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a Université Côte d’Azur, Inria. Sophia Antipolis, 06902, France 
b Columbia University. New York, NY 10027, USA   

A R T I C L E  I N F O   

Handling Editor: Adrian Covaci  

Keywords: 
Radiofrequency 
Population exposure 
Crowdsource 
Personal measurements 
Large-scale 

A B S T R A C T   

Evaluating exposure to radio frequencies (RF) at population-scale is important for conducting sound epidemi
ological studies about possible health impact of RF radiations. Numerous studies reported population exposure to 
RF radiations used in wireless telecommunication technologies, but used very small population samples. In this 
context, the real exposure of the population at scale remains poorly understood. Here, to the best of our 
knowledge, we report the largest crowd-based measurement of population exposure to RF produced by cellular 
antennas, Wi-Fi access points, and Bluetooth devices for 254,410 unique users in 13 countries from January 2017 
to December 2020. First, we present methods to assess the population exposure to RF radiations using smart
phone measurements obtained using the ElectroSmart Android app. Then, we use these methods to evaluate and 
characterize the evolution of RF exposure. We show that total exposure has been multiplied by 2.3 in the four- 
year period considered, with Wi-Fi as the largest contributor. The cellular exposure levels are orders of 
magnitude lower than regulation limits and are not correlated to national regulation policies. The population 
tends to be more exposed at home; for half of the study subjects, personal Wi-Fi routers and Bluetooth devices 
contributed to more than 50% of their total exposure. In this work, we showcase how crowdsource-based data 
allow large-scale and long-term assessment of population exposure to RF radiations.   

1. Introduction 

The past 20 years witnessed a dramatic increase in the number of 
radio frequency sources with the global adoption of smartphones as 
primary connectivity devices, the increased popularity of Bluetooth 
devices from multimedia to quantified-self usages, and the deployment 
of new cellular technologies with LTE and now 5G. 

The increased exposure to radio frequencies urges us to explore the 
long-standing and complex scientific question of the long-term impact of 
radio frequencies on health (IARC, 2011). One way to explore this 
question is to perform epidemiological studies, that is, to find a corre
lation between symptoms and exposure to radio frequencies. However, 
characterizing exposure to radio frequencies is a difficult problem as 
exposure varies vastly in time and space. 

Previous studies have used various methods to measure exposure to 
radio frequencies. First, spot measurements are taken by monitoring 
exposure at specific locations for a limited period of time (Gallastegi 
et al., 2018; Aerts et al., 2018; Fernandez et al., 2020). Such measure
ments are not representative of exposure of individuals as they fail to 
capture the spatial and temporal variation. Second, micro- 

environmental studies compare exposure in different locations such as 
urban and rural areas, offices and homes locations, or indoor and out
door environments (Sagar et al., 2018a; Velghe et al., 2019; Urbinello 
et al., 2014a; Urbinello et al., 2014b; Ramirez-Vazquez et al., 2021; 
Bhatt et al., 2017). They are usually performed by a specialist and shed 
light on the difference of exposure at specific locations. However, like 
spot measurements, they are limited in space and time. Last, personal 
measurement studies are directly performed by volunteers carrying a 
measurement instrument (Zeleke et al., 2018; Ramirez-Vazquez et al., 
2019, 2021; Bhatt et al., 2018; Birks et al., 2018; Gallastegi et al., 2018; 
Lahham and Ayyad, 2019). As the instrument is moving with each 
volunteer, the coverage of each individual is good. However, to char
acterize a population, the scale is of first importance. The scale is 
directly conditioned by the type of instrument used (Bhatt et al., 2016). 
Studies using personal exposimeters are difficult to scale, because 
exposimeters are costly mobile measurement tools (EME Spy, 2021; 
ExpoM RF, 2021). Another solution is to leverage on commercial 
smartphones with either hardware modified (Inyang et al., 2009) or a 
dedicated measurement app (Goedhart et al., 2015; Kiyohara et al., 
2018; Vrijheid et al., 2009; The Cosmos project, 2021; Mazloum et al., 
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2020; Cellraid, 2021; Tawkon, n.d.). Recruiting a large population is a 
challenge despite the worldwide usage of smartphone. All previous 
works considered a small number of participants (from a few tens to a 
few hundreds) for a period of time ranging from a few days to a few 
months. 

Related works show that the exposure varies greatly with time and 
among individuals (Zeleke et al., 2018; Birks et al., 2018). In addition, 
environmental and behavioral factors impact exposure, limiting the 
generalizability of results obtained from small study-groups (Sagar et al., 
2018a; Velghe et al., 2019; Eeftens et al., 2018; Sagar et al., 2018b; Bhatt 
et al., 2017, 2018; Urbinello et al., 2014b; Ramirez-Vazquez et al., 2019, 
2021; Birks et al., 2018; Gallastegi et al., 2018; Aerts et al., 2018; 
Breckenkamp et al., 2012; Lahham and Ayyad, 2019; Zeleke et al., 2018; 
Urbinello et al., 2014a). 

Unlike previous works, we present here the first longitudinal study of 
exposure at population scale; results span four years (Jan 2017–Dec 
2020), from 254,410 unique subjects in 13 countries across Europe, 
North America, Asia, and Australia. We collected personal measure
ments using smartphone devices running the ElectroSmart app (Elec
troSmart, 2021) that measures the downlink Received Signal Strength 
Indicator (RSSI) of all measurable Wi-Fi access points, Bluetooth de
vices, and cell towers. 

In this paper, we focus on four main questions: i) how exposure 
evolved from 2017 to 2020; ii) how the surrounding sources impact 
exposure; iii) how regulations impact exposure; iv) how location im
pacts exposure. In the rest of this paper, we explain the methods we 
applied to answer these questions in Section 2 (with additional details in 
Appendix A). We describe our results in Section 3. We discuss the results 
and limitations in Section 4 and conclude in Section 5. 

2. Methods 

In the following, we present the methods we used for collecting and 
analyzing our dataset. 

2.1. Data collection 

In this section, we present the ElectroSmart app used to collect the 
data, the characteristics of the collected dataset, the characterization of 
the study subjects who performed the measurements, and the ethical 
and legal considerations. 

2.1.1. The ElectroSmart measurement app 
ElectroSmart (ElectroSmart, 2021) is an Android consumer app we 

designed to measure the power that a given smartphone receives from 
Wi-Fi access points, Bluetooth devices, and cell towers. We designed 
ElectroSmart to be an easy-to-use tool that offers users transparent in
formation on their exposure to radio frequencies. ElectroSmart can be 
installed on any Android smartphone running Android 4.1 or later. The 
app was first launched in August 2016, and as of May 18th, 2021, it had 
900,000 downloads and 190,000 active users. 

ElectroSmart performs an exposure scan every 20 min when used in 
the background. All scans are periodically collected on our servers. 
Below, we explain how an exposure scan works and describe the infor
mation it collects. We discuss user consent and privacy protection in 
Section 2.1.4. A scan performs the following actions.  

• It creates a timestamp with the local time in Coordinated Universal 
Time (UTC). This is a slight approximation as signals might not be 
measured at exactly the same time in a given measurement scan. 
However, by considering a window of a few seconds, it is easy to 
attribute all measured signals to a given measurement scan and 
timestamp (we specifically discuss the case of Bluetooth in Appendix 
A.2.3).  

• It collects characteristics of the smartphone (brand and model) and 
its Android version. 

• It measures the smartphone location in terms of latitude and longi
tude. Android provides this information by combining GPS, Wi-Fi 
access points, and cell tower information using a proprietary 
algorithm.  

• It measures the downlink Received Signal Strength Indicator (RSSI) of 
all measurable Wi-Fi access points, Bluetooth devices, and cell 
towers (we discuss limitations in Section 4.3), along with several 
source-specific data.  
– For Wi-Fi access points, it collects the Service Set Identifier (SSID), 

the Basic Service Set Identifier (BSSID), the frequency, and 
whether the user is connected to this access point.  

– For Bluetooth devices, it collects the device name, the device 
Media Access Control (MAC) address, and whether the user is 
bonded to this device.  

– For cell towers, it identifies whether the cell is using a 2G, 3G, 4G, 
or Code Division Multiple Access Evolution-Data Optimized 
(CDMA/EVDO) technology. It determines whether the cell is 
serving (that is, the user is currently connected to this cell), and 
collects cell identification information, such as the Mobile 
Network Code (MNC), Mobile Country Code (MCC), or Cell ID 
(CID), to generates an unique identity for each cell tower. 

2.1.2. Dataset characteristics 
The cleaned and pre-processed dataset we consider in this paper 

contains 254,410 user profiles and 3,656 million measured RSSI for the 
following 13 countries (ordered from the highest to the lowest number 
of measurements): France, the United States, Italy, Germany, Canada, 
the United Kingdom, Switzerland, Belgium, Spain, the Netherlands, 
India, Australia, and Brazil. Although Brazil accounts for only 0.5% of all 
measurements, it still includes 21.6 million measurements and 2668 
unique users. 

In this dataset, Wi-Fi represents 58.3% of all measured RSSI, Blue
tooth 6.6%, 2G 10.5%, 3G 7.6%, and 4G 17%. 

This dataset is the result of multiple cleaning and pre-processing 
steps on the raw data obtained from the ElectroSmart app, which we 
discuss in Appendix A. 

2.1.3. Characterization of the ElectroSmart users 
ElectroSmart is an Android app publicly available on Google Play in 

the Tools category (ElectroSmart, 2021). The acquisition of new users, 
which are our study subjects, is dominated by organic searches on 
Google Play on the following keywords: EMF1 detector, EMF sensor, 
EMF meter, EMF reader, ElectroSmart. This acquisition represents more 
than 90% of the total user acquisition, without any significant difference 
among the considered countries and at any time period. The rest of the 
acquisition is due to google organic searches on the same terms. We 
never performed any kind of advertisement or targeted user recruitment. 

We acknowledge that the collected population sample is potentially 
biased toward users with an interest in the measurement of exposure to 
radio frequencies. Such a bias exists for all studies recruiting volunteers 
to perform exposure measurements, as it is impossible to recruit users 
with their consent without interest in the subject. 

Nevertheless, our sample is representative of the world-wide popu
lation in two aspects: urban/rural ratio and age. We discuss these two 
aspects in the following. 

To evaluate the users geographic location, we used OpenStreetMap’s 
Nominatim (Nominatim, 2021) to map each user GPS coordinate to a 
rural or urban area for each of the 13 considered countries. Then we 
compared the identified location with a ground truth found in the open 
data project of World Bank (Worldbank, 2021). First, we observed a 
great stability over time of the number of users in urban areas in our 
dataset: for a given country, the evolution of the percentage of 

1 EMF stands for ElectroMagnetic Field. This is the most common term used 
by the general audience for radio frequencies. 
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population in the urban area between 2017 and 2020 is at most 9%. This 
stability is confirmed by the World Bank open data. Second, when 
compared with the World Bank open data, we observed a difference in 
the percentage of users in an urban area higher than 10% for only five 
countries: Switzerland (11%), Canada (16%), France (17%), Belgium 
(23%), the USA (25%). We deem this difference is reasonable for our 
purpose because we still observe for all 13 countries a majority of users 
in the urban area, which is confirmed by the World Bank dataset. 

To evaluate the age distribution of our users we used the Google 
Firebase Analytics data available for ElectroSmart. Indeed, we 
embedded the analytics library in ElectroSmart from January 2019. We 
collected the age distribution of all our users between January 2019 and 
December 2020 for each country and compared it to the demographic 
data we obtained from the Web site population pyramid (Population 
Pyramids, 2019) that is aggregating data from the United Nations. We 
considered 6 age groups: [18, 24], [25, 34], [35, 44], [45, 54], [55, 64], 
65+. Firebase Analytics does not provide any information for ages lower 
than 18. Then we computed the difference of percentages of the popu
lation in each group between our user population and the ground truth 
provided by population pyramid. We found a difference lower than 10% 
for most age groups and countries with two notable exceptions. First, for 
4 countries the age group [35, 44] is more represented: Italy (12%), 
Australia (13%), the United Kingdom (14%), the USA (14%). Second, for 
all countries, the age group 65+ is under-represented from 7% for India 
to 22% for Italy. In summary, our dataset is reasonably representative of 
the general population, with an under representation of the age group 
65+. 

2.1.4. Ethical and legal considerations 
We submitted the study protocol to our institutional ethical com

mittee (Inria COERLE (COERLE, 2021). They validated that the present 
study follows all required ethical and data protection standard as 
described below. 

ElectroSmart requires explicit user consent for all information 
collection and clearly states that all data could be used for scientific 
research. In particular, we are fully compliant with the European Gen
eral Data Protection Regulation (GDPR) (GDPR, 2021). 

In addition, ElectroSmart is used anonymously by default, unless a 
user decides to provide an email address. The email address field is 
clearly identified as optional. 

All scans are associated with a unique user ID. This user ID is 
randomly generated on our server at the app installation time. It is not 
linked to any unique smartphone or user information. 

2.2. Data analysis 

This section contains the methodology we applied to the analysis of 
the dataset presented in Section 3. The readers who want to focus first on 
the result can skip this section and directly read Section 3. They can later 
come back to this section to check the details of our methodology. 

2.2.1. Personal exposure definition and calculation 
We define personal exposure as the received power from all the 

electromagnetic field sources on the radio frequency bands exposing 
humans. The received power is a function of the emitting power as 
described in Eq. (1) where Pr is the received power, Pe is the emitting 
power, K is a constant dependant on the emitting and receiving an
tennas’ characteristics, d is the distance to the source, and f is the signal 
frequency (Friis, 1946). We see in Eq. (1) that distance plays an 
important role in personal exposure, as does signal frequency: higher 
frequency signals fade faster than lower ones. 

Pr = K
(

1
4πdf

)2

Pe (1) 

The analysis we perform in this paper is based on three main 

calculation steps that we describe and justify in the following. i) For all 
computations based on an exposure scan (as defined in Section 2.1.1), 
we consider the sum of the received power in Watt of all signals in this 
scan. Computing the sum is relevant because an exposure scan is atomic 
in terms of time, so it represents all the signals simultaneously exposing 
an individual. ii) We average the exposure scans of each user per month. 
This gives a per-user monthly average exposure. The rationale of 
computing per-user monthly averages is to prevent users with a large 
number of measurements from biasing the monthly average. iii) For 
each country, we group the per-user monthly average exposures. When a 
user has been in different countries for a given month, we compute one 
monthly average exposure per country. Then, we compute the mean of 
these per-user monthly average exposures to obtain a monthly average 
exposure per country. Finally, we obtain the yearly average exposure by 
computing the mean of the monthly average exposure per country. 
Computing the yearly average exposure this way avoids bias that could 
be introduced by months with a larger than average number of users. 

2.2.2. Computation of individual exposure reduction when removing 
connected Wi-Fi sources and bounded Bluetooth devices 

For each user and each month, we first compute the per-user monthly 
average exposure. Then, we collect all connected Wi-Fi sources and 
bounded Bluetooth devices, and re-compute the per-user monthly 
average exposure by removing all collected connected sources and 
bounded devices from the exposure scans. Finally, we compute the 
difference between the per-user monthly average exposure in each case. 
Note that in some rare cases, the difference can be negative. This can 
occur when an exposure scan contains only one connected source. By 
removing connected sources, we change the number of samples on 
which we average. As a result, a user with only a few samples could end 
up with a higher average without connected sources. In this figure, we 
drop users with a negative gain; they represent 0.92% of all users. 

2.2.3. Estimating the electric field Strength from RSSI 
We obtain the electric field E in V/m from the measured received 

power RSSI in dBm with the formula: 

E =
9.73f

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
50 × 10P− 30

10

√

c
̅̅̅̅
G

√ (2)  

where G is the antenna gain, f is the frequency in Hz, P is the power in 
dBm, and c is the speed of light (Liao, 1977). The antenna gain of the 
smartphone is unknown, so we assume an isotropic antenna (i.e., G =

1). In our dataset, we have access to the cellular frequency f for serving 
cells only. Therefore, we only keep exposure scans with a serving cell 
containing a valid frequency (they represent 74.5% of all exposure 
scans). We sum all the cellular RSSI2 in each exposure scan and convert 
the summed RSSI into V/m using the frequency of the serving cell. 

2.2.4. Cellular regulation 
The maximum allowed exposure of the population is fixed by the 

ICNIRP international body (ICNIRP, 2020). However, each country is 
free to lower the maximum exposure depending on local policies. In 
addition, some countries have policies specific to some areas (e.g., 
Belgium has different limits for Flanders, Wallonia, and Brussels) or 
specific to some contexts (e.g., Italy enforces lower exposure near 
schools). Finally, the limits are specific to the frequencies used by 
cellular technologies. Here, we specifically focus on the frequencies 900 
MHz, 1800  MHz, and 2100 MHz. For each country, we build a regula
tion limit triplet, one limit per frequency. 

2 As explained in Section 2.2.1, we perform the sum in Watt, and because we 
only measure the RSSI for the operator declared in the SIM card, we multiply 
each RSSI by the number of operators in the country in a pre-processing phase 
(see Appendix A.2.4 for details). 
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To the best of our knowledge, there is no central repository of 
exposure limits for all countries. To obtain a regulation limit triplet for 
each of the 13 countries we consider, we consolidate several sources 
(WHO, 2017; Rianne, 2017; Urbinello et al., 2014a), and when multiple 
limits were provided (due to local policies or context), we keep the limit 
covering the largest population. 

2.2.5. Wi-Fi regulation 
Wi-Fi is a generic term that gathers together a large number of 

standards covering a wide spectrum of frequencies in the 2.4 GHz and 5 
GHz bands. For Wi-Fi, the goal of regulation is to reduce interference by 
limiting the maximum transmission power. This limit might be different 
for each country and each frequency. Getting a consolidated view of the 
various international regulations on Wi-Fi is tricky. For this purpose, we 
rely on the efforts of J. W. Linville and S. Forshee, who maintain a 
consolidated file containing the Wi-Fi emitting power per country and 
frequency for the Linux kernel (“Wireless regulatory database for CRDA” 
2021). 

To understand the impact of regulation on exposure, we focus on two 
frequency bands that include a large enough number of countries using 
different regulations: 2.4 GHz ([2400, 2483] MHz) and 5.3 GHz ([5250, 
5350] MHz). The 2.4 GHz (resp. 5.3 GHz) band represents 76% (resp. 
2%, still 37 million measurements) of all Wi-Fi measurements. In the 2.4 
GHz band, the maximum transmission power is 36 dBm for Australia, 30 
dBm for the USA and Canada, and 20 dBm for other considered coun
tries. In the 5.3 GHz band, the maximum transmission power is 24 dBm 
for Brazil, India, and Canada, 23 dBm for the USA, and 20 dBm for other 
considered countries. 

2.2.6. Extracting home location 
To accurately identify the home location, we limit our analysis to 

dense user defined as those with at least 14 days of data in a specific 
month and at least 80% hourly sample density. To calculate sampling 
density, we count the number of hours between the first and last day we 
see a user in a given month. An 80% hourly sampling density means that 
the user has at least one exposure scan for 80% of the counted hours. In 
our entire dataset, we have 22,907 dense users, which is 9% of all users. 

Finally, we use the DBSCAN algorithm (Ester et al., 1996) (∊ = 100 
m, minPts = 24, distance = haversine) on the GPS coordinates of the 
dense users for each month, independently. We label the cluster that 
most frequently appears between 10PM and 8AM as the home cluster. 

All the other clusters are labeled “out-of-home”. Therefore, out-of-home 
gathers together all other indoor and outdoor locations, such as work
place, shopping malls, transportation, or restaurants. 

2.2.7. Statistical conventions 
p-value. We always specify the exact p-value and consider that any p- 

value below 0.05 represents a statistically significant result. 
Boxplot. The boxplot convention used in this paper is the following: 

the middle box line shows the median, the lower and higher hinges show 
the first and third quartiles, respectively, and the lower and higher 
whiskers show a limit of 1.5x the interquartile range from the lower and 
higher hinges, respectively. 

3. Results 

3.1. Evolution of personal exposure from 2017 to 2020 

Table 1 shows the evolution of the total personal exposure in the 13 
countries with the largest number of measurements (as discussed in 
Appendix A.1.3). The overall exposure shows an increasing trend across 
all countries from 2017 to 2020. To confirm this trend, we computed the 
Spearman correlation on the monthly average exposure to evaluate the 
relationship between time (months) and the monthly average exposure 
for each country. Table 2 shows a significant positive correlation be
tween time and exposure for most countries. We excluded 2020 from 
this correlation as the COVID-19 period would have significantly 
impacted the interpretation of this correlation. However, when 
including 2020, we observed an increase in the Spearman coefficients 
between 0.1 and 0.2 for most countries and lower p-values for all 
countries (except CH), showing the impact of lockdowns on exposure. 
The most significant difference was France, with a Spearman coefficient 
of 0.42 (p < 0.01). 

Fig. 1 shows how each wireless technology contributes to this 
exposure trend. The total exposure (brown curve) has been multiplied 
by 2.3 (from − 34.6 dBm in 2017 to − 31 dBm in 2020) over the four-year 
period. The trend we observe for each wireless technology corresponds 
to the adoption or decline of the corresponding technology. We observe 
a clear increase in the exposure due to Wi-Fi and Bluetooth technologies, 
but a decrease in the exposure due to 2G and 3G technologies. Inter
estingly, Wi-Fi is by far the largest contributor to exposure. 

In summary, we observe an overall increase in total personal exposure 

Table 1 
Yearly average exposure from 2017 to 2020 in 13 countries. We use an ISO 3166 (“ISO 3166 Country Codes” 2021) alpha-2 country code to represent each country 
using a two-letter code. We compute the mean and the 95% confidence interval for the mean using empirical bootstrap resampling with replacement (N = 1,000) 
(Efron and Tibshirani, 1994) on the monthly average exposure for each country. The change column shows the increased (in blue) or decreased (in red) exposure as a 
percentage compared to the previous year. This percentage change is computed in Watt instead of dBm to have a linear interpretation of the change in exposure.  
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with time (a 2.3-fold increase from 2017 to 2020), with Wi-Fi as the largest 
contributor to personal exposure. 

3.2. Impact of individual sources on personal exposure 

We focus now on how each source contributes to total exposure. A 
better understanding of the most exposing sources could inform strate
gies to reduce personal exposure. 

Since the measurement of the number of sources is not reliable for 
cellular technologies (see Appendix A.1.2 and Appendix A.2.4), we focus 
on Wi-Fi and Bluetooth technologies. We consider this limitation 
reasonable because, as shown in Fig. 1, these two are the most largest 
contributors to total exposure. 

Fig. 2 shows the relationship between individual exposure and the 
number of sources in a vicinity. We observe that beyond four to five 
sources, additional sources have little influence to individual exposure. 
This could be explained by the fact that exposure fades with distance in 
polynomial time (see Eq. (1)). In addition, we see in Fig. 3 that in 50% of 
the exposure scans, the most exposing Wi-Fi source (resp. Bluetooth) 
represents at least 83% (resp. 91%) of the total exposure due to Wi-Fi 
(resp. Bluetooth). Thus, a larger number of sources in the vicinity does 
not necessarily mean a higher personal exposure; rather, the most 
exposing source is the primary contributor to exposure. 

The question now is how actionable this information is with respect 
to exposure reduction. We focus on the Wi-Fi-connected sources and 
Bluetooth-bounded devices to which a user has already connected. 
Connected sources or bounded devices are usually owned or controlled 
by the user and can therefore be switched off or moved to reduce 
exposure. Taking all scans into account, we computed that 41% of the 
time, the most exposing of all the Wi-Fi sources is a connected one. For 
Bluetooth, the most exposing source is a bounded device 10% of the 

time. Then, we computed what the individual personal exposure would 
have been if all connected sources and bounded devices had been 
switched off. While this is an overly optimistic situation, the goal is to 
assess the degree to which an individual could control exposure. Fig. 4 
shows that, by switching off the connected sources and bounded devices, 
half of the users could have reduced their total exposure by 50% (a 
reduction by 3.1 dB), and 25% could have reduced their total exposure 
by 90% (a reduction by 10 dB). 

In summary, the growth of total exposure is not explained by an 
increasing number of sources. On the contrary, a handful of sources generate 
most of the personal exposure at any given time, and it is not uncommon that 

Table 2 
Spearman correlation of the monthly average exposure per country from 01/2017 to 12/2019. In blue, we show the positive correlations, and in red, the 
negative ones. The grey two-sided p-values are above the threshold of 0.05.  

Fig. 1. Yearly average exposure from 2017 to 2020 per wireless technol
ogy. For each year, we took the yearly average exposure as given in Table 1, 
converted it to Watt, computed the mean for all 13 countries, and converted it 
back to dBm. The bars represent a 95% confidence interval for the mean using 
empirical bootstrap resampling with replacement (N = 1,000) on the yearly 
average exposure per country. Plots are shifted horizontally to avoid confidence 
interval overlap. An increase of 3 dB results in the doubling of the exposure. 

Fig. 2. Correlation between number of sources and exposure to Bluetooth 
and Wi-Fi. The figure represents the distribution of all the exposure scans in 
Bluetooth (top) and Wi-Fi (bottom) when there is a given number of (Bluetooth 
or Wi-Fi) sources in the scan. For instance, the last box in the top figure rep
resents the sum of the received power in Bluetooth for exposure scans with 
exactly 20 detected Bluetooth sources. 

Fig. 3. Distribution of the percentage contribution of the top five expo
sure sources. This figure represents the distribution of the percentage contri
bution of the top five exposure sources in all exposure scans, with Bluetooth in 
green and Wi-Fi in blue. For instance, the first green box shows the distribution 
of the contribution of the most exposing Bluetooth source to the sum of the 
exposure of all Bluetooth sources for each exposure scan. 
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an individual’s exposure is almost entirely the result of sources they either 
own or associate with (for a quarter of our subjects, such sources account for 
90% of exposure). 

3.3. Impact of regulation on personal exposure 

Electromagnetic field emissions are regulated, which means that 
both the spectrum used and the emitting power per frequency band are 
fixed by a regulatory authority. The types of cellular and Wi-Fi sources 
we explore in this paper are regulated on a country-specific basis. 
Therefore, the maximum emitting power per frequency band is not 
uniform in the top 13 countries we consider. By contrast, Bluetooth uses 
the same emitting power in all the countries we consider. We explore 
next how cellular and Wi-Fi regulations impact the received power. 

3.3.1. Cellular regulation 
Fig. 5 does not show any clear correlation between regulation limits 

and exposure. We must be careful interpreting this result as there are 
several external factors that we do not control, such as the deployment 
strategy of the cellular operators. For example, operators might decide, 
in a densely populated area, to have a higher density of base stations (to 
increase the supported load) emitting at a lower power (to reduce 
interference). In such cases, base stations expose the population at a 
level that is significantly lower than what the regulation permits 
(Urbinello et al., 2014a; Urbinello et al., 2014b). Therefore, in practice, 
the regulation is an upper bound to the population exposure in some 
extreme cases, but in most cases, the population is exposed at levels 
much lower than the regulation limits. 

To confirm this hypothesis, we estimated the distribution of the 
cellular measurements in V/m, because regulation limits are defined for 

the electric field that is expressed in V/m (see Section 2.2.3 for details on 
this estimation). 

Fig. 6 shows the distribution of the measured electric field for each 
exposure scan per country. We see that the current population exposure 
is orders of magnitude lower than any current regulation limit. We found 
that by considering all countries together, only 1% of the scans are 
above 0.18 V/m. 

Admittedly, this estimation is a coarse description of reality. We now 
explore how the different limitations and approximations of our esti
mation will impact our conclusion. First, the maximum cellular RSSI 
that we can measure is − 51 dBm, so measurements above − 51 dBm are 
capped (see Appendix A.1.2). However, measurements at − 51 dBm 
represent only 1.8% of all measurements, a very small fraction that 
cannot fundamentally change our conclusions. Second, we applied the 
same frequency (that of the serving cell) to all cellular measurements in 
the same exposure scan. Considering that 98% of the frequencies are 
within [782, 2660] MHz and Eq. (2) is linear with f , we have at most a 
factor of 3.4. Note that this is a very conservative estimate, as the me
dian frequency is 1,745 MHz. Last, in Boussad et al. (2021), we show, 
using calibrated measurements in an anechoic chamber, that the 
average deviation between the real received power at a calibrated 
isotropic antenna and a smartphone is 2.5 dB. If we translate this offset 

in Eq. (2), we find that it results in a multiplying factor of 
̅̅̅̅̅̅̅̅̅̅
102.5

10

√
≈ 1.3. 

By combining the two main sources of error, the actual exposure in V/m 
could be 4.7 times higher than what we report in Fig. 6, which is still 
orders of magnitude lower than the most restrictive regulation limits in 
the countries we consider. 

In summary, 99% of our exposure scans report a cellular exposure lower 
than 0.18 V/m (corrected to 0.85 V/m if we take into account the multiplying 
factor of 4.7, corresponding to a worst-case estimate scenario), which is 
orders of magnitude lower than any regulation limits in the considered 
countries. 

3.3.2. WiFi regulation 
Fig. 7 shows that in the 2.4 GHz band, a transmission (Tx) power of 

20 dBm leads to significantly lower exposure than a Tx power higher 
than 30 dBm. Therefore, this regulation clearly impacts population 
exposure. Surprisingly, when we observe the exposure for the 5.3 GHz 
band, we have the opposite result: a Tx power of 20 dBm leads to 
significantly higher exposure than a Tx power over 23 dBm. 

We can explain this seemingly contradictory result. Unlike regula
tions for cellular, regulations for Wi-Fi limit the Tx power; therefore, it is 
not surprising to see that Tx power impacts population exposure. When 
the difference in Tx power is large (a minimum of 10 dB between the two 
groups in the 2.4 GHz band), the Tx power dominates the other factors 
that affect population exposure. However, when the difference in the Tx 
power is small (a maximum of 4 dB for the 5.3 GHz band), other factors 

Fig. 4. Distribution of the individual exposure reduction for each user 
when we remove connected Wi-Fi sources and bounded Bluetooth de
vices. In red, we show the median and in blue, the 75th percentile. We give 
details of the computation in Section 2.2.2. 

Fig. 5. Correlation between exposure to cellular technologies and regu
lation limits. This figure shows the correlation between the exposure and a 
regulation limit triplet for the three cellular technologies we measure, 2G, 3G, 
and 4G. Here is the association between regulation limit triplets and countries: 
(13, 18, 20) is for IN; (20, 20, 20) is for IT; (21, 29, 31) is for BE; (32, 40, 43) is 
for CA; (41, 58, 61) is for FR, DE, GB, CH, ES, NL, AU, BR; (47, 61, 61) is for US. 
See Section 2.2.4 for details on how we built the triplets. 

Fig. 6. Per-country distribution of the estimated electric field produced by 
cellular antennas at the receiver. The red dot shows the mean. Considering 
all signals together, we have a median at 0.005 V/m, and a 99th percentile at 
0.18 V/m. 
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dominate the population’s exposure. Indeed, as the attenuation in
creases with the frequency (see Eq. (1)), a small 4 dB difference in the Tx 
power will have a marginal impact on the total exposure compared to, 
for instance, the deployment and density of Wi-Fi access points per 
country. 

In summary, the impact of Wi-Fi regulation on population exposure de
pends not only on the Tx power, but also on the frequency bands. It is worth 
noting that the goal of this regulation is to limit interference rather than 
population exposure. 

3.4. Impact of user location on personal exposure 

User location is also a factor that may affect personal exposure. In the 
following, we focus on two location categories: at-home and out-of- 
home. The rationale is that, according to the results reported in the 
previous sections, Wi-Fi is the greatest contributor to total exposure. We 
hypothesize that users are more exposed at home because most users 
have Wi-Fi at home3 and are closer to their router than would be the case 
in other environments. The goal of this section is to explore the differ
ence between at-home and out-of-home exposure. We detail in Section 
2.2.6 how we classify a user at-home or out-of-home. 

Fig. 8 shows that users at home are significantly less exposed to 
cellular radiation (− 1.19 dB). The main reason is that cellular antennas 
are outside, so walls attenuate the radiation. Conversely, exposure to 
Wi-Fi is higher at home than out-of-home (+1.55 dB). Here, the 
increased adoption of Wi-Fi technology at home is a reasonable expla
nation. We computed how many hours (per month) each dense user is 
connected to a Wi-Fi source at home and out-of-home. We found that 
half of the users (median) are connected 91% of the time at home, and 
29% of the time out-of-home. Finally, we found that the difference of 
exposure to Bluetooth between at-home and out-of-home is not 
significant. 

In summary, user location has a significant impact on exposure. In 
particular, users are more exposed to Wi-Fi at home. As they are largely 
connected to Wi-Fi at home, we further conclude that personal Wi-Fi routers 
are the most significant factor in at-home exposure. 

4. Discussion 

4.1. Position with respect to related works 

Understanding the potential human health impacts of exposure to 
radio frequencies is a long journey. An important challenge in per
forming sound epidemiological studies is the complexity of character
izing the real exposure of the population. The methods and dataset we 
present here offer the first analysis of the evolution of radio frequency 
exposure at population-scale for 13 countries over four years. This 
change of paradigm from previous small-scale studies (Zeleke et al., 
2018; Ramirez-Vazquez et al., 2019, 2021; Bhatt et al., 2018; Birks et al., 
2018; Gallastegi et al., 2018; Lahham and Ayyad, 2019) has direct 
consequences for the current debate on population exposure and the 
impact of this exposure on health. 

Importantly, we do not oppose our work to related works, but argue 
it comes in complement. Our study allows to raise conclusions with a 
consistent methodology on a large population during a long period of 
time. Past works used different methodologies (exposimeters (Velghe 
et al., 2019; Zeleke et al., 2018; Ramirez-Vazquez et al., 2019), spectrum 
analyzer (Fernandez et al., 2020), mobile app (Bhatt et al., 2018)) on 
short period of time (from a few days (Zeleke et al., 2018; Ramirez- 
Vazquez et al., 2019) to a few months (Urbinello et al., 2014b; Aerts 
et al., 2018)) for a small population (from a few tens (Velghe et al., 2019; 
Zeleke et al., 2018; Ramirez-Vazquez et al., 2019) to a few hundreds 
(Birks et al., 2018; Breckenkamp et al., 2012)). Whereas such works are 
important, they are hard to compare due to a large variety in terms of 
methodologies and cohorts. Our work provides a benchmark to under
stand how location and time period might impact past studies. In 
addition, the cited small-scale studies performed with exposimeters or 
spectrum analyzers are extremely useful because they are more accurate 
than smartphones, and have a broader spectrum coverage. Therefore, 
we argue that both small scale studies using exposimeters and large- 
scale studies using smartphones are useful and complement each other 
to have a better understanding of the population exposure. 

In addition, our work confirms findings in previous studies: people 
are more exposed at home to Wi-Fi (Lahham and Ayyad, 2019), Wi-Fi 
2.4 GHz is more exposing than Wi-Fi 5 GHz (Ramirez-Vazquez et al., 
2021), exposure levels to cellular radio frequencies are orders of 
magnitude lower than the regulatory limits (Urbinello et al., 2014a; 
Ramirez-Vazquez et al., 2019; Gaǰsek et al., 2015; Sagar et al., 2018b; 
Lahham and Ayyad, 2019), indoor exposure (mainly caused by Wi-Fi) 
increases at a higher rate than outdoor exposure (mainly caused by 
cellular) (Gaǰsek et al., 2015), Wi-Fi is the main contributor to popula
tion exposure (Lahham and Ayyad, 2019; Breckenkamp et al., 2012) 

However, some related works found that cellular downlink is the 
main source of exposure (Zeleke et al., 2018; Bhatt et al., 2017; Ramirez- 
Vazquez et al., 2019; Birks et al., 2018; Gallastegi et al., 2018). All of 

Fig. 7. Correlation between Wi-Fi Tx power and exposure in the 2.4 GHz 
and 5 GHz bands. The figure shows the distribution of the per-user monthly 
average exposure using boxplots. The red dot shows the mean. To compute the 
significance of the mean, we performed a permutation test (N = 1,000,000). 
The test statistic is the difference of the means for the same frequency band. The 
two-sided p-value is lower than 0.001 for both bands. See Section 2.2.5 for 
details on how we define the Tx power. 

Fig. 8. Correlation between location (home or out-of-home) and exposure 
for Bluetooth, Cellular, and WiFi. This figure shows the distribution of the 
per-user monthly average exposure for dense users when they are at home (in 
green) and out-of-home (in blue) for Bluetooth, Cellular, and Wi-Fi sources. The 
red dots and labels show the mean exposure. We performed a permutation test 
(N = 1,000,000) between at-home and out-of-home for each of the three types 
of sources. We obtained a two-sided p < 0.001 for Wi-Fi and Cellular, and a 
two-sided p = 0.09 for Bluetooth. 

3 According to the US Census Bureau, 81% of USA households had internet 
access in 2016 (US Census 2019). In 2019, more than 80% of the households in 
the European countries included in our study had internet access, with 83% 
coverage in France and 98% in the Netherlands) (Eurostat 2020). 
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these studies consider a small population sample (from 10 to 529 per
sons) during a very short duration (1 to 3 days). In addition, they all 
suffer from a recruitment bias: three studies considered participants 
from a single big city, two studies focused solely on children. Whereas 
these studies bring important elements to understand exposure on spe
cific context and population, they cannot be generalized. 

We showed (Boussad et al., 2021) using controlled experiments with 
calibrated professional spectrometers that our approach based on mea
surements with the ElectroSmart app is accurate enough for our anal
ysis. The main and unique contribution of our work is to provide with a 
same methodology a unified view of exposure for a large population on 
13 countries during 4 years. 

4.2. Main study implications 

Our solid methodology and population coverage permit to shed a 
new light on two important debates. First, the Council of Europe, 
following the principle of precaution, has called for an As Low As 
Reasonably Achievable (ALARA) rule (European Parliamentary Assem
bly, 2011). In line with this principle, one proposal is to reduce exposure 
levels as low as 0.6 V/m and even 0.2 V/m in the medium term. The 
debate currently includes proponents, who see ALARA as a necessary 
drastic reduction to curb the current level of exposure, and cellular 
operators, who oppose ALARA by arguing that it would impede the 
deployment of communication infrastructure, and thus, eventually, ac
cess. We reveal that for the vast majority of the population, exposure is 
already below the lowest ALARA level. However, reducing the current 
regulation levels would still benefit the small fraction of the population 
that is currently more exposed than recommended by the ALARA rule. 

Second, our work also fundamentally changes the debate on fre
quency exposure, currently heavily centered on the regulation of 
cellular operators. Not only do we show that Wi-Fi is by far the largest 
contributor to population exposure, but also that a few sets of sources, 
namely those used by individuals and those present at home, are the key 
contributors. Offering tools for individuals to prevent unnecessary 
exposure at home, or working on technology that automatically reduces 
exposure are just some examples of short and medium term ways to 
expand the precautionary principle. Such approaches have not yet 
received the attention that they deserve. 

Beyond these direct implications, we envision our work and dataset 
providing a foundation for future epidemiological studies. Upon publi
cation, all data used in this paper will be available online for scientific 
exploitation. The data consists of timestamped measurements of RSSI for 
each of the five types of signals considered in this paper (Wi-Fi, Blue
tooth, 2G, 3G, 4G). All user IDs have been anonymized (using a salted 
hash), and all GPS locations have been replaced by one of the 13 
countries we consider. When required to preserve user anonymity, we 
provide aggregated data using pre-processing steps. For instance, we 
provide the identification of the unique physical sources using our own 
anonymous source counter. A detailed description of the format of the 
data will be available on the online publication site upon publication. 

4.3. Limitations 

We performed all scans with a vanilla version of Android using the 
regular Android API. That is, we did not have access to low-level data 
available from rooted smartphones or customized drivers. This approach 
is beneficial for targeting a large-scale audience, but it limits what we 
can measure, as elaborated below. 

First, we only measured the downlink received by the measuring 
smartphone. Therefore, the contribution of the uplink to the exposure, 
that is, the emission of the measuring smartphone, is not considered in 
this study. Also, we did not measure the uplink of surrounding devices. 
This is an important limitation, but we are not aware of any technical 
solution to measure the uplink at scale. We argue that having a consis
tent view of the downlink at scale is already an important and significant 

step forward. 
Second, the minimum and maximum measurable power for each 

wireless technology is capped by the Android API and the technology 
standards. We show in Table 3 the valid ranges of measurements for 
each technology. For example, if a smartphone is exposed to a higher 
power than the maximum measurable power, it will always report the 
maximum value presented in Table 3. We explain in Appendix A.1.2 
how we filtered out-of-range scans, and show that valid out-of-range 
scans represent of small fraction that cannot fundamentally change 
our conclusions. 

Third, for 2G, 3G, and 4G, the RSSI is provided by the Android API as 
an Arbitrary Strength Unit (ASU), an integer value between 0 and 31. It is 
converted to dBm according to the formula: dBm = ASU*2 − 113. For 
this reason, the granularity of the cellular RSSI is 2 dB. 

Fourth, each wireless technology comes with some additional limi
tations. Bluetooth sources can only be measured when they are discov
erable. Wi-Fi sources can only be measured when they are configured as 
access points, that is, the emitting power of the connected devices is not 
measured. Measurements of cellular sources suffer from several limita
tions. i) A smartphone with an active SIM card can only measure the 
RSSI from the operators declared in the SIM card. We explain in Ap
pendix A.2.4 how we mitigate this issue. ii) The measurement coverage 
is largely dependent on the version of Android and the cell phone maker. 
Indeed, the Android API can return the RSSI of the serving cell for all 
smartphones, but only the most recent versions of Android can also re
turn the neighboring cells’ RSSI. In addition, this API tends to be quite 
buggy due to the Android RIL (Radio Interface Layer, which is closed- 
source and vendor-specific. In particular, some smartphones return 
invalid RSSI measurements (outside of the range given in Table 3). We 
discuss in Appendix A.1 how we identified and removed invalid mea
surements. iii) Smartphones periodically scan for cellular networks to 
ensure continuity of service. To speed up network scanning, smart
phones follow priority rules that are defined by the network and stored 
in the SIM card. This means that a given smartphone may not scan for all 
the cellular Radio Access Technology (RAT), but instead, scan only high 
priority RATs. For example it may scan only 4G and 3G networks, 
excluding 2G. As a result, we expect the cellular scans not to include all 
the cellular generations in a single scan. 

Fifth, the received power was measured using the Received Signal 
Strength Indicator (RSSI). Therefore, our measurements do not take into 
account the effective load of the wireless channel. 

Last, ElectroSmart can only measure radio frequencies produced by 
Wi-Fi access points, Bluetooth devices and cell towers. It does not 
measure radio frequencies emitted by other sources such as FM radio or 
TV, which are two important sources of radio frequencies that might 
dominate all other sources in some places. We argue this limitation is 
acceptable for the following reasons. They operate in a radio frequency 
lower than microwaves, have a quite static deployment compared to the 
sources we consider in this work, and have been present for more than 
60 years. In contrast, Wi-Fi access points, Bluetooth devices, and cell 
tower deployment has been dramatically increasing in the past 20 years. 
Therefore, this significant increased exposure to a frequency band not 
present before poses questions. 

5. Conclusion 

In this paper, we presented the largest crowd-based measurement of 
population exposure to RF produced by cellular antennas, Wi-Fi access 
points, and Bluetooth devices for 254,410 unique users in 13 countries 
from January 2017 to December 2020. We showcased the strength of 
using crowdsource data from mobile smartphones in performing a large- 
scale and long-term assessment of population exposure to RF radiations. 
This enabled us to assess the impact of various factors on the exposure 
using a uniform methodology, which facilitates cross-population and 
cross-environment analysis. We showed that total exposure has been 
multiplied by 2.3 in the four-year period considered, with Wi-Fi as the 
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largest contributor. The cellular exposure levels are orders of magnitude 
lower than regulation limits and are not correlated to national regula
tion policies. The population tends to be more exposed at home; for half 
of the study subjects, personal Wi-Fi routers and Bluetooth devices 
contributed to more than 50% of their total exposure. 

An interesting next step would be to consider how the deployment of 
5G impacts population exposure. Indeed, in this study, we did not 
consider 5G as its deployment in the considered countries was small and 
few smartphones supported 5G before 2021. 5G comes with its own 
challenges for the evaluation of exposure: it uses small cells, millimeter 
waves, and beam forming, which changes exposure during transmission. 
This will undoubtedly be a challenge to correctly characterize exposure 
to 5G. 
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