur in contexts where children look at different
aspects of the stimulus (e.g., the function of novel objects,
physical properties of mineral samples in the science class,
transition phase of dry ice samples in the summer camp, etc)
by orienting towards it using their gaze and torso, smelling or
scratching it, rotating and trying to fit more than one object
together, etc. Cluster 2 corresponds to behaviors that enable an
individual to actively make meaning out of their observations
[20], [53], [47]. Examples include idea verbalization, justi-
fication and generating hypotheses. Cluster 3 corresponds to
behaviors that involve joint investigation with other peers [20],
[53], [47]. Examples include arguing, evaluating the problem-
solving approach of a partner (positive or negative), expressing
disagreement, making suggestions, sharing findings, question
asking. In video segments tagged with high curiosity, these
behaviors occur in contexts where children listen to other’s
suggestions, express disagreement or challenge their perspec-
tive by pointing out loopholes, and engage in a physical
demonstration for clarification. Finally, Cluster 4 corresponds
to behaviors that reveal an individual’s affective states [54],
[11] including surprise, enjoyment, confusion, uncertainty,
flow and sentiment towards task.

We hypothesize that behaviors across these clusters will map
onto one or more putative functions of curiosity, because there
can be many different functions or reasons why a communica-
tive behavior occurs. For example, in knowledge-based conflict
in group work, attending to differing responses of others
compared to one’s own may raise simultaneous opposing
beliefs (knowledge identification). This awareness might in
turn activate cognitive processes, wherein an individual may
seek social support for one’s original belief by emphasizing its
importance and validating ones idea by providing justification,
or, engaging in a process of back and forth reasoning to come
to a common viewpoint (knowledge acquisition). Further, this
awareness may as well impact socio-emotional processes,
where an individual may perceive a conflict differently and
their emotions felt and expressed might vary depending on
relation with and perception of the source of conflict, e.g.,
is it a more competent/less competent, more cooperative/less
cooperative peer that raises conflict, and therefore take the
next action of resolving that conflict differently (intensification
of knowledge identification and acquisition). We intend to
discover prominent mappings between functions described in
section 4.A and behaviors described in section 4.B more
formally in a data-driven way in section 6.

V. QUANTITATIVE ANALYSES OF IN-LAB STUDY

We now describe fine-grained quantitative analyses from
a convenience sample of the first 30 minutes (out of 35-40
minutes given each group), of the RGM task (lab study) for
half of the sample; that is, 22 children across 6 groups. Table 2

provides a summary of all coding metrics used in this article.
Our goal is to empirically verify the theoretical framework of
curiosity proposed in section 4.

A. Assessment of Ground Truth Curiosity
Person perception research has demonstrated that judgments

of others based on brief exposure to their behaviors give
an accurate assessment of interpersonal dynamics [55]. We
used Amazon’s Mechanical Turk (MTurk) platform to obtain
ground truth for curiosity via such a thin-slice approach, using
the definition “curiosity is a strong desire to learn or know
more about something or someone”, and a rating scale com-
prising 0 (not curious), 1 (curious) and 2 (extremely curious).
Crowdsourcing platforms provide benefits of a diverse sample
of raters who can be accessed quickly, easily and for rela-
tively little cost [56]. Our previous research has successfully
deployed thin-slice coding for other social phenomena such as
interpersonal rapport in peer tutoring using MTurk [57], [58].

Here, four naı̈ve raters annotated every 10-second slice of
videos of the interaction for each child presented in random-
ized order. We post-processed ratings by removing raters who
used less than 1.5 standard deviation time compared to the
mean time taken for all rating units (HITs). We then computed
a single measure of Intraclass correlation coefficient (ICC) for
each possible subset of raters for a particular HIT, and then
picked ratings from the rater subset that had the best reliability
for further processing. Finally, inverse-based bias correction
[59] was used to account for label overuse and underuse,
and to pick one single rating of curiosity for each 10-second
thin-slice. The average ICC of 0.46 aligns with reliability of
curiosity in prior work [60], [61].

B. Assessment of Verbal Behaviors
We adopted a mix of semi-automatic and manual annotation

procedures to code 11 verbal behaviors, in line with the
curiosity-related behavioral set described in section 4.B. These
verbal behaviors span propositional [62] and interpersonal
[63] functions of contributions to a conversation. Proposi-
tional functions are those that are fulfilled by contributing
informational content to the dialog (e.g., idea verbalization,
justification), and interpersonal functions are those that are
fulfilled by managing the relationship between the interlocu-
tors (e.g., social question asking, positive evaluation). Five
verbal behaviors were coded using a semi-automatic approach
- uncertainty, argument, justification, suggestion at the clause
level, and agreement at the turn level. A clause contains a
subject (a noun or pronoun) and a predicate (conjugated verb
that says something about what the subject is or does). During
a full turn, a speaker holds the floor and expresses one or more
interpretable clauses.

First, a particular variant of neural language models called
paragraph vector or doc2vec [64] was used to learn distributed
representations for a clause/turn. This means that for every
clause/turn in our data corpus, we transformed the sequence of
words in it to a tuple (or vector) of continuous-valued features
that characterize the semantic meaning of those words. Such
feature representation implies that sentences in a test set that
functionally similar to sentences in a training set can still



8

TABLE II
SUMMARY OF CODING METHODS (DETAILED CODING SCHEME AT HTTP://WWW.TINYURL.COM/CODINGSCHEMECURIOSITY)

Construct Definition used to code/infer the construct Coding method
Ground Truth
Curiosity A strong desire to learn or know more about something or someone. Four MTurk raters annotated each 10-

sec thin slice; average ICC = 0.46; used
inverse-based bias correction to pick the
final rating.

Verbal Behavior
1. Uncertainty Lack of certainty about ones choices or beliefs, and is verbally expressed by language that creates an impression that something important has been

said, but what is communicated is vague, misleading, evasive or ambiguous.
e.g - “well maybe we should use rubberbands on the foam pieces”, “wait do we need this thing to funnel it through?”

Used a semi-automated annotation ap-
proach: after automatic labeling of these
verbal behaviors, two trained raters (Krip-
pendorff’s alpha > 0.6) independently
corrected machine annotated labels; aver-
age percentage of machine annotation that
remained the same after human correction
was 85.9 (SD = 12.71).

2. Argument A coherent series of reasons, statements, or facts intended to support or establish a point of view.
e.g -“no we got to first find out the chain reactions that it can do”, “wait, but anything that goes through is gonna be stuck at the bottom”

3. Justification The action of showing something to be right or reasonable by making it clear.
e.g -“oh we need more weight to like push it down”, “wait with the momentum of going downhill it will go straight into the trap”

4. Suggestion An idea or plan put forward for consideration.
e.g - “you could kick a ball to kick something”, “you are adding more weight there which would make it fall down”

5. Agreement Harmony or accordance in opinion or feeling; a position or result of agreeing.
e.g - “But we need to have like power, and weight too” (Quote) — “Yeah we need more weight on this side” (Response), “And we put the ball in
here..I hope it still works, and it goes..so it starts like that, and then we hit it” (Quote) — “Ok that works” (Response)

6. Question Asking
(On-Task/Social)

Asking any kind of questions related to the task or non-task relevant aspects of the social interaction.
e.g - “so what’s gonnna..what will happen like after the balls gets into the cup?”, “why do we need to make it that high?”, “do you want to build
something like a chain reaction or something like that?”, “do you two go to the same school?”, “who else watched the finale of gravity falls?”

Used manual annotation procedure due to
unavailability of existing training corpus
(Krippendorff’s alpha > 0.76 between two
raters).

7. Idea Verbalization Explicitly saying out an idea, which can be just triggered by an individual’s own actions or something that builds off of other peer’s actions.
e.g - “yeah that ball isn’t heavy enough”, “so it’s like tilted a bit up so it catches it instead of tilted down”

8. Sharing Findings An explicit verbalization of communicating results, findings and discoveries to group members during any stage of a scientific inquiry process.
e.g - “look how I’m gonna see I’m gonna trap it”, “look I made my pillar perfect”

9. Hypothesis
Generation

Expressing one or more different possibilities or theories to explain a phenomenon by giving relation between two or more variables.
e.g - “we could use scissors to cut off the baby’s head which would cause enough friction”, “okay we need to make it straight so that the force of
hitting it makes it big”

10. Task Sentiment
(Positive/Negative)

A view of or attitude (emotional valence) toward a situation or event; an overall opinion towards a subject matter. We were interested in looking at
positive or negative attitude towards the task that students were working on.
e.g - “oh it’s the coolest cage I’ve ever seen, I’d want to be trapped in this cage”, “ok so I’m gonna try to find out a way for the end to make this
one go and fall”,“I’m getting very mad at this cage”,“but I don’t know how to make it better”

11. Evaluation
(Positive/Negative)

Characterization of how a person assesses a previous speaker’s action and problem-solving approach. It can be positive or negative.
e.g - “oh that’s a pretty good idea - that was a good idea”,“let’s make this thing elevated and make it go down”,“oh wait this doesn’t- you’re not
pushing anything over here”, “no it can’t go like that otherwise it will be stuck”

Nonverbal Behavior (AU - facial action unit)
1. Joy-related AU 6 (raised lower eyelid) and AU 12 (lip corner puller).

Used an open-source software OpenFace
for automatic facial landmark detection,
and a rule-based approach post-hoc to
infer affective states

2. Delight-related AU 7 (lid tightener) and AU 12 (lip corner puller) and AU 25 (lips part) and AU 26 (jaw drop) and not AU 45 (blink).
3. Surprise-related AU 1 (inner brow raise) and AU 2 (outer brow raise) and AU 5b (upper lid raise) and AU 26 (jaw drop).
4. Confusion-related AU 4 (brow lower) and AU 7 (lid tightener) and not AU 12 (lip corner puller).
5. Flow-related AU 23 (lip tightener) and AU 5 (upper lid raise) and AU 7 (lid tightener) and not AU 15 (lip corner depressor) and not AU 45 (blink) and not AU

2 (outer brow raise).

6. Head Nod Variance of head pitch. Used OpenFace to extract head orienta-
tion, and computed variance post-hoc7. Head Turn Variance of head yaw.

8. Lateral Head
Inclination

Variance of head roll.

Turn Taking
1. Indegree A weighted product of number of group members whose turn was responded to (activity) and total time that other people spent on their turn before

handing over the floor (silence).
Used two novel metrics constructed using
an application of social network analysis
for weighted data.2. Outdegree A weighted product of number of group members to whom floor was given to (participation equality), and the amount of time spent when holding

floor before allowing a response (talkativeness).

achieve good predictions. The motivation for this approach
stems from: (i) lack of available corpora of verbal behaviors
that are large enough, and collected in similar settings as
ours (groups of children engaged in scientific inquiry), and
hence (ii) limited applicability of traditional n-gram based
models to cross-domain settings, which would result in a high-
dimensional representation with poor semantic generalization,
(iii) limitations of other neural language models such as
word2vec that do not explicitly represent word order and
surrounding context (in contrast, doc2vec models contain an
additional paragraph token that acts as a memory and remem-
bers what is missing from the current context, thus not ignoring
word order that is important for the semantic representation),
and (iv) our desire to reduce manual annotation time when
each child’s behaviors must be annotated.

Based on the recommended procedure in [64], we used
concatenated representations of two fixed size vectors of size
100 that we learned for each sentence as input to a machine
learning classifier (L2 regularized logistic regression) - one
learned by the standard paragraph vector with distributed
memory model, and one learned by the paragraph vector with
a distributed bag of words model. Empirically too, we found
this concatenated vector representation to perform better on
cross-validation performance on the training data, compared

to using any of the two vector representations alone. Training
data for the five verbal behaviors annotated using this process
is shown in the right column of Table 3, along with standard
performance metrics such as weighted F1 score (to account
for class imbalance) and Area under ROC curve (AUC). Test
data comprised the in-lab study corpus (section 4.C).

The robustness of machine annotated labels on the test data
was ensured using human annotators. Two raters first coded
presence or absence of verbal behaviors on a random sample
of 100 clauses/turns following a coding manual given to them
for training, and computed inter-rater reliability using Krippen-
dorff’s alpha. Once raters reached a reliability of > 0.7 after
one or more rounds of resolving disagreements, they indepen-
dently rated a different set of 50 clauses/turns independently,
and we computed the final reliability on these (left column
of Table 3, and > 0.6 for all behaviors). Subsequently, the
raters independently de-noised or corrected machine annotated
labels for the full corpus, and we use these final labels for
empirical validation of the theoretical framework (as described
in section 6). Compared with this human ground truth, the
average ratio of false positives to false negatives across all
annotation categories in the machine prediction was 14.18
(SD = 12.31), suggesting over-identification of the presence
of verbal behaviors.
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TABLE III
RESULTS FROM SEMI-AUTOMATIC VERBAL BEHAVIOR ANNOTATION. RIGHT COLUMN DESCRIBES EXTERNAL CORPUS USED FOR TRAINING MACHINE
LEARNING CLASSIFIERS & THEIR PERFORMANCE. LEFT COLUMN DEPICTS INTER-RATER RELIABILITY FOR HUMAN JUDGMENT USED IN VERIFYING

ROBUSTNESS OF MACHINE ANNOTATED LABELS.

Verbal Behavior [Krippendorff’s α for human judgment] Training Data for Semi-Automated Classification {Weighted F1, AUC} (10-fold cross validation)]
1. Uncertainty [0.78] Wikipedia corpus manually annotated for 3122 uncertain 7629 certain instances [65] {0.695, 0.717}
2. Argument [0.792] Internet Argument Corpus manually annotated for 3079 argument and 2228 non argument instances [66]. Argument quality score split at

70% to binarize class label {0.658, 0.706}
3. Justification [process (0.936), causal (0.905), model (0.821), exam-
ple (0.731), definition (0.78), property (0.847)]

AI2 Elementary Science Questions corpus manually annotated for 6 kinds of justification - process, causal, model, example, definition,
property [67]. Reported performance is the average performance of 6 binary machine learning classifiers {0.766, 0.696}

4. Suggestion [0.608] Product reviews [68] and Twitter [69] corpuses manually annotated for 1000 explicit suggestion and 13000 explicit non-suggestion instances
{0.938, 0.865}

5. Agreement [0.935] LiveJournal forum and Wikipedia discussion corpuses manually annotated for 2754 agreement and 8905 disagreement instances based on
quote and response pairs [70] {0.717, 0.696}

We found that the most common false positives were cases
where a clause or turn comprised one word (e.g., okay),
backchannels (e.g., - hmmm..) and very short phrases lacking
enough context to make a correct prediction. The average
percentage of machine annotated labels that did not change
even after the human de-noising step was 85.9 (SD = 12.71).
This meant that majority of the labels were correctly predicted
in the first place. This was also reflected in a good cross
validation training performance of the models (right column
of Table 3). Six other verbal behaviors (question asking (on-
task, social) (α = 1), idea verbalization (α = 0.761), sharing
findings (α = 1), hypothesis generation (α = 0.79), attitude
towards task (positive, negative) (α = 0.835), evaluation
sentiment (positive, negative) (α = 0.784)) were coded using
manually due to unavailability of existing training corpus.

C. Assessment of Nonverbal Behaviors
Our current work focused initially on the nonverbal behav-

iors of the face, operationalized as facial landmarks, and based
on a rich body of literature describing movements of the face
in learning [71], and particularly the facial action units that
index certain emotions that often co-occur with curiosity [60].
This work has discovered consistent associations (correlations
as well as predictions) between particular facial configura-
tions and human emotional or mental states [54], [72], [60].
We used automated visual analysis to construct five feature
groups corresponding to emotional expressions that provide
evidence for the presence of the affective states of joy, delight,
surprise, confusion and flow (a state of engagement with a
task such that concentration is intense). A simple rule-based
approach was followed (see Table 2) to combine emotion-
related facial landmarks, which were previously extracted on
a frame by frame basis using a state-of-the-art open-source
software OpenFace [73]. We then selected the most dominant
(frequently occurring) emotional expression for every 10-
second slice of the interaction for each group member, among
all the frames in that time interval.

Automated visual analysis was also used to capture vari-
ability in head angles for each child in the group, which
correspond to head nods (i.e. pitch), head turns (i.e. yaw), and
lateral head inclinations (i.e. roll). The motivation for using
head movement in our curiosity framework is inspired by our
prior work in nonverbal behavior and learning technologies
[74] and in multimodal analytics [75], [76] which have empha-
sized the contribution of nonverbal cues in inferring behavioral
constructs such as interest and involvement that are closely
related to the construct of curiosity, and which have demon-

strated the positive impact of nonverbal behavior by virtual
peers in children’s learning. By using OpenFace[73], we first
performed frame by frame extraction of head orientation and
then calculated the variance post-hoc to capture intensity in
head motions for every 10 second of the interaction for each
group member. Because head pose estimation takes as input
facial landmark detection, we only considered those frames
that had a face tracked and facial landmarks detected with
confidence greater than 80%.

D. Assessment of Turn Taking Dynamics
While the annotated verbal behaviors fulfill propositional

and interpersonal conversational goals in the social interaction,
the interactional function of contributions to a conversation
is captured by turn-taking behaviors. Interactional discourse
functions are “responsible for creating and maintaining an
open channel of communication between the participants”
[62]. The motivation for capturing turn taking in the current
research stems Further from prior literature that has used mea-
sures such as participation equality and turn taking freedom
as indicators of involvement in small-group interaction [77].

In the current work, we designed two novel metrics using
a simple application of social network analysis for weighted
data. By representing speakers as nodes and time between
adjacent speaker turns as edges, we computed two features
for each group member. These features calculated for every
10 seconds, comprised (i) TurnTakingIndegree, a weighted
product of the number of group members whose turn was re-
sponded to (activity) and the total time that other people spent
on their turn before handing over the floor (silence), and was
quantified as activity1−α ∗ silenceα. Because high involvement
is likely to be indexed by higher activity and lower silence, α
was set to -0.5, (ii) TurnTakingOutdegree, a weighted product
of the number of group members to whom floor was given
(participation equality), and the amount of time spent when
holding floor before allowing a response (talkativeness), and
was quantified by participation equality1−α ∗ talkativenessα.
Because higher participation equality and talkativeness are
favorable, α was set to +0.5. These two metrics were used
in our empirical validation.

VI. EMPIRICAL VALIDATION OF THE PROPOSED
THEORETICAL FRAMEWORK OF CURIOSITY

We used a “multiple-group” version of continuous time
structural equation model (CTSEM) [78] to evaluate the
proposed theoretical framework of curiosity, and statistically
verify the predictive relationships between ground truth cu-
riosity (formalized as a manifest variable), putative functions
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described in our theoretical framework (formalized as latent
variables) and multimodal behaviors (formalized as time-
dependent predictors). For clarity, we first present a rationale
for the choice of our modeling framework, and then a formal
description of the technical background underlying these latent
variable analyses. Finally, we describe a concrete application
of this modeling framework to our in-lab study corpus.

A. Modeling Framework (CTSEM)

1) Rationale: Conventional Structural Equation Models
(SEMs) assume independence of observations, and thus cannot
be applied directly to analyze autocorrelated time series data
from multimodal behavior analyses. This suggests considera-
tion of a Dynamic Bayesian Network-like model to explicitly
model temporal dependencies between the latent random vari-
ables across time-steps. Applications of such models in the
social and behavioral sciences are usually limited to discrete
time models, with the assumption that time progresses in
discrete steps, and intervals between measurement occasions
are equal. In many cases, these assumptions are not met,
resulting in biased parameter estimates and a misunderstanding
of the strength and time course of effects. Continuous time
SEM models overcome these limitations by using multivariate
stochastic differential equations to estimate an underlying
continuous process and recover underlying latent or hidden
causes linking the entire sequence.

2) Technical Description: To clarify how CTSEM improves
over SEM models in the current context, we give a short
technical description here. Formally, a multivariate stochastic
differential equation for a latent process of interest in CTSEM
can be written as dηi(t) = Aηi(t) + Bzi + Mχi(t) +
GdWi(t) + ξi (Structural part of the SEM model), where A
is the drift matrix that models auto effects the latent variable
has on itself on the diagonals, and cross effects to other latent
processes on the off-diagonals, in turn characterizing temporal
relationships between the processes. ξi determines the long-
term level of the latent process. Matrix B and M represent the
effect of time-independent and time-dependent variables on the
latent process. Time-independent predictors would typically be
variables that differ between subjects, but are constant within
subjects for the time range in question (e.g., a trait curiosity
questionnaire). Time-dependent predictors vary over time and
are independent of fluctuations of the latent processes in the
system. They can be treated as a simple impulse form where
the predictors are treated as impacting these processes only at
the instant of an observation.

The matrix G represents the effect of noise or the stochastic
error term dWi(t) on the change in the latent process. Q =
G ∗GT represents the variance-covariance matrix of diffusion
process in continuous time. The essence of diffusion processes
is to capture very slow patterns of change in the latent variable.
Further, this latent process can be used to predict manifest
variables of interest using the equation yi(t) = Ληi(t) + ζi(t)
(Measurement part of the SEM model), where Λ is a matrix
of factor loadings between the latent and manifest variables
and ζi is the residual (error) vector.

A Kalman filter can be used to fit CTSEM to the data and
obtain standardized estimates for the influence of behaviors

on latent functions, and in turn these latent functions on
curiosity. It uses a series of measurements observed over time
(containing statistical noise and other inaccuracies) to produce
estimates of unknown variables that tend to be more precise
than those based on a single measurement alone. It is a state
space model described by a (i) state equation that describes
how the latent states change over time and is analogous to
structural part of the SEM model, and (ii) output equation that
describes how the latent states relate to the observed states at
a single point in time (how the observed output is produced by
the latent states), and is analogous to measurement part of the
SEM model. In the presence of multiple groups in a dataset
(e.g., we have 6 groups in our corpus), a “multiple group”
version of CTSEM should be used. It allows investigation
of group level differences and helps understand variability in
model parameters across different groups.

3) Application to the In-Lab Study Corpus: Because knowl-
edge identification and acquisition are closely intertwined with
knowledge-seeking behaviors and it is hard to distinguish
between these underlying mechanisms based on observable
or inferred multimodal behaviors, we formalized them under
the same latent variable. The final set of latent functions
that we statistically verified therefore included: (i) individual
knowledge identification and acquisition, (ii) interpersonal
knowledge identification and acquisition, (iii) individual in-
tensification of knowledge identification and acquisition, (iv)
interpersonal intensification of knowledge identification and
acquisition. We ran two versions of CTSEM.

In the first version, we specified a model where only factor
loadings between the manifest variable and latent variables
in measurement part of the model were estimated for each
group distinctly (we report the average and standard deviation
across the 6 groups in Figure 4), but all other model parameters
including those belonging to structural part of the model were
constrained to equality across all groups (Modelconstrained)
and then estimated freely. This means that matrices A, B,
M , G and Λ were freely estimated. Because the form of a
behavior does not uniquely determine its function, nor vice-
versa, we did not pre-specify the exact pattern of relationships
between behaviors and functions to look for/estimate. In the
second version of the model, all parameters for all groups were
estimated distinctly (Modelfree).

Technically, the rich representational capacity of “multiple-
group” CTSEM allows running these two separate models.
However, analytically, the decision to separately run these two
models was based on the intuition that while the relationships
between the appearance of behaviors and their contribution to
the latent functions of curiosity would remain the same across
groups, the relative contribution of interpersonal or individ-
ual tendencies for knowledge identification, acquisition and
intensification would vary based on learning dispositions of
people towards seeking the unknown. This intuition stemmed
from prior literature that has looked into measuring learning
dispositions [39], an important dimension of which is the
ability of learners to balance between being sociable and
being private in their learning, i.e not being completely in-
dependent or dependent, but rather working interdependently.
We hypothesized that this dimension will impact curiosity
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Fig. 4. Empirical validation of the theoretical framework of curiosity depicting fit of the Continuous time structural equation model (CTSEM) to the In-Lab
study corpus. Rectangles represent observed constructs, while ovals represent latent constructs. Direction and degree of predictive influences are represented by
edges between multimodal behaviors (time dependent predictors), putative functions of curiosity (latent variables) and thin-slice curiosity (manifest variable).
Degree of predictive influence between latent and manifest variable is averaged across 6 study groups.

differently, especially because our data comprised a group
learning context, and therefore expected Modelconstrained to
fit the data better than Modelfree.

B. Model Results and Discussion

An empirical validation confirmed our hypothesis of
Modelconstrained fitting to the data better than Modelfree.
The Akaike Information Criterion (AIC) for Modelconstrained
(933.48) was ∼3x lower than Modelfree (2278.689). We now
illustrate results of the CTSEM (Modelconstrained) in Figure
4, depicting links with top-ranked standardized estimates be-
tween behaviors and latent variables. In few cases, we also
added links with the second-highest standardized estimate if
they clarified our interpretation of the latent function. Because
a latent variable is unmeasured, its units of measurement must
be fixed by a researcher for the model to be identified (for there
to exist a unique solution for all of the model’s parameters).
Therefore, one factor loading was conventionally fixed to 1.

Overall, these results confirm the correctness of our frame-
work along three main aspects: (i) The grouping of behaviors
under each latent function and their contribution to individual
and interpersonal aspects of knowledge identification, acqui-
sition and intensification aligns with prior literature on the
intrapersonal origins of curiosity, but also teases apart the
underlying interpersonal mechanisms, (ii) There exists strong
and positive predictive relationships between these latent vari-
ables and thin-slice curiosity, (iii) Knowledge identification
and acquisition have a stronger influence to curiosity than
knowledge intensification, and interpersonal-level functions
have stronger influence compared to individual-level functions.
We now discuss latent functions and associated behaviors,
ordered by the degree of positive influence on curiosity.

First, Interpersonal Knowledge Identification and Acquisi-
tion shows the strongest influence on curiosity among the
four latent functions (2.612 ± 0.124). The natural merging of
knowledge identification and knowledge acquisition corrobo-
rates with the notation that one person’s knowledge-seeking
may draw the attention of another group member to a related
knowledge gap and escalate collaborative knowledge-seeking.
Behaviors that positively contribute to this function are mainly
from cluster 3 (sharing findings, task-related question asking,
argument, and evaluation of other’s ideas). Also, nonverbal
behaviors including head turn and turn taking dynamics (in-
degree) are also related to this function, which support the
idea that a higher degree of group members’ interest and
involvement in the social interaction stimulates awareness of
peer’s ideas, subsequently leading to knowledge-seeking via
social means to gain knowledge from the experience of others,
and add that onto one’s own direct experiences.

Second, Individual Knowledge Identification and Acquisi-
tion shows a strong influence on curiosity (2.149 ± 0.066).
Similar to the interpersonal level function, knowledge iden-
tification and acquisition merge into one coherent function,
as knowledge-seeking behaviors can sparkle new unknown or
conflicting information within the same individual. Behaviors
from cluster 2 (hypothesis generation, justification, idea ver-
balization) and cluster 4 (confusion, joy, surprise, uncertain,
positive sentiment towards task) mainly contribute to this
function. Head nod, indicative of positive feelings towards the
stimulus due to its compatibility with the response [79], maps
to this function as well. Finally, turn taking (indegree and
outdegree) and social question asking contribute positively to
individual knowledge identification and acquisition. Interest in
others reflects a general level of trait curiosity [51].
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Third, we find that a relatively small group of behaviors
including agreement, idea verbalization and lateral head in-
clination have a predictive influence on the latent function of
Interpersonal Knowledge Intensification, which in turn has a
high positive influence on curiosity (1.756 ± 0.238). Agree-
ment may contribute to information seeking by promoting
acceptance and cohesion. Working in social contexts broad-
casts idea verbalization done by an individual to other group
members, which might in turn increase their willingness to get
involved. Lateral head inclination during the RGM activity is
associated with an intensive investigation of the RGM solution
offered by both oneself and other group members. Overall,
engagement in a cooperative effort to overcome common
blocking points in the group work may result in intensifying
knowledge-seeking.

Finally, the latent function of Individual Knowledge In-
tensification has the least comparative influence on curios-
ity. It is associated with nonverbal behaviors such as head
nod and emotional expressions of positive affect (flow, joy
and delight), which function towards increasing pleasurable
arousal. Also, surprise and suggestion positively influence
this latent function and signal increased anticipation to dis-
cover novelty, conceptual conflict, and correctness of one’s
idea. Interestingly, results also show that negative sentiment
about the task positively influences an individual’s knowledge-
seeking behaviors. Qualitative corpus observations reveal that
such verbal expressions often co-occur with the evaluation
made by a group member within the same 10-second thin-
slice, signaling a desire for cooperation. Thus, a potential
explanation of this association is that expressing negative
sentiment about the task may signal hardship, which draws
group member’s attention and increases chances of receiving
assistance, thus increasing engagement in knowledge-seeking.

C. Causal Intra/Inter-personal Influence Patterns
The CTSEM analyses described above establish the overall

degree of predictive influence among verbal/nonverbal behav-
iors, latent functions and ground truth thin-slice curiosity.
However, they do not provide “causal” insights into inter-
and-intra-personal curiosity dynamics of the kind that can
be leveraged by a learning technology to foster curiosity in
group work. We therefore conducted follow-up causal analyses
with the dual goal of generating such actionable insights
and providing additional empirical evidence for our proposed
theoretical framework of curiosity.

Specifically, we ran conditional Granger causality [80] to
assess the interdependence among verbal/nonverbal behaviors
and their causal contribution to the increase (0→1, 0→2, 1→2)
or maintenance (1→1, 2→2) of the thin-slice curiosity level
(or vice-versa). This notion of causal influence is based on the
idea that if the variance of the autoregressive prediction error
of time-series A at the present time is reduced by inclusion
of past measurements from time-series B, then B is said to
have a causal influence on A. Because such a causal relation
(based on cause-effect relations with constant conjunctions)
between A and B can be direct, mediated by a third time-series
C, or be a combination of both, the technique of conditional
Granger causality allows modeling causal relationship among

multivariate behavioral time series. More technical details can
be found in [81].

Here we report four categories of causal influence patterns
in Table 4. First, the top-left corner highlights the causal
influence of other’s past behavior (within the last minute)
on one’s increase/maintenance of curiosity. Such triggering
behaviors span both verbal (e.g., justification, idea verbal-
ization, task question asking, negative evaluation, etc) and
nonverbal (e.g., head movement variability, confusion and
surprise-related facial expressions) categories. Second, the
top-right corner highlights the reciprocal pattern of causal
influence, i.e., other’s increase/maintenance of curiosity in
the past (within the last minute) on one’s behaviors. Such
triggered behaviors include not just uncritical acceptance in
the form of a head nod or verbal agreement, but also those
that signal investment into furthering knowledge acquisition
like on-task question tasking, justification and flow-related
facial expressions. Taken together, these bi-directional sets of
interpersonal causal influence patterns provide concrete data-
driven behaviors for a virtual peer (or a different learning
technology) to emulate for causing an increase/maintenance
in curiosity (+∆) for a group member. The bottom-left and
bottom-right corners of Table 4 highlight a comparatively
small(er) number of intrapersonal causal influence patterns,
those where one’s past behavior (within the last minute) leads
to an increase/maintenance of curiosity (and vice-versa).

D. Implementation in Pedagogical Agents

Fig. 5. Virtual peer interacts with the customized Outbreak board game.

We have developed a virtual peer that aims to elicit cu-
riosity for young children in a collaborative tabletop game
named Outbreak [82]. We applied heuristics derived from our
theoretical framework of curiosity as described in this article
and in [83], as well as our subsequent computational model
of curiosity [81], [84]. The objective was to design social
interactions for the virtual peer to perform for evoking key
curiosity drives which lead to identification and acquisition
of knowledge. First, we developed a virtual peer whose
appearance resembles a 9-14 years old child with ambiguous
gender and ethnicity (to avoid inadvertent gender and ethnicity
stereotypes that might lead to stereotype threat for particular
groups of students [85]). Figure 5 illustrates the virtual peer
setup during a gameplay session.

The architecture underlying the virtual peer resembles a
dialogue system architecture. The first module developed has
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TABLE IV
CONDITIONAL GRANGER CAUSALITY RESULTS (AT 1% LEVEL OF SIGNIFICANCE, 1 MINUTE GRANULARITY) BETWEEN VERBAL/NONVERBAL BEHAVIOR

TIME SERIES AND THIN-SLICE CURIOSITY (INCREASE/MAINTENANCE) TIME SERIES. INTERPERSONAL CAUSAL INFLUENCE PATTERNS REFLECT
INTERDEPENDENCE OF other’s BEHAVIOR ON ONE’S OWN CURIOSITY +∆ (TOP LEFT), OR other’s CURIOSITY +∆ ON ONE’S OWN BEHAVIOR (TOP

RIGHT). INTRAPERSONAL CAUSAL INFLUENCE PATTERNS REFLECT INTERDEPENDENCE OF one’s own BEHAVIOR ON CURIOSITY +∆ (BOTTOM LEFT), OR
one’s own CURIOSITY +∆ ON BEHAVIOR (BOTTOM RIGHT).

Causal Influence
(From)

Causal Influence
(To)

Standardized Causal
Strength (G-ratio)

Causal Influence
(From)

Causal Influence
(To)

Standardized Causal
Strength (G-ratio)

Interpersonal

Confusion-related facial expressions

Curiosityincrease/maintain

0.591

Curiosityincrease/maintain

Question Asking (on-task) 0.834
Surprise-related facial expressions 0.420 Head Nod 0.648

Head Turn 0.303 Justification 0.281
Head Nod 0.222 Turn Taking Outdegree 0.276

Justification 0.208 Joy-related facial expressions 0.225
Task Sentiment (positive) 0.198 Agreement 0.138

Idea Verbalization 0.196 Flow-related facial expressions 0.057
Joy-related facial expressions 0.159 Lateral Head Inclination 0.001

Evaluation (negative) 0.151
Lateral Head Inclination 0.083

Question Asking (on-task) 0.046
Turn Taking Outdegree 0.025

Intrapersonal

Uncertainty

Curiosityincrease/maintain

1

Curiosityincrease/maintain

Confusion-related facial expressions 0.306
Lateral Head Inclination 0.863 Uncertainty 0.278

Joy-related facial expressions 0.520 Task Sentiment (negative) 0.238
Head Nod 0.134 Head Nod 0.2

Task Sentiment (negative) 0.021 Task Sentiment (positive) 0.026

been a verbal behavior generation module [86] that allows
the virtual peer to produce age-appropriate curiosity-inducing
conversational moves including question asking, hypothesis
verbalization, argument, and justification during the discus-
sions elicited by the collaborative board game. This generation
module allows the virtual peer to generate the kind of sen-
tences that the human-human analyses described above have
shown to increase curiosity.

VII. IMPLICATIONS

Few current learning technologies aim to foster the metacog-
nitive factors shown to increase learning (although see [87],
[88], [89], [90], [91]). We believe reasons for this include
(i) lack of theoretical formalisms and real-time measurement
approaches to capture the intricate nature of metacognitive and
socio-emotional factors such as creativity, curiosity, grit, help-
seeking, self-explanation ability, etc [92], and (ii) dearth of
an operational way to embed this theoretical understanding
into computational models that can leverage mapping between
behaviors and their underlying mechanisms to offer scaffold-
ing [93]. Here, we attempted to go beyond former research
on curiosity inference directly from visual and vocal cues
(e.g., [61], [94], [60]), by considering underlying mechanisms
that link these low-level cues to curiosity, and empirically
validating how such cues interact with group collaboration,
interpersonal dynamics and conversation moves. Our research
approach holds concrete implications for the design of learning
technologies, and multimodal learning analytics.

A. Implications for Learning Technologies
For learning technology design, our prior work has demon-

strated that one successful approach is to investigate what
forms of verbal and nonverbal behaviors and their correspond-
ing functions are good indicators of curiosity - and good
elicitors of curiosity - in human-human interaction. This can
facilitate the development of adaptive technologies that look
for opportunities to use strategies (that is, to be tactical) to
scaffold, maintain and evoke curiosity. The underlying infras-
tructure needed to translate the proposed theoretical framework
into teaching tools and technological learning environments
should comprise (i) a curiosity perception module for accurate

multimodal behavior sensing using available sensors (e.g.,
cameras, microphones and other biometric devices) in real-
time interaction, (ii) a curiosity reasoner that outlines how
a learning technology should act in to support those same
functions, and a generation module to translate the intentions
generated by the reasoner into observable verbal and nonverbal
behaviors for the learning technology to perform.

Prior work on pedagogical agents/robots [41] makes as-
sumptions regarding what observable behaviors can represent
lack of curiosity and should therefore result in a move on
the part of the learning technology. Here, instead, we relied
on close observation of human interaction to extract the
moment-to-moment behaviors that occur during periods of
curiosity, and amplified the power of those correlations by
introducing the theoretically grounded layer of functions that
can be fulfilled by behaviors. Below, we expand on how these
functions can be scaffolded using strategies and associated
tactics in virtual peers, in other technologies, and even simply
by teachers or tutors. Specific strategies and tactics are needed
because a virtual peer acting curious is not sufficient. Prior
literature [95] and our empirical data show that (i) a curious
child may not always attempt to increase the curiosity of
another child (nor does curiosity in one child always cause
curiosity in another) perhaps because it requires increased
cognitive and social effort, and (ii) disinterested children may
become increasingly cut-off from the core interactions of the
group over time, and therefore it’s important to find ways
to reignite their interest and engagement. In what follows
we summarize the strategies and tactics we found in group
informal learning contexts. These can be implemented in a
virtual peer, and other learning technologies.

1) Strategies for Supporting Functions of Curiosity: We
define strategies as moves made by a third party (learning
technology or human coach/peer) in the service of facilitating
curiosity. This means that strategies serve as vehicles for
an influence attempt in the group, directly (e.g., affecting
gains/costs) or indirectly (e.g., controlling critical environmen-
tal aspects) affecting the behavior of a group member [28]. We
believe that strategies should support underlying functions that
contribute to curiosity because this enables computer support
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to address the root cause of undesirable behavior or provide
a reinforcing means for the root cause of desirable behavior.
The success of a strategy can be determined concretely by the
extent to which it increases thin-slice curiosity in subsequent
time-intervals, and specifically by the probability that it leads
to the expected behavior(s) by a target child. We propose a
categorization of strategies into three clusters in alignment
with the functions of curiosity.

Strategies that can facilitate the knowledge identification
function should help peers realize potential new knowledge
to seek. Our empirical data suggested awareness of novel or
complex stimuli as a means towards this end. Prior literature
also highlights that raising awareness of the conflict between
group members can facilitate knowledge identification [96].
Strategies that can facilitate the knowledge acquisition function
should stimulate critical thinking by helping peers develop
new interpretations and consider alternative perspectives, and
prevent them from valuing their cohesiveness and relationships
with others so much that they avoid conflict and challenging
each other’s ideas [28]. Literature suggests that provoking
group members out of their comfort zone and encouraging
them to rethink/defend their responses can be a means towards
this end [97]. Strategies that can facilitate the intensification of
knowledge identification and acquisition function may create
a friendly climate, and honor the seeking of knowledge gained
through trial and error. Our empirical data in formal learning
contexts suggested that when learners were explicitly told to
avoid personal criticism and pro-actively grapple with their
intuitive ideas, they often opened up to their peers, with a
reduced fear of being seen as incompetent, or being excluded.
Literature also emphasizes the provision of a supportive and
psychologically safe environment to have beneficial effects on
accelerated risk-taking [98].

2) Tactics for Exercising a Particular Strategy: We define
tactics as particular observable ways in which a strategy
can be exercised. The rationale behind the usage of tac-
tics is that certain forms of group interaction (e.g., sharing
findings with peers) are more effective for raising curiosity
than others. Thus, it is worthwhile to make some arrange-
ments for provoking such interactions, as they may not occur
spontaneously. This approach is inspired by the traditional
computer-supported collaborative learning literature on script-
ing [99], however, we propose a more real-time version of
such scripting-based approaches. Our interest is rather in
adaptive regulation of the small group interaction “on the
fly” [100] by continuously comparing the current curiosity
level with a target configuration (e.g., if the likelihood of
being in high curiosity level in the following time intervals
exceeds a certain threshold), and exercising tactics to restore
equilibrium whenever there is a discrepancy in the current and
target curiosity level. We propose a categorization of tactics
falling into each of the three strategy clusters.

Our observations show scarce evidence of children explicitly
making moves to exercise the strategy of knowledge identifica-
tion. However, the literature suggests that attentional anchors
in the form of contrasting case comparisons can be leveraged
by a coach towards this end [101]. By creating paradoxes, such
a tactic can help children notice novel features of the stimulus.

Our data do bring to light different tactics children use in the
service of exercising the strategy of knowledge acquisition.
These tactics include challenging a peer’s responses (e.g., I
don’t think this will be really sturdy though), and asking them
to make an explicit link between ideas, representations and
solution strategies (e.g., what’s your evidence for that?). Prior
literature also highlights how tactics such as (i) making group
members take positions on a big question raised by a task issue
and then present reasons and evidence for and against, (ii)
encouraging group members who are in conflict to paraphrase
each other’s position, can be used in service of similar goals
[97]. Finally, we observe that tactics children use for exer-
cising the strategy of intensifying knowledge identification or
acquisition include expressing curiosity-orientation behavior
(e.g., looking at stimulus with surprise, expressing interest in
individuals and activities using gaze or body orientation), and
excitement about solution strategy of a peer. Concrete tactics
such as rewarding risk-taking and providing positive feedback
for effort may have a positive impact on fulfilling these goals.

B. Implications for Multimodal Learning Analytics
Joining a long tradition of multimodal human behavior

analysis in the Learning Sciences (e.g., [74], [102]), and other
application areas, Multimodal Learning Analytics (MMLA)
[103] offers a useful lens through which to interpret the
sensing of, reasoning about and responding to natural hu-
man behavior in learning environments, including both verbal
and nonverbal devices. In the current work, we developed a
theoretical model of curiosity, built arguments and adduced
evidence for multimodal indicators and elicitors of curiosity,
combined machine learning and human annotation to refine
the theoretical model, and ended with a statistical model that
tests and validates the theoretical assumptions.

While we have primarily focused on the implications of
this work for the implementation of virtual peers, another
straightforward implication of our work bears on the tension
in MMLA between preserving enough of the complexity
of curiosity-driven behavior in the theoretical framework (to
obtain valid scientific insight), while at the same time attaining
computational feasibility (making sure annotated behavior
representations retain enough contextual information and are
learnable by machine learning based algorithmic approaches).
The part of our analyses related to sensing highlights a poten-
tial multimodal fusion solution of capturing and synchronizing
different streams of data at the grain size of the ground truth
(in this instance thin-slice annotation of curiosity).

Also relevant to MMLA is our iterative theory-and-data-
driven approach for capturing not just noisy and intermittent
low-level data gathered by physical sensors, but also trans-
lating such data into models that describe the underlying
psychological states that are correlated with and sometimes
cause those observable behaviors. These mid-level phenomena
are more generalizable across learning contexts and across
metacognitive phenomena. In fact, little work in MMLA has
addressed the temporal dimensions of relationships among
verbal and nonverbal behaviors, and CTSEM may provide a
useful tool in looking at how series of behaviors may predict
an underlying state such as curiosity.
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These MMLA implications bring with them practical chal-
lenges that include (i) combating inaccuracy in detecting
behavioral episodes because machine learning approaches are
not 100% robust, (ii) developing consistent and opportunistic
planning algorithms for selecting responding strategies based
on current percepts and tying together associated sets of
tactics because human behavior is not always rational and
dynamic environmental circumstances may affect pre-planned
action recipes, (iii) using appropriate evaluation criteria to
test the effectiveness of a responding strategy on subsequent
behavior in human-technology interaction because people’s
application of social rules and heuristics from their domain
to the domain of machines is often moderated by socially-
competent behavior exhibited by the machine [104].

VIII. LIMITATIONS

We must acknowledge some methodological limitations of
this work. First, the small sample size limits generalizability.
Second, the reliability of thin-slice annotation of ground
truth (curiosity) via crowdsourcing platforms can be improved
by varying more carefully factors such as the time-scale
(granularity) of ratings, rating scale, choice of crowdsourcing
workers, and task setup on the crowdsourcing platform. Third,
our approach of combining machine annotation with human
judgment for annotation of verbal behaviors increases repro-
ducibility, speed and scalability, without compromising on
inter-rater reliability. Despite these advantages, going through
machine annotated labels and evaluating their accuracy (de-
noising) is a different task than if those labels were not there
in the first place (meaning that a completely manual annotation
approach had been followed). Future work could have some
intermediate points during this de-noising process, where the
initial inter-rater reliability for human judgment (left column
of Table 3) could be re-evaluated for consistency. Fourth,
latent variable models used as empirical validation tools in
our work are limited by their ability to make causal inferences,
especially in cross-sectional datasets [105].

Fifth, we used a crude proxy to infer emotional states
from facial landmarks, and future work could adopt com-
plementary predictive modeling approaches [106]. Although
facial expressions have the advantage of being observable
and recognizable using current computer vision approaches
with high accuracy, they can often be polysemous, ambiguous,
and be voluntarily camouflaged for social reasons. That is, a
smile may mean embarrassment and not happiness, it’s unclear
where a head nod means agreement or simply that one follows
what the other person is saying, and cultural differences in-
clude covering facial expressions with one’s hand because it is
inappropriate to smile in a company (for example). Such subtle
distinctions among underlying mechanisms cannot be teased
apart. Sixth, it is important to note that despite the existence
of learning opportunities, a given student’s unwillingness to
learn and explore is over-determined. It can stem from multiple
sources, such as unawareness of new information that is to
be learned, lack of knowledge (competency) and information-
seeking skills, lack of environmental support, shyness in
talking to peers, and so forth. Therefore, although our research
sketched a detailed outline of individual and interpersonal

functions of curiosity, this is only a first step. The next phase
of this research will use the virtual peer as a way of assessing
the validity of our model by observing the impact of given
functions and given behaviors on the human interlocutors.

IX. FUTURE WORK

To examine the effectiveness of the computational model in
eliciting curiosity during agent-child interaction, we are devel-
oping a semi-automated Wizard-Of-Oz system that integrates
(i) the curiosity elicitation reasoner to decide specific real-
time contexts during which verbal and non-verbal responses
of the virtual peer can elicit curiosity in group work, (ii) the
behavior understanding module to understand real-time game
and behavior updates of multiple game players. This kind of
assessment of the model allows us to turn behaviors on and
off to see which ones have the highest impact on curiosity (a
luxury not afforded by observing child-child interaction).

We have also begun to extend our analysis of nonverbal
behaviors beyond facial expressions to other parts of the
body. We are therefore beginning to analyze the nature of
hand movements to understand their role in indexing and in
triggering curiosity. Hand movements, including manipulative
actions and communicative gestures [107], are a key aspect of
hands-on collaborative learning. From a distributed cognition
perspective, manipulative actions on artifacts and external
representations embedded in the physical surroundings help
shape people’s thoughts [108] by serving important epistemic
functions in information gathering and ease of cognitive work
[109], and supporting communication [110]. Although hand
movements have long been recognized as indispensable to the
kinds of physical and epistemic exploration that contribute to
curiosity [20], there is a research gap in identifying quan-
titative relationships between hand movement and curiosity
through empirical observation. As an extension of the theo-
retical framework of curiosity outlined here, we will conduct
analyses of key relationships [111] between hand movements
and verbal behaviors. As inputs into these analyses, we have
articulated a taxonomy of such hand movements with respect
to form and meaning. Specifically, we have narrowed down
gestures to three kinds of hand movements commonly found
in our in-lab study corpus, based on McNeill’s well-known
gesture coding scheme [112].

X. CONCLUSION

The results, model, and framework presented here are part of
a larger research effort to understand the social scaffolding of
curiosity and to use that understanding to implement a virtual
peer to increase children’s curiosity in formal and informal
learning contexts, and from there their ability and desire to
learn. The theoretical framework presented in this article lays
the foundation of a computational model of curiosity that
can enable a virtual peer to sense the real-time curiosity
level of each member in small group interaction, and the
impact of each member’s behavior on the others. Here, we
articulated key social factors that account for curiosity in
learning in social contexts, proposed and empirically validated
a novel theoretical framework that disentangles individual and
interpersonal functions linked to curiosity and behaviors that
fulfill these functions.
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The framework connects observable behaviors of children
with their underlying curiosity state. Our analyses reveal
interpersonal dynamics that indicate as well as elicit curiosity
states. As indicators of a curiosity state, the framework reveals
strong positive predictive relationships between the interper-
sonal functions of knowledge identification, acquisition and
intensification on curiosity, whereby individual peers had an
impact on one another. In terms of eliciting curiosity states,
the framework identifies interpersonal behavior patterns that
causally influence the increase or maintenance of curiosity.
Taken together, these results provide strong evidence for the
social nature of curiosity, and the need to disentangle its
interpersonal precursors from its individual precursors. In the
context of a science game, a pedagogical agent that speaks
like a child was also developed to generate the kind of
sentences that our current analyses of human-human data
have shown to result in increased curiosity. Through designing
such learning technologies, we hope to provide additional
pedagogical supports to help children develop knowledge-
seeking skills driven by intrinsic curiosity.
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[73] T. Baltrušaitis, P. Robinson, and L.-P. Morency, “Openface: an open
source facial behavior analysis toolkit,” in Applications of Computer
Vision (WACV), 2016 IEEE Winter Conference on. IEEE, 2016, pp.
1–10.

[74] K. Ryokai, C. Vaucelle, and J. Cassell, “Literacy learning by sto-
rytelling with a virtual peer,” in Proceedings of the conference on
computer support for collaborative learning: foundations for a CSCL
community. International Society of the Learning Sciences, 2002, pp.
352–360.

[75] D. Gatica-Perez, L. McCowan, D. Zhang, and S. Bengio, “Detecting
group interest-level in meetings,” in Acoustics, Speech, and Signal
Processing, 2005. Proceedings.(ICASSP’05). IEEE International Con-
ference on, vol. 1. IEEE, 2005, pp. I–489.

[76] B. Schuller, R. Müller, F. Eyben, J. Gast, B. Hörnler, M. Wöllmer,
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M. Pérez-Sanagustı́n, Eds. Cham: Springer International Publishing,
2017, pp. 254–269.

[84] B. Paranjape, Z. Bai, and J. Cassell, “Predicting the temporal and
social dynamics of curiosity in small group learning,” in International
Conference on Artificial Intelligence in Education. Springer, 2018,
pp. 420–435.

[85] J. R. Shapiro and A. M. Williams, “The role of stereotype threats in
undermining girls and womens performance and interest in stem fields,”
Sex Roles, vol. 66, no. 3-4, pp. 175–183, 2012.

[86] B. Paranjape, Y. Ge, Z. Bai, J. Hammer, and J. Cassell, “Towards
automatic generation of peer-targeted science talk in curiosity-evoking
virtual agent,” in International Conference on Intelligent Virtual Agents.
ACM, 2018, pp. 71–78.

[87] C. Conati and K. Vanlehn, “Toward computer-based support of meta-
cognitive skills: A computational framework to coach self-explanation,”
International Journal of Artificial Intelligence in Education (IJAIED),
vol. 11, pp. 389–415, 2000.

[88] V. Aleven, B. Mclaren, I. Roll, and K. Koedinger, “Toward meta-
cognitive tutoring: A model of help seeking with a cognitive tutor,”
International Journal of Artificial Intelligence in Education, vol. 16,
no. 2, pp. 101–128, 2006.

[89] R. Azevedo, A. M. Witherspoon, A. Chauncey, C. Burkett, and
A. Fike, “Metatutor: A metacognitive tool for enhancing self-regulated
learning.” in AAAI Fall Symposium: Cognitive and Metacognitive
Educational Systems, 2009.

[90] M. Pifarre and R. Cobos, “Promoting metacognitive skills through peer
scaffolding in a cscl environment,” International Journal of Computer-
Supported Collaborative Learning, vol. 5, no. 2, pp. 237–253, 2010.

[91] M. Bannert and P. Reimann, “Supporting self-regulated hypermedia
learning through prompts,” Instructional Science, vol. 40, no. 1, pp.
193–211, 2012.

[92] A. L. Duckworth and D. S. Yeager, “Measurement matters: Assessing
personal qualities other than cognitive ability for educational purposes,”
Educational Researcher, vol. 44, no. 4, pp. 237–251, 2015.

[93] R. Reiter-Palmon, T. Sinha, J. Gevers, J.-M. Odobez, and G. Volpe,
“Theories and models of teams and groups,” Small Group Research,
vol. 48, no. 5, pp. 544–567, 2017.

[94] A. Baranes, P.-Y. Oudeyer, and J. Gottlieb, “Eye movements reveal
epistemic curiosity in human observers,” Vision research, vol. 117, pp.
81–90, 2015.

[95] D. M. Morrison and V. Rus, “–moves, tactics, strategies, and metastrate-
gies: Defining the nature of human pedagogical interaction,” Design
Recommendations for Intelligent Tutoring Systems, p. 217.

[96] D. R. Forsyth, Group dynamics. Cengage Learning, 2009.
[97] R. Correnti, M. K. Stein, M. S. Smith, J. Scherrer, M. McKeown,

J. Greeno, and K. Ashley, “Improving teaching at scale: Design for the
scientific measurement and learning of discourse practice,” Socializing
Intelligence Through Academic Talk and Dialogue. AERA, 2015.

[98] A. Edmondson, “Psychological safety and learning behavior in work
teams,” Administrative science quarterly, vol. 44, no. 2, pp. 350–383,
1999.

[99] F. Fischer, I. Kollar, H. Mandl, and J. M. Haake, Scripting computer-
supported collaborative learning: Cognitive, computational and edu-
cational perspectives. Springer Science & Business Media, 2007,
vol. 6.

[100] P. Jermann and P. Dillenbourg, “Group mirrors to support interaction
regulation in collaborative problem solving,” Computers & Education,
vol. 51, no. 1, pp. 279–296, 2008.

[101] L. Alfieri, T. J. Nokes-Malach, and C. D. Schunn, “Learning through
case comparisons: A meta-analytic review,” Educational Psychologist,
vol. 48, no. 2, pp. 87–113, 2013.

[102] T. Koschmann and C. LeBaron, “Learner articulation as interactional
achievement: Studying the conversation of gesture,” Cognition and
instruction, vol. 20, no. 2, pp. 249–282, 2002.

[103] P. Blikstein, “Multimodal learning analytics,” in Proceedings of the
third international conference on learning analytics and knowledge.
ACM, 2013, pp. 102–106.

[104] J. Cassell and A. Tartaro, “Intersubjectivity in human–agent interac-
tion,” Interaction studies, vol. 8, no. 3, pp. 391–410, 2007.

[105] B. Nagengast and U. Trautwein, “The prospects and limitations of
latent variable models in educational psychology,” Handbook of ed-
ucational psychology, pp. 48–58, 2015.

[106] E. Sariyanidi, H. Gunes, and A. Cavallaro, “Automatic analysis of facial
affect: A survey of registration, representation, and recognition,” IEEE
transactions on pattern analysis and machine intelligence, vol. 37,
no. 6, pp. 1113–1133, 2015.

[107] V. I. Pavlovic, R. Sharma, and T. S. Huang, “Visual interpretation
of hand gestures for human-computer interaction: A review,” IEEE
Transactions on Pattern Analysis & Machine Intelligence, no. 7, pp.
677–695, 1997.

[108] E. Hutchins, “The distributed cognition perspective on human inter-
action,” Roots of human sociality: Culture, cognition and interaction,
vol. 1, p. 375, 2006.

[109] D. Kirsh and P. Maglio, “On distinguishing epistemic from pragmatic
action,” Cognitive science, vol. 18, no. 4, pp. 513–549, 1994.

[110] J. Cassell, D. McNeill, and K.-E. McCullough, “Speech-gesture mis-
matches: Evidence for one underlying representation of linguistic and
nonlinguistic information,” Pragmatics & cognition, vol. 7, no. 1, pp.
1–34, 1999.

[111] P. Fournier-Viger and V. S. Tseng, “Mining top-k non-redundant
association rules,” in International Symposium on Methodologies for
Intelligent Systems. Springer, 2012, pp. 31–40.

[112] D. McNeill, Hand and mind: What gestures reveal about thought.
University of Chicago press, 1992.

Tanmay Sinha is a postdoctoral researcher in Learning Sciences and Tech-
nology Design at ETH Zurich. His doctoral work focused on studying the
pedagogical value of deliberate, guided failure to foster students’ conceptual
understanding and transfer. He is interested in the role of socio-emotional
and interpersonal factors in learning, and more generally, in how scaffolded
human and technology interventions may open new opportunities for students
to fully reap the benefits of failure-driven exploration.

Zhen Bai is an Assistant Professor in the Department of Computer Science
at University of Rochester. She is interested in designing embodied and
intelligent interfaces that support lifelong learning and quality of life for
people with diverse abilities and backgrounds by augmenting social interaction
and meaning making in a playful and collaborative manner.

Justine Cassell is SCS Dean’s Professor in the School of Computer Science
at Carnegie Mellon University, and until recently was Director of the Human-
Computer Interaction Institute in the School of Computer Science. She is
currently on leave from Carnegie Mellon University to hold the founding
international chair at PRAIRIE Paris Institute on Interdisciplinary Research
in AI (one of French President Macron’s four new AI Institutes), and hold
the associated position of Directrice de Recherche at Inria Paris. Her research
focuses on understanding natural forms of communication, and then creating
technological tools for those forms of communication and linguistic expression
to flourish in the digital world.


