
HAL Id: hal-03572271
https://inria.hal.science/hal-03572271v2

Submitted on 9 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing the Thull-Yap algorithm for computing
Euclidean remainder sequences

François Morain

To cite this version:
François Morain. Implementing the Thull-Yap algorithm for computing Euclidean remainder se-
quences. ISSAC2022, Jul 2022, Villeneuve-d’Ascq, France. �hal-03572271v2�

https://inria.hal.science/hal-03572271v2
https://hal.archives-ouvertes.fr


Implementing the Thull-Yap Algorithm for Computing
Euclidean Remainder Sequences

François MORAIN

LIX, CNRS, INRIA, École Polytechnique, Institut Polytechnique de Paris

F-91120 Palaiseau, France

morain@lix.polytechnique.fr

ABSTRACT
There are two types of integer gcd algorithms: those which compute

the sequence of remainders of Euclid’s algorithm and those which

build di�erent sequences. The former are more di�cult to validate

and analyse, whereas the latter are simpler andmore e�cient.When

one wants the euclidean remainders (for instance if one wants to

compute continued fractions), only the former can be used. Our

main focus is the subquadratic time Thull-Yap GCD algorithm, and

in fact on its core computing a half gcd (TYHGCD). This algorithm

is tricky due to the di�culty in correcting the remainder sequence

that comes back from a recursive call.

The aim of this work is to revise TYHGCD in order to implement

it using GMP. We clarify some points of the algorithm, in particular

the stopping conditions that are always di�cult to set correctly. We

add a base case to speed up the whole algorithm, using Jebelean’s

quadratic algorithm with a stopping condition. We give our own

modi�ed version and add the proofs where needed. We insist on

the test phase for this algorithm, giving families of hard cases for all

branches, some of which are rarely activated. We give some details

on our implementation in GMP using low-level functions, adding

some remarks on the use of fast multiplications techniques. We pay

attention to the data structure needed to store partial quotients,

enabling to navigate rapidly back and forth in the sequence of

Euclidean remainders. Benchmarks are provided. Some comments

are made on Lichtblau’s algorithm, which is close in spirit to the

Thull-Yap algorithm.

CCS CONCEPTS
•Computingmethodologies; •Mathematics of computing→
Number-theoretic computations;

KEYWORDS
Integer gcd, subquadratic arithmetic

ACM Reference Format:
François MORAIN. 2022. Implementing the Thull-Yap Algorithm for Com-

puting Euclidean Remainder Sequences. In Proceedings of the 2022 Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC ’22),
July 4–7, 2022, Villeneuve-d’Ascq, France. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3476446.3536188

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or a�liate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes only.

ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-8688-3/22/07. . . $15.00

https://doi.org/10.1145/3476446.3536188

1 INTRODUCTION
Computing the gcd of two integers is one of the basic tasks required

in any multi-precision integer package or mathematical system. It

is also one of the oldest algorithms ever. Optimizations of Euclid’s

algorithm on computers were developed over the years, improving

the quadratic complexity. This includes [11] and Collins (around

1980, reference being lost?), followed by [8, 9]. Subquadratic meth-

ods began their (rather chaotic) history with Knuth, followed by

[10, 15, 22] (see also [1] for an uncomplete polynomial version). A

re�ned algorithm was designed and very precisely described in [26]

(see also [29]), unifying integer and polynomial gcd’s, using norms.

In [12], another version is given using a more direct approach. It

is very important to note that all these methods compute the se-

quence of euclidean quotients of the classical algorithm, which is

interesting for the fast evaluation of continued fractions. These

methods are generally believed to be di�cult to implement, due to

the many sub-cases involved and the fact they are rarely used.

If we do not insist on computing these euclidean remainders but

aim at the computation of the gcd only, alternative methods exist,

that are simpler and faster. This includes the binary versions: [5, 23,

25, 27] for quadratic ones and [3, 16, 24] for the subquadratic ones.

We remark that these algorithms do not compute the Euclidean

remainders.

Our work was originally motivated by writing a fast implemen-

tation of Cornacchia’s algorithm (see Section 4) for primality prov-

ing [17]. We rapidly concentrated on the implementation of the

Thull-Yap algorithm [26, 29], since the approach is very close to

what is needed in a GMP implementation. Note that Lichtblau’s

algorithm [12] o�ers an interesting alternative with many common

points with the preceding algorithm, but the original article is not as

close to an implementation aswe thought (see the forthcoming [18]).

An algorithm for the dual problem of �nding regular matrices (see

below) satisfying a given bound is given in [20, Algorithm 5.9],

whose application to our problem needs further investigation.

The content of our article is as follows: we recall basic facts

about Euclid’s algorithm in Section 2, introducing our problem on

computing remainders satisfying some bound conditions. Section

3 is concerned with the Thull-Yap algorithm and our revisiting

thereof, adding some base-cases and instructions missing in the

original work. Also, we take care to data structures used in the algo-

rithm, notably manipulating at the same time a quotient sequence

together with its matrix representation. Section 4 explains how

this algorithm can be used in Cornacchia’s algorithm. In Section

5, we devote our time to building families of numbers establishing

covering tests of the Thull-Yap algorithm. Finally, Section 6 gives

some details on our implementation in GMP[7] and benchmarks.

https://doi.org/10.1145/3476446.3536188
https://doi.org/10.1145/3476446.3536188


Notations: we denote by M(n) the complexity of multiplication

of two n-bit integers. We will operate on integers represented in

base B = 2
β
for some β ≥ 1, typically the size of the machine

words on a processor (32 and 64). If a > 0 is a real number, we put

‖a‖B = logB |a | = (log2 |a |)/β , and by convention, ‖0‖B = 0. We

use ‖.‖ to designate the norm ‖.‖B to ease notations.

2 EUCLID’S ALGORITHM AND VARIANTS
Since a large part of our work relies on the Thull-Yap algorithm, we

use some of the notations in [29], which builds on [26] with (small)

di�erences.

2.1 Basic properties
Let a > b > 0 be two integers. Introduce the Euclidean quotient
sequence (qi ) and Euclidean remainder sequence (ri ) de�ned by using
Euclidean division and remainder on successive pairs of numbers:

a = bq1 + r1, 0 ≤ r1 < b
b = r1q2 + r2, 0 ≤ r2 < r1
· · ·

ri = ri+1qi+2 + ri+2, 0 ≤ ri+2 < ri+1

We denote by a ÷ b the quotient of a by b. The sequence (ri ) is
decreasing. We denote by k the smallest index for which rk = 0

and remark that rk−1 = gcd(a,b).
Remember the classical Lemma:

Lemma 2.1. Perform the Euclidean algorithm on a > b with the
usual notations. Then r2 < b/2.

Proof: if r1 ≤ b/2, we are done. Otherwise, b/2 < r1 < b implies

q2 = 1, and r2 = b − r1 < b/2. �

In other words, we are sure to decrease the size of the remainders

by 1/2 bit per iteration at worse. As a consequence the length of

the sequences is bounded by 2 logb/log 2 + 1.

2.2 Properties of regular matrices
One important formalism is the representation of Euclid’s opera-

tions using 2× 2 matrices. The identity matrix is denoted by E. The
Euclidean algorithm produces a sequence of matrices of the form

Q =

(
q 1

1 0

)
where q ≥ 1 is an integer; we call such a matrix elementary. In
order to write compact expressions, we write Q = [[q, 1], [1, 0]]
as an array of two row vectors; a column vector is written (a,b).
Typically, q will be some Euclidean quotient and the operation

(a,b) = Q(a′,b ′) is one step of the Euclidean algorithm: a = bq + r
with 0 ≤ r < b, so that a = a′q + b ′ and b = a′.

A regular matrix is M = Q1 · · ·Qk with k ≥ 0 (when k = 0,

M = E and E is considered regular too); an elementary matrix

is therefore regular. A regular matrix enjoys the following size

property.

Proposition 2.2. IfM , E is regular

M =

(
p q
r s

)

thenM satis�es the ordering property

‖p‖ ≥ max{‖q‖, ‖r ‖} ≥ min{‖q‖, ‖r ‖} ≥ ‖s‖, ‖p‖ > ‖s ‖. (1)

The following Proposition is crucial in the design of fast Eu-

clidean remainders computation.

Proposition 2.3. Given a, b, a′, b ′ s.t. ‖a‖ > ‖b‖ ≥ 0. The
following are equivalent.
(i) a′, b ′ are consecutive elements in an Euclidean remainder sequence
of a, b.
(ii) There is a regular matrixM s.t. (a,b) = M(a′,b ′) and a′ > b ′ > 0.

Other gcd algorithms yield a transition matrixM that may not

be regular.

For practical reasons, we decided to introduce a regular pair
consisting of a list of elementary matrices and their product:M =

(Q,M). We write Q = 〈q1,q2, . . . ,qk 〉 for the list and the corre-

sponding matrix is M =
∏k

i=1[[qi , 1], [1, 0]]. By reference to the

basic Euclid algorithm, we obtain

(a,b) = Q1 · · ·Qk (rk−1, 0) = 〈q1, . . . ,qk 〉(rk−1, 0) = M(rk−1, 0).

Adding a new matrix [[q′, 1], [1, 0]] to a sequenceQ will be denoted

Q ⊕ 〈q′〉 for short. We designate by BuildMatrixFromQ the opera-

tion of computingM fromQ , which we need. A fast implementation

of this operation is described in Section 6.4.

We de�ne some operations on regular pairs, that consist of

adding or removing entries at the end of the sequence in a LIFO

manner. These operations are used in the Thull-Yap algorithm to

correct the approximations of the quotients found during a re-

cursive call. Suppose that (a,b) = M(a′,b ′) for some regular pair

M = (〈q1,q2, . . . ,qk 〉,M).

(I) Advancing: we add the quotient q′ = a′ ÷ b ′ at the end

ofM, an operation we noteM ⊗ 〈q′〉 producing (Q ⊗ 〈q′〉,M ·
[[q′, 1], [1, 0]]). This yields a regular matrix when q′ ≥ 1 (i.e., in the

case ‖a′‖ ≥ ‖b ′‖). We may advance by more steps.

(II) Backing up: we call the matrix 〈q1, . . . ,qk−i 〉 the backing
up ofM by i steps (0 ≤ i ≤ k); using a′,b ′ andM , we can back up to

the desired remainders. We denote this byM � 〈qk−i+1, . . . ,qk 〉.

(III) Toggling: put T = [[1, 1], [0,−1]] and remark thatMTT =
M . This yields (a,b) = MT (a′ + b ′,−b ′). If qk > 1, then

MT = 〈q1,q2, . . . ,qk−1,qk − 1, 1〉.

If qk = 1 and k > 1, we get MT = 〈q1,q2, . . . ,qk−2,qk−1 + 1〉;

in both cases, MT is regular. When qk = 1 and k = 1, MT is not

regular.

Also, ifM = (Q,M) andM ′ = (Q ′,M ′) are two regular pairs,

we join them asM ⊗M ′ = (Q ⊗ Q ′,M ·M ′).

2.3 Partial remainders
We can formulate a partial Euclid algorithm taking as input a pair

of integers (a,b) and a real number 0 < ρ ≤ ‖a‖. Algorithm
PartialRemainder(a, b, ρ) outputs the unique pair of Euclidean
remainders satisfying ‖ri ‖ ≥ ρ > ‖ri+1‖. It is described in Algo-

rithm 1.

We can make a similar modi�cation of Jebelean’s algorithm [9,

§4.2] for the same goal (PartialJebelean). In the latter case, we

use Jebelean’s approach to decrease to the target ρ and we �nish



Function PartialEuclid(a,b, ρ)
Input :a > b ≥ 0 two integers, ρ a real number such

that ‖a‖ ≥ ρ > 0

Output :a′, b ′, and a regular pairM = (Q,M) with
‖a′‖ ≥ ρ > ‖b ′‖

1. Q ← ∅;

2. while ‖b‖ ≥ ρ do
(q, r ) ← (a ÷ b,a mod b);

a,b ← b, r ;

Q ← Q ⊗ 〈q〉;

end
3. return a,b, (Q,BuildMatrixFromQ(Q));
Algorithm 1: The partial Euclid algorithm.

with PartialEuclid. Our aim is to show how to use the Thull-Yap

algorithm for the same problem.

2.4 The road to sub-quadratic algorithms
The common idea about fast gcd algorithms is the following. Use a

divide-and-conquer approach to the problem, using a subroutine

that computes “half the gcd” and generally called HGCD. Typically,

two recursive calls are performed in such a function, and some

correction may have to be done to recover the correct answer. For

two n-bit integers, the cost of HGCD is O(lognM(n)) complexity,

and the complexity of the whole GCD is the same.

3 THE THULL-YAP ALGORITHM
We assume the reader is familiar with the algorithm given in [26]

and [29, Chapter 2, Appendix A]. We use the same notations except

on some minor points. A line by line inspection of the original

algorithm given in the reference reveals that we can make it work

on β-bit numbers for any β ≥ 1. There are only a few points in the

proofs where this really matters and we concentrate on them.

3.1 Norms and bounds
The following quantity (the magic threshold) is crucial in the Thull-

Yap algorithm:

TB(a) = 1 +

⌈
‖a‖B
2

⌉
,

since one call to the procedure returns a pair of integers (a′,b ′)
with ‖a′‖B ≥ TB(a) > ‖b

′‖B, ready for the next recursive call and

giving the sub-quadratic running time.

Analyzing the algorithm further, we see that it uses the quantities

a0 = 1 + (a ÷ Bm ) with m = TB(a) and also t = TB(a0). It will
be required to have ‖a‖B ≥ TB(a) + TB(a0) to use in the Fixup

procedure (see below again).

Proposition 3.1. (i) if ‖a‖B ≥ 3, then ‖a‖B ≥ TB(a);
(ii) for each B, there exists a constantAB such that if ‖a‖B ≥ AB,

then ‖a‖B ≥ TB(a) + TB(a0).

Proof:Write a = Bα , where α is a positive real number. Start from

m = 1 +
⌈α
2

⌉
,a0 = 1 +

⌊
Bα−m

⌋
, ‖a0‖B = α0, t = 1 +

⌈α0
2

⌉
,

When α is large, one has m ≈ α/2 and t ≈ m/2 ≈ α/4, so that

α ≥ m + t is trivially true. It remains to see what happens when α
is small.

(i) If α ≥ 4, we have α ≥ 1 + (α/2 + 1) ≥ 1 + dα/2e. If 2 < α < 4,

we have dα/2e = 2 and we need α ≥ 3 to meet the bound.

(ii) We want

α ≥ 2 +
⌈α
2

⌉
+
⌈α0
2

⌉
.

We have

Bα−m < Bα0 ≤ 1 + Bα−m .

Taking logs and using log(1 + x) ≤ x , we get

α −m < α0 ≤ α −m +
1

Bα−m
.

Sincem ≤ 2+α/2, one has α −m ≥ α/2− 2 and for α ≥ 10, we get

α0 ≤ α −m +
1

B3
.

To get our result, it is enough to have

α ≥ 2 +
⌈α
2

⌉
+

⌈
α −m + 1/B3

2

⌉
,

a relation satis�ed as soon as α ≥ 10. �
Remark. By numerical inspection, α ≥ 9 is best possible in case

ii). We can content ourselves by taking a uniform value for AB,

namely A = 10 and we do that in the remaining part of the work.

For small values of B, we may �nd a better value.

3.2 The Thull-Yap algorithm in a nutshell
3.2.1 Outline. The idea of the ThullYapHGCD algorithm on

a > b > 0 is to compute a regular matrix M such that (a,b) =
M(a′,b ′) where

if ‖a‖ < 2,M = E;
if ‖a‖ ≥ 2, ‖a′‖ ≥ T(a) > ‖b ′‖,with a′ > b ′ ≥ 0.

(2)

The �rst case covers rare cases or cases where a is small (see below;

to simplify, we replace 3/2 by 2). In the second case (which is the

most frequent), the size of the new entry (a′,b ′) is roughly half that
of (a,b), so that we end up with a divide-and-conquer approach to

computing gcd(a,b). Note that the case T(a) < A needs a special

treatment.

To computeM , the algorithm considers the top half a0 (resp. b0)
of a (resp. b) and proceeds to �nd the Euclidean quotients of (a0,b0).
To recover the correct sequence of quotients for (a,b), procedure
Fixup is applied (see below). The full Thull-Yap algorithm uses the

ThullYapHGCD algorithm to get down to gcd(a,b) recursively.

3.2.2 The Basic Setup. Suppose a > b > 0 and a ≥ Bm . De�ne

a0 = 1+ (a÷Bm ), b0 = b÷B
m
, b1 = b mod Bm , and a1 = a0B

m −a
so that

(a,b) = [[a0,−a1], [b0,b1]](B
m , 1)

and 0 < a1 ≤ B
m
. This de�nition of a0 is chosen to be sure to

have a0 > b0 in a recursive call. It makes life much easier when

updating the numbers usingmatrices, see Lemma 3.2. The algorithm

computes a regular matrixM for (a0,b0) and we compute

[[a′
0
,a′

1
], [b ′

0
,b ′

1
]] = M−1[[a0,−a1], [b0,b1]]

from which (a′,b ′) = [[a′
0
,a′

1
], [b ′

0
,b ′

1
]](Bm , 1).



The following Lemmawill prove useful when updating the values

of a and b, since it boils down to multiplying integers that are all

> 0. Its proof is left to the reader.

Lemma 3.2. LetM = [[p,q], [r , s]]. Write

M−1(a,b) = (a′,b ′) = (a′
0
Bm − a′

1
,b ′

0
Bm + b ′

1
)

with δ = det(M) = ±1. Then

a′
1
= δ (sa1 + qb1), b ′

1
= δ (ra1 + pb1).

3.2.3 Correcting the quotient sequence whenM , E. Given the

quotient sequence Q for (a′,b ′) we want the correct sequence Q∗

for (a,b) with new starting point (a∗,b∗) = M∗−1(a,b) such that

‖a∗‖ ≥ T(a) > ‖b∗‖, a∗ > b∗ ≥ 0. (3)

We may have two problems:

Case det(M) = −1: b ′ can be negative.

Case det(M) = +1: an inversion b ′ ≥ a′ may occur.

We slightly adapt the following Lemma of [26] to our needs.

Lemma 3.3 (Fixing up). Let t be any number such that

‖a′
0
‖ ≥ t > max{‖b ′

0
‖, ‖a0‖ − ‖a

′
0
‖ + 1}. (4)

Moreover, put Q = 〈q1, . . . ,qk 〉. We explain how to deduce Q∗ from
Q s.t. a∗ and b∗ (deduced from a′, b ′ with (a,b) = M(a′,b ′)) satisfy

‖a∗‖ ≥ m + t > ‖b∗‖, (5)

b∗ ≥ 0. (6)

(-) Suppose det(M) = −1.
(-A) If b ′ ≥ 0 then Q∗ = Q .
(-B) Else if ‖a′ + b ′‖ ≥ m + t , then Q∗ is the toggle of Q .
(-C) Else if qk ≥ 2 then Q∗ = 〈q1, . . . ,qk−1,qk − 1〉 is the

backup of the toggle of Q .
(-D) Else Q∗ is the backing up of Q by two steps.

(+) Suppose det(M) = +1.
(+A) If ‖a′‖ ≤ ‖b ′‖ then Q∗ is the advancement of 〈q1, q2,

. . . , qk−1〉 by at most 2β steps.
(+B) Else if ‖a′‖ < m + t then Q∗ is the backing up of Q by

one or two steps.
(+C) Else Q∗ is the advancement of Q by at most 2β steps.

Proof: this is the same as in [26], but for the cases where we need

adaptation to the case B = 2
β > 2.

The case (+B):Write

[a0;b0] = [[p
′,q′], [r ′, s ′]] [[qk , 1], [1, 0]] [a

′
0
;b ′

0
]

leading to

z′ = qka
′ + b ′ = (a′

0
+ qkb

′
0
)Bn + s ′a1 + q

′b1 ≥ z′
0
Bn .

We have ‖z′‖ ≥ ‖z′
0
‖ +m ≥ ‖a′

0
‖ +m ≥ m + t andm + t > ‖a′‖,

so that one backup is enough, and not two as given in [26]. �
This correction Lemma is used as Algorithm 2.

Function Fixup(a′,b ′,M = (Q,M),m, t )
Input :See notations of Lemma 3.3

Output :a∗, b∗, a regular pairM∗ = (Q∗,M∗) such that

(a∗,b∗) = M∗(a,b) with ‖a∗‖ ≥ m + t > ‖b∗‖.
Algorithm 2: The Fixup function.

3.2.4 Correcting the quotient sequence when M = E. We use

the same notations as above. This case happens when we start

the algorithm with a pair (a,b) for which ‖a0‖ < A where a0 =
1 + (a ÷ Bm ). Our goal is to �nd a quotient sequence leading to

(a′,b ′) and ‖a′‖ ≥ m > ‖b ′‖. From a0B
m > a, we deduceA +m >

‖a0‖ +m > ‖a‖. We have to compute a quotient sequence leading

to (a′,b ′) with ‖a′‖ ≥ m the number of steps for this is bounded as

a function ofA, that is a constant. Procedure Fixup0 follows easily:

use PartialEuclid (or PartialJebelean) to reach the desired value

of (a′,b ′).

3.2.5 The algorithm and partial correctness. We give a version

of ThullYapHGCD that includes some corrections and is closer to

a real implementation (for instance, returning a′,b ′,M = (Q,M)
instead ofM alone), compare with [26, Section 5]. We also add the

necessary modi�cations to procedure Fixup. Very classically, we

also use a base case using Jebelean’s algorithm for inputs having

a norm less than a prede�ned constant J (in practice, we could

remove the test w.r.t. A which is often smaller than J ).

To insist on the symmetry of some of the computations, we

introduce the function Reduce presented later as Algorithm 4 and

that is used twice. We have been very precise in the handling of

matrix products needed during the algorithm (the ⊗ operations).

Note that the last matrix product at line 8 is not needed if we do

not require it in the last call, which saves time, because the two

matrices are big.

ThullYapHGCD proceeds from (a,b) of size 2m; after the �rst

call to Reduce, we get numbers a′ and b ′ of size ≈ 3m/2, and after

the second call, the �nal result are a′ and b ′ of size ≈m.

3.2.6 Comments of our changes with the reference. We elaborate

on the di�erences between Algorithm 3 and the reference algorithm

in [26]:

Step 1. There are two reasons to stop immediately: when ‖a‖ < 2,

or ‖a‖ ≥ 2 and ‖b‖ < m, in which case a and b satisfy the

bounds (2) already.

Step 2.2 When ‖a0‖ < 2, the recursive call to ThullYapHGCD came

back with M = E, which means that we need to use the

correcting procedure Fixup0. Otherwise we can apply the

procedure Fixup with auxiliary parameter t = T(a0).
Step 4.1 is added since this case can (and does) happen.

Step 4.2 This step corresponds to the fact that (c,d) are close enough
to our goal (a′,b ′) and it is enough to use Fixup0 to get there.

4 APPLICATION TO CORNACCHIA’S
ALGORITHM

Cornacchia’s algorithm [6] is used to solve the Diophantine equa-

tion x2 + dy2 = N in coprime integers x , y, for given squarefree

integers N ,d > 0. This is an important tool in the building of com-

plex multiplication elliptic curves for primality proving [17] where

such a fast version was anticipated.

The algorithm (see [19]) starts from a root a > N /2 of a2 =
−d mod N and computes the euclidean remainder sequence (ri )

on (a,N ) stopping for the index ` such that r` <
√
N ≤ r`−1. For

small numbers, we may use the functions PartialJebelean. This

version is quadratic but very fast in practice. We see that we need



Function ThullYapHGCD(a,b)
Input :a > b ≥ 0 two integers

Output :a′, b ′, a regular pairM = (Q,M) such that

(a,b) = M(a′,b ′)M = E or

‖a′‖ ≥ T(a) > ‖b ′‖
1.m ← T(a);

if ‖a‖ < 2 or ‖b‖ < m then
// if ‖a‖ ≥ 2, ‖a‖ ≥ m > ‖b‖

return a, b, (∅,E);
if ‖a‖ < A then

return PartialEuclid(a, b,m);
if ‖a‖ < J then

return PartialJebelean(a, b,m);
2. a′,b ′,M, t ← Reduce(a,b,m);

// ‖a′‖ ≥ m + t > ‖b ′‖

3. if ‖b ′‖ < m then
return a′, b ′,M; // ‖a′‖ ≥ m + t ≥ m > ‖b ′‖

4. q ← a′ ÷ b ′; (c,d) ← (b ′,a′ mod b ′);M ←M ⊗ 〈q〉;

4.1 if ‖d ‖ < m then
return c , d ,M; // ‖c = b ′‖ ≥ m > ‖d ‖

4.2 if ‖1 + (c ÷ Bm )‖ < A then
a′,b ′,T ← Fixup0(c,d,m);

return a′,b ′,M ⊗ T ;

5. ` ← d‖c‖e; k ← 2m − ` − 1 ; // k ≈m/2
6. c ′,d ′,S, t ′ ← Reduce(c,d,k);

// ‖c ′‖ ≥ k + t ′ =m + 1 > ‖d ′‖

7. a′,b ′,T ← Fixup0(c
′,d ′,m);

8.M ←M ⊗ (S ⊗ T);

9. return a′,b ′,M;

Algorithm 3: Our version of the Thull-Yap HGCD algorithm.

Function Reduce(a,b,m)
Input :a > b ≥ 0 two integers,m an integer,

‖a‖ > ‖b‖ ≥ m
Output :a′, b ′,M = (Q,M), t such that

(a,b) = M(a′,b ′) for regularM withM = E
(and t = 0) or ‖a′‖ ≥ m + t > ‖b ′‖ (and
t = T(a0) with a0 described below).

1. a0 ← 1 + (a ÷ Bm ); b0 ← b ÷ Bm ;

2. if ‖a0‖ < A then
t ← 0;

a′,b ′,M ← Fixup0(a,b,m);

else
2.0. t ← T(a0);

2.1. a∗
0
,b∗

0
,M ← ThullYapHGCD(a0, b0);

2.2. (a′,b ′) ← (a∗
0
,b∗

0
)Bm +M−1(−a1,b1) with

M = (Q,M);

2.3. a′,b ′,M ← Fixup(a′,b ′,M,m, t );

3. return a′,b ′,M, t ;
Algorithm 4: Algorithm Reduce.

to perform a single call to ThullYapHGCD to get an approximation

to our answer, which leads to a fast algorithm.

Function FastSqarerootRemainder(a,b)
Input :a > b two integers

Output :The largest euclidean remainder r` in the

sequence for (a,b) such that r` ≤
√
a < r`−1

1. a′,b ′,M ← ThullYapHGCD(a,b);

2. return PartialEuclid(a′,b ′,
√
a);

Algorithm 5: FastSqarerootRemainder.

Proposition 4.1. Algorithm FastSqarerootRemainder is cor-
rect and terminates in time O(lognM(n)) algorithm for n-bit integer
N .

Proof: since N is not a perfect square, that large inequalities do not

matter. From (2), we get that at the beginning of Step 2, we have

b ′ < B2
√
a and a′ ≥ B

√
a. If b ′ ≤

√
a, we are done. Otherwise,

using Lemma 2.1, we conclude that with at most 4β steps of the

Euclidean algorithm, we �nd two remainders of the Euclidean se-

quence for a′,b ′ (and therefore for (a,b)) satisfying a∗ ≥
√
a > b∗.

The complexity analysis comes from the reference. �

In practice, we can replace PartialEuclid by PartialJebelean

in Step 2.

5 TESTING
HGCD programs are somewhat easier to test than gcd programs,

since for the latter, random pairs of integers yield a gcd that is

in general very small. For HGCD, using random pairs or making

exhaustive loops is worthwhile. To go further, we �rst explain how

to compute pairs that have large Euclidean quotients. Since the

Thull-Yap algorithm is complex, we need to �nd test numbers that

cover the di�erent branches of the algorithm. This is the best we

can do. Proving the correctness of the implementation (and of that

of other gcd algorithms) might be done using the techniques of [14]

and this would have a de�nite impact on these tricky programs. In

the following, we give families of test numbers.

5.1 Special numbers
Let M = 2

n − 1 for n ≥ 0 denote a Mersenne number; Fn desig-

nates the n-th Fibonacci number. Remember that gcd(Mn ,Mk ) =

M
gcd(n,k ); also gcd(Fn , Fn−1) = 1 (and provide the maximum length

sequence with all quotients equal to 1). We hope to create a max-

imum of problems with all these sequences of 1 in their binary

expansion. Note that

2
n − 1 = 2(2n−1 − 1) + 1, 2

n−1 − 1 = (2n−1 − 1) × 1 + 0

so that the sequences of quotients is (2, 2n−1−1) giving an example

of quotients tending to in�nity. This can be generalized as

Mn = 2
n − 1 = 2

n−k (2k − 1) + 2n−k − 1 = 2
n−kMk +Mn−k .

for which, with k < n/2, Mn−k is the euclidean remainder and

the partial quotient 2
n−k

is large. This is also a way of generating

several large quotients in the same Euclidean sequence.

5.2 Special primes as tests for ThullYapHGCD
We take the following from [2]. Suppose we want to write a prime p
as 4p = x2+dy2 in coprime integers x andy (i.e., writep as the norm

of an integer in the quadratic �eld Q(
√
−d) with d > 0). For special



values of positive d ≡ 1, 2 mod 4, the so-called idoneal numbers,
congruence conditions are enough for asserting the existence of

(x ,y). To test our HGCD algorithm, it is enough to compute r` using
FastSqarerootRemainder and check whether p − r2

`
= dy2.

5.3 Covering all cases
Now, we need to craft many more of these to cover all the branches

of the code, in particular the Fixup procedure at the heart of the

algorithm. We give below families of tests that work for any value

of B.
Remember the parameters associated with input numbers (a,b):

m = TB(a),a0 = 1 + (a ÷ Bm ),a1 = a0B
m − a, t = TB(a0);

(b0,b1) = (b ÷ B
m ,b mod Bm ).

The following easy result will help us building test instances, start-

ing from auxiliary integers u, Ai and Bi that help us construct two

integers a and b as input for the program.

Lemma 5.1. Let u be an integer and n ∈ {u + 2,u + 3}; put t =
1 + du/2e. Let A0, A1, B0, B1 be integers, such that

(i) Bu−1 < B0 < A0 < B
u .

(ii) B0 < A0; 1 ≤ A1 ≤ B
n , 0 ≤ B1 < B

n .
Let b = B0B

n + B1 and

a =

{
(A0 − 1)B

n +A1 if 0 ≤ A1 < B
n ,

(A0 − 2)B
n +A1 if A1 = B

n .

Then a and b are such that TB(a) = n and ai = Ai , bi = Bi .

Proof: For the �rst case,

Bn+u−1 < a < (Bu − 1)Bn + (Bn − 1) = Bn+u − 1,

so thatn+u−1 < ‖a‖ < n+u andTB(a) = n for then ∈ {u+2,u+3}.
The other properties are obvious, as well as the second case. �

Let us come back to our algorithm. By construction, (a′
0
,b ′

0
) =

M−1(a0,b0) and

‖a′
0
‖ ≥ t > ‖b ′

0
‖.

Our matrix M = [[p,q], [r , s]] has positive entries satisfying p ≥
q, r ≥ s > 0. Using Lemma 3.2, we compute

δ (a′ + b ′) = δ (a′
0
+ b ′

0
)Bm + (r − s)a1 + (p − q)b1, (7)

where a1, b1, r − s and p − q are positive by construction. Our idea

is to force the �xup case to appear when coming back to the �rst

level of recursion, which is enough for our purpose.

Say k ≥ 2 and

a0 = q1b0 + r2, 0 ≤ r2 < b0,

b0 = q2r2 + r3, 0 ≤ r3 < r2,

r2 = q3r3 + r4, 0 ≤ r4 < r3,

· · · · · · · · ·

rk−2 = qkrk + rk+1, 0 ≤ rk+1 < rk

and ‖rk ‖ ≥ t > ‖rk+1‖.
Our strategy is to select A1 and B1 and the qi > 1’s and ri ’s

so as to meet the conditions of Lemma 5.1, with B0 = q2r2 + r3,
A0 = q1B0 + r2 (this makes A0 > B0 trivially).

5.3.1 The case det(M) = −1. The case (-A) is the most standard

case and does not require specially crafted test cases. In the three

other cases, one has b ′ < 0. Remember that

b ′ = b ′
0
Bn − (ra1 + pb1)

with p ≥ r . Large values of p and r will help render b ′ negative.
All our examples will have k = 3. We compute

b ′ = r4B
n −A1 − (B1q1q2 +A1q2 + B1)q3 − B1q1, (8)

a′+b ′ = (r3+r4)B
n+(−q1q2q3+q1q2−q1−q3+1)B1−A1q2q3+A1q2−A1

(9)

At this point, we note that takingA1 = B
n
and r4 = 1 makes b ′ < 0

for all values of the remaining parameters.

The case (-B):. we want to build examples with ‖a′ + b ′‖ ≥ m+ t .
The toggle matrix will give us the solution via T = [[1, 1], [0,−1]]
and

(a,b) = MT (a′ + b ′,−b ′).

If M = 〈q1, . . . ,qk 〉, then MT = 〈q1, . . . ,qk − 1, 1〉 if qk > 1 and

MT = 〈q1, . . . ,qk−1 + 1〉 if qk = 1 and k > 1; MT is not regular

when k = 1 and qk = 1, but this is impossible by case (-A) being

treated �rst.

Let us build an example with q3 = 1 in details to illustrate our

strategy and we will be shorter in the other cases. Take r3 = B
t
,

q2 = B
u−t−1−2, q1 = 1, B1 = 0 so that b ′ = −Bnq2,a

′+b ′ = Bn+t .
Now

Bu−1 < B0 = B
u−1+Bu−t−1−Bt−2 < A0 = B

u−1+Bu−t−1−1 < Bu

and we apply Lemma 5.1.

Now turn towards q3 > 1. Select �rst q3 = 2, r3 = B
t + q2,

B1 = 0, q1 to obtain

a′ + b ′ = Bn+t .

When B = 2 (resp. B > 2), we take q2 = B
u−t−2

(resp. Bu−t−1) and
the corresponding values of A0 and B0 meet conditions of Lemma

5.1.

The cases (-C) and (-D):. we want ‖a′ + b ′‖ < m + t ; for (-C), we
also want q3 ≥ 2 and for (-D), we need q3 = 1.

For (-C), we take q3 = 2, B1 = 1 and the same values as in the

case (-B) with q3 = 2.

For (-D), we use the same formulas with q3 = 1 to get

a′ + b ′ = r3B
n − B1q1.

Taking r3 = B
t
yields a′ + b ′ = Bn+t − B1q1, so that B1 = 1 makes

a′ + b ′ of small norm. Now we take q2 = B
u−t−1

and q1 = 1 to

meet the conditions of Lemma 5.1.

5.3.2 The case det(M) = +1. In this case

a′ = a′
0
Bn − (qB1 + sA1), b ′ = b ′

0
Bn + (rA1 + pB1),

and remember that p ≥ q, r ≥ s . We need also even k ≥ 2. All our

examples have k = 2, this could be extended to larger k’s without
much trouble. When k = 2, we write

A0 = q1B0 + r2, 0 ≤ r2 < B0,

B0 = q2r2 + r3, 0 ≤ r3 < r2

With these values:

p = q1q2 + 1,q = q1, r = q2, s = 1.



Also, we need

‖r2‖ ≥ t > ‖r3‖, (10)

in order to have exactly two iterations reaching r3. Moreover:

a′ = r2B
n −(q1B1+A1), b ′ = r3B

n + (q2A1+ (q1q2+1)B1). (11)

The case (+A):. our target is ‖a′‖ ≤ ‖b ′‖ or simply a′ ≤ b ′. Start
from (11) and take A1 = B

n
making

a′ = (r2 − 1)B
n − q1B1, b ′ = (r3 + q2)B

n + (q1q2 + 1)B1.

For instance, take r3 = B
t − 1, r2 = B

t
, q2 = B

u−t−2
, q1 = B,

B1 = 1.

The case (+B):. to build a case withm + t > ‖a′‖ > ‖b ′‖, we use
the formulas (11) again. We may take r3 = 1, r2 = B

t
, q2 = B

u−t−1
,

q1 = 1,A1 = 1, B1 = 0. This makes ‖b ′‖ < ‖a′‖ < n+ t with n =m.

The case (+C):. ‖a′‖ > ‖b ′‖ and ‖a′‖ ≥ m + t . This is a very

frequent case, no speci�c construction is needed.

6 IMPLEMENTATION IN GMP
6.1 Norms and lengths
In an implementation context, we may favor use of the number of

digits (length denoted by L) of an integer a in base B. By convention,
L(0) = 1 (contrary to the convention in GMP); for a > 0:

L(a) = n if Bn−1 ≤ a < Bn ,n ≥ 1. (12)

The Thull-Yap algorithm is described in terms of norms, that is real

numbers. It is not conceivable to use these in an actual implemen-

tation. Hopefully, we only need comparisons of norms. We need

several operations:

(i) b‖a‖c = L(a) − 1

(ii) d‖a‖e =

{
r if a = Br

L(a) otherwise

(iii)‖a‖ < m⇔

{
r < m if a = Br

L(a) ≤ m otherwise

(iv)‖a‖ ≤ m⇔

{
r ≤ m if a = Br

L(a) ≤ m otherwise

(v)‖a‖ ≥ m⇔

{
r if a = Br

L(a) otherwise

Testing that a = Br is easy when we have the digits of a in base B.

6.2 Matrix-vector products
Let us start with an easy (but important) remark. With the usual

notations of Section 3.2.2, write a = (a0−1)B
m −a1, b = b0B

m +b1,
with all ai ’s and bi ’s ≈ B

m
. The algorithm is applied to (a0,b0)

and we recover a regular matrix M = [[p,q], [r , s]], together with
a∗
0
, b∗

0
such that (a∗

0
,b∗

0
) = M−1(a0,b0). By Lemma 3.2, we need to

compute

(a′
1
,b ′

1
) = δ [[s,q], [r ,p]](a1,b1),

where all entries are positive (trick!). In Step 2, a1,b1 ∼ B
m
, and

r , s,p,q are ∼ Bm/2 (unbalanced case). In Step 6, the corresponding

quantities are all ∼ Bm/2 (balanced case). In GMP, some work was

put to take care to unbalanced multiplications and we cannot do

better.

Were it not the case for GMP, in the unbalanced case and using

classical evaluation, we need 8 unbalancedm/2 ×m integer multi-

plications. Either the underlying arithmetic package knows how to

handle this, or we write a1 = a11B
m/2 + a10, b1 = b11B

m/2 + b10
and evaluate (

s q
r p

) (
a10 a11
b10 b11

) (
1

Bm/2

)
.

This amounts to multiplying two 2 × 2 matrices with entries close

to Bm/2. We may also use Strassen’s (or Bodrato’s) algorithm to use

(essentially) 7 multiplications ofm/2 ×m/2 integers. This is done
using the function mpn_matrix22_mul (implementing Bodrato’s

version [4]) from GMP, and as of version 6.2.1, activated at size

14.

In the balance case, we can share (modular) FFTs between entries

if they are large enough: computing sa1 + qb1 and ra1 + pb1 would
cost 6 FFTs (sharing that for a1, b1), 4 iFFTs. A similar e�ort could

be put in the Strassen case.

6.3 Handling partial quotients
It is well known that partial quotients in an Euclidean quotient

sequence tend to be small. As demonstrated in Section 5, we can

build sequences with large quotients, but not too many of them.

This is why we propose the following. Our data structure consists

in two arrays: the �rst one T stores integers smaller than some

boundmaxint and the second one P stores pointers to mpz_t. We

use the classical approach for extending the sizes ofT or P , namely

doubling the size when required. At index i ≥ 0 of T , we store

qi > 0 if qi < maxint ; if qi ≥ maxint , we store qi as an mpz_t
in P at index j ≥ 0 and store −j in t . Adding or deleting a partial

quotient is easy done and the amortized cost is O(n) if we need to

store n elements (using indices for the last elements of T and P ).
The �rst idea is to use 64 bits formaxint , but 32 will be enough for

very large numbers (if needed, we could have several small integer

arrays for larger values ofmaxint );

6.4 Computing products of regular matrices
Function BuildMatrixFromQ computes

M =
k∏
i=1

Qi ,where Qi = [[qi , 1], [1, 0]]

for generally small qi ’s (very frequently �tting in a single machine

word). Remember that k ≤ 2 logb/log 2 by Lemma 2.1. Remark that

[[u,v], [w,x]][[q, 1], [1, 0]] = [[qu +v,u], [qw + x ,w]]

and this operation costs essentially two multiplications by q, where
q is a single digit (very frequently q = 1), so it is rather inexpensive.

For large values of k (this is not our case, though), we can use a

product tree whose leaves are the Qi ’s or subproducts of small

matrices.

Matrix multiplications are needed to update the �nal matrix in

our algorithm. The Strassen/Bodrato algorithm is used there too.

6.5 Program and benchmarks
We have implemented Jebelean’s algorithm as well as the Thull-

Yap algorithm in GMP (also in Magma to clarify it), using low



level functions mpn_*. We used the famous mpn_random2 to check

our implementation and we are grateful to the GMP people to

have programmed such a lovely and performing bug catcher for

complicated integer arithmetic algorithms such as Thull-Yap’s. We

give timings (in ms) for our implementation of HGCD in Table 1

on our Intel(R) Xeon(R) CPU E7-4850 v2 @ 2.30GHz, compiler

gcc 9.3.0 with the -O2 option. We used 100 random numbers

of n 64-bit words in our functions: Euclid, Jebelean and Thull-Yap.

Needless to say, Euclid’s algorithm is less e�cient than Jebelean’s

n Euclid Jebelean Thull-Yap

500 5.76 1.00 2.24

1000 19.02 2.65 4.57

1500 41.57 5.46 7.46

2000 73.77 9.21 10.28

2500 116.91 13.96 13.45

3000 170.02 19.67 17.00

3500 232.28 26.27 20.49

4000 303.88 33.82 23.65

4500 384.08 42.37 27.04

5000 474.45 51.86 31.01

5500 571.34 62.58 35.37

6000 679.12 74.41 39.20

6500 794.60 87.91 43.37

7000 940.11 102.83 47.34

7500 1084.10 117.68 51.54

8000 1209.63 137.25 55.07

8500 1388.21 151.99 58.80

9000 1550.27 171.17 62.96

9500 1695.10 191.02 67.60

10000 1928.16 210.71 72.57

Table 1: Average timings for PartialRemainder algorithms
on n-word numbers.

quite rapidly. The Thull-Yap algorithm is more e�cient around 2500

64-bit words, sizes larger than currently used in ECPP’s records.

More work is needed to gain time on this implementation. Directly

comparing with GMP’s implementation of mpn_hgcd is di�cult. For

the sake of comparison, we compared function mpn_gcd with the

full gcd algorithm associated to our implementation of the Thull-

Yap algorithm; results are given in Table 2. GMP is superior to our

implementation (reasons for this include the handling of all the

2 × 2 matrices appearing, and also some required copies of large

integers).

7 CONCLUSION
We have implemented and discussed some potential improvements

to the Thull-Yap algorithm. A large part of our implementation can

be used to implement the algorithm of Lichtblau. This is work in

progress [18]. Magma code corresponding to this article is available

on the author’s web page
1
.

1
http://www.lix.polytechnique.fr/Labo/Francois.Morain

n Thull-Yap GMP

500 4.69 1.32

1000 10.28 3.55

1500 16.69 6.23

2000 22.60 9.26

2500 28.44 12.57

3000 36.33 15.27

3500 42.89 18.62

4000 48.71 22.38

4500 55.47 26.31

5000 62.04 31.67

5500 70.93 36.66

6000 81.12 40.31

6500 89.17 45.35

7000 97.16 49.80

7500 105.69 54.01

8000 112.91 60.72

8500 118.82 65.34

9000 127.97 70.13

9500 136.60 75.19

10000 146.63 82.12

Table 2: Average timings for gcd algorithms on n-word num-
bers.

We applied it to Cornacchia’s algorithm. This algorithm is also

used in Z[i] for cryptographic applications [13]. A fast gcd algo-

rithm exists for Z[i] (see [28]), and it would be interesting to try to

adapt the Thull-Yap algorithm for this goal.

ACKNOWLEDGMENTS
We thank A. Bostan, F. Chyzak and M. Mezzarobba for discussions

on the optimal matrix multiplication algorithms; A. Rosowski for

answering queries on his work [21] and sending formulas that

did not go through in our work; D. Stehlé for discussion around

the Thull-Yap algorithm; N. Möller for answering questions on his

algorithm and its implementation in GMP; E. Bach and Collins’s

daughter for trying to locate the work referred to in the introduction

(work that seems to be lost); J. van der Hoeven, G. Lecerf for helpful

discussions. Finally, the referees for this work did a very precise

job enabling to improve the exposition of the results.

REFERENCES
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. 1974. The design and analysis of

computer algorithms. Addison–Wesley.

[2] A. O. L. Atkin and F. Morain. 1993. Elliptic curves and primality proving. Math.
Comp. 61, 203 (July 1993), 29–68.

[3] D. J. Bernstein and B.-Y. Yang. 2019. Fast constant-time gcd computation and

modular inversion. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 3 (2019),

340–398. https://doi.org/10.13154/tches.v2019.i3.340-398

[4] M. Bodrato. 2010. A Strassen-like matrix multiplication suited for squaring and

higher power computation. In Symbolic and Algebraic Computation, International
Symposium, ISSAC 2010, Munich, Germany, July 25-28, 2010, Proceedings, Wolfram

Koepf (Ed.). ACM, 273–280. https://doi.org/10.1145/1837934.1837987

[5] R. P. Brent. 1976. Analysis of the binary Euclidean algorithm. SIGSAM Bull. 10, 2
(1976), 6–7. https://doi.org/10.1145/1093397.1093399

[6] G. Cornacchia. 1908. Su di un metodo per la risoluzione in numeri interi dell’

equazione

∑n
h=0Chx

n−hyh = P . Giornale di Matematiche di Battaglini 46
(1908), 33–90.

http://www.lix.polytechnique.fr/Labo/Francois.Morain
https://doi.org/10.13154/tches.v2019.i3.340-398
https://doi.org/10.1145/1837934.1837987
https://doi.org/10.1145/1093397.1093399


[7] GMP. [n.d.]. https://gmplib.org.

[8] T. Jebelean. 1993. Improving the multiprecision Euclidean algorithm. In Design
and implementation of symbolic computation systems (Lecture Notes in Comput.
Sci.), A. Miola (Ed.), Vol. 722. Springer-Verlag, 45–58. Proceedings DISCO’93,

Gmunden, Austria, September 15-17, 1993.

[9] T. Jebelean. 1995. A Double-Digit Lehmer-Euclid Algorithm for Finding the GCD

of Long Integers. J. Symb. Comput. 19, 1-3 (1995), 145–157. https://doi.org/10.

1006/jsco.1995.1009

[10] D. E. Knuth. 1970. The analysis of algorithms. In Actes du Congrès International
des Mathématiciens. Gauthier-Villars, 269–274.

[11] D. H. Lehmer. 1938. Euclid’s algorithm for large numbers. Amer. Math. Monthly
45 (1938), 227–233.

[12] D. Lichtblau. 2005. Half-GCD and fast rational recovery. In Symbolic and Algebraic
Computation, International Symposium ISSAC 2005, Beijing, China, July 24-27,
2005, Proceedings, Manuel Kauers (Ed.). ACM, 231–236. https://doi.org/10.1145/

1073884.1073917

[13] P. Longa and F. Sica. 2014. Four-Dimensional Gallant-Lambert-Vanstone Scalar

Multiplication. J. Cryptol. 27, 2 (2014), 248–283. https://doi.org/10.1007/

s00145-012-9144-3

[14] G. Melquiond and R. Rieu-Helft. 2020. WhyMP, a Formally Veri�ed Arbitrary-

Precision Integer Library. In ISSAC 2020 - 45th International Symposium on Sym-
bolic and Algebraic Computation. Kalamata, Greece, 352–359. https://doi.org/10.

1145/3373207.3404029

[15] R. T. Moenck. 1973. Fast Computation of GCDs. In Proceedings of the 5th An-
nual ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin,
Texas, USA, Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd,

Michael A. Harrison, Richard M. Karp, and H. Raymond Strong (Eds.). ACM,

142–151. https://doi.org/10.1145/800125.804045

[16] N. Möller. 2008. On Schönhage’s algorithm and subquadratic integer GCD

computation. Math. Comp. 77, 261 (2008), 589–607. https://doi.org/10.1090/

S0025-5718-07-02017-0

[17] F. Morain. 2007. Implementing the asymptotically fast version of the elliptic

curve primality proving algorithm. Math. Comp. 76 (2007), 493–505. http:

//www.lix.polytechnique.fr/Labo/Francois.Morain/Articles/fastecpp-�nal.pdf

[18] F. Morain. 2022. Remarks on Lichtblau’s HGCD algorithm. (Feb. 2022). Preprint.

[19] A. Nitaj. 1995. L’algorithme de Cornacchia. Exposition. Math. 13 (1995), 358–365.
[20] V. Y. Pan and X. Wang. 2002. Acceleration of Euclidean algorithm and extensions.

In Symbolic and Algebraic Computation, International Symposium ISSAC 2002,
Lille, France, July 7-10, 2002, Proceedings, Teo Mora (Ed.). ACM, 207–213. https:

//doi.org/10.1145/780506.780533

[21] A. Rosowski. 2019. Fast Commutative Matrix Algorithm. CoRR abs/1904.07683

(2019). arXiv:1904.07683 http://arxiv.org/abs/1904.07683

[22] A. Schönhage. 1971. Schenelle Berechnung von Kettenbruchentwicklungen. Acta
Informatica 1 (1971), 139–144.

[23] J. Sorenson. 1994. Two fast GCD algorithms. J. Algorithms 16 (1994), 110–144.
[24] D. Stehlé and P. Zimmermann. 2004. A Binary Recursive Gcd Algorithm. In

Algorithmic number theory (Lecture Notes in Comput. Sci.), D. Buell (Ed.), Vol. 3076.
Springer, 411–425. 6th International Symposium, ANTS-VI, Burlington, VT, USA,

june.

[25] J. Stein. 1967. Computational problems associated with Racah algebra. J. Comp.
Phys. 1 (1967), 397–405.

[26] K. Thull and C.-K. Yap. 1990. A Uni�ed Approach to HGCD Algorithms for

polynomials and integers. Available at https://cs.nyu.edu/yap/papers/index.html.

[27] K. Weber. 1995. The accelerated integer GCD algorithm. ACM Trans. Math.
Software 21, 1 (March 1995), 111–122.

[28] A. Weilert. 2000. Asymptotically Fast GCD Computation in Z[i]. In Algorithmic
Number Theory, 4th International Symposium, ANTS-IV, Leiden, The Netherlands,
July 2-7, 2000, Proceedings (Lecture Notes in Computer Science), Wieb Bosma (Ed.),

Vol. 1838. Springer, 595–613. https://doi.org/10.1007/10722028_40

[29] C.-K. Yap. 2000. Fundamental problems of algorithmic algebra. Oxford University

Press.

https://doi.org/10.1006/jsco.1995.1009
https://doi.org/10.1006/jsco.1995.1009
https://doi.org/10.1145/1073884.1073917
https://doi.org/10.1145/1073884.1073917
https://doi.org/10.1007/s00145-012-9144-3
https://doi.org/10.1007/s00145-012-9144-3
https://doi.org/10.1145/3373207.3404029
https://doi.org/10.1145/3373207.3404029
https://doi.org/10.1145/800125.804045
https://doi.org/10.1090/S0025-5718-07-02017-0
https://doi.org/10.1090/S0025-5718-07-02017-0
http://www.lix.polytechnique.fr/Labo/Francois.Morain/Articles/fastecpp-final.pdf
http://www.lix.polytechnique.fr/Labo/Francois.Morain/Articles/fastecpp-final.pdf
https://doi.org/10.1145/780506.780533
https://doi.org/10.1145/780506.780533
http://arxiv.org/abs/1904.07683
https://cs.nyu.edu/yap/papers/index.html
https://doi.org/10.1007/10722028_40

	Abstract
	1 Introduction
	2 Euclid's algorithm and variants
	2.1 Basic properties
	2.2 Properties of regular matrices
	2.3 Partial remainders
	2.4 The road to sub-quadratic algorithms

	3 The Thull-Yap algorithm
	3.1 Norms and bounds
	3.2 The Thull-Yap algorithm in a nutshell

	4 Application to Cornacchia's algorithm
	5 Testing
	5.1 Special numbers
	5.2 Special primes as tests for ThullYapHGCD
	5.3 Covering all cases

	6 Implementation in GMP
	6.1 Norms and lengths
	6.2 Matrix-vector products
	6.3 Handling partial quotients
	6.4 Computing products of regular matrices
	6.5 Program and benchmarks

	7 Conclusion
	Acknowledgments
	References

