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An Efficient Parallel Implementation of a
Perfect Hashing Method for Hypergraphs

Somesh Singh
INRIA and LIP (CNRS - Université de Lyon -
INRIA - ENS Lyon), France
somesh.singh @ens-lyon.fr

Abstract—Querying the existence of an edge in a
given graph or hypergraph is a building block in
several algorithms. Hashing-based methods can be
used for this purpose, where the given edges are stored
in a hash table in a preprocessing step, and then
the queries are answered using the lookup operations.
While the general hashing methods have fast lookup
times in the average case, the worst case run time is
much higher. Perfect hashing methods take advantage
of the fact that the items to be stored are all available
and construct a collision free hash function for the
given input, resulting in an optimal lookup time
even in the worst case. We investigate an efficient
shared-memory parallel implementation of a recently
proposed perfect hashing method for hypergraphs.
We experimentally compare the resulting parallel
algorithms with the state-of-the-art and demonstrate
better run time and scalability on a set of hypergraphs
corresponding to real-life sparse tensors.

I. INTRODUCTION

We investigate parallel algorithms for construct-
ing data structures to answer queries about the
existence of edges in a given graph or hypergraph.
More precisely, given a hypergraph H = (V, E)
with the vertex set V' and the hyperedge set F, a
query consists of a subset g of vertices V' and asks if
q is a hyperedge in E. Our focus is on d-uniform,
d-partite hypergraphs where the vertex set is the
union of d disjoint sets, V' = U?Zl V(@ and each
hyperedge contains exactly one vertex from each
set VO, A special case is d = 2, which concerns
bipartite graphs.

Much like bipartite graphs naturally model ma-
trices, d-uniform, d-partite hypergraphs model d-
dimensional tensors (or multidimensional arrays).
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Let 7 be a d-dimensional tensor of size s; X

- X sq. Each nonzero entry in 7 is addressed
with an ordered set of d indices, or a d-tuple, of
the form [i1,...,%q] where i; € {1,...,s;}, for
7 =1,...,d. The d-uniform, d-partite hypergraph
H = (V,E) associated with 7 can then be de-
fined as follows. The vertex set V = U?Zl V@),
where V() = {vgz), e mﬁ?}. The hyperedge set £
contains a hyperedge h = [v§11), ey vz(j)] for each
nonzero 7T [i1,...,iq]. With this correspondence in
mind, our aim is thus developing efficient parallel
algorithms to answer queries asking if a given
position in matrix or a tensor is nonzero.

A particular use case arises in a recent ten-
sor decomposition method proposed by Kolda and
Hong [10]. They develop a sparse tensor decom-
position algorithm where zeros and nonzeros of
a given tensor need to be sampled. For sampling
zeros, a random set of indices is created, and those
positions in the given tensor are checked to see if
they are zero or not. Modeling the given sparse
tensor as a hypergraph thus leads to the problem at
hand. In a more general setting, a data structure that
quickly answers edge queries can be used to detect
if a given set of vertices form a clique or a dense
enough vertex set, in time quadratically proportional
to the size of the vertex set—independent of the sum
of degrees of the vertices in the set—which can be
much larger.

A query in the mentioned scenarios has d indices.
Since, a query cannot be answered without reading
its indices, an answer can only be delivered in Q(d)
time. An efficient data structure to answer a query



should therefore take ©(d) time. If we consider d a
constant, a query should be answered in constant
time. One can use classical hashing methods to
answer the queries. While in the average case the
query response time will be O(d), the worst case is
much higher. Since the hypergraph (or the tensor)
is available to preprocess before answering queries
and does not change, one can do better. Perfect
hashing methods work for a given set of static items,
and find a hash function such that when used on
the given set there is no collision. Such methods
thus enable a ©(d) query time in the worst case.
One perfect hashing method, called FKSLean, is
recently developed by Bertrand er al. [2] for the
problem at hand. We propose PARFKSLEAN—
efficient parallelization of the methods used to con-
struct the data structures of FKSLean, on shared-
memory parallel systems.

The organization of the rest of this paper is as
follows. Since we parallelize FKSLean, we present
its detailed summary in the next section. We briefly
survey some recent studies on perfect hashing in the
same section. In Section III, we describe our parallel
implementation: PARFKSLEAN. We evaluate PAR-
FKSLEAN in Section IV on a set of large problem
instances, and compare it with the state-of-the-art.
Section V concludes the paper with a summary and
planned research.

II. BACKGROUND

In a d-partite d-uniform hypergraph H = (V, E),
the hyperedge set E is a set of d-tuples. These
hypergraphs are generalizations of bipartite graphs
and model sparse tensors and matrices.

Throughout the paper, n denotes the number
of hyperedges, and p is a prime number larger
than n. Without loss of generality we assume that
n > |V(i)| for s =1,...,d, as otherwise there are
vertices which are not in any of the hyperedges. The
universe of all d-tuples of the form [zg,...,2zq_1]
where x; is between 0 and p — 1 is denoted by U.
In other words, U = {0,...,p—1}¢ where E C U.
Each query will be an element of the universe U.

A. A summary of FKSLean

The FKSLean method [2] uses a two-level struc-
ture to obtain a perfect hashing for a given static

set of hyperedges. It is an adaptation of a well-
known method [7] and handles the hypergraphs
efficiently. A first level hash function is used to split
the given hyperedges into buckets. Then for each
bucket a perfect hashing of hyperedges mapped to
that bucket is found and the hyperedges, or pointers
to the hyperedges, are stored in a space associated
with that bucket.

Let x,y be two elements of the universe U.
We use x'y = Zlexiyi to denote the inner
product of the vectors corresponding to d-tuples
x and y. In the FKSLean method, a k € U
is chosen for the first level, and the hash func-
tion h : U — {0,...,n — 1} is defined as
h(k,x,p,n) = (kTx mod p) mod n. Then, each
hyperedge x € FE is assigned to the bucket B;
where i := h(x,k,p,n). Let b; denote the number
of hyperedges from F that are mapped to B;. A
space of size 2b? is associated with the bucket B;
to store the references to the hyperedges mapped
to B;, each at a unique place in this space. This
is achieved by choosing a k; € U for each bucket
B such that h(k;, x, p, 2b?) == (k;* x mod p) mod
2b? is an injection for all x mapped to B; by
the first level hash function. In other words, each
hyperedge x in B; is mapped to a unique number
in {0,...,2b7 — 1} with h(k;,x,p,2b?). Then a
reference to x is stored in the space associated with
B; at location h(k;,x,p,2b?). Note that as there
are b; hyperedges in the bucket B;, only % of the
storage space contains references to the hyperedges;
other entries are empty.

Given this structure, testing if a given hyperedge
q is in the hyperedge set E can be carried out in
two steps. First, the bucket number i = h(k, q,p, n)
is computed. Then, B;’s storage at h(k;, q,p, 2b7)
is checked. If no reference is stored there, then q
is not in F; else the hyperedge whose reference is
stored at that position is compared with q, and the
answer is returned.

FKSLean keeps a set K of d-tuples so that each
bucket B; uses one of the d-tuples in K as k;. The
idea is to store only a few different d-tuples and use
them at different buckets for the second level hash
functions. A bucket thus stores the id of a d-tuple
in K instead of a d-tuple itself.
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Fig. 1: The FKSLean data structure [2].

Figure 1 depicts the data structure of FK-
SLean [2]. As seen in the figure, there is a d-tuple
k used for the first level hash function, there is a set
K of d-tuples, and a storage space for each bucket.
For each bucket B;, one needs to know the number
b; of hyperedges mapped to B; by the first level
hash function. Then, (i) if b; = 0, then nothing
else is needed for that bucket; (ii) if b; = 1, then
a reference to the only hyperedge mapped to B;
is stored (no second level hash function is needed);
(iii) otherwise, the index of a d-tuple from K which
defines a perfect hashing for B; is stored, along
with a storage space of size 2b?, which holds the
references to b; hyperedges.

The effectiveness of FKSLean stems from three
theoretical results [2]. First, for a randomly chosen
k € U the probability that > b? < 7n is more than
1/2. Thanks to this result, one can, in expectation,
find a k such > b7 < 7n in a few trials. Such
a k guarantees a total of O(n) storage space for
the buckets. The second theoretical result is that
for a randomly chosen k; € U the probability that
k; defines a perfect hashing h(k;, x, p, 2bf) for the
hyperedges of B; is more than 1/2. This conveys
that such a k; can be found in a constant number of
trials in expectation. These two properties, based on

the original source [7], guarantee that in expectation
(or in the average case), the structure can be con-
structed in O(dn) time. The third theoretical result,
unique to FKSLean, is that O(logn) different d-
tuples in K are enough, in expectation, to supply
each bucket with a suitable hash function.

As discussed above, FKSLean uses a total of
O(n) storage space for the buckets, and another
O(dlogn) space for K. Theoretical results and
practical experiments [2] show that the constants in
the big-oh formulas are small. In practice, less than
on storage space, and less than 0.5 log, n tuples in
K are needed.

B. Other recent works

There are other recent studies focusing on perfect
hash functions for static sets. Among them, the
most recent ones are PTHash [14], RecSplit [6]
and BBHash [12]. Both PTHash and BBHash
have parallel implementations of their construction
phases. The current PTHash implementation [15]
compares PTHash with BBHash and reports better
results with PTHash, thus forming the state-of-the-
art. We therefore use PTHash for our experiments.

PTHash and other recent perfect hash functions
cited above create minimally perfect hash functions
for static sets. These functions map each element
of a given set of n elements to the non-negative
integers {0,...,n — 1} without any collisions.
Therefore they can be used in the target problem.
In this approach, the hyperedges are processed to
find a minimally perfect hash function f, bijectively
mapping the hyperedge set to {0,...,n —1}. Then
an array of size n is allocated, and the id of a
hyperedge e is stored at the location f(e) of this
array (the indices start from zero). In order to check
if a given hyperedge q is in the original set, one thus
needs to fetch the id of the hyperedge e stored at
f(q) and compare g against e.

The recent construction algorithms implemented
in PTHash, FKSLean, RecSplit and BBHash are
very efficient, and enable worst case ©(d) time
for queries. Among these, only FKSLean supports
hyperedges natively; for others an initial mapping
of the input hyperedges to the keys of 64 or 128
bits is necessary.



While the original implementation of
PTHash [14] creates minimal perfect hash
functions, the recent one [15] also constructs
non-minimal hash functions. This relaxation
of the minimality constraint enables faster
construction time. Our experiments use this latter
implementation [15].

We can think of two other alternative approaches
to answer hyperedge queries. First, one can use
variants of Bloom filters [3], which are designed
for approximate set membership tests. Designing
memory- and run time-efficient Bloom filter vari-
ants is a very active area [4], [8], [18]. In general,
these filters have a small false positive probability.
Therefore, using a variant of Bloom filter in the
targeted application contexts necessitates construct-
ing another data structure to verify every positive
answer returned by the filter. While this can reduce
the query response time, one has to invest in con-
structing two data structures. The second alternative
is to use Cuckoo hashing [13] and its variants. These
are perfect hashing approaches with O(1) lookup
time in the worst case; for our case it is O(d).
The construction is much more involved. In our
case, where the items to be stored are available
at the outset, constructing a Cuckoo hash table
amounts to constructing a random bipartite graph
on items and memory slots, and testing for a perfect
matching of items to slots. While there are efficient
algorithms for matching [1], [5], finding suitable
hash functions, constructing the bipartite graphs
implicitly or explicitly, and finding maximum car-
dinality matchings in parallel will be much more
complicated than the algorithms that we parallelize.

III. PARALLEL CONSTRUCTION

PARFKSLEAN implements a parallel version of
the construction phase of FKSLean. For efficient
memory access, the storage space associated with
the buckets is kept as a contiguous array. This
leads us to use a data structure similar to the well-
known compressed sparse row (CSR) format for
representing the buckets and the associated storage
space. In Figure 1, fksStorage is a contiguous
array and holds the storage space associated with
buckets one after another; fksOffset contains the

start address of each bucket in fksStorage. In order
to build these arrays efficiently, another matrix in
CSR format is built in an intermediate step. In
other words, a large body of the work carried out
by PARFKSLEAN is formulated as building two
matrices, one after another. The first one is an n xn
matrix and is built columnwise by setting a single
nonzero per column randomly (the first level hash
function). A CSR representation of this matrix is
built to create a hyperedge list per bucket. The
second matrix is of size n x S, where S is the size
of the fksStorage array. The row pointers of this
second matrix are set up using those of the first one.
The column indices are the keys in the second level
hash function, shifted according to the start of the
buckets, and are not stored. Instead, the hyperedge
ids are stored along with zeros—that is why the
storage is CSR-like.

The construction is done in three stages. In the
first stage, a prime number is chosen. In most
practical cases, where n < 23! —1, one can chose p
as the Mersenne prime 23! —1.If n > 23! —1, then a
larger prime can be found. There is always a prime
number between n and 2n for n > 1 by Bertrand’s
postulate [9, p. 455], hence at most n numbers need
to be tested for finding p. The second stage finds
a suitable k for the first level hashing and prepares
data structures for the next stage. The third stage
carries out the second level hashing and finalizes
the data structure of Figure 1. We now describe the
second and third stages.

A. Setting up fksOffset

The main objective here is to find a k guarantee-
ing a bound on the size of fksStorage. It is reported
earlier [2] that any randomly chosen k satisfies the
bound b7 < 7n, with a much higher probability
than 1/2. With this in mind, PARFKSLEAN com-
putes the size of fksStorage while building buckets
for a randomly chosen k. This results in this stage
carrying out the first level hashing efficiently, and
enables coarse grained parallelism in the next stage
for the second level hashing. In this phase, thus
(i) a suitable k is found; (ii) fksOffset pointers in
Figure 1 are set to the correct value; and (iii) for
each bucket a list of hyperedges that map to it are



constructed. The overall computation is carried out
in three super-steps outlined below.

1) Bucketing: PARFKSLEAN computes
h(k,e,p,n) for each hyperedge e in parallel
and stores them in an array bucket_ids. Since
these computations are independent, bucket_ids
can be populated fully in parallel. This step is
parallelized using OpenMP’s parallel for construct
with static schedule and a fixed chunk size of [%W s
where 7' is the number of threads. This achieves
good load balancing.

2) Building hyperedge-lists for buckets: Next,
the hyperedge-lists of the buckets are built in the
CSR format with arrays items and offset. The
items array stores the concatenated hyperedge-lists
of all buckets contiguously. The offset array stores
each bucket’s hyperedge-list’s starting position in
items. The items and offset arrays both have O(n)
space complexity. These two arrays are not part of
the PARFKSLEAN’s final data structure; they are
created for efficient parallelization in the next stage.

PARFKSLEAN builds offset in a parallel his-
togram computation using the bucket_ids array
followed by a prefix sum. In the parallel his-
togram computation, the hyperedges are distributed
uniformly among the threads. A thread visits its
hyperedges, and for a hyperedge e, it atomically
increments offset[bucket_ids[e]] (we use atomic
add). The histogram computation requires perform-
ing O(n) atomic operations. Then the prefix-sum
on offset is computed using a well-known, two-
pass algorithm. In this algorithm, first a parallel
segmented reduction is carried out on segments of
size O(#) by T threads. Then, a prefix-sum of
the partial segment-wise sums is computed; this is
only O(T') work and is done sequentially. At last, a
parallel segmented scan of the offset array is carried
out, taking the prefix-sum of segment-wise sums
into account, to finalize the computation.

Once offset is computed, PARFKSLEAN then
constructs the items array in parallel. We assign
{%W hyperedges to each thread. A thread processes
its hyperedges one by one. For each processed
hyperedge e, a thread gets an offset value by
atomically decrementing offset[bucket_ids[e]], and
writes the id of e at the corresponding place in

items. This requires O(n) atomic operations.

3) Setting up the storage space: The third super-
step in this stage is to prepare the fksOffset array
shown in Figure 1 for the sake of efficiency in the
second level hashing. By observing that

b, = offset[i + 1] — offset[s] ,
this array is initialized in parallel by setting

b; if b; € {071}7

1+2b7 otherwise.

fksOffset[i] = {

A static schedule assigning [#%] buckets to each
thread will effect good load balancing during this
initialization. Then, a parallel prefix-sum operation
is carried out on fksOffset, as discussed for offset
before. At the end, the total size of fksStorage is
available at fksOffset[n], and can be checked to see

if the bounds on memory are satisfied.

B. Constructing fksStorage

At this stage, PARFKSLEAN first allocates
fksStorage. Then, the pool of keys, K in Figure 1,
is populated. We put 2log, n keys in K, which is
small and does not require parallelization. These
many keys are sufficient to supply each bucket with
a suitable hash function. In the remote event that
these keys prove inadequate, additional keys may
be generated and added to K. Then PARFKSLEAN
follows a coarse-grained parallelization based on
assigning buckets to threads to find a perfect hash-
ing for each bucket. Thanks to the work done in
the previous stage, the arrays offset, items, and
fksOffset are available, and the whole computation
is embarrassingly parallel.

If a bucket is empty, there is nothing to be done.
If a bucket has only a single hyperedge, the id
of that hyperedge is stored in fksStorage. For a
bucket B; having more than one hyperedge, the
d-tuples from K are tested one by one to find a
perfect hashing. For this purpose, each hyperedge
e in the hyperedge-list of B; is placed at the
location h(k;,e,p,2b?) + fksOffset[i] for a tested
k;, until we process all e (in which case k; defines
a perfect hashing), or a collision occurs (in which
case another d-tuple is tried). Work per bucket is
non-uniform. In order to avoid potential workload



imbalance, PARFKSLEAN makes use of a dynamic
scheduler. The loop over buckets is parallelized
among 7T threads using OpenMP’s parallel for con-
struct using the dynamic schedule with a chunk size
of [MLT
than the number of threads, such a parallelization
scheme is expected to achieve good load balancing.

. As the number of buckets is much more

IV. EXPERIMENTS
A. Setup

All experiments are carried out on an Intel Xeon
Gold 5218 CPU with 64 cores (two sockets, 32
cores each), 2.3 GHz clock speed, 22 MB L3-
cache, and 384 GB DDR4-2667 memory, which
runs Debian GNU/Linux 10 (64 bit). All codes are
in C++ and are compiled with GCC 8.3.0, with
optimization flag —~03 and ~march=native. We
use OpenMP for parallelization. For all mod n
and mod p operations in PARFKSLEAN, we use
fastmod library [11], and fast modulo operations
with Mersenne primes [17], respectively; while
mod 2b? operations are carried out with the stan-
dard modulo operator % in C++.

Input Tensors. We present experiments with ten
sparse tensors derived from real-world applications
for evaluating the performance of PARFKSLEAN.
All the tensors are available in FROSTT [16], and
are described in Table I, in the increasing order of
number of nonzeros. We also use T-1 through T-10
to refer to these tensors in the given order.

Comparisons. We compare the proposed PAR-
FKSLEAN with the state-of-the-art implementa-
tion of PTHash (version 1.0.1 available at https:
//github.com/jermp/pthash/). We run PTHash using
three different parameter setups as recommended
in the original source [15] denoted by PTHash-
PC, PTHash-DD, and PTHash-EF. The construc-
tion phase of PTHash is parallel, but not the
query phase. For parallelizing the query phase,
we followed the same loop-parallelism both in
PARFKSLEAN and PTHash, where each query is
assigned to a thread; we used the static schedule
for parallel for-loops from OpenMP. We thus prin-
cipally investigate the run time and scalability of the
construction phase of PARFKSLEAN and PTHash.

Tensor | d | Dimensions n
chicago_crime [ 4| 6,186x24 X 77 x 5,330,673
(T-1) 32
vast-2015-mc1-3d | 3 | 165,427 x | 26,021,854
(T-2) 11,374 x 2
vast-2015-mc1-5d | 5 | 165,427 X | 26,021,945
(T-3) 11,374 x 2 X
100 x 89
enron | 4| 6,066 x 5,699 x | 54,202,099
(T-4) 244,268 x 1,176
nell-2 | 3]12,092x9,184x | 76,879,419
(T-5) 28,818
flickr-3d | 3 | 319,686 x | 112,890,310
(T-6) 28,153,045 X
1,607,191
flickr-4d | 4 | 319,686 x | 112,890,310
(T-7) 28,153,045 X
1,607,191 x 731
delicious-3d | 3 | 532,924 X | 140,126,181
(T-8) 17,262,471 X
2,480,308
delicious-4d | 4 | 532,924 x | 140,126,181
(T-9) 17,262,471 X
2,480,308 X
1,443
nell-1 [ 372,902,330 x | 143,599,552
(T-10) 2,143,368 X
25,495,389

TABLE I: Input tensors.

We also briefly investigate the query response time
of both tools for the sake of completeness. We
report the execution times of the construction- and
the query-phase of PARFKSLEAN and PTHash
averaged over 10 independent runs.

PTHash implementation works on 64-bit items
and the interface suggests converting other type of
inputs to 64-bit keys with a technique called uni-
verse reduction [17]. We do that conversion offline
and do not include the timings of the conversion in
the construction phase of the PTHash variants.

B. Analysis of the construction phase

Figure 2 presents a comparison of the run time
of PARFKSLEAN and PTHash in the construc-
tion phase, for six different thread configurations
{2,4,8,16,32,64}. In each of the figures, the
construction time is normalized with respect to
the construction time of PARFKSLEAN for every
tensor. Thus, for every input, the bar corresponding
to PARFKSLEAN is of unit height. The run time
of the PARFKSLEAN is mentioned, in seconds,
over the bar corresponding to PARFKSLEAN for
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Fig. 2: Construction time of PARFKSLEAN and PTHash with 2, 4, and 8 threads. Y-axis is the
construction time normalized with respect to PARFKSLEAN. The absolute construction time (in seconds)
of PARFKSLEAN is given on top of its bar for every tensor.

each tensor. For the bars corresponding to the three
PTHash variants, if the height of the bar is greater
than one unit, then the higher the bar, slower it is
in comparison to PARFKSLEAN.

As seen in Figures 2a-2f, the construction phase
of PARFKSLEAN is always faster than all three
variants of PTHash. As the number of threads in-
creases, the relative performance of PARFKSLEAN
with respect to PTHash improves, across all input
tensors, as evidenced by the higher bars corre-
sponding to PTHash variants for higher thread
counts. PARFKSLEAN is up to 5.6 times faster
than the best performing variant of PTHash in
the construction phase; the former achieves the
maximum speedup with respect to PTHash-PC

on vast-2015-mc1-5d (T-3) when run using 64
threads (Figure 2f). In the light of this discussion,
we conclude that the construction phase of PAR-
FKSLEAN is always faster than that of the fastest
PTHash variant.

Figure 3 presents the parallel scaling of the
construction phase of PARFKSLEAN and PTHash
variants on nell-2, flickr-4d, delicious-4d, nell-1.
We took the four largest tensors from the data set
with different number of nonzeros. In the figure, the
speedup of PARFKSLEAN and PTHash variants is
with respect to their respective run time with two
threads. This comparison reveals the efficacy of the
parallelization of PARFKSLEAN. We observe that
PARFKSLEAN scales better than PTHash for all
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Fig. 2: continued: Construction time of PARFKSLEAN and PTHash with 16, 32, and 64 threads. Y-axis
is the construction time normalized with respect to PARFKSLEAN. The absolute construction time (in
seconds) of PARFKSLEAN is given on top of its bar for every tensor.

the four inputs. For PARFKSLEAN, the speedup
consistently increases with the increasing number of
threads. Its speedup at 64 threads over 2 threads is
higher than 17, for all the four tensors. The speedup
curves of PARFKSLEAN are similar across differ-
ent tensors, which suggests that PARFKSLEAN is
robust and not too sensitive to the input. On the
other hand, the speedup of PTHash variants nearly
plateaus after 32 threads, for all the inputs.

Scalability study. We now comment on the scal-
ability of PARFKSLEAN with respect to an op-
timized sequential implementation, FKSLean. Ta-
ble II presents the construction time of FKSLean
and PARFKSLEAN with one thread for the four
large tensors mentioned before. The construction

time of PARFKSLEAN with 2 threads is 1.9 times
faster than that with 1 thread—seen by comparing
Table II and the absolute run time given in Fig-
ure 2a. In the table, we observe that FKSLean is,
on average, 2.66 times faster than PARFKSLEAN
executed using 1 thread. Therefore, FKSLean is
faster than PARFKSLEAN executed using 2 threads
in the construction phase, across all inputs; the
former is 1.37 times faster than the latter on av-
erage. This is because PARFKSLEAN does more
work than FKSLean, in the interest of paralleliza-
tion, as discussed in Section III. Furthermore, there
are parallelization-related overheads. The benefits
of parallelization outweigh the extra work done
and other overheads with 4 threads and more in
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Fig. 3: Scalability of the construction phase of PARFKSLEAN and PTHash on four large tensors.

Tensor | FKSLean witlF:A#F:lll:l!:z?dI;E:bll

nell-2 (T-5) 8.78 23.48
flickr-4d (T-7) 12.93 34.92
delicious-4d (T-9) 16.12 42.86
nell-1 (T-10) 16.37 43.23

TABLE 1II: Construction time (in seconds) of FK-
SLean, and PARFKSLEAN with 1 thread.

PARFKSLEAN, and PARFKSLEAN always gets
speedups with respect to FKSLean in this setting.
The scalability in all thread settings (4 and more) is
observable by comparing the run times in Figure 2
to that of FKSLean in Table II. In particular at 64
threads, PARFKSLEAN obtains a mean speedup of
12.94 with respect to FKSLean for the tensors T-5,
T-7, T-9 and T-10.

Combining the observations made for Figure 2,
Figure 3, and Table II, we conclude that the con-
struction phase of PARFKSLEAN scales well; and
that it obtains speedups with respect to FKSLean
with four and more threads. Furthermore its parallel
scaling is better than PTHash’s.

C. Analysis of the query response time

We assume that the queries are available at the
start of the query phase. The query processing is
parallelized using a coarse-grained strategy. A query
is assigned to a thread. All the queries are processed
independently, in parallel. There is no parallelism in
processing a single query.

Table III compares the run time of the query
phase of PARFKSLEAN and PTHash variants to
answer 107 queries for the four large tensors men-
tioned before. As seen in this table, PARFKSLEAN
is at least as fast as the best performing variant
of PTHash in all thread configurations and for
all the inputs, except nell-1 with 64 threads, for
which both the tools have the same response time.
PARFKSLEAN achieves a maximum speedup of
1.94 with respect to PTHash-DD on flickr-4d with
4 threads. Thus, PARFKSLEAN is generally faster
than the fastest PTHash variant for answering the
queries. As in both the cases each query is answered
by a single thread, the difference is due to the
original performance of the respective algorithms.



PTHash

Tensor | #Threads | -PC [ -DD | -EF | PARFKSLEAN
21201 |1.64]2.10 0.97

o 411.01]0.95|1.06 0.53
iy 810.46|0.49|0.54 0.27
Q 16 [0.25]0.27 | 0.29 0.15
320.14|0.15]0.16 0.11

64 0.08 | 0.09|0.11 0.07
21251204220 1.07

2 411.40(1.07|1.19 0.55
RS 810.78 | 0.61]0.62 0.28
_‘é 16 [ 0.40 | 0.34 | 0.32 0.15
= 3210.21(0.16|0.17 0.11
64 (0.11 | 0.09 | 0.09 0.08

- 21230202225 I.11
“'(b 411.2411.12|1.18 0.57
= 810.66|0.59|0.61 0.30
© 16 [ 0.36 | 0.32 | 0.31 0.16
g 3210.19|0.17|0.16 0.11
64 (0.10 | 0.09 | 0.15 0.08
2243211211 1.06
41125(1.11]1.14 0.55

; 810.64 | 0.60|0.58 0.30
e 16 [ 0.330.31 | 0.30 0.17
3210.180.16 | 0.17 0.11

64 (0.11 | 0.10| 0.08 0.08

TABLE III: Execution time (in seconds) of the

query phase of PARFKSLEAN and PTHash for 107
queries on four large tensors.

V. CONCLUSION

This paper proposes an efficient shared-memory
parallel implementation of a recently developed
perfect hashing method. This method is used for
efficiently querying the existence of hyperedges in
a given hypergraph. Put differently, the method is
designed for querying the nonzeros of a sparse
matrix or a tensor. Experiments are carried out
on large sparse tensors and better run time and
scalability are demonstrated with respect to another
state-of-the-art perfect hashing method.

The focus of the paper is on d-uniform, d-partite
hypergraphs. Luckily, the method easily extends
to arbitrary hypergraphs. Care must be taken in
order not to waste too much space in storing the
second level hash functions. Another generalization
concerns dynamic settings, where the hyperedges
may be inserted or deleted; this generalization can
find applications in diverse settings. The foregoing
two points form the future work.
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