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Abstract—The use of accelerators such as GPUs has become
mainstream to achieve high performance on modern computing
systems. GPUs come with their own (limited) memory and are
connected to the main memory of the machine through a bus
(with limited bandwidth). When a computation is started on a
GPU, the corresponding data needs to be transferred to the GPU
before the computation starts. Such data movements may become
a bottleneck for performance, especially when several GPUs have
to share the communication bus.

Task-based runtime schedulers have emerged as a convenient
and efficient way to use such heterogeneous platforms. When
processing an application, the scheduler has the knowledge of
all tasks available for processing on a GPU, as well as their
input data dependencies. Hence, it is able to choose which task to
allocate to which GPU and to reorder tasks so as to minimize data
movements. We focus on this problem of partitioning and ordering
tasks that share some of their input data. We present a novel
dynamic strategy based on data selection to efficiently allocate
tasks to GPUs and a custom eviction policy, and compare them
to existing strategies using either a well-known graph partitioner
or standard scheduling techniques in runtime systems. We also
improved an offline scheduler recently proposed for a single
GPU, by adding load balancing and task stealing capabilities.
All strategies have been implemented on top of the STARPU
runtime, and we show that our dynamic strategy achieves better
performance when scheduling tasks on multiple GPUs with
limited memory.

I. INTRODUCTION

High-performance computing applications, such as simula-
tion for aeronautics, material resistance, or seismology, keep
demanding increasingly intense computation power on ever-
growing sets of data. The past decade has been marked by
a trend to leverage GPUs in addition to CPUs, to achieve
unforeseen computation speed as well as energy requirements
efficiency. Taking the most benefit from such combination
of CPUs and GPUs is however very challenging, since they
exhibit different computational efficiencies, and GPUs embed
their own dedicated high-bandwidth memory, which requires
transferring data between CPUs and GPUs. To tackle this
concern, it has become very common to use the task-based
programming paradigm, i.e. to express the application com-
putation as a Directed Acyclic Graph (DAG), and let a
dynamic runtime system such as OmpSs [1], PaRSEC [2],
or STARPU [3] manage the execution of the task graph over
such distributed and heterogeneous platforms. The burden is
thus offloaded from the application programmer to the runtime
system, in the form of a task scheduling problem.
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The challenge is not only that such platforms are com-
posed of largely heterogeneous resources, but also that the
memory embedded in GPUs is relatively limited, and the bus
that connects them to the main memory has a very limited
bandwidth. The runtime scheduler thus not only has to care for
task acceleration, it also has to take into account the movement
of data within the system. This means that it must carefully
decide the task mapping on GPUs according to data locality,
as well as the ordering of the tasks itself, to privilege the
temporal locality of data, thus favoring data reuse and saving
duplicate data transfers. It is also essential to trigger data
transfers ahead of task execution (data prefetches) so that they
can be overlapped, i.e. they proceed during the execution of the
previous tasks. Last but not least, when the embedded memory
of the GPU is full, the runtime has to carefully decide which
data should be evicted from it, to make room for further data.

We focus in this paper on the problem of partitioning and
scheduling a set of tasks on one and multiple GPUs with
limited memory, where tasks share some of their input data
but are otherwise independent, as well as managing data
movements (loads and evictions). More precisely, we want to
determine the order in which tasks must be processed on each
GPU to optimize for data reuse as well as maximize overlap
between computations and data movements. Our objective is
twofold: (i) we partition the work on each GPU to reach a good
load balance, and (ii) we want to minimize the total amount
of data transferred to the GPUs for the processing of all
tasks with a constraint on the memory size. We start focusing
on independent tasks sharing input data because when using
usual dynamic runtime schedulers, the scheduler is exposed
at a given time to a fairly large subset of tasks which are
independent of each others. This is in particular the case with
linear algebra workflows, such as the matrix multiplication:
except possibly at the very beginning or very end of the
computation, a large set of tasks is available for scheduling.
Thus, solving the bi-objective optimization problem for the
currently available tasks can lead to a large reduction in
data transfers and hence a performance increase, which is
ultimately our goal.

In this paper, we make the following contributions:
« We provide a formal model of the bi-objective optimiza-

tion problem, and observe the problem to be NP-complete
(Section III).
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« We review and adapt a (hyper-)graph partitioning method
from the literature for this problem (Section IV-B).

« We adapt a previously-proposed scheduling heuristic,
HFP, to the multi-GPU case (Section IV-C).

« We propose a new heuristic based on performing as much
computations as possible with data at hand as well as an
eviction policy focused on finding the least used data in
the future (Section IV-D).

« We implement all three heuristics into the STARPU run-
time and study the performance (amount of data transfers
and total processing time) obtained on a 2D-blocked
matrix multiplication, a 3D matrix multiplication, task
from the Cholesky decomposition, as well as a sparse 2D-
blocked matrix multiplication (Section V). Overall, our
evaluation shows that our heuristic generally surpasses
previous strategies, in particular in the most constrained
situations.

Note that while we focus our experimental validation on
GPUs, the optimization problem studied in this paper is
not specific to the use of such accelerators: it appears as
soon as tasks sharing data must be processed on a system
with limited memory and bandwidth. For example, it is also
relevant for a computer made of several CPUs with restricted
private memory, and limited bandwidth for the communication
between memories and disk.

For simplicity, we do not consider the output data of tasks:
In the case of linear algebra for instance, the output data
is most often much smaller than the input data and can be
transferred concurrently with data input. Data output is then
not the driving constraint for efficient execution. Our model
could however easily be extended to integrate task output.

II. RELATED WORK

We describe here the related work on the various topics
covered by this study.

a) Mapping and Scheduling Tasks Sharing Data: The
problem of tasks sharing input files has been extensively
studied in scheduling for distributed platforms. In particular
Giersch et al. [4] studied how to allocate and schedule tasks
sharing input files on a distributed platform, when the com-
munication between the server holding the input files and the
workers is limited. Senger et al. [5S] proposed a hierarchical
strategy for data distribution in order to improve scalability.
Kaya et al. refined the problem by considering that input
files are initially distributed on the platform, but may also
be transferred through the network if required. They notably
proposed heuristics using hypergraph partitioning [6], which
inspired one of the strategy of the present study.

b) Data Locality: There have been plenty of studies on
data locality to improve performance, from the seminal work
of Hong & Kung [7], many of them targeting linear algebra
(see [8], [9] for recent works). The work of Yao et al. [10]
is very close to our problem: they optimize the scheduling
of independent tasks sharing input data, but target multicore
CPUs. Our hMETIS+R strategy (see below) elaborates on
ideas presented in their paper.

c) Scheduling in Task Based Runtime Systems: As out-
lined in the introduction, runtime systems like OmpSs [1],
PaRSEC [2], or STARPU [3] are increasingly popular to cope
with the complexity of modern computing platforms. In the
XKaapi runtime system which implements a work-stealing
scheduler, efforts have been made to favor data locality [11]
by implementing and extending ideas from theoretical studies
on data locality for work stealing [12]. On the contrary, in
the default DMDAR scheduler of STARPU (presented below),
tasks are scheduled where there are expected to complete at the
earliest, which takes data transfers into account. In the present
study, we consider data locality first, using work-stealing or
other load balancing techniques as a secondary step.

III. PROBLEM MODELING

We consider the problem of scheduling independent tasks
on K GPUs, denoted by GPUy,...,GPUgk. As proposed
in previous work [13], tasks sharing their input data can be
modeled as a bipartite graph G = (T UD, E). The vertices
of this graph are on one side the tasks T = {T4,...,T,,}
and on the other side the data D = {D;,...,D,}. An
edge connects a task 7; and a data D; if task T; requires
D; as input data. For the sake of simplicity, we denote by
D(T;) = {Dj st. (T;,D;) € E} the set of input data for task
T;. We here consider that all data have the same size. Each of
the K GPUs is equipped with a memory of limited size, which
may contain at most M data simultaneously. Initially, all input
data are stored in the main memory of the machine. During
the processing of a task 7; on GPUy, all its inputs D(T;) must
be in the memory of GPUy,. Note that as presented above, we
here do not consider the data output of tasks.

Each of the m tasks must be processed on some of the K
GPUs. Our goal is to determine both how to partition the
task set to the GPUs and in which order to process them
on each GPU. As explained above, our objective is also to
come up with a schedule with few data movement, as they
can largely impact the overall processing time. Hence we also
need to detail when each data must be loaded or evicted
from the memory of each GPUs.

We consider here that all GPUs are connected to the main
memory of the machine (which originally contains all input
data) through a shared bus (see Figure 2). The bounded
bandwidth of this bus is the reason why we aim at restricting
the amount of data movement between the main memory and
the GPUs.

We now define more formally the allocation of the tasks
to the GPU and their schedule. We denote by o(k,i) the i
task processed on GPUy, and by V(k, ) the set of data to be
evicted from the memory of GPU}, before the processing of
this it task. We also let nby be the number of tasks allocated
to GPUg. On GPUy, the schedule is made of a succession of
nby, steps, each step being composed of the following three
stages (in this order):

1) All data in V(k,i) are evicted (unloaded) from the

memory of GPUy;
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Figure 1: Small example with 9 tasks with 2D grid dependencies. The graph of input data dependencies is shown on the left,
together with the task partition among GPUs. A possible schedule is described on the right. The bound on the maximum data
on each GPU memory is M = 2. GPU; processes tasks 77,75, T5,T4 (in this order), and data D; has to be loaded twice.
GPUs processes tasks T3, 7s, Ty, Ts, T7 in this order to avoid multiple loads of the same data. Overall, the total amount of

data movement (i.e., data loads) is 11.

GPU; memory GPU; memory GPU3 memory GPUy memory

| PCI Express bus |

CPU memory

Figure 2: Platform topology.

2) The input data in D(T, 1 ;)) that are not yet in memory

are loaded in the memory of GPUy;

3) Task T, 1, is processed on GPUy.

An example is shown in Figure 1. This example illustrates
that input data are loaded in the GPU memories as late as
possible: loading them earlier would be pointless and possibly
trigger more data movements. In real computing systems, a
pre-fetch is usually designed to load data a bit earlier so as
to avoid waiting for unavailable data, however, for the sake of
simplicity, we do not consider this in our model: if needed, we
may simply book part of our GPU memory for the pre-fetch
mechanism.

Using the previous definition, we define the live data L(k,1)
as the data in memory of GPUy during the computation of
T (k,iy» which can be defined recursively:

(k, i) = (L8 = 1)\V () UD(To(1 1)) otherwise

This is explained as follows: when processing its very first
task, the memory of a GPU contains only the inputs of this
task. When processing some task 7} = T, ;) at step i, first
some data are possibly evicted from the memory of GPUy
(that is V(k, 7)), then the missing inputs of task T are loaded.

As noted above, each GPU has a bounded memory so it
can only accommodate )M distinct input data (we recall that
all data have the same size). This can be expressed as

Vk=1,...,K,Yi=1,...,nbs,  |L(k,i)| < M.

Our objective is both to ensure a good load balancing and
to minimize the amount of data movement:

Objective 1: Load Balancing. We assume that all tasks have
the same processing time on any GPU. Thus, load-
balancing the work on each GPU amounts to minimizing
the maximum number of tasks on any GPU:

Obj. 1:  minimize max nby,

Objective 2: Data Movement. The second objective is to
limit the amount of data movement, that is, to minimize
the number of load operations from the main memory to
the memory of the GPUs: we consider that data are not
modified so no sfore operation occurs when evicting a
data from a GPU memory. With the natural assumption
that no input for task 75 ;) is evicted from GPUy, right
before its processing (V(k,i) N D(Ty(k,i)) = 0), the
number of loads on GPUj, can be computed as follows:

Y Loads, = ‘D (Tiroiy) \L (ki — 1)‘

Then, our objective is simply to minimize the total
number of loads:

Obj. 2:  minimize Z #Loads,,

k

In prior work, the special case with a single GPU have been
studied [14], and it has been shown that given a schedule
o, it is possible to derive an optimal eviction policy V by
following Belady’s rule [15]: always evict the data whose next
usage is the furthest in the future. This rule can be extended to
the multi-GPU case: once tasks have been partitioned among
GPUs and ordered for computation, that is, once o is set, we
may compute the optimal eviction scheme for each GPU by
applying Belady’s rule. Hence our objective is only to find a
schedule o of the tasks on the GPUs. The decision version of
the bi-objective problem is then expressed as follows.



Definition 1 (Bi-Obj-Multi-GPU-Task-Scheduling): Given a
number K of GPUs, m tasks sharing their inputs according
to a bipartite graph G, and two bounds W and C, is there a
schedule o such that maxy, nby, < W and ), #Loads, < C?

A previous study of the single-GPU case [14] proved that
ordering tasks to minimize the data movement is NP-complete.
As this sub-problem is contained in the more general problem
presented here, this proves the complexity of the bi-objective
problem.

Theorem 1: The Bi-Obj-Multi-GPU-Task-Scheduling prob-
lem is NP-complete.

Note that the previous model can easily be extended to
heterogeneous tasks (with different processing times) and
heterogeneous data (with different sizes).

IV. ALGORITHMS

In this section, we present the various algorithmic solutions
to solve the partitioning and scheduling problem presented
above. Some of these methods first solve the partitioning prob-
lem, and then schedule the tasks on each GPU (Sections IV-A
and IV-B) while others tackle both problems simultaneously
(Sections IV-C and IV-D).

A. Dynamic scheduler of STARPU: DMDAR

DMDA or “Deque Model Data Aware” (Algorithm 1) is a
dynamic scheduling heuristic designed to schedule tasks on
heterogeneous processing units in the STARPU runtime [16]
(also called tmdp-pr). It computes the expected completion
time Cy(T;) of the first task T; in the queue on each GPUy,
based on a prediction of the time for transferring the data
to the GPU (or communication time) comm and of the task
computation time comp:

>

JED(T:)
Dy ¢ InMem(k)

Cr(T;) = commy,(D;) + comp,(T;) (1)

Note that the data transfer time is counted only if the data
is not already in the memory of GPUj. Then, the task is
allocated on the GPU where its completion time is minimal.

Tasks are first allocated to GPUs following their order of
submission. Here, we consider the DMDAR variant, which
includes an additional Ready strategy (Algorithm 2): on each
GPU, tasks are reordered at runtime in order to favor tasks
with the most input data already loaded into memory'.

B. Using (hyper-)graph partitioning

As outlined in [10], a graph partitioner is a very suitable
tool to decompose the set of tasks sharing input data into
several subsets of similar size while minimizing the number
of common data among subsets. Each subset is then allocated
to a GPU, and tasks within the subset are scheduled to
further increase data locality. The fact that subsets have similar
sizes ensures the load balancing among GPUs, while the

Uhttps:/files.inria.fr/starpu/testing/master/doc/html/Scheduling. html#
DMTaskSchedulingPolicy

Algorithm 1 Deque Model Data Aware heuristic (DMDA)

1: For each GPUy, InMem/(k) < ()
2: while all tasks have not been allocated do
3 T; « pop(T)
For each GPUy, compute Cy(T;) using Eq. 1
Select k such that C(7;) is minimal
Allocate T; on GPU}
for each D; € D(T;) do
Request data prefetch for D; on GPUy
Add D; to InMem(k)

D A A

Algorithm 2 Ready reordering heuristic on GPUy,

Input: List L of tasks allocated on GPUy,
1: while L # () do
2 Search first T € L requiring the fewest data transfers
3: Wait for all data in D(T) to be in GPU, memory
4 Start processing T’

minimization of common data reduces the amount of data that
must be sent to several GPUs.

In [10], the authors model data reuse through a graph whose
vertices are tasks, and edges between two tasks are weighted
by the amount of shared input data between these two tasks.
Then, they use the METIS [17] graph partitioner to obtain
a good partitioning of the tasks. A limitation of this method
appears when a data is shared by 3 (or more) tasks. Consider
for example that some input data D, is required by tasks 7,
Ty and T.. In the modeled graph, this shared data leads to
three edges (T, Ty), (T,,T.) and (Ty,T.), leading METIS
to count three times its weight. It is thus more reasonable
to use a hypergraph to model data reuse, as proposed in [6].
A hyperedge is created for each data D which includes all
the vertices corresponding to tasks using D as input. In the
previous example, D; is modeled with a single hyperedge
{T,, Ty, T.}. We can then use a hypergraph partitioner, namely
hMETIS [18] to split the tasks into subsets of similar size with
few hyperedges between subsets, that is, few shared data. We
mostly used default parameters when calling hMETIS [18],
except for the default imbalance between partition (UBfactor),
which is set to 1 in order to have almost perfectly balanced
partitions, and V-cycle, set to 2, as it is advised by the authors
if time is an issue (which is the case). The number of bisections
(Nruns) is set to 20 as it is advised by the authors.

To ensure good temporal data locality within each subset
of tasks assigned to a single GPU, we decided to use the
Ready strategy of DMDAR (see Section IV-A) to refine the
schedule produced by hMETIS. Additionally, even if the
partition produced by METIS is well-balanced in terms of
number of tasks, data transfers make some GPUs processing
tasks faster than others, leading to load imbalance. Thereby,
we also implement dynamic load balancing using task stealing:
when a GPU has terminated its allocated tasks and some other
GPU still has work to do, the idle GPU steals half of the
remaining tasks from the GPU with the most unprocessed tasks
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(starting at the tail of the list). We call this hMETIS+R.

Algorithm 3 hMETIS heuristic with ready (hAMETIS+R)

1: For ] = 1, oo, m, hj — {Tu S.t. Dj € D(Tz)}

2: Build hypergraph H = ({T1,... T}, {h1,... hm})

3: Apply hMETIS on H to produce a task partition
P,..., P

4: Allocate tasks of P, on GPUy

5: If at some point GPU}, has no more tasks to process, steal
half of the remaining tasks from the most loaded GPU and
allocate them to GPU},

6: Reorder tasks using Ready at runtime

C. Hierarchical Fair Packing adaptation to multi-GPU

We also consider here an algorithm recently proposed to
order tasks sharing input data on a single GPU [14]. This
algorithm is named HFP, for Hierarchical Fair Packing. It
consists in gathering tasks sharing many common input data
into packages, so that all inputs for a package fit in memory.
These packages are then scheduled one after the other. The
intuition is that once all the input data required for a package
are loaded in memory, all tasks in that package can be
processed without additional data movement.

HFP starts by considering that each task is a package of
its own, and then merges two packages with fewest tasks that
share the most common input data. Packages are merged that
way as long as they do not exceed the memory bound. In a
second step, resulting packages are merged again in order to
bind together packages with high data affinity, so they can be
scheduled one after the other. Packages are stored as lists so
that we do not modify the order of tasks within packages when
merging them, hence keeping the good data locality inside
packages.

We adapted HFP for the multi-GPU case as follows. When
scheduling tasks for K GPUs, we merge packages until we
reach K of them. It is unlikely that all these packages represent
the same load (computed as the number of tasks if tasks
have the same duration, or else the total duration of tasks
for heterogeneous tasks). To achieve load-balancing, we first
compute the average load L,,, of a GPU. We then move the
last tasks of the package P,,.x With highest load to the package
P,in with smallest load in order to balance the load without
exceeding L ,.4. This process is repeated until the load is L 44
on all GPUs. The additional tasks are placed at the end of a
package, as we noticed that there is usually more slack for
communication near the end of the computation.

The previous static process is unable to provide a completely
accurate load-balancing, as it is hard to predict the duration
of communications on a shared bus as well as their overlap
with computations. Thereby, we also implement for HFP the
dynamic load balancing strategy using task-stealing introduced
for hMETIS+R (see Section IV-B).

Finally, HFP uses the Ready reordering strategy from DM-
DAR to favor tasks with better data availability. The resulting
strategy is called mHFP (for multi-GPU extension of HFP).

Algorithm 4 multi-GPU Hierarchical Fair Packing heuristic

Use HFP [14] to create K packages Pi,..., Py

Loyg <+ m/K

while There exists P; with |P;| > Ly, do

Let Pn.x be the largest package

Let Ppnin be the smallest package

Remove min(|Pmax|—Lavg, Lavg — | Pmin|) tasks from
the tail of P« and append them to Py,

Allocate tasks of P, on GPU,

: If at some point GPUy, has no more tasks to process, steal
half of the remaining tasks from the most loaded GPU and
allocate them to GPUy

9: Reorder tasks using Ready at runtime
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D. Data-Aware Reactive Task Scheduling

The previous strategies that partition the tasks in order to
maximize data locality, namely hMETIS+R and mHFP, are
static algorithms: they require a preliminary phase where the
partition of tasks is computed, and whose complexity might
be prohibitive for large number of tasks or data. We propose
here a dynamic strategy, called DARTS (for Data-Aware
Reactive Task Scheduling), adapted from previous algorithms
specifically designed for linear algebra operations, such as
outer products and matrix products [19]. The main idea of
these algorithms is to perform as many tasks as possible with
the data at hand. When a new data is loaded on a processor
we allocate to this processor all the tasks that depend on the
new data and on data previously loaded on this processor. New
data are chosen at random to make sure different processors
have little chance to compete on the same tasks.

The main idea of our new algorithm, detailed in Al-
gorithm 5, is to first consider data movement before task
allocation. Whenever some GPU}, requests some new task, we
first look in the set dataNotInMem; (which initially contains
all data) for the data D that, if moved into the memory of
GPU,, would maximize the number of new “free” tasks, i.e.,
tasks that can be allocated and processed on GPU; without
any additional data movement. Once such a data is found, all
these free tasks are allocated on GPUj. More precisely, they
are put in a local data-structure (plannedTasks;) where tasks
are popped one after the other upon request. The process is
started again when plannedTasks;, is empty. It may happen
that we do not find any data that enables some free task. It
occurs for example at the very beginning of the computation
when all tasks depend on two or more data: at least two data
must be loaded in order to produce some free task. In this case,
some random unprocessed task is allocated to GPUy. On the
contrary, when there exists several candidate data which may
produce the maximum number of free tasks, we select a data
among the candidates that is useful for the highest number
of tasks (free or not). When a tie occurs (either in selecting
a task or a data), we randomly pick some elements. This is
important to make sure that different GPUs have little chance
to load the same data and compete for the same tasks.



Algorithm 5 DARTS on GPUy

Algorithm 6 Eviction procedure LUF for DARTS on GPU,

When GPUj requests a new task
1: if plannedTasks, # () then
2 Return pop(plannedTasks,,)
3: else
4 for each data D € dataNotInMemy, do
5 Compute n(D), the number of tasks that depend
only on D and some data already loaded in memory

6: Let ngmax be the maximum of n(D) for D €
dataNotInMemy,
if nypay > 0 then
Candidates + set of data D with n(D) = npax
Select D,,; € Candidates such that the number of
unprocessed tasks depending on D, is maximum (break
ties randomly)

10: plannedTasks, < set of unprocessed tasks de-
pending only on D,,; and on other data already in
memory

11: T < pop(plannedTasks,,), remove D,y from
dataNotInMem,

12: else

13: Select a random unprocessed task 7', remove the
inputs of T" from dataNotInMemy,

14: Return T'

In order to improve the performance of our dynamic sched-
uler, we also designed a custom eviction policy: since we
plan ahead which tasks will be allocated to a GPU (through
the use of plannedTasks), we can take this information
into account when we have to remove some data from the
memory. This strategy is named Least Used in the Future
(LUF) and is detailed in Algorithm 6. We consider all data
currently in memory and check if they are used as input
for a future task. There are two types of such future tasks:
tasks in plannedTasks, that have been reserved for a later
allocation on the GPU as mentioned above, but also tasks in
taskBuffer,,, which are the tasks that have been popped from
plannedTasks,, for execution on GPUy, and thus whose GPU
placement cannot be changed any more (the required data for
these tasks may already have been prefetched). We first try to
evict a data which is not useful for any task in taskBuffer,
and which is an input of few tasks in plannedTasks,. If
this is not possible, we apply Belady’s rule [15] on tasks
already allocated: we select the input data whose next usage
in taskBuffer;, is the furthest in the future, which is known
to minimize data movement. In practice, this last rule is rarely
used as we usually succeed finding a data not useful for any
task in taskBuffer,,.

V. EXPERIMENTAL EVALUATION
We present below a subset of the experimental evaluation

conducted to compare the strategies presented above.?

2The code used to reproducibly obtain the results of this paper is available
at: https:/gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/IPDPS2021

: for each data D in the memory of GPUj do
ny(D) < number of tasks using D in taskBuffer,
n, (D) < number of tasks using D in planned Tasks,,

Select V such that ny (V') = 0 and n, (V') is minimum
. else
Select V' the data whose next use in taskBuffer,, is
the furthest in the future
Remove tasks depending on V' from plannedTasks,,
9: Evict V' from memory, push it to dataNotInMemy

1
2
3
4: if the minimum value of n;,(D) on any data D is O then
5
6
7

*®

A. Settings

All strategies mentioned above have been implemented in
the STARPU runtime system [3]. We performed both real
experiments on tesla V100 GPUs (using cuBLAS 10.2 GPU
kernels with single precision and 960 x 960 matrix tiles), as
well as simulations using the ability to run STARPU code over
the SimGrid simulator [20] to test our strategies in various
experimental conditions. The use of simulation is motivated
both by the fidelity of the simulated results as well as the
saving of compute time and energy consumption, and the
possibility to ignore the cost of the schedulers in simulation.
We have most often limited the GPU memory to 500 MB
in order to better distinguish the performance of different
strategies even on small datasets.

Our main application scenario consists of tasks from a 2D
matrix multiplication: the matrix product C = A x B is
decomposed into tasks corresponding to the multiplication of
one block-row of A with one block-column of B. Input data is
thus the rows of A and columns of B; tasks are submitted row
per row. We also use the following variations or extensions:

o The same application with a randomized task order.

¢ 3D matrix multiplication: the product is now decom-
posed into products of blocks of A and B. We do not
here consider the final summation to concentrate on the
computationally-intensive tasks without dependencies.

e Tasks coming from the Cholesky decomposition [21]:
we remove dependencies among these tasks to deal only
with independent tasks. This set of tasks exhibits some
regularity, but is more complex than the 2D or 3D matrix
multiplication.

e Sparse 2D matrix multiplication: we remove 98% of
the tasks from the 2D matrix multiplication scenario
above. This application scenario has a much larger
communication-to-computation ratio, typical from sparse
computations.

We use the four scheduling heuristics presented above,
together with the baseline EAGER scheduler that lets GPUs
pick up tasks on demand from a shared queue that contains
the tasks in the natural order (i.e. row major for matrix
multiplications). hMETIS+R is not used in the single GPU
case. All the schedulers use the LRU’s eviction policy except
for DARTS+LUF.
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We measure the obtained performance as the throughput of
elementary computational operations performed per time unit
(in GFlop/s, thus the higher, the better), as well as the total
volume of data transferred between CPU and GPUs (which we
try to minimize). When measuring GFlop/s, the cost of com-
puting the schedule is considered unless specified otherwise.
Each result is the average of the performance obtained over
10 iterations. For most of the results, the deviance is less than
2%, thus, we do not show error bars in the following graphs.
We plot the performance obtained with various problem sizes,
the number of tasks ranging from 5 x 5 to 300 x 300 (which
corresponds to a working set size of 140 MB to 8400 MB)
for the 2D matrix and up to 50 000 MB for the 3D matrix, in
order to test all strategies on various memory conditions.

B. Results on a 2D matrix multiplication with a single GPU

Figures 3 and 4 show the results obtained by the various
algorithms on one GPU.
a) General overview: On Figure 3 the dotted hor-
izontal black line represents the maximum performance
(13253 GFlop/s) that the GPU can achieve when processing

elementary matrix products (without I/Os) and is thus our
asymptotic goal. The red dotted vertical line denotes the
situation when the GPU memory (500 MB) can fit exactly only
one of the two input matrices, and the orange line denotes
the situation when it can accommodate both input matrices.
Figure 4 shows the amount of data transfers. There, the black
dotted curve represents the maximum number of transfers that
can be done during the minimum time for computation (given
by the bound on the throughput), thus the hard limitation
induced by the PCI bus bandwidth: a strategy exceeding this
amount necessarily requires more time for the data transfers
than the optimal time for computation.

b) EAGER’s results: The EAGER heuristic switches to
a pathological behavior at the red line. We can both see
the throughput plummeting (Figure 3) and the data transfers
increasing (Figure 4) at the same working set size. EAGER
tends to process tasks along the rows of C'. This allows to reuse
the same block-row of matrix A for tasks that compute tiles of
the same row of C, but requires reloading the whole matrix B
for each new block-row of A when the memory is constrained,
which is a well-known pathological case of the LRU eviction
policy. This explains why EAGER’s performance drops at the
red dotted line.

c) mHFP’s results: We show two variants of mHFP for a
few working set sizes on Figure 3. The dashed line represents
the performance when we ignore the scheduling time, that
is, when excluding the first phase in which the static task
mapping is computed. We notice that it achieves very good
performance. The continuous line represents the performance
obtained while taking into account the scheduling time (like
we do for every other heuristics). Unfortunately, the scheduling
time of mHFP is very long for large working sets (1 minute for
a 1300 MB working set) and rapidly grows. Thus the overhead
induced by the scheduling time overcomes it benefits.

d) DMDAR’s results: DMDAR does not suffer from the
pathological case affecting EAGER because its Ready strategy
allows it to rather process tasks that need the block-column
of B already in memory instead of reloading the whole B
matrix. DMDAR'’s data transfers however start to rise for the
last two working set sizes as we can see on Figure 4. That
corresponds to the performance drop of the last two points of
Figure 3. This is due to a conflict between data prefetching and
eviction. Indeed, once the GPU is filled with data, it is not clear
for DMDAR whether some data should be evicted in order to
perform more prefetches. It will thus rather stop prefetching
data as long as all the data currently in the GPU will be useful
for the subsequent tasks to be executed there. Also, when
some data is actually evicted from a GPU, DMDAR does not
reconsider the task mapping according to the new set of data
loaded on the GPU. The basic problem of DMDAR here is
that it does not have a global view of the whole set of data
and tasks, and thus cannot make a balance between prefetching
and eviction.

e) DARTS’ results: We can see that on the first seven
points of Figure 3, DARTS and DARTS+LUF achieve near
perfect performance. Indeed, loading a single data that enables
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simulation with the performance models of 2 Tesla V100
GPUs.

multiple tasks minimizes data transfers and increases overlap
between transfers and computations. However, after the red-
dotted line, when the memory is constrained, DARTS has to
load and evict data following LRU’s policy. So the tasks in
taskBuffer that are supposed to be ready for computation,
have to load more data. Indeed, the previous tasks caused
evictions, and the data evicted might be needed by the tasks
in taskBuffer. This causes a domino effect where each new
task requires a new data load. On the contrary DARTS+LUF
achieves on average 8.5% more GFlop/s than DMDAR. When
an eviction is needed, it avoids as much as possible evicting
a data that is used by the few tasks already planned for
computation. This allows us to avoid the pathological case of
DARTS, and to achieve a better balance between prefetching
and eviction since DARTS+LUF maintains in plannedTasks
and taskBuffer an accurate overview of the tasks to be
computed, even when eviction removes some data from a
GPU. It thus eventually achieves almost optimal performance.

C. Results on a 2D matrix multiplication with 2 or 4 GPUs

We now move to the multi GPUs case. Figures 5 shows
the results obtained using simulation (for 2 GPUs), thus not
taking into account the scheduling cost of all heuristics and
the partition costs of hMETIS into account, while Figures 6
and 8 show the results obtained with real executions (for 2
or 4 GPUs). In this latter figures, we remove mHFP whose
scheduling time is prohibitively large and added two version
of hMETIS+R, one with partitioning time and one without
(hMETIS+R no part. time) to show its impact on performance.
Now the vertical lines depict the thresholds when one or both
input matrices fit in the cumulated memory, that is, can be
distributed over the memory of all GPUs.

a) EAGER’s, hMETIS+R’s and DARTS’ results: Sim-
ilarly to the single-GPU case, we observe on Figures 5
and 6 that EAGER, hMETIS+R and DARTS show lower
performance under memory constraint. hMETIS+R gives a
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partitioning based on the data-sharing graph. In constrained
situations, the lack of task ordering inside a partition, does
not allow for good data reuse. The Ready heuristic can only
reorder a limited number of tasks ahead of the computation and
cannot improve performance by a significant margin. EAGER
and DARTS both suffer from the same pathological case
induced by the LRU strategy. By observing the two curves of
hMETIS+R, we notice that the partitioning time of h(METIS+R
has a significant impact on performance, and that this impact
increases with the number of GPUs.

b) mHFP’s results in simulation: As we can see on
Figure 5, mHFP achieves very good performance when the
scheduling time is not taken in consideration, showing that
mHFP’s strategy of load-balancing and task stealing achieves
good results in theory. However, for mHFP, the scheduling
time largely increases with the working set size. For a working
set of 2000 MB for instance, mHFP takes more than 8 minutes.
As was seen on Figure 3, the results of mHFP when accounting
the scheduling time would thus be very poor. Thus for the
following graph, we do not show mHFP on the plots.
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c¢) DMDAR’s results: The DMDAR results on two GPUs
are also very similar to the single-GPU case. DMDAR
achieves a good load balance between the two GPUs and
favors locality, but at some point it cannot properly manage
both prefetching and LRU eviction like in the single-GPU case.

d) DARTS+LUF’s results: DARTS+LUF gets perfor-
mance close to ideal, with an 9.4% improvement over DM-
DAR for two GPUs, while maintaining a very low complexity.
In multi-GPU, DARTS assigns to each GPU its own set of
data dataNotInMemy, to pick from. However all GPUs share
the same set of tasks. Once a GPU is allocated a task, it is
removed from the common set of available tasks. Thus our
scheduler will naturally assign to the other GPUs data from
a line or row that has not been used for tasks yet. This will
evenly distribute tasks among GPUs and mostly separate data
usage between GPUs. LUF’s eviction policy allows us to keep
the expected data loading order by evicting data that will be
used the least for future tasks. Thus the scheduling can still be
effective despite the memory constraint. It is also important
to note that we observe in Figure 7 that DARTS+LUF has
more data transfers than DMDAR between 2500 and 3500 MB.
However, our throughput is always higher. This confirms that
the overlap between calculations and transfers is effective. In-
deed, separating data loads between several executions of tasks
from taskBuffer induces a better distribution of transfers. On
the contrary DMDAR tends to load a large number of data at
once for the computation of a new row of tasks.

e) Trends with more GPUs: Using 4 GPUs (as in Fig-
ure 8) mainly impacts the performance of DARTS: as we
use larger task sets, the scheduling time required to find the
optimal data to load begins to degrade the global performance
of the strategy. To reduce the impact of scheduling time we
have added a threshold on the number of data we can pick
from when filling plannedTasks for working sets larger than
3500 MB only (in line 4 of Algorithm 5). This reduces the
quality of the scheduling for these working set sizes, but allows
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us to partially compensate for the performance drop (as we
can see on the plots with the red dashed line), and to surpass
DMDAR on the last two points of both plots. However, it
is difficult to come up with an optimal threshold that limits
scheduling time without impacting too much the schedule
quality.

D. Result on a 2D matrix multiplication with a randomized
task order with 2 GPUs

In order to test our heuristics in more irregular cases, we
randomize the natural task order. It will also highlight the link
between performance and tasks’ submission order. Figure 9
shows that EAGER, DMDAR and hMETIS+R are highly
impacted by the randomized order of submission as soon as
the memory does not allow loading both input matrices. This
shows that DMDAR actually relies on the natural order of
tasks to get good performance in previous graphs. DARTS
manages to maintain high throughput until the memory size is
inferior to one input matrix size. On this graph DARTS+LUF
achieves 75% more GFlop/s than DMDAR on average on all
points.

E. Result on a 3D matrix multiplication with 4 GPUs

Figure 10 shows the results on a 3D matrix multiplication in
simulation with 4 GPUs. We add here an additional variant for
DARTS: "DARTS+LUF-3inputs”. The interest of this variant
comes into play when no data allows to compute a task
without additional loads, i.e., in the “else” case on Line 13
of Algorithm 5. Instead of loading a random data, we first
look for a data which enables as many tasks to be processed
with a single additional data load as possible. Namely, we
look for a data D such that the number of tasks depending on
D, on another unloaded data D’ and on some data already in
memory is maximal. If we find such data D, we return any
such task 7', otherwise we return a random task. We observe
on Figure 10 that this variant leads to a better schedule. It
allows to reach a throughput about 61% larger than the one of
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DMDAR. It is important to note that from the second working
set size, DARTS+LUF-3inputs is better than its competitors,
which shows that even without memory limitation, the order
of processing of our variant allows for a better overlap of tasks
and data transfers.

FE. Result on tasks coming from the Cholesky decomposition
with 4 GPUs

Figure 11 shows the results on tasks coming from the
Cholesky decomposition with 4 GPUs in real. Here, the green
vertical line marks the working set size where all of input
data fit into memory. We notice that DARTS is unable to
achieve good performance, even with the 3inputs variant. This
is explained by the huge number of tasks and the resulting
scheduling time. We thus enhance DARTS with the additional
OPTI strategy to reduce scheduling time: instead of looking
for the data that enables the most tasks, we stop the search as
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Figure 12: Performance on the sparse 2D matrix multiplication
in real with 4 Tesla V100 GPUs.

soon as we find a data allowing to compute at least one task.
This allows to maintain performance close to the optimal up to
a 3000 MB working set. DARTS+LUF+OPTI-3inputs gets on
average 49% more GFlop/s compared to hMETIS+R no part.
time. Note that DMDAR also suffers from a large scheduling
time induced by looking at all the tasks in order to choose the
one allowing to avoid data loads. As a conclusion, DARTS
can easily be extended to scenarios with more than 2 inputs
per tasks, using the 3inputs variants, as well as scenario with
very large number of tasks, using OPTI.

G. Results on a sparse 2D matrix multiplication with 4 GPUs

Figure 12 shows the results on the sparse 2D matrix
multiplication scenario, in which much less tasks can be
computed with the same number of data. DARTS manages
to navigate between sparse tasks without generating too many
transfers, which is not the case for other schedulers. On this
application we observe that DARTS+LUF obtains 40% more
GFlop/s than DMDAR. As the total number of tasks is smaller
than before, the OPTI variant is not needed, but we also see
that it does not negatively impact the performance. Figure 13
shows the same application but without memory limitation.
In this case, DARTS+OPTI obtains the best performance.
This shows the ability of DARTS to produce a processing
order that best distributes transfers over time. We also note
that hMETIS suffers from an important partitioning cost; this
largely decreases its performance that would otherwise be only
slightly lower than DARTS.

VI. CONCLUSION AND FUTURE WORK

Limiting data movements is crucial for performance in
modern computing platforms, and especially for machines
equipped with several GPUs sharing the same communication
bus with the main memory. We have proposed several alter-
natives to schedule tasks sharing input data on such multi-
GPU platforms, and implemented them over the STARPU
runtime. We proposed a new strategy, named DARTS, which
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achieves very good performance both when the memory is not
limited and when it is a scarce resource, and for applications
with different data access patterns. We have shown that it
can easily be extended to applications with many data per
task and can deal with a large number of tasks using a
dedicated optimization. However, for now it is only able
to manage a single node with several GPUs and does not
consider tasks with dependencies, which leaves us with several
exciting future directions. Firstly, we would like to improve the
computational complexity of DARTS to make it able to cope
with a very large number of tasks, without sacrificing too much
on the schedule quality. Secondly, we would like to adapt our
model and algorithms to take inter-GPU communications into
account, such as the one proposed by NVidia NVLinks, which
enable fast data movement between pairs of GPUs without
involving the CPU. Moving data from a nearby GPU is indeed
usually faster than loading it from the main memory. In the
long run, our objective is to consider tasks with dependencies
and to mix data-locality objectives with other constraints such
as task affinity with processing units, and task priorities in the
graph of tasks.
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