
HAL Id: hal-03558975
https://inria.hal.science/hal-03558975v2

Submitted on 24 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ct: control toolbox - Numerical tools and examples in
optimal control

Jean-Baptiste Caillau, Olivier Cots, Pierre Martinon

To cite this version:
Jean-Baptiste Caillau, Olivier Cots, Pierre Martinon. ct: control toolbox - Numerical tools and exam-
ples in optimal control. Proceedings of 18th IFAC Workshop on Control Applications of Optimization,
Jul 2022, Paris, France. pp.13-18, �10.1016/j.ifacol.2022.08.074�. �hal-03558975v2�

https://inria.hal.science/hal-03558975v2
https://hal.archives-ouvertes.fr

ct: control toolbox – Numerical tools and
examples in optimal control ?

Jean-Baptiste Caillau ∗ Olivier Cots ∗∗ Pierre Martinon ∗∗∗

∗Université Côte d’Azur, CNRS, Inria, LJAD
(e-mail: jean-baptiste.caillau@univ-cotedazur.fr).

∗∗Université Toulouse, CNRS, ENSEEIHT-IRIT
(e-mail: olivier.cots@irit.fr)

∗∗∗ CAGE team, Inria Paris (e-mail: pierre.martinon@inria.fr)

Abstract: Combining direct and indirect methods to have the best of both worlds is an efficient
method to solve numerically optimal control problems. A direct solver will typically provide
information on the structure of the optimal control, allowing an educated guess for indirect
shooting. The control toolbox ct offers such possibilities and is presented on two examples. The
first example has a bang-singular solution and is solved by chaining direct and indirect solvers.
The second one consists in computing conjugate and cut loci on an ellipsoid of revolution,
which is performed using a more advanced combination of indirect methods with differential
continuation.

Keywords: direct transcription method, shooting, bocop, nutopy, differential continuation,
automatic differentiation

1. INTRODUCTION

Methods for solving optimal control problems with ordi-
nary differential equations essentially fall into three main
categories. Dynamic Programming (or Hamilton-Jacobi-
Bellman method; see, e.g., ROC-HJ 1 for an implementa-
tion) computes the global optimum but may suffer from
high computational costs, the so-called curse of dimen-
sionality. Indirect methods based on Pontrjagin Maximum
Principle are extremely fast and accurate but often require
more work to be applied, in terms of mathematical analysis
and a priori knowledge of the structure of the solution.
Direct transcription methods offer a good tradeoff between
robustness and accuracy and are widely used for industrial
applications. There are excellent available direct solvers,
usually making an intensive use of automatic differentia-
tion (see, e.g., CasADI 2). For challenging problems, an
effective strategy is to start with a direct method to find
a first rough solution, then refine it through an indirect
method. Such a combined approach is very commonly
used; see, e.g., this paper Bonnard et al. (2015) for the
optimization of contrast in medical imaging (MRI). This
combination of direct and indirect methods has a lot of
interest to solve optimal control problems that contain
state or control constraints. In the example mentioned
above, the interfacing between the two solvers Bocop 3

and HamPath 4 were done manually by ad hoc python or
matlab layers. The aim of the current paper is to present a
common project between several Inria and CNRS research

? Supported by InriaHub / ADT ct from Inria Sophia Antipolis-
Méditerranée
1 itn-sadco.inria.fr/itn-sadco.inria.fr/software/ROC-HJ.

html
2 casadi.org
3 bocop.org
4 hampath.org

teams from Sophia, Paris and Toulouse whose goal is
to interoperate these solvers using a high level common
interface. This project, coined ct: control toolbox, 5

benefits from the support of Inria through a so-called
Action de Développement Technologique. It is open source
and welcomes external contributions.

Two examples are presented. First, a regulator example
with constraints on the control; though very simple, the
solution has a bang-singular structure that illustrates in
an elementary fashion the interplay between direct (to
capture the structure) and indirect (to compute efficiently
and precisely) methods. It is solved using the new python
interface of Bocop3 6 and the python package nutopy. 7

The second example is taken from Riemannian geometry
and more sophisticated. It leverages the use of differential
continuation (homotopy methods) to compute conjugate
and cut loci on an ellipsoid of revolution. In both examples,
automatic differentiation is crucial (and used up to order
three in the second one). The presented results are entirely
reproducible online 8 without any installation, using the
Binder 9 technology.

2. FIRST EXAMPLE: A SIMPLE REGULATOR
PROBLEM

2.1 A simple regulator problem

We illustrate here the coupling of direct and indirect
methods in optimal control, on a simple case of Linear
Quadratic Regulator in dimension 2. More precisely, we

5 ct.gitlabpages.inria.fr/gallery
6 ct.gitlabpages.inria.fr/bocop3
7 ct.gitlabpages.inria.fr/nutopy
8 See the regulator and ellipsoid examples on the ct project gallery.
9 mybinder.org

show how the direct method can provide the relevant
information to initialize the indirect method accurately,
namely with the correct control structure and with an
estimate of junction times as well as state and costate
values at the relevant times. We study the following
problem, for which the optimal control structure consists
in a bang arc followed by a singular arc.


min

1

2

∫ 5

0

(x21(t) + x22(t)) dt

ẋ1(t) = x2(t), ẋ2(t) = u(t), u(t) ∈ [−1, 1]

x(0) = (0, 1)

2.2 Direct method

We first solve the problem with the so-called direct tran-
scription approach, that basically consists in solving the
finite-dimensional nonlinear programming problem (NLP)
resulting from applying a time discretization to the orig-
inal optimal control problem (OCP). We reformulate the
Lagrange cost as a Mayer cost by introducing a new state
variable

ẋ3(t) = (x21(t) + x22(t))/2, x3(5)→ min

and use the software BOCOP for the numerical simula-
tions. The definition of the problem consists in one C++ file
for the problem functions, and one text file for all other
parameters and settings. The file problem.cpp defines the
final cost, dynamics and boundary conditions for the OCP.

Variable x1 = state[0];
Variable x2 = state[1];
Variable u = control[0];
state_dynamics[0] = x2;
state_dynamics[1] = u;
state_dynamics[2] = 0.5*(x1*x1+x2*x2);

A separared definition file contains all other relevant in-
formation, such as problem dimensions, time discretization
choices, bounds for the different variables and constraints,
initial guess and numerical settings for the NLP solver
Ipopt, etc.

We build the problem executable and solve the problem
by launching the optimization.

import bocop
problem_path = "."
bocop.build(problem_path)
bocop.run(problem_path)

2.3 Solution analysis

In addition to the state and control from the optimal
trajectory, we can plot the Lagrange multipliers associated
to the constraints for the discretized dynamics, that corre-
spond to the costate variables from Pontrjagin Maximum
Principle. Note that for the case of basic initial conditions
xi(0) = x0i , the multipliers for these constraints will also
match the costate variables at the initial time for the
corresponding state variables. For this problem the third
costate is constant and equal to −1, which is normal since

the third state corresponds to the integral cost to be mini-
mized. The solution exhibits a bang-singular structure, as
can be clearly seen from Fig. 1 on the control variable in
purple. The oscillations of the control over the singular arc
are often encountered when using discrete transcription,
however the averaged control usually corresponds to the
correct singular control, meaning that the state dynamics
should be close to the optimal trajectory.

0 1 2 3 4 5

t

−1.5

−1.0

−0.5

0.0

0.5

1.0 x1

x2

p1

p2

u

Fig. 1. States, costates and control computed by BOCOP.
The bang-singular structure of the control is clearly
observed.

Here is the output of BOCOP:

Bocop returns status 0 with objective 0.377
and constraint violation 1.221e-12

Multipliers for initial conditions:
[-0.94216793 -1.44190126 -1.]

2.4 Indirect method

Using the information gathered on the solution from the
direct method, we can now solve the problem accurately
with an indirect method, with the knowledge of both the
optimal control structure and an estimate of the junction
time and state-costate values at this time. We use the pack-
age nutopy for the indirect shooting method. Applying
Pontrjagin maximum principle, one has to consider the
following Hamiltonian (in normal form since there are no
terminal constraints):

H(x1, x2, p1, p2, u) = −(x21 + x22)/2 + p1x2 + p2u.

One checks that the control is either bang (equal to ±1) or
singular. Singular arcs are actually of order one, given by
the condition p2 = 0 (singular arcs actually leave on the
codimension two submanifold {p2 = x2 − p1 = 0} of the
cotangent bundle TR2 ' R2×R2, and the singular control
(in feedback form) is u = x1. So we have a competition
between three Hamiltonian flows, respectively associated
with

H± := H(x, p,±1), Hs := H(x, p, x1).

We define these three Hamiltonians and the corresponding
flows in order to set up our shooting algorithm. (For this
particular example, in view of the BOCOP run, we restrict
to just −1 bang arcs.)

import nutopy as nt
import numpy as np
t0 = 0.
tf = 5.
x0 = np.array([0., 1.])

First, we define the (OCP) setting the running cost, that
is the integrand of the Lagrange cost, and the dynamics.

Running cost
def df0fun(t, x, dx, u, du):

df0 = x[0]*dx[0] + x[1]*dx[1]
return df0

def d2f0fun(t, x, dx, d2x, u, du, d2u):
d2f0 = dx[0]*d2x[0]+dx[1]*d2x[1]
return d2f0

@nt.tools.
↪→tensorize(df0fun,d2f0fun,tvars=(2,3))

def f0fun(t, x, u):
f0 = 0.5 * (x[0]**2 + x[1]**2)
return f0

Dynamics
def dffun(t, x, dx, u, du):

df = np.zeros(2)
df[0] = dx[1]
df[1] = du
return df

def d2ffun(t, x, dx, d2x, u, du, d2u):
d2f = np.zeros(2)
return d2f

@nt.tools.tensorize(dffun,d2ffun,tvars=(2,3))
def ffun(t, x, u):

f = np.zeros(2)
f[0] = x[1]
f[1] = u
return f

o = nt.ocp.OCP(f0fun, ffun) # OCP

Then, we define the Hamiltonians and flows. For the
control laws we do not present the part of the code defining
the derivatives.

def ubang(t, x, p): # Bang control
return -1.

def using(t, x, p): # Singular control
return x[0]

Hamiltonians and Flows
hbang = nt.ocp.Hamiltonian.fromOCP(o, ubang)
hsing = nt.ocp.Hamiltonian.fromOCP(o, using)

fbang = nt.ocp.Flow(hbang)
fsing = nt.ocp.Flow(hsing)

Assuming a bang-singular structure, it is then easy to
define a shooting function whose unknowns are the value

p0 of the costate at initial time, (x1, p1) the state and
costate values at the junction point between the (−1)
bang arc and the singular one, and the time t1 where
this junction occurs. A standard solver, properly initialised
thanks to the previous solution provided by BOCOP, is
eventually called to solve the problem. As is clear from
the obtained numerical results, a very precise solution is
computed.

Shooting function
def shoot(z):

p0 = z[0:2]
t1 = z[2]
x1_in = z[3:5]
p1_in = z[5:7]
s = np.ones(7)

first bang arc
x1, p1 = fbang(t0, x0, p0, t1)
s[3:5] = x1 - x1_in # matching conditions
s[5:7] = p1 - p1_in # matching conditions

singular arc
xf, pf = fsing(t1, x1_in, p1_in, tf)
s[0] = p1[1] # p2(t1)
s[1] = x1[1]-p1[0] # x2(t1)-p1(t1)
s[2] = pf[0] # p1(tf)

return s

Find a zero of the shooting function
z0 is given by BOCOP
sol = nt.nle.solve(shoot, z0)

Results of the nle solver method:

zsol = [-9.42173346e-01 -1.44191018e+00
1.41376409e+00 4.14399640e-01
-4.13764088e-01 -4.13764088e-01

-1.26506733e-28]

norm(shoot(zsol)) = 5.400314267047623e-16

0 1 2 3 4 5

t

−1.5

−1.0

−0.5

0.0

0.5

1.0 x1

x2

p1

p2

u

Fig. 2. States, costates and control computed by shooting
(nutopy).

3. SECOND EXAMPLE: CUT AND CONJUGATE
LOCI OF AN ELLIPSOID OF REVOLUTION

3.1 Preliminaries

We recall standard notions of Riemannian geometry that
can be found in Berger (2003); Do Carmo (1988). On a
connected Riemannian manifold (M, g) of dimension n, the
metric g induces a distance function d(q0, q1) for any pair
(q0, q1) ∈ M2. The distance d(q0, q1) being the infimum
of lengths of continuously differentiable curves q joining
the points q0 and q1. If we denote by l(q) the length of a
curve q, then on a connected and complete Riemannian
manifold, for any pair (q0, q1) ∈ M2, there exists a
continuously differentiable curve q such that d(q0, q1) =
l(q). In this case, the solution curve q being necessarily
chosen among the set of the so-called geodesic curves (or
geodesics). The geodesics are so candidates as minimizers
and we know that every geodesic is a minimizing curve at
least on short distances.

Our main goal is to compute for a fixed q0 ∈ M , the
partial distance function d(q0, ·) together with the set of
minimizing geodesics, that is we want to find for any point
q1 ∈ M , the distance d(q0, q1) and the geodesic q such
that d(q0, q1) = l(q). To do so, we compute the geodesics,
which are projections of extremals given by the flow of the
Hamiltonian vector field

#—

H associated to the Hamiltonian
H given by the Legendre transform of the metric g.

The cut point of a geodesic is the point where it ceases to
be minimizing. Fixing q0 ∈M , the set of cut points of all
the geodesics starting from q0 is the cut locus denoted
Cut(q0). Our main goal is thus equivalent to compute
Cut(q0).

We consider the academic case of an oblate ellipsoid of
revolution to illustrate the numerical tools. The theoretical
results related to this case may be found in Itoh and
Kiyohara (2004). In the Riemannian frame, the cut points
may be of two kinds, either conjugate points or isochronous
separating points. A conjugate point is a point where the
geodesic q ceases to be optimal among the geodesics C1-
close to q. The conjugate points are fold points of the
geodesic flow and are due to the intrinsic curvature of the
Riemannian manifold. This points may be computed by
linearization of the flow of

#—

H, that is computing Jacobi
fields. An isochronous separating point is a point where
two distincts minimizing geodesics intersect, that is it is a
self-intersection of a wavefront of the geodesic flow. The
set of separating points is called the separating locus.

In the following, we present how to manipulate the nutopy
package to compute the cut locus and related objects. See
Bonnard et al. (2014); Facca et al. (2021); Itoh and Sinclair
(2004); Sinclair and Tanaka (2002) for others methods to
compute cut loci in Riemannian geometry.

3.2 The Hamiltonian and flow for the oblate ellipsoid of
revolution

The Cartesian equation of the normalized 2d ellipsoid of
revolution may be written as

x2 + y2 +
z2

ε2
= 1

The associated ellipsoid of revolution may be generated by
a rotation of axis Oz of the parameterized curve y = cosu,
z = ε sinu, with u ∈ [0, 2π] and where 0 < ε < 1
corresponds to the oblate (flattened) case while ε > 1 is the
prolate (elongated) case. We parameterize the Cartesian
coordinates by the azimuth θ ∈ [−π, π] and the latitude
ϕ ∈ [−π/2, π/2], by the relations x = cosϕ cos θ, y =
cosϕ sin θ and z = ε sinϕ.

The restriction of the Euclidean metric of the ambient
space R3 gives the following induced metric on the ellip-
soid:

g = g1(ϕ) dθ2 + g2(ϕ) dϕ2

where g1(ϕ) = cos2 ϕ and g2(ϕ) = sin2 ϕ+ε2 cos2 ϕ. In the
following, we consider the oblate case and we fix ε = 0.75
and q0 = (0, 0). The associated Hamiltonian is

H =
1

2

(
p2θ

g1(ϕ)
+

p2ϕ
g2(ϕ)

)
that we implement in Fortran:

subroutine hfun(x, p, e, h)

double precision, intent(in) :: x(2), p(2), e
double precision, intent(out) :: h

! local variables
double precision :: theta, phi, ptheta, pphi
double precision ::g1, g2

theta = x(1)
phi = x(2)
ptheta = p(1)
pphi = p(2)

g1 = cos(phi)**2
g2 = sin(phi)**2+e**2*cos(phi)**2

h = 0.5d0 * (ptheta**2 / g1 + pphi**2 / g2)

end subroutine hfun

From the Hamiltonian H, we define the Hamiltonian
vector field defined on the cotangent bundle T ∗M (M
being the ellipsoid)

#—

H(q, p)
def
=

(
∂H

∂p
(q, p),−∂H

∂q
(q, p)

)
.

We finally define the Hamiltonian exponential map,

et
#—
H : T ∗M → T ∗M , by

et
#—
H(q0, p0)

def
= (q(t, q0, p0), p(t, q0, p0)),

where the extremal z(·, q0, p0) = (q(·, q0, p0), p(·, q0, p0)) is
defined as the maximal solution of the Cauchy problem
ż(t) =

#—

H(z(t)), z(0) = (q0, p0). Thus, the Hamiltonian
exponential map gives us the flow of extremals, associated
to the Hamiltonian system.

Hamiltonian
h = nt.ocp.Hamiltonian(hfun)

Hamiltonian exponential map
extremal = nt.ocp.Flow(h)

3.3 Geodesics

By homogeneity, the extremals may be parameterized fix-
ing H = 1/2. This amounts to parameterize the geodesics
by the arc length. Thus, given an initial point q0 ∈ M ,
the initial covector p0 must satisfy H(q0, p0) = 1/2. One
can write that p0 ∈ S1 = {p | ||p|| = 1}, defining the norm
||p||2 = 2H(q0, p) on T ∗q0M . Hence, the initial covector may
be parameterized by its angle α0 ∈ [0, 2π). We write

p0 = p(α0)
def
=
(

cosα0

√
g1(ϕ0), sinα0

√
g2(ϕ0)

)
this parameterization, with p(α0) ∈ T ∗q0M . Finally, a
geodesic starting from q0 is the projection of an extremal
parameterized by its initial angle α0 and is given by the
following classical exponential map:

expq0(t, α0)
def
= πq

(
et

#—
H(q0, p(α0))

)
,

where πq(q, p) = q is the canonical projection on the state
space.

Initial covector
def covector(q, alpha):

g1, g2 = metric(q)
p0 = [np.cos(alpha)*np.sqrt(g1),

np.sin(alpha)*np.sqrt(g2)]
return p0

Geodesic
def geodesic(t, alpha0):

p0 = covector(q0, alpha0)
q, p = extremal(t0, q0, p0, t)
return q

3.4 Conjugate locus

A point q(tc) on an extremal z = (q, p) is conjugate to
q0 = q(0) if there exists a Jacobi field δz = (δq, δp),
solution of the linearized system along the extremal,

δż(t) =
∂

∂z

#—

H(z(t)) · δz(t),
which is non-trivial (δq 6≡ 0) and vertical at t = 0 and
tc > 0 (called the conjugate time), that is δq(0) = δq(tc) =
0. The conjugate locus is the set of such first points
on extremals departing from q0. Conjugacy is classicaly
related to local optimality of extremals in the relevant
topologies. Let q : t 7→ expq0(t, α0) being a reference
geodesic and introduce Fconj : R∗+ × [0, 2π)→ R as

Fconj(t, α)
def
= det

(
exp′q0(t, α)

)
.

Then, in the Riemannian setting, q(tc) is conjugate to q0
if and only if Fconj(tc, α0) = 0. The conjugate locus from
q0 is thus given by

Conj(q0) =
⋃

α0∈[0,2π)

{ expq0(t1c, α0)

s.t. Fconj(t1c, α0) = 0},
where t1c has to be understood in the sense that it is
the first conjugate time. To compute the conjugate locus,
we need to compute the first conjugate times, that is to
compute

⋃
α0∈[0,2π)

{(t1c, α0) | Fconj(t1c, α0) = 0}.

Algorithm. We have to compute a subset of F−1conj({0}).
We use the numerical continuation method (or homotopy
method) from Allgower and Georg (2003) implemented in
the nutopy package. Under some regularity assumptions,
the set F−1conj({0}) is a disjoint union of differential curves,
each curve being called a path of zeros. To compute a
path of zeros, we search a first point on the curve by
fixing the homotopic parameter (here it will be α0) to a
certain value α∗0 and then calling a Newton method to solve
Fconj(·, α∗0) = 0. The Newton solver in the nutopy package
is the hybrj code from the minpack library, see Moré et al.
(1980).

When we have our initial point on the path of zeros, we
use a Predictor-Corrector (PC) method with arc length
parameterization to compute the differential curve. The
nutopy package implements a PC method with a high-
order Runge-Kutta scheme with adaptive step size for
the prediction from Hairer et al. (1993). 10 The correction
step is performed by a simplified Newton algorithm from
(Hairer and Wanner, 1996, p. 119) with few iterations and
where the Jacobian of the associated system to solve is not
updated along the iterations.

For the prediction and the correction steps, we need
to compute the Jacobian of Fconj. It is computed by a

combination of automatic differentiation (to get
#—

H and its
derivatives up to order 2) performed with the tapenade
software, see Hascoët and Pascual (2012), and variational
equations to compute Jacobi fields and their derivatives
with respect to the initial angle α0.

Jacobi field
@nt.tools.vectorize(vvars=(1,))
def jacobi(t, alpha0):

p0, dp0 = covector(q0, (alpha0,1.))
(q,dq),(p,dp) = extremal(t0,q0,(p0,dp0),t)
return (q, dq), (p, dp)

Fig. 3. Geodesics and their envelope when the flow is
folding, i.e. the conjugate locus (in red).

10The prediction part is the same as in the HamPath software,
see Caillau et al. (2011).

3.5 Cut locus

The cut locus Cut(q0) is the union of the cut points of
the geodesics departing from q0. A cut point is either a
conjugate point or an isochronous separating point, see (Do
Carmo, 1988, Proposition 2.2 p. 267), that is a point where
two minimizing geodesics intersect with the same time (or
length). A separating point (or splitting point) corresponds
to a self-intersection of a wavefront. To compute the cut
locus we need at this stage, to compute the separating locus
(or splitting locus) and then compare for each geodesic its
first conjugate time with its separating time. We introduce
the following mapping:

Fsplit(t, α1, q, α2)
def
=
(
q − expq0(t, α1), q − expq0(t, α2)

)
.

The splitting locus is then given by solving Fsplit = 0 since
we have

Split(q0) ⊂ {q ∈M | ∃ (t, α1, α2) s.t. α1 6= α2

and Fsplit(t, α1, q, α2) = 0}.
The splitting locus is also computed by homotopy.

Equations to compute Split(q0)
def Fsplit(y, alpha2):

t = y[0]
alpha1 = y[1]
q = y[2:4]

q1, _ = extremal(t0, q0, covector(q0,
↪→alpha1), t)

q2, _ = extremal(t0, q0, covector(q0,
↪→alpha2), t)

eq = np.zeros(4)
eq[0:2] = q-q1
eq[2:4] = q-q2

return eq

At the end, the cut locus of the oblate ellipsoid of rev-
olution is the union of the splitting locus with the two
conjugate points at the extremity of Split(q0), that is

Cut(q0) = Split(q0) ∪ {expq0(t∗, 0), expq0(t∗, π)},

where t∗ is the injectivity radius, the first positive time
solution of Fconj(t

∗, 0) = 0, see Fig. 4 for a view of the
cut locus and see Itoh and Kiyohara (2004) for theoretical
details.

ACKNOWLEDGEMENTS

The authors thank the SED 11 team of Inria Sophia for
their help and commitment on this project.

REFERENCES

E. Allgower & K. Georg, Introduction to numerical
continuation methods, vol. 45 of Classics in Applied
Mathematics, Soc. for Industrial and Applied Math.,
Philadelphia, PA, USA, (2003), 388 pages.

11iww.inria.fr/sed-sophia

Fig. 4. Geodesics until cut point. Conjugate locus in red.
Cut locus in black. It is the segment of the equator
contained in the conjugate locus. The extremities of
the cut locus are cusps of the conjugate locus while
interior points are separating points.

M. Berger, A panoramic view of Riemannian geometry,
Springer, 2003.

B. Bonnard, M. Claeys, O. Cots & P. Martinon, Geometric
and numerical methods in the contrast imaging problem
in nuclear magnetic resonance, Acta Appl. Math., 135
(2015), no. 1, 5-45.

B. Bonnard, O. Cots & L. Jassionnesse, Geometric and
numerical techniques to compute conjugate and cut loci
on Riemannian surfaces, in INDAM Series vol. 5, Geo-
metric Control and sub-Riemannian Geometry, (2014).

J.-B. Caillau, O. Cots & J. Gergaud, Differential con-
tinuation for regular optimal control problems, Optim.
Methods Softw., 27 (2011), no. 2, pp. 177–196.

M. P. Do Carmo, Riemannian geometry, Birkhäuser,
Mathematics: Theory & applications, second edn 1988.

E. Facca, L. Berti, F. Fassó & M. Putti, Computing the Cut
Locus of a Riemannian Manifold via Optimal Transport,
2021. 〈hal-03467888〉

E. Hairer, S. P. Nørsett & G. Wanner, Solving Ordi-
nary Differential Equations I, Nonstiff Problems, vol
8 of Springer Serie in Computational Mathematics,
Springer-Verlag, second edn (1993).

E. Hairer & G. Wanner, Solving Ordinary Differential
Equations II, Stiff and Differential-Algebraic Problems,
vol 14 of Springer Serie in Computational Mathematics,
Springer-Verlag, second edn (1996).

L. Hascoët & V. Pascual, The Tapenade Automatic
Differentiation tool: principles, model, and specification,
Rapport de recherche RR-7957, INRIA (2012).

J. Itoh & K. Kiyohara, The cut loci and the conjugate
loci on ellipsoids, Manuscripta math., 114 (2004), no.
2, pp. 247-264.

J. Itoh & R. Sinclair, Thaw: A Tool for Approximating
Cut Loci on a Triangulation of a Surface, Experiment.
Math. 13 (2004), no. 3, 309-325.

J. J. Moré, B. S. Garbow & K. E. Hillstrom, User
Guide for MINPACK-1, ANL-80-74, Argonne National
Laboratory, (1980).

R. Sinclair & M. Tanaka, Loki: Software for Computing
Cut Loci, Exper. Math. 11 (2002), no. 1, 1–25.

