
HAL Id: hal-03541786
https://hal.science/hal-03541786

Submitted on 24 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Quantification of the modelling uncertainties in
atmospheric release source assessment and application
to the reconstruction of the autumn 2017 Ruthenium

106 source
Joffrey Dumont Le Brazidec, Marc Bocquet, Olivier Saunier, Yelva Roustan

To cite this version:
Joffrey Dumont Le Brazidec, Marc Bocquet, Olivier Saunier, Yelva Roustan. Quantification of the
modelling uncertainties in atmospheric release source assessment and application to the reconstruction
of the autumn 2017 Ruthenium 106 source. Atmospheric Chemistry and Physics, 2021, 21, pp.13247-
13267. �10.5194/acp-21-13247-2021�. �hal-03541786�

https://hal.science/hal-03541786
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Atmos. Chem. Phys., 21, 13247-13267, 2021 
https://doi.org/10.5194/acp-21-13247-2021 
© Author(s) 2021. This work is distributed under 
the Creative Commons Attribution 4.0 License.

Atmospheric § 
Chemistry | (EGU 

and Physics I

Quantification of uncertainties in the assessment of an atmospheric 
release source applied to the autumn 2017 106Ru event
Joffrey Dumont Le Brazidec1,2, Marc Bocquet2, Olivier Saunier1, and Yelva Roustan2

1IRSN, PSE-SANTE, SESUC, BMCA, Fontenay-aux-Roses, France
2CEREA, Joint laboratory École des Ponts ParisTech and EDF R&D, Université Paris-Est, Marne-la-Vallée, France

Correspondence: Joffrey Dumont Le Brazidec (joffrey.dumont@enpc.fr)

Received: 28 October 2020 - Discussion started: 25 January 2021 
Revised: 4 May 2021 - Accepted: 6 July 2021 - Published: 7 September 2021

Abstract. Using a Bayesian framework in the inverse prob- 
lem of estimating the source of an atmospheric release of a 
pollutant has proven fruitful in recent years. Through Markov 
chain Monte Carlo (MCMC) algorithms, the statistical dis­
tribution of the release parameters such as the location, the 
duration, and the magnitude as well as error covariances can 
be sampled so as to get a complete characterisation of the 
source. In this study, several approaches are described and 
applied to better quantify these distributions, and therefore 
to get a better representation of the uncertainties. First, we 
propose a method based on ensemble forecasting: physical 
parameters of both the meteorological fields and the trans­
port model are perturbed to create an enhanced ensemble. In 
order to account for physical model errors, the importance 
of ensemble members are represented by weights and sam- 
pled together with the other variables of the source. Second, 
once the choice of the statistical likelihood is shown to alter 
the nuclear source assessment, we suggest several suitable 
distributions for the errors. Finally, we propose two specific 
designs of the covariance matrix associated with the obser­
vation error. These methods are applied to the source term 
reconstruction of the 106Ru of unknown origin in Europe in 
autumn 2017. A posteriori distributions meant to identify the 
origin of the release, to assess the source term, and to quan- 
tify the uncertainties associated with the observations and the 
model, as well as densities of the weights of the perturbed en­
semble, are presented.

1 Introduction

1.1 Bayesian inverse modelling for source assessment

The inverse modelling of a nuclear release source is an is­
sue fraught with uncertainties (Abida and Bocquet, 2009). 
Variational techniques (Saunier et al., 2013; Bocquet, 2012), 
which only provide a deterministic and thus unique solu­
tion to the problem, miss valuable information such as other 
potential sources. On the other hand, probabilistic methods 
develop stochastic solutions able to capture all information 
from the data. In particular, Bayesian methods have proven 
to be very efficient in source term estimation (STE) prob- 
lems. Several techniques such as the iterative variational 
Bayes method (Tichÿ et al., 2016) tested using data from 
the European Tracer Experiment (ETEX), or an adaptive 
scheme based on importance sampling (Rajaona et al., 2015) 
and tested on the Fusion Field Trials 2007 experiment, have 
been developed. Sampling using Markov chain Monte Carlo 
(MCMC) methods is a very popular technique, since it al- 
lows the posterior distribution of the source to be directly as- 
sessed. It has been applied by Delle Monache et al. (2008) to 
estimate the Algeciras incident source location. Keats et al. 
(2007) sampled the source parameters of a complex urban 
environment with the help of the Metropolis-Hastings al- 
gorithm. The emissions of xenon-133 from the Chalk River 
Laboratories medical isotope production facility were recon- 
structed with their location by Yee et al. (2014). Various 
Bayesian methods including MCMC techniques are used by 
Liu et al. (2017) to assess the source term of the Chernobyl 
and Fukushima Daiichi accidents and their associated uncer- 
tainties.
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1.2 Ensemble methods

A major source of uncertainties in the inverse modelling 
for source term estimation of nuclear accidents originates 
from the meteorological fields and the transport models (Sato 
et al., 2018) which are used to simulate the plume of the 
emission. Weather forecast uncertainties arise from errors in 
the initial conditions and approximations in the construction 
of the numerical model. They can be evaluated through the 
use of an ensemble forecast (Leith, 1974). Several realisa- 
tions of the same forecast are considered, where for each re- 
alisation, the initial condition and the numerical model are 
perturbed. These forecasts can then be combined to generate 
a single forecast. More specifically, ensemble members can 
be linearly combined, where each member of the ensemble 
is given a weight. In a deterministic approach, weights can 
be computed using assorted methods such as machine learn- 
ing (Mallet et al., 2009) or least squares algorithms (Mallet 
and Sportisse, 2006). For weather forecasting, these weights 
can depend on past observations or analyses (Mallet, 2010). 
As developed later in this paper in Sect. 2.3, the study of 
the weights provides access to the uncertainty in meteoro- 
logical models. The uncertainty due to the transport model 
can also be studied through ensemble methods such as that 
of Delle Monache and Stull (2003), who use a mixture of 
diverse air quality models. We propose in this paper a new 
technique to estimate the weights associated with ensemble 
members.

1.3 Probabilistic description of the problem

We wish to parametrise the distribution of the variable vector 
x describing the source of a release. In the case of a point- 
wise source of unknown location, the most important vari­
ables describing the source are the coordinates longitude- 
latitude (x1,x2), the vector ln q (where each component cor­
responds to the logarithm of the release q on a given time 
interval, e.g. an hour or a day), and the covariance matrix R 
containing the model-measurement error variances defined 
below. The posterior probability distribution is written with 
the help of Bayes’ theorem as

p( y |x )p(x)p(xIy) = p(y' p a p(y|x)p(x), (1)
p(y)

with y the observation vector, usually a set of air concen­
tration measurements, and x the source variable vector. The 
firstterm p(y |x) of Eq. (1) corresponds to the likelihood dis­
tribution quantifying the fit of a statistical model (here the 
characterisation of the source x) with the data (the observa­
tion vector y). The second term, the prior p(x), describes the 
probability distribution of prior knowledge on the source vec­
tor before considering data. Once the posterior probability 
distribution is known up to a normalisation constant, several 
sampling techniques can be applied to it (Liu et al., 2017).

The shape of the posterior distribution strongly depends 
on the uncertainties related to the data and the modelling 
choices, which include the meteorological data and transport 
models definitions as well as the likelihood definition. The 
objective of this study is to investigate the various sources 
of uncertainties compounding the problem of source recon­
struction, and to propose solutions to better evaluate them, 
i.e. to increase our confidence in the reconstructed posterior 
distribution. The quantification of the uncertainties largely 
depends on the definition of the likelihood and its compo- 
nents (for example, a corresponding covariance matrix). The 
choice of the likelihood is the concern of Sect. 2.1. As men- 
tioned above, the likelihood term quantifies the fitness be- 
tween the measurements y and a given transformation of the 
source x. To make these two quantities comparable, a set of 
modelled concentrations corresponding to the observations 
are computed. These concentrations, also called predictions, 
are the results of a simulation of the dispersion of the source 
x and depend on the parametrisation of the transport model 
and on the meteorological fields.

In this paper and in the case of a source of unknown lo­
cation, the predictions are written as y S = Hx1,x2 q where H 
is the observation operator, the matrix representing the re­
solvent of the atmospheric transport model, and Hx1,x2 its 
definition for a source of coordinates x1,x2. Therefore, the 
observation operator does vary linearly with q. However, H 
is not linear in the coordinates. When the coordinates are un- 
known, they may be investigated in a continuous space. The 
computation of a matrix Hx1,x2 for a specific couple of coor­
dinates being expensive, a set of observation operators linked 
to specific locations is computed on a regular mesh G prior 
to the Bayesian sampling presented in Sect. 3.2.3. The ob­
servation operators are therefore interpolated from the set of 
observation operators pre-computed on G.

Equation (1) can be expanded as

p(x|y) a

plikelihood (y | Hx1 ,x2 (m)q, R)pprior (x 1, x2, ln q, R) (2)

where uncertainties are embodied in

- the observations y;

- the physical models: the meteorological fields m and the 
dispersion H;

- the likelihood definition: its choice and the design of its 
associated error covariance matrix R;

- the representation error: the release rates q as a discrete 
vector (while the release is a continuous phenomenon), 
the observation operator Hx1 ,x2 as an interpolation, and 
the observations for which the corresponding predic- 
tions are calculated in a mesh containing them;

- the choice of the priors.

In this paper, we focus on the uncertainties emanating from 
the physical models and the definition of the likelihood.
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1.4 Objectives of this study isation constant) as

This study is a continuation from a previous study from the 
authors (Dumont Le Brazidec et al., 2020). It aims to explore 
the various sources of uncertainty which are compounding 
the inverse problem and propose solutions to better evaluate 
them: three key issues are investigated. First, in Sect. 2.1, we 
investigate the design of the likelihood distribution, which is 
a key ingredient in the definition of the posterior distribution. 
Second, we propose two new designs of the likelihood co­
variance matrix to better evaluate errors in Sect. 2.2. Finally, 
in Sect. 2.3, we describe an ensemble-based method for tak- 
ing into account the uncertainties related to the meteorolog- 
ical fields and atmospheric transport model: H is built as a 
weighted sum of observation operators created out of diverse 
physical parameters.

Subsequently, these three sources of uncertainty are ex- 
plored in an application of source term estimation of the 
106Ru release in September 2017. First, a description of the 
context, the observation dataset, and the release event are 
provided in Sect. 3.1. Then the parametrisation of the physi­
cal model is presented in Sect. 3.2.1. Finally, the results of the 
successive applications of the assorted methods described in 
Sect. 2, combined or not, are presented in Sect. 3.3. A sum- 
mary of the various configurations of each application is pro- 
posed in Sect. 3.3.1. Conclusions on the contribution of each 
method are finally proposed.

2 Evaluating uncertainties in the Bayesian inverse 
problem

2.1 Choice of the likelihood

J y (x ) ln p(y|x )
Nobslnr (y - Hx)T(y - Hx)

2 2r ’
(4)

with Nobs the number of observations. The cost function is 
a matter of judgement; it measures how detrimental a dif- 
ference between an observation and a prediction is. When 
the observations and the predictions are equal, the cost cor- 
responding to the likelihood should be zero and it should in- 
crease when the difference between the observation and the 
prediction values grows.

With the assumption R = rI, choosing a Gaussian likeli- 
hood penalises the largest errors to an extent that smaller 
errors are negligible: the Gaussian cost function value of 
an observation-prediction couple (y = 100mBqm-3,yS = 
120mBqm-3) is a hundred of times greater than of (y = 
10mBqm' -3,ys = 12mBqm 3). In other words, with a 
Gaussian likelihood and the assumption R = rI, inverse 
modelling is dominated by the most significant measure- 
ments in real-case studies.

The whole set of measurements should provide informa­
tion: if the inversion is dominated by the few measurements 
with the largest errors (which may possibly be outliers), valu- 
able information provided by the other measurements may 
be missed. More generally, the following inventory lists the 
criteria that a good likelihood choice under the assumption 
R = rI (or any important simplification of R) for nuclear 
source assessment should fulfil:

- positive domain of definition: should be defined for val­
ues on the semi-infinite interval [0, +œ) since the ob­
servations and predictions are all positive by nature;

In the field of source assessment, and more precisely radioac­
tive material source assessment, the likelihoods are often de­
fined as Gaussian (Yee, 2008; Winiarek et al., 2012; Saunier 
et al., 2013; Bardsley et al., 2014; Yee et al., 2014; Winiarek 
et al., 2014; Rajaona et al., 2015; Tichÿ et al., 2016), or 
adapted from a Gaussian to consider non-detections and false 
alarms (De Meutter and Hoffman, 2020), or more recently 
log-normal (Delle Monache et al., 2008; Liu et al., 2017; 
Saunier et al., 2019; Dumont Le Brazidec et al., 2020) or 
akin to a log-normal (Senocak et al., 2008). The multivariate 
Gaussian probability density function (pdf) of y, of mean Hx 
and covariance matrix R, is written as

p(y |x )
1

. expV2n]R| F
(y - Hx)TR-1(y - Hx) 

2
(3)

In this section, we assume that the covariance matrix R is 
equal to rI, where r is a positive coefficient. The cost func- 
tion, i.e. the negative of the log-likelihood, of the Gaussian 
probability density function (pdf) is written (up to a normal-

- symmetry between the prediction vec-
tor and the observation vector, i.e. 
p(y; Hx, R) = p(Hx; y, R). The couple
(y = 20mBqm-3 ,yS = 40mBqm-3) should have the 
same penalty as (y = 40mBqm-3, yS = 20mBqm-3);

- close to proportionality: the ratio of the cost function 
value of a couple (20mBqm-3,40mBqm-3) with a 
couple (200mBqm-3,400mBqm-3) should be close 
to 1 as a general rule. This criterion is a simplification 
since the distribution of errors might be more complex 
than simply multiplicative;

- existence of a covariance matrix, and of a term able to 
play the role of the modelled predictions. Indeed, the 
likelihood measures the difference between the observa­
tions and the predictions, which should therefore appear 
as a parameter of the distribution. Distributions with a 
location parameter comply with this requirement.

In particular, three distributions were found to satisfy these 
diverse criteria: the log-normal distribution already used in
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several studies, the log-Laplace and the log-Cauchy distribu­
tions, which have for cost functions (up to a normalisation 
constant) (Satchell and Knight, 2000; McDonald, 2008).

Jlog-normal(y; H-C R yt) —
1 o Nobs2 II ln(y + yt) - ln(Hx + yt) ll2,R-x + ~^~ ln(r), (5a)

^log-Laplace (y; Hx, R, yt) —

Il ln(y + yt) - ln(Hx + yt) || i,r-i + Nobs ln(r), (5b)

^log-Cauchy (y; Hx, R yt) —

Nobs . , 1
X)ln (r + (ln(yi + yt) - ln((Hx)i + yt))2j - 2 ln(r), (5c)

i — 1

where yt is a positive threshold vector to ensure that the loga- 
rithm function is defined for zero observations or predictions. 
The 12and 11 norms are defined as ||v||2,R-i — VvTR-1v and 

Il v I i,r-i — J2i with R diagonal, respectively. These three
distributions are subsumed by the generalised beta prime 
(or GB2) (Satchell and Knight, 2000; McDonald, 2008) and 
share a common point; all three are shaped around the sub­
traction of the logarithm of the observation by the loga- 
rithm of the prediction. Due to the logarithmic property 
ln b — ln(a) - ln(b), several criteria previously defined are 
met. First, the cost is a function of the ratio of the obser­
vation to the prediction. Second, these functions are defined 
with a location parameter which plays the role of the mod- 
elled prediction ln((Hx) + yt). And finally, with the help of 
a square or an absolute value, a symmetry between the obser­
vation and the prediction is guaranteed. Each of these choices 
requires a threshold (and even two for the log-Cauchy case, 
discussed at the end of this section) whose value significantly 
impacts the results. The log-normal and log-Cauchy distribu­
tions are compared for Bayesian source estimation by Wang 
et al. (2017).

Their difference lies in the treatment of the relative quan- 
tity ln(yi + yt) - ln((Hx)i + yt). With the 12 norm, the log- 
normal drives most of the penalty on the large (relative) dif- 
ferences and removes almost all penalty from the small dif- 
ferences. With the 11 norm, the log-Laplace curve of the rel­
ative quantity is flatter in comparison. This translates in the 
fact that the inverse modelling will not be sensitive to one 
couple in particular, even if for this couple the difference be- 
tween the observation and the prediction is large. The motive 
therefore for using log-Laplace is to avoid having outliers 
driving the entire sampling, i.e. driving the entire search of 
the source. The log-Cauchy distribution is the one with the 
most interesting behaviour and mixes log-normal and log- 
Laplace natures. The logarithm mitigates the penalty of large 
differences but also removes any penalty from the small dif- 
ferences. The rationale of using the log-Cauchy distribution 
is consequently to avoid outliers, but at the same time to 
avoid taking into account negligible differences.

For all choices, the value of yt is crucial to evaluate the 
penalty on a couple involving a zero observation or predic- 
tion. In other words, it calculates how the cost of a zero ob­
servation and a non-zero prediction (or the contrary) should 
compare to a positive couple. We consider that the penalty on 
a couple (20mBqm-3,0mBqm-3) should be a large mul­
tiple of the penalty on (400mBqm-3,100mBqm-3). As a 
consequence, it can be deduced that a “good” threshold for 
the log-normal distribution in a case involving important 
quantities released should lie between 0.5 and 3mBqm-3. 
Using the same principle, acceptable thresholds for the log- 
Laplace or the log-Cauchy distributions range between 0.1 
and 0.5mBqm-3.

We should also consider that the log-Cauchy distribution 
needs a second threshold j to be properly defined. Indeed, 
if for a couple both observation y,- and prediction (Hx)i are 
equal (usually both equal to zero), then r will naturally tend 
towards 0 so that Jiog-Cauchy tends to -œ as can be seen in 
Eq. (6) with j equal to zero. To prevent that, we can define 
j — 0.1 mBqm-3 and

^log-Cauchy (y ; Hx, r, yt) —

/ + (ln(yi + y,) -!n((Hx).- + y,))2 + j\ (6)
H \ r cref/

with cref — 1 mBqm-3.
As will be shown later, the choice of the likelihood has 

in practice a significant impact on the shape of the posterior 
distribution. Hence, to better describe the uncertainties of the 
problem, the approach proposed here is to combine and com­
pare the distributions obtained with these three likelihoods.

2.2 Modelling of the errors

The likelihood definition, and therefore the posterior dis­
tribution shape, is also greatly impacted by the modelling 
choice of the error covariance matrix R. The matrix is of size 
Nobs x Nobs. In real nuclear case studies, the number of obser­
vations can be important, whereas Bayesian sampling meth- 
ods can usually estimate efficiently only a limited number of 
variables. To limit the number of variables, most of the litera- 
ture (Chow et al., 2008; Delle Monache et al., 2008; Winiarek 
et al., 2012; Saunier et al., 2013; Rajaona et al., 2015; Tichÿ 
et al., 2016; Liu et al., 2017) describes the error covariance 
matrix as a diagonal matrix with a unique and common diag­
onal coefficient. This variance accounts for the observation 
(built-in sensor noise and bias), models (uncertainty of the 
meteorological fields and transport model), and representa- 
tion error between an observation and a modelled prediction 
(e.g. Rajaona et al., 2015). Saunier et al. (2019) analyse the 
impact of such a choice on the same case study as this paper. 
Indeed, the error is a function of time and space and is obvi- 
ously not common for every observation-prediction couple.

This critical reduction can lead to paradoxes. With R — 
rI, the variance r captures an average of the observation-
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prédiction couples error variances. As seen in Appendix A, 
some observations can tamper the set of measurements and 
artificially reduce the value of r, which prevents the densi- 
ties of the variables being well spread. Specifically, let us 
consider the non-discriminant observations. These are ob­
servations for which, for any probable source x, the obser­
vation is almost equal to the prediction. In other words, a 
non-discriminant observation is an observation which never 
contributes to discriminating any probable source from an- 
other. It is an observation for which, if R was modelled as 
a diagonal matrix with Nobs independent terms, the variance 
ri corresponding to this observation would be very small or 
zero. If we model R as r I, then r, capturing an average of the 
Nobs variances ri, decreases artificially. To deal with the exis­
tence of these observations, we propose to use two variances 
r1 and rnd. The discriminant observations will be associated 
with the variance r1 while the non-discriminant observations 
will be associated with the variance rnd during the sampling 
process. Necessarily then, rnd tends to a very small value.

In the following, we refer to this algorithm as the 
observation-sorting algorithm. A justification of the use of 
this clustering using the Akaike information criterion (AIC) 
is proposed in Appendix B.

We now propose a second approach to improve the de­
sign of the covariance matrix R and the estimation of the un- 
certainties. We propose to cluster observations according to 
their spatial position in k groups, where observations of the 
same cluster are assigned the same observation error vari­
ance. This proposal is based on the fact that the modelling 
part of the observation error is a spatially dependent function. 
With this clustering, we have x = (x1,x2, lnq, r1,..., rk) the 
source variables of interest, and R as a diagonal matrix where 
the ith diagonal coefficient is assigned a rj with j e {1,.., k} 
according to the cluster to which the observation yi belongs.

Using both methods, the set of variable x to retrieve be- 
comes (x1,x2, ln q ,n,..., rk, rnd).

2.3 Modelling of the meteorology and transport

As explained in Sect. 1.3, the linear observation operator 
H is computed with an atmospheric transport model, which 
takes meteorological fields as inputs. More precisely, the Eu- 
lerian ldX model, a part of IRSN's C3X operational plat- 
form (Tombette et al., 2014), validated on the Algeciras inci­
dent and the ETEX campaign, as well as on the Chernobyl 
accident (Quélo et al., 2007) and the Fukushima accident 
(Saunier et al., 2013), is the transport model used to simulate 
the dispersion of the plume, and therefore to build the obser­
vation operators. To improve the accuracy of the predictions, 
and therefore reduce the uncertainties, several observation 
operators computed with various physical parameters con- 
figuring the transport model and meteorological fields can be 
linearly combined. This combination then produces a single 
prediction forecast, hopefully more skilful than any individ- 
ual prediction forecast.

First, ensemble weather forecasts can be used to represent 
variability in the meteorological fields. The members of the 
ensemble are based on a set of Nm models, where each model 
can have its own physical formulation. Second, considering a 
meteorology with little rainfall, three parameters of the trans­
port model in particular can have an important impact on the 
dispersion of a particle (Girard et al., 2014) and are subject 
to significant uncertainties: the dry deposition, the height of 
the release, and the value of the vertical turbulent diffusion 
coefficient (Kz).

Therefore, to create an ensemble of observation operators 
with both uncertainty in the meteorological fields and in the 
transport parametrisation, a collection of observation oper- 
ators H1,..., HNe can be computed out of four parameters. 
More specifically, each H; with i e {1,Ne} is the output of a 
transport model parametrised by

- choosing a member from an ensemble of meteorological 
fields and hence a discrete value in [1, Nm];

- a constant deposition velocity in [ud,min = 0.5 x 
10-3ms-1, ud,max = 5 x 10-3ms-1];

- a distribution of the height of the release between two 
layers defined between 0 and 40 m, and between 40 and 
120 m, the space being discretised vertically in layers of 
various heights as described in Table 1;

- a multiplicative constant on the Kz values chosen in 
[0.333, 3],

where each parameter range has been set up based on the 
work of Girard et al. (2014), and deposition and Kz processes 
are described in Table 1. The ensemble of observation oper- 
ators is therefore computed from a collection of parameters. 
This collection is obtained from sampling the values of the 
parameters inside the intervals.

Once the set of operators has been built, the idea is to com­
bine them linearly to get a more accurate forecast. A weight 
w,- can be associated with each observation operator of the 
ensemble:

Ne Ne

ys = Hx = X! wiHix = m wi ys,b (7)i = 1 i = 1
which results in combining linearly the predictions of each 
member of the ensemble. Each weight wi is a positive vari­
able to be retrieved. The weights can be included in the set 
of variables sampled by the MCMC algorithm. They are 
dependent on each other through the necessary condition 
£i=1Wi = 1 so this means Ne - 1 weight variables will be 
addedto x = (x1,x2, ln q, R, W1,..., wNe-1).

Several methods are used in Sect. 3.3.4 to explore relia- 
bility, accuracy (level of agreement between forecasts and 
observations), skill, discrimination (different observed out- 
comes can be discriminated by the forecasts), resolution (ob- 
served outcomes change as the forecast changes), and sharp- 
ness (tendency to forecast extreme values) of probabilistic
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forecasts (Delle Monache et al., 2006). Rank histograms are 
used to evaluate the spread of an ensemble. Reliability dia- 
grams (graphs of the observed frequency of an event plotted 
against the forecast probability of an event) and ROC curves 
(which plot the false positive rate against the true positive 
rate using several probability thresholds) are used to mea- 
sure the ability of the ensemble to discriminate (Anderson, 
1996).

3 Airborne radioactivity increase in Europe in autumn 
2017

3.1 Context

In this section, the methods are applied to the detection event 
of 106Ru in Europe in autumn 2017. We first provide a brief 
context for the event and a review of earlier studies and de- 
scribe the observation dataset and the model.

Small quantities of 106Ru were measured by several Eu- 
ropean monitoring networks between the end of September 
and the beginning of October 2017. Inquiries to locate the 
source, the origin of the 106Ru being unknown, have been 
carried out, based on the radionuclide measurements. Corre- 
lation methods are used by Kovalets et al. (2020) to retrieve 
the location of the source. Saunier et al. (2019) apply deter- 
ministic inverse modelling methods to reconstruct the most 
probable source and release: southern Ural is identified as the 
most likely geographical location, and the total release in the 
atmosphere is estimated to be 250 TBq. The location, release, 
and errors are also investigated by Dumont Le Brazidec et al. 
(2020), Tichÿ et al. (2021), and Western et al. (2020) us- 
ing Bayesian methods. De Meutter et al. (2021) propose a 
methodology to retrieve the model error in the 106Ru case.

The concentration measurements used in this study are 
available in Masson et al. (2019). The dataset has more than 
1000 observations of 106Ru with detection levels from a few 
pBqm-3 to more than 170mBqm-3 in Romania. It is de- 
scribed in Fig. 1.

3.2 Modelling

3.2.1 Physical parametrisation

All simulations, described in Sect. 3.3, are driven using 
the ECMWF (European Centre for Medium-Range Weather 
Forecasts) ERA5 meteorological fields (Hersbach et al., 
2020). A single observation operator H is built with the high- 
resolution forecast (HRES) reanalysis, in order to study the 
relevance of the methods presented in Sects. 2.1 and 2.2. An 
enhanced ensemble of 50 observation operators is built fol- 
lowing the methodology of Sect. 2.3, where the ensemble of 
meteorological fields is the ERA5 EDA (Ensemble Data As­
similation) of 10 members. As explained in Sect. 2.3, each 
observation operator of this enhanced ensemble is the out- 
put of the transport model based on a random member of the

ERA5 EDA and a random physical parametrisation. Table 1 
refers to the parameters of the ldX dispersion simulations. 
The choice of parameters is based on the analysis carried 
out by Saunier et al. (2019) and Dumont Le Brazidec et al. 
(2020). As seen in Sect. 2.3 and Table 1, the vertical mix- 
ing of each member of the enhanced ensemble is a random 
multiple (between 1 /3 and 3) of the corresponding ECMWF 
EDA member vertical mixing. Furthermore, the constant dry 
deposition velocity and the distribution of the height of the 
release between the two first vertical layers of each mem- 
ber is unique and specific to this member. On most measure- 
ment stations, there was no rain event on the passage of the 
plume except for Scandinavia and Bulgaria. This suggests 
that wet deposition has a weak influence on the simulations, 
compared to the other processes.

Simulations are performed forward in time from 22 
September 2017 at 00:00 UTC to 13 October 2017, which 
corresponds to the time of the last observation with resolu­
tions defined in the Table 1. The HRES domain grid G of 
computation of the operators H corresponds to the nested 
domain of Table 1 and has been chosen based on previ- 
ous works from the authors (Saunier et al., 2019; Dumont 
Le Brazidec et al., 2020). The enhanced ensemble domain 
grid where origin of the release is considered is of smaller ex- 
tent due to computation power limitations and focuses on the 
most probable geographical domains of origin of the release, 
inferred from the HRES results presented in Sect. 3.3.3. The 
chosen mesh spatial resolution of G is 0.5° for the simula­
tions with the ECMWF ERA5 HRES observation operator 
and 1° with the enhanced ensemble of observation operators. 
The logarithm of the release q is defined as a vector of size 
Nimp = 9 daily release rates from 22 to 30 September, as ex­
plained in Dumont Le Brazidec et al. (2020). Therefore, ldX 
is run for each grid point of G and for each day between 22 
and 30 September to build the observation operators.

3.2.2 Choice of the priors

In a Bayesian framework, the prior knowledge on the control 
variables for the 106Ru source must be described. Follow- 
ing Dumont Le Brazidec et al. (2020), and because no prior 
information is available, longitude, latitude, observation er- 
ror variance, and member weights prior probabilities are as- 
sumed to be uniform. Lower and upper bounds of the uniform 
distribution on the coordinates are defined by the nested do­
main of Table 1. The lower bound of the observation error 
variance is 0 and the upper bound is chosen as a very high 
and unrealistic value. Lower and upper bounds of members’ 
weight probabilities are 0 and 1. The independent priors of 
the release rates are chosen as log-gamma distributions to 
prevent the values of the release increasing unrealistically: 
the scale term is chosen as e30 and the shape parameter as 0 
(Dumont Le Brazidec et al., 2020).
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Figure 1. Maximum air concentrations of 106Ru observed over Europe in mBqm 3. Green points measured concentrations below the 
détection limit.

Table 1. Main configuration features of the ldX dispersion simulations for the 106Ru detection event, with the deterministic observation 
operator or the ensemble of observation operators. The nested domain is the domain where the origin of the release is assumed a priori.

Parameter ECMWF ERA5 HRES H Enhanced ensemble

Computational domain [6° W; 70° E] and [34° N; 68° N] [6° W; 70° E] and [34° N; 68° N]

Spatial resolution 0.28125° x 0.28125° 0.5625° x 0.5625°

Vertical resolution 15 terrain following layers (from 0 to 8000 m)

Time resolution 1 h 3h

Vertical mixing K diffusion following the parametrisation 
of Louis’ closure (Louis, 1979 
and Troen and Mahrt, 1986) in unstable 
conditions in the PBL

multiple of the HRES vertical

mixing depending on the member

Horizontal mixing Constant horizontal eddy diffusion coefficient Kh = 0 m2 s 1

Wet scavenging As = A0P0, where A0 = 5 x 10-5h (mms)-1 and P0 is the rainfall intensity in mmh-1 
Baklanov and Sprensen (2001)

Dry deposition constant deposition velocity 
= 2 x 10-3 ms-1

t>d G [0.5 x 10 3; 5 x 10 3]ms 1

Source height 40 % in the first layer (0 to 40 m); 60 % 
in the second layer (40 to 120 m)

repartition depending on the member

Nested domain [6° W; 70° E] and [34° N; 68° N] [47° E; 62° E] and [53° N; 58° N]
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Figure 2. Density of the longitude for a log-Laplace likelihood with 
threshold 0.1 mBqm-3 of the 106Ru source sampled with the 30 
first members of the enhanced ensemble of observation operators 
using the parallel tempering method with or without the help of the 
observation-sorting algorithm. The purple vertical bar represents the 
longitude of the Mayak nuclear complex.

3.2.3 Parallel tempering algorithm

We rely on Markov chain Monte Carlo (MCMC) algorithms 
to sample from the target p(x | y ). MCMC methods are 
asymptotically exact sampling methods not reliant on closed- 
form solutions. They are based on the use of Markov chains 
having as invariant distribution the posterior distribution of 
interest. A Markov chain is a stochastic model that describes 
a sequence of possible events that can converge to a distri­
bution. Thus, after a sufficient time, the Markov chain sam- 
ples values of this distribution. The convergence of a popular 
MCMC algorithm such as the Metropolis-Hastings (MH) al­
gorithm can be hampered by the encounter of local minima 
and be delayed (Dumont Le Brazidec et al., 2020). To over- 
come this issue, the parallel tempering algorithm (Swend- 
sen and Wang, 1986) is employed. Also called Metropolis- 
coupled Markov chain Monte Carlo (MCMCMC) or tem- 
perature swapping (Earl and Deem, 2005; Baragatti, 2011; 
Atchadé et al., 2011), it consists of combining several 
MCMC algorithms (such as MH) at different temperatures, 
where a temperature is a constant flattening out the poste­
rior distribution. Chains with a flat target distribution avoids 
being trapped in local minima and provide probable source 
variable vectors to the “real” chain with no temperature. De­
tails of the implementation applied to our problem can be 
found in Dumont Le Brazidec et al. (2020).

3.2.4 Parameters of the MCMC algorithm

The transition probabilities used for the random walk of the 
Markov chains are defined independently for each variable 
and based on the folded-normal distribution as described by 
Dumont Le Brazidec et al. (2020). The transition probability

of the meteorological member weights is also defined as a 
folded-normal distribution. Weights are at first updated inde- 
pendently from each other, and then each proposal is updated 
by the sum of the weights, i.e.

Vf e{1,Ne} wj 'FN (wj 1 ,aw)

then wj = Ne j
j 1 Wj

wj
(8)

where FN is the folded-normal distribution, with <rw the 
prior standard deviation of the weights and wj-1 the value 
of the weight of the member j before the walk.

The variances of the transition probabilities are chosen 
based on experimentations and are set to be aX1 = aX2 = 
0.3°2, olnq = 0.03, ar = 0.01, and aw = 0.0005. All vari­
ables are always initialised randomly. Locations of the transi­
tion probabilities are the values of the variables at the current 
step. When the algorithm to discriminate observations pre- 
sented in Sect. 2.2 is used, we consider that a prediction and 
an observation can be considered as equal if their difference 
is less than q = 0.1 mBqm-3, which is inferred from recep- 
tor detection limits described in Dumont Le Brazidec et al. 
(2020). Ten chains at temperatures tf = cl with c = 1.5 are 
used in the parallel tempering algorithm.

3.3 Application of the methods

3.3.1 Overview

To see the impacts of the techniques proposed in Sect. 2 (i.e. 
using diverse likelihoods, new designs of the error covariance 
matrix, and an ensemble-based method), the pdfs of the vari­
ables describing the 106Ru source are sampled from various 
configurations:

- Sect. 3.3.2 is an application of the observation-sorting 
algorithm presented in Sect. 2.2. It provides a compar- 
ison between the longitude pdf reconstructed with or 
without the observation-sorting algorithm to estimate its 
efficiency.

- Sect. 3.3.3 is an application of the use of different 
likelihood functions and strategies to spatially clus­
ter observations in diverse groups. It presents results 
obtained using the HRES meteorology to analyse the 
impact of using several likelihood distributions. The 
observation-sorting algorithm is applied and two cases 
are explored: no spatial clustering of the observations, 
x = (x1 ,X2, ln q ,r1 ,rnd), and spatial clustering of the 
observations with the corresponding modelling of the 
error covariance matrix R as described in the end of 
Sect. 2.2: x = (x1, X2, ln q, n,..., rj, rnd ) where we use 
j = 9.

- Sect. 3.3.4 is an application of the use of the ensemble- 
of-observation-operator strategy presented in Sect. 2.3.
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Figure 3. 106Ru observations spatially clustered with a k means algorithm (k = 9). The means of the corresponding nine variance distribu­
tions have been computed using a parallel tempering algorithm for a log-normal distribution with a threshold equal to 0.5mBqm-3. The 
observation-sorting algorithm is applied and “eliminates” the low-uncertainty observations.

The enhanced ensemble with uncertainty on the disper­
sion parameters based on the ERA5 EDA of 10 mem- 
bers is analysed in Sect. 3.3.4. Afterwards, pdfs of the 
source variables x are sampled using the enhanced en­
semble: x = (x1,x2,lnq,r1 ,rnd,W1,...,wNe). Results 
are reconstructed with the help of the observation- 
sorting algorithm and diverse likelihoods.

Note that, when the observation-sorting algorithm is used, in 
all cases, approximately half of the observations are sorted 
as non-discriminant.

3.3.2 Study of the interest of the observation-sorting 
algorithm

We present here an experiment supporting the observation- 
sorting method. A reconstruction of the source variables 
is proposed using the enhanced ensemble of observation 
operators, only on the first 30 members for the sake 
of computation time. The enhanced ensemble is stud- 
ied later in Sect. 3.3.4. A log-Laplace likelihood with 
a threshold equal to 0.1 mBq m-3 is used in two cases: 
with or without applying the observation-sorting algo- 
rithm. The source variable vector is therefore xwith = 
(x1,x2, ln q ,r1 ,rnd,w1,...,wNe) (with observation-sorting 
algorithm) or xwithout = (x1,x2, ln q ,r,W1,...,wNe) (with- 
out).

Figure 2 represents the longitude variable pdf of the 
sources’ variable vectors. The red histogram, which repre- 
sents the longitude pdf in the case where the observation- 
sorting algorithm is applied, is far more spread out than the 
case without. It indeed ranges from 60 to 61.2° while the 
orange longitude density (without applying the observation- 
sorting algorithm) ranges from 60 to 60.6; i.e. the pdf extent 
with sorting is the double of the spread without.

The mean of the observation error variance r samples in 
the case without the observation-sorting algorithm is 0.399. 
In the case with the observation-sorting algorithm, the dis­
criminant observation error variance r1 is equal to 0.63 and 
the non-discriminant observation error variance rnd tends to 
a very low value. We denote x with as the set of sources 
sampled (and therefore considered as probable) when using 
the observation-sorting algorithm and xwithout as the set of 
sources sampled without. For example, a source x in xwith is 
oflongitude x1 in [60,61.2]. By definition of the log-Laplace 
pdf in Eq. (5), the fact that rnd tends to a very low value 
confirms that non-discriminant observations are observations 
which are not able to discriminate between any of the sources
in xwith.

What happens when the observation-sorting algorithm is 
not used (orange histogram), i.e. with the basic design R = 
rI, is that the observation error variance r is common for all 
observations. The resulting r = 0.399 is therefore a compro­
mise between r1 = 0.63 and rnd ~ 0, the variances sampled
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with the sorting algorithm. In other words, the uncertainty of 
the discriminant observations is reduced compared to the un­
certainty found when applying the sorting algorithm. That is, 
the confidence in the discriminant observations is artificially 
high. This is why the extent of the resulting posterior pdfs is 
reduced compared to the case with the observation-sorting al­
gorithm. More precisely, the probability of the most probable 
sources (here longitudes between 60 and 60.6) is increased 
and the probability of the least probable sources is decreased 
(longitudes between 60.6 and 61.2).

The observation-sorting algorithm is a clustering algo- 
rithm that avoids this compromise. Observations always 
equal to their predictions (i.e. associated with very small ob­
servation error variance, or with very high confidence for all 
probable sources) - the non discriminant observations - are 
assigned a specific observation error variable. In this way, 
the uncertainty variance associated with the other observa­
tions is far more appropriate. This clustering is totally valid 
as explained in Appendix B.

Finally, note that sampling the longitude posterior distribu­
tion using yd the set of discriminant observations instead of y 
yields a pdf very similar to the red density in Fig. 2. In other 
words, considering observations which cannot discriminate 
between a source of longitude 60 and a source of longitude 
60.8 actually decreases the probability of the source of longi­
tude 60.8, which is not justifiable. The significant difference 
between the two pdfs makes the application of the algorithm 
necessary.

3.3.3 Sampling with the HRES data, several
likelihoods, the observation-sorting algorithm, 
and with or without observation spatial clusters

In this section, we study two cases. First, we assess the 
impact of the choice of the likelihood on the reconstruc­
tion of the control variable pdfs (x = (x1,x2, lnq,r1,rnd)), 
and second, we investigate how assigning diverse error vari­
ance terms to the observations according to a spatial clus- 
tering can affect the results (x = (x1,x2, lnq,r1,...,r9,rnd)). 
In this second case, clusters are computed with a k mean al­
gorithm for k = 9. Observation clusters are presented in the 
map below. As can be seen in Fig. 3, the nine variances sam- 
pled are diverse. We do not provide explanations of the val­
ues of these variances given that the observation-sorting al­
gorithm is used and “eliminates” observations with low un- 
certainties. Therefore, the variances are only representative 
of observations with high uncertainties in their subset. How- 
ever, the figure shows that the variances are very different: 
the use of a single parameter to represent them all is an im­
portant simplification. We now present the reconstruction of 
the pdfs in the two scenarios.

Figures 4a, b and 5a show the marginal pdfs of the vari­
ables describing the source using the observation-sorting al­
gorithm and for several likelihoods, using the HRES me- 
teorology. The longitude pdf support ranges from 59 to

60.75° E, and the latitude support from 55.75 to 56.75° N. 
The extent of the joined coordinates pdfs is slightly greater 
than the extent of any coordinate pdf reconstructed using any 
likelihood distribution. Nevertheless, they are in general all 
consistent in the pointed area of 106Ru release, especially 

given that the observation operators interpolation step is 0.5°.
The daily total retrieved released activity (TRRA) was 

mostly significant on 25 September. The extent of the release 
pdf overlap is smaller than the coordinates pdf overlap ex- 
tent; probable TRRA values range from 140 to 300 TBq.

This shows that using a single likelihood is not enough 
to aggregate the whole uncertainty of the problem. Further- 
more, we can see on these graphs that the threshold choice of 
the likelihood also has a moderate impact on the final coordi- 
nate pdfs and an important impact on the TRRA pdfs. More 
precisely, the daily TRRA pdfs obtained from the log-normal 
and the log-Laplace choices are moderately impacted by the 
threshold value choice.

Figures 4c, d and 5b show the marginal pdfs of the vari­
ables describing the source in the same configuration, except 
that nine error variances are used and assigned to the obser­
vations using the spatial clustering. The impact of this clus- 
tering is not significant: pdfs of the coordinates or the TRRA 
do not change meaningfully with the use of this representa- 
tion of the R covariance matrix. Diverse trials for numbers of 
centroids between 3 and 9 have been carried out and all yield 
similar results.

3.3.4 Sampling from the enhanced ensemble with 
weight interpolation

Before reconstructing the pdfs of the 106Ru source using the 
observation operator ensemble, we study the dispersion of 
this enhanced ensemble, created by sampling on the trans­
port model parameters and the ERA5 EDA. A number of 50 
members are used to create the enhanced ensemble.

The original ERA5 EDA meteorology is under-dispersive 
as can be seen in Fig. 6a: in blue is drawn the HRES merid- 
ional wind predictions, and in red the EDA meridional wind 
mean prediction with the maximum and minimum values, for 
a random location in Europe. For most of the times, the en­
semble values do not even recover the HRES value, which 
indicates that the ensemble has a small dispersion. ECMWF 
ensemble forecasts indeed tend to be under-dispersive in the 
boundary layer (especially in the short range) (Pinson and 
Hagedorn, 2011; Leadbetter et al., 2020). Furthermore, the 
release height parameter has low chances to be of significant 
impact. Therefore, with only two variables (Kz and dry depo- 
sition velocity) with high chances to be of significant impact 
to sample, we consider that 50 members is an adequate num- 
ber.

To examine the spread of the ensemble of observation op- 
erators, we need to define a reference source xref for which 
predictions of the ensemble can be computed for each mem- 
ber and compared afterwards with the 106Ru observations.
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Longitude [°] Latitude [°]

Figure 4. Pdfs of the coordinates describing the 106Ru source sampled using the parallel tempering method and the observation-sorting 
algorithm and for various likelihoods in two scenarios: longitude without (a) and with observation spatial clustering in nine clusters (c) and 
latitude without (b) and with (d). L-L means log-Laplace, L-n means log-normal, L-C means log-Cauchy, and yt is the likelihood threshold. 
The purple vertical bars represent the coordinates of the Mayak nuclear complex.

Figure 5. Pdfs of the total retrieved released activity (TRRA) describing the 106Ru source sampled using the parallel tempering method and 
the observation-sorting algorithm and for various likelihoods in two scenarios: without (a) and with observation spatial clustering in nine 
clusters (b). L-L means log-Laplace, L-n means log-normal, L-C means log-Cauchy, and yt is the likelihood threshold.
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Figure 6. Evolution of the méridional wind of the HRES and EDA meteorologies for a random location in Europe since the beginning of the 
simulations. The red curve represents the mean of the meridional wind EDA members with the space between the minimum and maximum 
values (a). Rank histogram: comparison between the 106Ru observations and the reference predictions of the enhanced ensemble (b).

Note that the reference source choice is necessarily an arbi- 
trary choice which biases the results. We use the most proba­
ble source from Saunier et al. (2019) as the reference source: 
the reference source is located in [60,55] and with a release 
of 90TBq on 25 September and of 166 TBq on 26 Septem- 
ber. The corresponding rank diagram (Fig. 6b) shows that 
the predictions often underestimate the observation value. A 
ROC and a reliability diagram are provided in Appendix C to 
study more deeply the ensemble of observation operators.

We now study the impact of adding meteorological 
and transport uncertainties into the sampling process: x = 
(x1 ,X2, ln q ,r1 ,rnd ,w1,...,wNe). The integration of an en- 
hanced ensemble to deal with the meteorological and dis­
persion uncertainties has a very interesting impact on the re­
construction of the source variables. In combination with the 
use of diverse likelihoods, pdfs of the longitude and latitude 
are significantly impacted as can be seen in Fig. 7a and b. 
The longitude pdf support ranges from 58.75 to 61.2° E, and 
the latitude support ranges from 54.75 to 56.5° N, not con- 
sidering the results with the log-normal likelihood of thresh- 
old 3 mBqm-3. The “outlier” distribution reconstructed with 
the log-normal likelihood of threshold 3 mBqm-3 is indeed 
questionable, as it differs widely from all the others. The 
threshold of 3 mBqm-3 was chosen as an upper bound and 
does not seem to be the most appropriate choice. In Fig. 7d, 
the joint TRRA distribution (where joint means consider- 
ing all likelihoods) ranges from 150-200 to 450-500 TBq, 
not considering the “outlier” reconstruction. The variance of 
the joint enhanced ensemble TRRA is therefore bigger than 
the variance of the joint HRES TRRA which ranged from 
140 to 300 TBq. This means that the uncertainty emanating 
from meteorological data and the transport model is better 
quantified. Note also that with the log-normal likelihood and 
a threshold of 0.5 mBqm-3, or 1 mBqm-3, or log-Cauchy 
with a threshold of 0.3 or 0.5 mBqm-3, the release is split 
between the 25th and the 26th as can be noted in Fig. 7e and

f. In other words, the integration of weights member inter­
polation adds uncertainty not only over the magnitude of the 
release but also over the timing of the release (here, the day).

The pdfs of the member weights are displayed in Fig. 8 
for several likelihoods and thresholds. Only weight pdfs with 
high medians are included in the graphs for the sake of vis- 
ibility. Member 27 is always included in the combination of 
weights which define the interpolated observation operator 
used to make the predictions and is often one of the most 
important or the most important part of this combination. 
Since the ERA5 EDA is not very dispersive, we can make 
the hypothesis that the weight density of a member mainly 
depends on the dispersion parameters which are used for cre- 
ating this member (or observation operator). The height layer 
of the release for the operator member 27 is mainly the one 
between 40 and 120 m (> 90%), its deposition constant ve- 
locity is 0.6 x 10-3ms-1 which is very close to the lower 
bound (minimal possible deposit), and the Kz has been mul- 
tiplied by 0.47. It also corresponds to member 6 of the ERA5 
EDA.

Member 17 is present 4 times and corresponds to a depo­
sition velocity of 1.2 x 10-3ms-1, a release mainly on the 
second layer (75 %), and a Kz multiplied by 1.32. Member 
35 is present 4 times and corresponds to a deposition velocity 
of 3.3 x 10-3 ms-1, a release mainly on the first layer (83 %), 
and a Kz multiplied by 0.45. Two hypotheses can be made: 
the weight of member 27 is large because it has a very small 
deposition velocity, and that deposition velocity is overesti- 
mated when using the standard choice. Second, Kz may be 
overestimated, since the members 27 and 35 are built out of 
a small multiplicator on the Kz.

These conclusions must, however, be largely qualified and 
are mainly proposed to present the interest and potential of 
the method.
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Figure 7. Pdfs of the variables describing the 106Ru source sampled using the parallel tempering method and the enhanced ensemble of 
observation operators and the observation-sorting algorithm and for various likelihoods: longitude (a), latitude (b), TRRA on the main day 
(c), TRRA (d), log. TRRA on 25 September (e) and TRRA on 26 September (f). L-L means log-Laplace, L-n means log-normal, L-C means 
log-Cauchy, and yt is the likelihood threshold.

4 Summary and conclusions

In this paper, we proposed several methods to quantify the 
uncertainties in the assessment of a radionuclide atmospheric 
source. In the first step, the impact of the choice of the likeli- 
hood which largely defines the a posteriori distribution when 
the chosen priors are non-informative was examined. Several 
likelihoods were selected from a list of criteria: log-normal, 
log-Laplace, and log-Cauchy distributions which quantify 
the fit between observations and predictions.

In the second step, we have focused on the likelihood co­
variance matrix R which measures the observation and mod- 
elling uncertainties. A method has been proposed to model 
this covariance matrix from a sorting of the observations into 
two groups, discriminant and non-discriminant, to avoid ob­
servations with low discrimination power to artificially de- 
crease the spread of the posterior distributions.

Finally, in order to incorporate the uncertainties related 
to the meteorological fields and the transport model into 
the sampling process, ensemble methods have been imple-
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Figure 8. Densities of the weights of the members of the enhanced ensemble using the parallel tempering method and the observation-sorting 
algorithm for diverse likelihoods: log-normal with threshold 0.5 (a), log-normal with threshold 3 (b), log-Laplace with threshold 0.1 (c), log- 
Laplace with threshold 0.5 (d), log-Cauchy with threshold 0.1 (e), log-Cauchy with threshold 0.3 (f). L-L means log-Laplace, L-n means 
log-normal, L-C means log-Cauchy, and yt is the likelihood threshold. Only densities with high medians are shown.

mented. An ensemble of observation operators, constructed 
from the ERA5 ECMWF EDA and a perturbation of the 
IRSN ldX transport model dry deposition, release height, and 
vertical turbulent diffusion coefficient parameters, was used 
in place of a deterministic observation operator. Following a 
Bayesian approach, each operator of the ensemble was given 
a weight which was sampled in the MCMC algorithm.

Thereafter, a full reconstruction of the variables describing 
the source of the 106Ru in September 2017 and their uncer- 
tainty was provided, and the merits of these different methods 
have been demonstrated, improving each time the quantifica­
tion of uncertainties.

First, the refinement of R according to the relevance crite- 
rion of the observations has been demonstrated following an 
application of parallel tempering. Due to the use of the sort- 
ing algorithm, the standard deviation of the density of the 
reconstructed longitude in a certain configuration was mul- 
tiplied by two. In practice, the sorting algorithm avoids an 
underestimation of the observation error variance.

Second, independent MCMC samplings with the three 
likelihoods examined performed with the HRES meteorolog- 
ical fields showed that the support of the TRRA distribution 
was moderately impacted by the choice of the likelihood.
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This reveals that the uncertainties are not correctly estimated 
when using a single likelihood.

Finally, incorporating the uncertainties of the meteorolog- 
ical and transport fields using the observation operator set in 
combination with the use of multiple likelihoods had a sig- 
nificant impact on the conditional distribution of the TRRA, 
increasing the magnitude and timing of the release variances, 
but also on the conditional distribution of the release source 
coordinates. We have also shown that this method allows the 
reconstruction of transport model parameters such as dry de- 
position velocity or release height.

With the help of the three main methods proposed in this 
paper, the longitude spread of the 106Ru source lies in be- 
tween 59 and 61° E, and the latitude spread between 55 and 
56° N. The total release is estimated to be between 200 and 
450 TBq and peaked mainly on 25 September (although a re­
lease on 26 September cannot be neglected).

We recommend the use of all three methods when sam- 
pling sources of atmospheric releases: all three methods can 
have a moderate to large effect depending on the event mod- 
elling (e.g. the use of three likelihoods has a large effect only 
in combination with the inclusion of physical uncertainties). 
As far as the likelihood is concerned, we think that the log- 
Cauchy distribution is the most suitable while the choice of 
the associated threshold necessarily depends on the obser­
vations. We intend to apply the methods to the Fukushima- 
Daiichi accident.
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Appendix A: False paradox of the discriminant and 
non-discriminant observations

Let us suppose that the cost function is computed from a 
Gaussian likelihood; then we have

J (x | y )
1 (yi - (Hx)i)2 N0bsln(r)
24-j' r + 2

i = 1
(A1)

Suppose we add to this set of observations y of size Nobs a 
second set of observations y * = 0N* of size No*bs for which 
the corresponding predictions are also zero. This can happen 
for instance if we add observations preceding the accident.

If we take into account this new set of observations, the 
cost function becomes

T( . *) 1 Nobs+N°bs (yi - (Hx)i)2
J(x|y, y ) = ~ 2^ ------------------

2r
i=1

+ ^ (Nobs + No*bs) ln(r)

= 1 (yi - (Hx)i)2
2 ^ r

i=1
+ 2 (Nobs + N*bs) ln(r), 

(A2)

since for each observation of the new set, y = (Hx ) = 0. 
Suppose now that N*bs goes to infinity; then the observation 
error variance r should tend to 0. As r ^ 0, the distributions 
sampled are being more and more peaked.

Therefore in this configuration, adding a given number of 
observations anterior to the accident will degrade the distri­
butions of the source variables. This problem is due to the ho- 
mogeneous and hence inconsistent design of the observation 
error covariance matrix. Assigning a different r to this new 
set of observations would solve effectively this false paradox.
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Appendix B: Study of the observation-sorting algorithm 
clustering with the Akaike information criterion (AIC)

We compare a first model (0) where only one variable r is 
used to describe the covariance matrix R and a second model 
(d) where two variables r1 et r2 are describing R with the 
AIC (Hastie et al., 2009). Therefore

AIC(0) = 2 - 2ln(L(0)), (B1)

AIC(d) = 4 - 2ln(L(d)), (B2)

where L(0) and L(d) are the maximum likelihoods when us- 
ing the first and second model respectively. Using Gaussian 
likelihoods to facilitate calculations and out of normalisation 
constants,

1 N S N
- AIC(0) = 1 + — ln — + —, (B3)2 w 2 N 2 v 7
1 N1 S1-AIC(d) = 2 + —1 ln(r1 ) + -1
2 2 2r1

N2 S2+ —2 ln(r2 ) + , (B4)
2 2r2

where Sk = J] —k1 (yi — (Hx)i)2 and N1 and N2 are the num- 

ber of observations assigned to the first and second model, re­
spectively (N1 + N2 = Nobs). Therefore, comparing the max 
likelihoods of the two models,

1
2

N1 (S1 + S2 )N1(AIC(0) — AIC(d)) = — 1 + -1 ln + a2
2 (—1 + —2 )S1

, No (S1 + S2)—2
+ ln .

2 (N1 + N2 )S2
(B5)

We can note that the smaller S2 (and therefore the bigger S1), 
the better the model (d) compared to (0). The observation- 
sorting algorithm specifically aims at selecting a large set of 
observations (the non-discriminant observations ynd) with a 
very small maximum likelihood S2 = Snd.

We write R = ^ and M = N and use N1 + N2 = Nobs; 
then

Figure B1. AIC(0) — AIC(d) with negative values multiplied by 
100 to be more visible. Negative values indicate the cases where 
the model (0) with one variable is preferable. Positives values indi­
cate the cases where the model (d) with two variables is preferable. 
On the x axis is the ratio between the likelihoods S1 and S2 linked 
to variables 1 and 2, respectively, of the model (d). On the y axis is 
the ratio between the numbers of observations N1 and N2 linked to 
variables 1 and 2, respectively, of the model (d).

the choice of q) and the ratio (N1 /N2), for example, is equal 
to 1. That is, the sorting algorithm creates two groups such 
that the corresponding coordinates (S1 /S2) and (N1 /N2) in 
Fig. B1 are as far away from negative values as possible. 
Therefore, the AIC criterion totally justifies the need for 
the clustering accomplished by the observation-sorting algo­
rithm.

1
- (AIC(0) — AIC(d)) = — 1 +

Nobs M
ln

2(1 + M)
1 + R
1 + M

+-----Nobs—ln 1+R
2(1 + M) 1 + M) (B6)

and we can draw AIC(0) — AIC(d).
According to the AIC criterion, the model (d) with two 

variables is judged useless if the average likelihood of the 
observations y1 linked to group 1 is close to the average 
likelihood of the observations y2 linked to group 2. The 
observation-sorting algorithm specifically aims at creating 
two groups of observations: one where the average likeli­
hood of the observations is close to 0 and another one where 
the average likelihood of the observations is high. In other 
words, the ratio (S1 /S2) tends towards infinity (depending on
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Appendix C: ROC and reliability diagram of the 
observation operators ensemble

A ROC and a reliability diagram are computed using the ref- 
erence source defined in Sect. 3.3.4 to assess the ability of 
the forecast to discriminate between events and non-events 
and its reliability, respectively (Delle Monache et al., 2006). 
A good ROC curve is as close as possible to 1 in probabil- 
ity of a hit and to 0 in probability of a false occurrence. We 
recall that a hit for a certain threshold t is when the observa­
tion belongs to the considered interval and a number of cor- 
responding predictions greater than the threshold t belong to 
the considered interval. A false occurrence is when the obser­
vation does not belong to the considered interval but a num- 
ber of corresponding predictions greater than the threshold t 
belong to the considered interval. The ROC is plotted for a 
list of thresholds t.

Each curve of Fig. C1a and b corresponds to a dichoto- 
mous event: y e [ymin; ymax] where y is an observation, and 
ymin and ymax are the values that define whether the event is 
true or false for y. These indicators are plotted for several 
ranges [ymin, ymax]. A reliable ensemble, for a given event, 
has a reliability curve as close as possible to the identity func- 
tion.

From the ROC curves, the enhanced ensemble appears to 
be good for discriminating: curves always have a low rate of 
false occurrence and an acceptable hit rate. In the reliability 
diagrams, the forecast overestimates the probability that an 
observation is between 0 and 20mBqm-3 which relates to 
predictions underestimating the observations in general. For 
the three other events, the diagrams show an acceptable reli­
ability in the enhanced forecast.

Figure C1. ROC curve and reliability diagram of the enhanced en­
semble created with sampling of EDA and the transport model pa- 
rameters.
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