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Compositional Verification of Priority Systems
using Sharp Bisimulation

Luca Di Stefano and Frédéric Lang

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP⋆⋆, LIG, 38000 Grenoble, France

Abstract. Sharp bisimulation is a refinement of divergence-preserving
branching (a.k.a. divbranching) bisimulation, parameterized by a sub-
set of the system’s actions, called strong actions. This parameterization
allows the sharp bisimulation to be tailored by the property under veri-
fication, whichever property of the modal µ-calculus is considered, while
potentially reducing more than strong bisimulation. Sharp bisimulation
equivalence is a congruence for parallel composition and other process
algebraic operators such as hide, cut, and rename, and hence can be used
in a compositional verification setting. In this paper, we prove that sharp
bisimulation equivalence is also a congruence for action priority operators
under some conditions on strong actions. We compare sharp bisimula-
tion with orthogonal bisimulation, whose equivalence is also a congru-
ence for action priority. We show that, if the internal action τ neither
yield priority to nor take priority over other actions, then the quotient
of a system with respect to sharp bisimulation equivalence (called sharp
minimization) cannot be larger than the quotient of the same system
with respect to orthogonal bisimulation equivalence. We then describe a
signature-based partition refinement algorithm for sharp minimization,
implemented in the BCG MIN tool of the CADP software toolbox. This
algorithm can be adapted to implement orthogonal minimization. We
show on a crafted example that using compositional sharp minimization
may yield state space reductions that outperform compositional orthog-
onal minimization by several orders of magnitude. Finally, we illustrate
the use of sharp minimization and priority to verify a bully leader election
algorithm.

Keywords: Concurrency, Congruence, Enumerative verification, Finite state
systems

1 Introduction

We consider the verification of systems consisting of parallel processes that ex-
ecute asynchronously and that may synchronize by rendezvous. The toolbox
CADP1 [14] provides languages for the description of such systems (in par-
ticular the language LNT [7], which inherits many features from process alge-
bra), languages for the description of properties (in particular the temporal logic
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MCL [28], which is an extension of the modal µ-calculus with regular-expressions
on actions and data handling constructs), and various tools for generating and
minimizing state spaces, composing state spaces, evaluating temporal logic prop-
erties on state spaces, generating tests, etc. CADP provides various verification
methods, some of the most successful of which are based on a compositional
minimization of the system using appropriate equivalence relations [13].

As such, sharp bisimulation [27] was proposed recently as a relation param-
eterized by a subset of the system’s actions, called strong actions. These actions
are generally obtained by analysis of the property under verification, ensur-
ing that this property is preserved by equivalence. Strong bisimulation [30] and
divergence-preserving branching (a.k.a. divbranching) bisimulation [16, 17] are
instances of sharp bisimulation, all actions being strong in the former, and all ac-
tions being not strong (i.e., weak) in the latter. Keeping the set of strong actions
as small as possible allows smaller quotients to be obtained. Sharp bisimulation
is a congruence for parallel composition and many process algebraic operators,
such as hide, cut, and rename, and can therefore be used compositionally. Sharp
minimization was applied successfully to the verification problems of the RERS
verification challenges2 in 20193 and 2020, where it allowed properties not pre-
served by divbranching bisimulation to be verified on systems whose state graph
could not be generated using compositional strong bisimulation reduction.

In this paper, we present contributions that are complementary to the already
published results on sharp bisimulation [27]:

– We consider systems, some actions of which may be preempted by others us-
ing an action priority operator, similar to the one of ACP [1]. It is well-known
that strong bisimulation equivalence is a congruence for such an operator,
but also that divbranching is not. We give sufficient conditions relating the
set of strong actions and the priority rules, so that sharp bisimulation equiv-
alence be a congruence for priority. We provide such a proof of congruence.

– We establish a precise relationship between sharp bisimulation and orthog-
onal bisimulation [2], orthogonal bisimulation equivalence being also a con-
gruence for priority. We prove that if the internal action τ does not yield nor
take priority over any other action, then sharp minimization cannot reduce
less than orthogonal minimization. This improvement is another advantage
of the parameterization on strong actions offered by sharp minimization.

– While previous work only described a partial reduction algorithm preserv-
ing sharp bisimulation, we provide an algorithm based on signatures, which
computes the quotient of a system with respect to sharp bisimulation equiv-
alence. We compare the performance of its implementation in the BCG MIN
tool with strong and divbranching minimizations.

– Finally, we describe an application of compositional sharp minimization to
the verification of a collective adaptive system, which uses action priority.

This paper is not only a theoretical paper. It combines theory with imple-
mentation in software tools distributed in CADP, a widely used toolbox, which

2 http://rers-challenge.org
3 http://cadp.inria.fr/news12.html



has been continuously maintained, improved, and extended during the last three
decades.

Overview. Processes and their compositions, sharp bisimulation, and our priority
operator are presented in Section 2. Congruence of sharp bisimulation equiva-
lence for the priority operator, which depends on strong actions, is proven in
Section 3. A comparison between sharp bisimulation and orthogonal bisimula-
tion is made in Section 4. Our signature-based sharp minimization algorithm is
presented in Section 5, where we also describe how it can be adapted to imple-
ment orthogonal minimization. A toy example illustrating the potential benefit
of using sharp bisimulation rather than orthogonal bisimulation is presented in
Section 6. The case study is presented in Section 7. We discuss related work in
Section 8. Finally, we conclude in Section 9.

2 Background

2.1 Processes

We consider systems of processes whose behavioural semantics can be repre-
sented using an LTS (Labelled Transition System).

Definition 1 (LTS). Let A be an infinite set of actions including the invisible
action τ and visible actions A \ {τ}. An LTS P is a tuple (Σ,A,−→, pinit),
where:

– Σ is a set of states,
– A ⊆ A is a set of actions,
– −→ ⊆ Σ ×A×Σ is the (labelled) transition relation, and
– pinit ∈ Σ is the initial state.

We may write ΣP , AP ,−→P for the sets of states, actions, and transitions of an
LTS P , and init(P ) for its initial state. We write p

a−→ p′ for (p, a, p′) ∈ −→
and p

A−→ for (∃p′ ∈ ΣP , a ∈ A) p
a−→ p′.

LTS can be composed in parallel and their actions may be abstracted away
using the parallel composition and action mapping defined below, of which hide,
cut (also known as restriction), and rename are particular cases.

Definition 2 (Parallel composition of LTS). Let P and Q be LTS and let
A ⊆ A \ {τ} be a set of visible actions. The parallel composition of P and Q
with synchronization on A, written “P |[A]| Q”, is defined as the LTS (ΣP ×
ΣQ, AP ∪AQ,−→, (init(P ), init(Q))), where (p, q)

a−→ (p′, q′) iff:

1. p
a−→P p′, q′ = q, and a /∈ A, or

2. p′ = p, q
a−→Q q′, and a /∈ A, or

3. p
a−→P p′, q

a−→Q q′, and a ∈ A.



Definition 3 (Action mapping). Let [A]<ω denote the set of finite subsets of
the set of actions A. Let P be an LTS. An action mapping is a total function
ρ : AP → [A]<ω. We write ρ(AP ) for the image of ρ, defined by

⋃
a∈AP

ρ(a).
The application of action mapping ρ to the LTS P is written ρ(P ) and defined
as the LTS (ΣP , ρ(AP ),−→, init(P )) where −→ is defined as follows:

−→= {(p, a′, p′) | (∃a ∈ AP ) p
a−→P p′ ∧ a′ ∈ ρ(a)}

An action mapping ρ is admissible if τ ∈ AP implies ρ(τ) = {τ}. We distinguish
the following admissible action mappings:

– The mapping ρ(P ) is called action hiding, written “hide A in P”, if:
(∃A ⊆ A \ {τ}) (∀a ∈ A ∩AP ) ρ(a) = {τ} ∧ (∀a ∈ AP \A) ρ(a) = {a}.

– The mapping ρ(P ) is called action cut, written “cut A in P”, if:
(∃A ⊆ A \ {τ}) (∀a ∈ A ∩AP ) ρ(a) = ∅ ∧ (∀a ∈ AP \A) ρ(a) = {a}.

– The mapping ρ(P ) is called action renaming, written “rename f in P”, if:
(∃f : AP → A) ((∀a ∈ AP ) ρ(a) = {f(a)}) ∧ (τ ∈ AP ⇒ f(τ) = τ).

Parallel composition and action mapping subsume all abstraction and com-
position operators encodable as networks of LTS [32, 13, 25], such as synchro-
nization vectors and the parallel composition, hide, cut, and rename operators
of CCS [29], CSP [5], mCRL [19], LOTOS [21], E-LOTOS [22], and LNT [7].

2.2 Sharp Bisimulation

LTS can be compared and reduced modulo bisimulation relations between states.
We consider the family of sharp bisimulations [27] defined hereafter, which is a
general definition subsuming strong [30], branching, and divergence-preserving
branching [16, 17] (a.k.a. divbranching) bisimulations.

Definition 4 (Sharp bisimulation [27]). A divergence-unpreserving sharp
bisimulation w.r.t. a set of actions As is a symmetric relation R ⊆ Σ ×Σ such
that if (p, q) ∈ R then for all p

a−→ p′, there exists q′ such that (p′, q′) ∈ R and
either of the following holds:

1. q
a−→ q′, or

2. a = τ , τ /∈ As, and q′ = q, or
3. a /∈ As, and there exist q0

τ−→ . . .
τ−→ qn

a−→ q′ (n ≥ 0) such that q0 = q,
and for all i ∈ 1..n, (p, qi) ∈ R.

A divergence-preserving sharp bisimulation (simply called sharp bisimulation
in the sequel) R additionally satisfies the following divergence-preservation con-

dition: for all (p0, q0) ∈ R such that p0
τ−→ p1

τ−→ p2
τ−→ . . . with (pi, q0) ∈ R

for all i ≥ 0, there is also an infinite sequence q0
τ−→ q1

τ−→ q2
τ−→ . . . such that

(pi, qj) ∈ R for all i, j ≥ 0.
States p, q are sharp (resp. divergence-unpreserving sharp) bisimilar w.r.t.

As, written p ∼♯As
q (resp. p ∼⊣

♯As
q), if and only if there exists a sharp (resp.

divergence-unpreserving sharp) bisimulation R w.r.t. As such that (p, q) ∈ R.



A sharp bisimulation is a hybrid between a strong and a divbranching bisim-
ulation, characterized by the set of actions As called strong actions. If a state
has a transition labelled by a strong action, every sharp bisimilar state must
also have a similar transition labelled by the same strong action. This transi-
tion cannot be delayed by a τ -transition. By contrast, a transition labelled by
a non-strong (called weak) action can be delayed under the same condition as
divbranching bisimulation.

Sharp bisimulation generalizes results that are well-known in the framework
of strong and divbranching bisimulations [27]. For all sets of strong actions As

and A′
s:

– ∼♯As (resp. ∼⊣
♯As

) is an equivalence relation. The quotient of an LTS P w.r.t.
this equivalence relation is unique and minimal both in number of states and
number of transitions. Computing this quotient is called minimization.

– If As = A (i.e., all actions are strong, including τ), then sharp bisimula-
tion and divergence-unpreserving sharp bisimulation coincide with strong
bisimulation, whose equivalence is written ∼.

– If As = ∅ (i.e., all actions are weak), then sharp bisimulation (resp. diver-
gence-unpreserving sharp bisimulation) coincides with divbranching (resp.
branching) bisimulation, whose equivalence is written ∼dbr (resp. ∼br ).

– The set of sharp (resp. divergence-unpreserving sharp) bisimulation equiva-
lences equipped with set inclusion actually forms a complete lattice whose
supremum is divbranching (resp. branching) bisimulation equivalence and
whose infimum is strong bisimulation equivalence.

– If A′
s ⊂ As then ∼♯As

(resp. ∼⊣
♯As

) is strictly stronger than ∼♯A′
s
(resp. ∼⊣

♯A′
s
),

hence generalizing that strong bisimulation equivalence is strictly stronger
than (div)branching. As a consequence, an LTS minimized for ∼♯A′

s
(resp.

∼⊣
♯A′

s
) cannot be larger than the same LTS minimized for ∼♯As (resp. ∼⊣

♯As
),

i.e., the less strong actions, the greater the reduction.
– ∼♯As

(resp. ∼⊣
♯As

) is a congruence for parallel composition and admissible
action mapping. It follows that it is also a congruence for hide, cut, and
rename. Minimization can thus be applied compositionally through these
operators. Note that, as (div)branching, ∼♯As

and ∼⊣
♯As

are not congruences
for the choice operator, unless all initial actions of the choice are strong
actions. In particular, strong bisimulation equivalence is a congruence for
the choice operator, because all actions are strong.

– Finally, ∼♯As
is adequate with a well-characterized fragment Lstrong

µ (As) of
the modal µ-calculus4, also parameterized by As. The union indexed by As

of all such fragments is the modal µ-calculus itself, so that every formula
belongs to some of these fragments. Thus, identifying a small enough As to
which a temporal logic formula belongs5 provides more chances to reduce
the system efficiently. See [26, 27] for details.

4 Adequacy of an equivalence and a logic means that two LTS are equivalent if and
only if they verify exactly the same formulas of the logic.

5 It was shown that such a smallest fragment is not unique [26]. Also, deciding whether
a formula belongs to some fragment Lstrong

µ (As) is still an open problem.



2.3 Action Priority

A classification of priority operators in process algebra is given in [8]. With
respect to this classification, the operator presented in this section is static pri-
oritized choice with global preemption. This priority operator is implemented in
the tool EXP.OPEN [25] distributed in the CADP toolbox. Strong and orthog-
onal bisimulation equivalences [2] are congruences for this operator, which has
lots of similarities with the priority operator of ACP [1].

Definition 5. We consider action formulas α, whose syntax and semantics
w.r.t. a set of actions A are defined as follows:

α ::= a [[a]]A = {a}
| false [[false]]A = ∅
| α1 ∨ α2 [[α1 ∨ α2]]A = [[α1]]A ∪ [[α2]]A
| ¬α0 [[¬α0]]A = A \ [[α0]]A

Definition 6. An action priority rule π is an ordered pair of the form α ≻ α′,
where α and α′ are action formulas such that [[α]]A ̸= ∅, [[α′]]A ̸= ∅, and [[α]]A ∩
[[α′]]A = ∅. To an action priority rule π, we associate the following antisymmetric
relation ≻π,A:

≻π,A = {(a, a′) | a ∈ [[α]]A ∧ a′ ∈ [[α′]]A}

Given π = α ≻ α′, we write greaterA(π) for the set [[α]]A of labels of A which
take priority over some other labels, and lesserA(π) for the set [[α′]]A of labels of
A which yield priority to some other label, following rule π.

A priority set Ω is a set {π1, . . . , πn} of priority rules. To a priority set Ω,
we associate the following relation ≻Ω,A:

≻Ω,A = ≻π1,A ∪ . . .∪ ≻πn,A

We write >Ω,A for the transitive closure of ≻Ω,A. A priority set Ω is valid
if >Ω,A is a strict (partial) order relation, i.e., antireflexive and antisymmetric
(and of course transitive, which is granted by definition).

If Ω is a valid priority set and P is the LTS (Σ,A,−→, pinit), then the
expression “prio Ω in P” is defined as the LTS (Σ,A,−→′, pinit) such that
−→′ is the following set of transitions:

−→′ = {(p, a, p′) | p a−→ p′ ∧ (∀p′′ ∈ Σ, a′ ∈ A) p
a′

−→ p′′ ⇒ ¬(a′ >Ω,A a)}

Finally, we extend the operations greaterA and lesserA to priority sets as
follows:

greaterA(Ω) =
⋃

πi∈Ω greaterA(πi)
lesserA(Ω) =

⋃
πi∈Ω lesserA(πi)

Example 1. Let A be the set of actions {a, b, c, d, e, f} and Ω be the priority set
{a ≻ b, b ≻ c∨ d, d ≻ ¬(a∨ b∨ c∨ d∨ e)}. We have greaterA(Ω) = {a, b, d}, and
lesserA(Ω) = {b, c, d, f}. Having greaterA(Ω) ∩ lesserA(Ω) ̸= ∅ is allowed, as in
this example.



Lemma 1. The following propositions hold:

– a ∈ lesserA(Ω) if and only if there exists a′ ∈ A such that a′ >Ω,A a.
– a ∈ greaterA(Ω) if and only if there exists a′ ∈ A such that a >Ω,A a′.

Proof. Immediate from the definitions of greaterA(Ω) and lesserA(Ω).

3 Sharp Congruences for Action Priority

It is well-known that, although strong bisimulation equivalence is a congruence
for priority, divbranching bisimulation equivalence is not. This latter fact can be
illustrated by the following example.

Example 2. Consider the network “prio a ≻ b in P |[∅]|Q”, where a and b are

visible actions, P consists of the sequence p0
τ−→ p1

a−→ p2 and Q consists of

the single transition q0
b−→ q1. The LTS corresponding to this network is the

following:

(p0, q0)
τ //

b

��

(p1, q0)
a // (p2, q0)

b

��
(p0, q1)

τ // (p1, q1)
a // (p2, q1)

P is divbranching equivalent to P ′, which consists of the single transition p′0
a−→

p′1. The LTS corresponding to “prio a ≻ b in P ′ |[∅]|Q” consists of the sequence

of transitions (p′0, q0)
a−→ (p′1, q0)

b−→ (p′1, q1). It is clear that (p0, q0), from
which actions a and b can be fired in any order, is not divbranching equivalent
to (p′0, q0), from which a can only be fired before b.

Theorem 1 below expresses however that sharp bisimulation equivalence is a
congruence for priority, provided (1) all actions that may take priority over some
other action are strong and (2) τ does not yield priority to any other action.

Theorem 1. If greaterA(Ω) ⊆ As, τ /∈ lesserA(Ω), and P ∼♯As
P ′, then

prio Ω in P ∼♯As
prio Ω in P ′. The same holds when replacing ∼♯As

by
∼⊣

♯As
.

Proof. The key of the proof is that a state has a prioritized transition if and
only if every ∼♯As

bisimilar state also has a similar transition with same label,
as this label belongs to As.

Formally, let R be a sharp bisimulation (resp. divergence-unpreserving sharp
bisimulation) w.r.t. As between P and P ′. We show that R is also a sharp
bisimulation (resp. divergence-unpreserving sharp bisimulation) w.r.t. As be-
tween “prio Ω in P” and “prio Ω in P ′”. Let (p0, p

′
0) ∈ R and assume that

there exists p1 such that “prio Ω in P” has a transition p0
a−→ p1. By definition

of prio, P also has this transition.



For all labels a′ such that a′ >Ω,A a, we have a′ ∈ greaterA(Ω), which implies
a′ ∈ As since greaterA(Ω) ⊆ As. By definition of prio, since “prio Ω in P” has

a transition p0
a−→ p1, then P has no transition of the form p0

a′

−→ p2 (otherwise

this transition would take priority over p0
a−→ p1, which would then not occur

in “prio Ω in P”). By definition of R, since (p0, p
′
0) ∈ R and a′ ∈ As, P

′ thus

has no transition of the form p′0
a′

−→ p′2 neither.

By definition of sharp bisimulation, since P has a transition p0
a−→ p1, and

(p0, p
′
0) ∈ R, then P ′ has a state p′1 such that one of the following three conditions

is satisfied in P ′; in each case, we show that the same condition is satisfied in
“prio Ω in P ′”:

1. P ′ has a transition p′0
a−→ p′1. Since P

′ has no transition of the form p′0
a′

−→ p′2
with a′ >Ω,A a, then “prio Ω in P ′” does also have the same transition

p′0
a−→ p′1.

2. a = τ , τ /∈ As, and p′1 = p′0. This condition obviously keeps holding true in
“prio Ω in P ′”.

3. a /∈ As and P ′ has a sequence q0
τ−→ . . .

τ−→ qn
a−→ p′1 (n ≥ 0) such that

q0 = p′0 and for all i ∈ 1..n, (p0, qi) ∈ R. Since τ /∈ lesserA(Ω), no label
can take priority over τ -transitions, hence “prio Ω in P ′” has the same
sequence of τ -transitions q0

τ−→ . . .
τ−→ qn with q0 = p′0 and for all i ∈ 1..n,

(p0, qi) ∈ R. In particular, (p0, qn) ∈ R, which implies that, since P has no

transition of the form p0
a′

−→ p2 with a′ >Ω,A a, then P ′ has no transition

of the form qn
a′

−→ p′2 with a′ >Ω,A a neither. “prio Ω in P ′” thus has the

transition qn
a−→ p′1.

Finally, if R is divergence-preserving and if p0 has a divergence in P , then this
divergence is also present in “prio Ω in P”, because τ /∈ lesserA(Ω). Therefore,
p′0 also has a divergence in P ′ because (p0, p

′
0) ∈ R, and also in “prio Ω in P ′”,

again because τ /∈ lesserA(Ω).

Example 3. Back to Example 2, we know from Theorem 1 that if we replace
respectively P and Q by any sharp (or divergence-unpreserving sharp) equivalent
LTS, then we will get as result an LTS that is sharp (or divergence-unpreserving
sharp) equivalent (hence divbranching or branching equivalent) to the network
“prio a ≻ b in P |[∅]|Q”, provided a is a strong action. Note however that both
P and Q are minimal for ∼♯{a} and ∼⊣

♯{a}. They are therefore also minimal for
any sharp bisimulation equivalence such that a is a strong action.

Note that the proof of congruence of strong bisimulation for priority can be
derived from the above proof by replacing the condition greaterA(Ω) ⊆ As by
As = A (the condition under which sharp bisimulation coincides with strong
bisimulation), which makes items 2 and 3 inapplicable and relaxes the (now
useless) assumption τ /∈ lesserA(Ω).



4 Sharp vs. Orthogonal Bisimulation

Sharp bisimulation has resemblances with orthogonal bisimulation [2], whose
equivalence is also a congruence for many operators including choice and action
priority, even if τ is subject to priority. We show the precise relationship between
orthogonal and sharp bisimulations.

Definition 7 (Orthogonal bisimulation [2]). An orthogonal bisimulation is

a symmetric relation R ⊆ Σ × Σ such that if (p, q) ∈ R then for all p
a−→ p′,

there exists q′ such that (p′, q′) ∈ R and either of the following holds:

1. a ̸= τ and q
a−→ q′, or

2. a = τ and q
τ−→ and there exists a sequence of transitions q0

τ−→ . . .
τ−→

qn (n ≥ 0) such that q0 = q, qn = q′, and for all i ∈ 1..n− 1, (p, qi) ∈ R.

Two states p and q are orthogonally bisimilar, written p ∼⊣
⊥ q, if and only if

there exists an orthogonal bisimulation R such that (p, q) ∈ R.
Divergence-preserving orthogonal bisimulation, written ∼⊥, is also defined

in [2], by adding the same divergence-preserving condition as divbranching and
sharp bisimulations (see Definition 4).

The above definition shows that orthogonal bisimulation is weaker than
strong bisimulation, with which it coincides if all actions are visible. As regards
τ -transitions, orthogonal bisimulation may compress their sequences, but always
preserving at least one. It is not comparable with sharp bisimulation as can be
shown by considering the three LTS below:

· τ //

a

��

· τ //

a

��

·
a

��
· τ // · τ // ·

· τ //

a

��

·
a

��
· τ // ·

·
a

��
·

(a) (b) (c)

Orthogonal minimization of LTS (a) results in LTS (b). However, (divergence-
preserving and divergence-unpreserving) sharp minimization of LTS (a) results
in LTS (c) when τ /∈ As, and in LTS (a) itself when τ ∈ As. Interestingly, in our
framework, LTS (a) can be reduced to LTS (c) if τ does neither yield nor take
priority to any other label. By contrast, orthogonal bisimulation enables only
reduction to LTS (b) in all cases, which has twice as many states and four times
more transitions than LTS (c).

Theorem 2 gives the precise relationship between orthogonal and sharp bisim-
ulations.

Theorem 2. A relation R ⊆ Σ×Σ is an orthogonal bisimulation (resp. divergence-
preserving orthogonal bisimulation) if and only if (1) R ∈ ∼⊣

♯A\{τ} (resp. ∼♯A\{τ})

and (2) for all (p, q) ∈ R, p
τ−→ implies q

τ−→.



Proof. This is quite intuitive by looking closely at the definitions of sharp bisim-
ulation and orthogonal bisimulation. More formally (we skip the divergence-
preserving case, which is an obvious consequence of the proof below):

R ∈ ∼⊣
♯A\{τ} ∧ (∀(p, q) ∈ R) (p

τ−→ ⇒ q
τ−→)

⇔ (∀(p, q) ∈ R, a ∈ A, p′ ∈ Σ) (p
a−→ p′ ⇒ (∃q′ ∈ Σ) (p′, q′) ∈ R ∧

(q
a−→ q′ ∨ (a = τ ∧ τ /∈ A \ {τ} ∧ q′ = q) ∨

(a /∈ A \ {τ} ∧ (∃n ≥ 0, q0, . . . , qn ∈ Σ) q0
τ−→ . . .

τ−→ qn
a−→ q′ ∧

q0 = q ∧ (∀i ∈ 1..n) (p, qi) ∈ R))) ∧ (q, p) ∈ R ∧ (p
τ−→ ⇒ q

τ−→)
by definition of ∼⊣

♯A\{τ}

⇔ (∀(p, q) ∈ R, a ∈ A, p′ ∈ Σ) (p
a−→ p′ ⇒ (∃q′ ∈ Σ) (p′, q′) ∈ R ∧

(q
a−→ q′ ∨ (a = τ ∧ q′ = q) ∨

(a = τ ∧ (∃n ≥ 0, q0, . . . , qn ∈ Σ) q0
τ−→ . . .

τ−→ qn
τ−→ q′ ∧

q0 = q ∧ (∀i ∈ 1..n) (p, qi) ∈ R))) ∧ (q, p) ∈ R ∧ (p
τ−→ ⇒ q

τ−→)
because τ /∈ A \ {τ} holds and a /∈ A \ {τ} implies a = τ

⇔ (∀(p, q) ∈ R, a ∈ A, p′ ∈ Σ) (p
a−→ p′ ⇒ (∃q′ ∈ Σ) (p′, q′) ∈ R ∧ (q

a−→ q′ ∨
(a = τ ∧ (q′ = q ∨ ((∃n ≥ 0, q0, . . . , qn ∈ Σ) q0

τ−→ . . .
τ−→ qn

τ−→ q′ ∧
q0 = q ∧ (∀i ∈ 1..n) (p, qi) ∈ R))) ∧ (q, p) ∈ R ∧ (p

τ−→ ⇒ q
τ−→)

by factoring both cases where a = τ

⇔ (∀(p, q) ∈ R, a ∈ A, p′ ∈ Σ) (p
a−→ p′ ⇒ (∃q′ ∈ Σ) (p′, q′) ∈ R ∧ (q

a−→ q′ ∨
(a = τ ∧ (q′ = q ∨ ((∃n > 0, q0, . . . , qn ∈ Σ) q0

τ−→ . . .
τ−→ qn ∧ q0 = q ∧

qn = q′ ∧ (∀i ∈ 1..n− 1) (p, qi) ∈ R))) ∧ (q, p) ∈ R ∧ (p
τ−→ ⇒ q

τ−→)
by reworking index n

⇔ (∀(p, q) ∈ R, a ∈ A, p′ ∈ Σ) (p
a−→ p′ ⇒ (∃q′ ∈ Σ) (p′, q′) ∈ R ∧ (q

a−→ q′ ∨
(a = τ ∧ ((∃n ≥ 0, q0, . . . , qn ∈ Σ) q0

τ−→ . . .
τ−→ qn ∧ q0 = q ∧

qn = q′ ∧ (∀i ∈ 1..n− 1) (p, qi) ∈ R))) ∧ (q, p) ∈ R ∧ (p
τ−→ ⇒ q

τ−→)
by combining q′ = q with (∃n > 0) . . .

⇔ (∀(p, q) ∈ R, a ∈ A, p′ ∈ Σ) (p
a−→ p′ ⇒ (∃q′ ∈ Σ) (p′, q′) ∈ R ∧

((a ̸= τ ∧ q
a−→ q′) ∨ (a = τ ∧ ((∃n ≥ 0, q0, . . . , qn ∈ Σ) q0

τ−→ . . .
τ−→ qn ∧

q0 = q ∧ qn = q′ ∧ (∀i ∈ 1..n− 1) (p, qi) ∈ R))) ∧ (q, p) ∈ R ∧
(p

τ−→ ⇒ q
τ−→)

because q
τ−→ q′ is covered by n = 1 in (∃n ≥ 0) . . .

⇔ (∀(p, q) ∈ R, a ∈ A, p′ ∈ Σ) (p
a−→ p′ ⇒ (∃q′ ∈ Σ) (p′, q′) ∈ R ∧

((a ̸= τ ∧ q
a−→ q′) ∨ (a = τ ∧ q

τ−→ ∧ ((∃n ≥ 0, q0, . . . , qn ∈ Σ)

q0
τ−→ . . .

τ−→ qn ∧ q0 = q ∧ qn = q′ ∧ (∀i ∈ 1..n− 1) (p, qi) ∈ R))) ∧
(q, p) ∈ R

by moving p
τ−→ ⇒ q

τ−→ under the case a = τ

⇔ R ∈ ∼⊣
⊥

by definition of ∼⊣
⊥

As orthogonal bisimulation equivalence requires every visible action to be
strong, a consequence is that it is strictly stronger than any divergence-un-



preserving sharp bisimulation equivalence where τ is weak. In this case, the
quotient of the system for sharp bisimulation equivalence cannot be larger than
the one for orthogonal bisimulation equivalence. The fewer actions are declared
as strong (i.e., the fewer actions being prioritized), the more sharp bisimulation
can improve the reduction as compared to orthogonal bisimulation.

A practical consequence of Theorems 1 and 2 is that if one needs to generate
the LTS of a network of the form “prio Ω in (P0 |[A1]| . . . |[An]|Pn)” in a way
that preserves ∼♯As

(e.g., because the property to be verified on the network
is in the modal µ-calculus fragment Lstrong

µ (As)), then the LTS P0, . . . , Pn can
be reduced with respect to ∼♯As∪A>

beforehand, where A> = greaterA(Ω) and
A = AP1 ∪ . . .∪APn . Note however that this requires τ /∈ lesserA(Ω). Otherwise,
one has to use either strong bisimulation ∼ or divergence-preserving orthogonal
bisimulation ∼⊥, for which the congruence property holds. Note however that
∼⊥ can only be used in the case where τ /∈ As, because it cannot preserve ∼♯{τ}.
Finally, if τ /∈ lesserA(Ω) and τ /∈ As, then each Pi can be reduced with respect
to both ∼⊥ and ∼♯As∪A>

. If in addition τ /∈ A>, then the former is subsumed
by the latter (because it is stronger), but this is not the case if τ ∈ A>. In the
latter case, it may be worth combining both equivalences.

These principles also hold when replacing ∼♯As , ∼♯As∪A> , and ∼⊥ by their
divergence-unpreserving variants ∼⊣

♯As
, ∼⊣

♯As∪A>
, and ∼⊣

⊥, respectively. They
are summarized in Figure 1. They could be implemented in a procedure that
decides automatically which equivalence is to be used on the subsystems, e.g.,
in the SVL scripting language [12] of CADP.

Equiv. R for system τ ∈ A<? τ ∈ A>? τ ∈ As? Equiv. R′ for Pi (i ∈ 0..n)

yes − yes ∼
yes − no ∼⊥

no yes yes ∼♯As∪A>

no yes no ∼♯As∪A> ,∼⊥

no no − ∼♯As∪A>

yes − yes ∼
yes − no ∼⊣

⊥
no yes yes ∼⊣

♯As∪A>

no yes no ∼⊣
♯As∪A>

,∼⊣
⊥

no no − ∼⊣
♯As∪A>

∼⊥ − − − ∼⊥

∼⊣
⊥ − − − ∼⊣

⊥

∼♯As

∼⊣
♯As

Table 1. Weakest equivalence relations R′ (among the relations ad-
dressed in this paper), which can be used on the subsystems P0, . . . , Pn

for “prio Ω in P0 |[A1]| . . . |[An]|Pn” to preserve the equivalence relation R
(A< = lesserA(Ω) and A> = greaterA(Ω)).



P = p0

b

��

τ // p1

b
~~

τ

��

a

��
p2 p3

∼⊣
♯{b}⊥ q0

τ

��

b

��

a // q1

q2

= Q

prio b ≻ τ in P = p0

b

��
p2

̸∼⊣
♯{b}⊥ q0

b

��

a // q1

q2

= prio b ≻ τ in Q

Fig. 1. Counter-example showing that combining sharp and orthogonal bisimulations
does not allow the condition τ /∈ lesserA(Ω) to be removed from Theorem 1.

Finally, as the congruence property for orthogonal bisimulation does not re-
quire the condition τ /∈ lesserA(Ω) (unlike sharp bisimulation), one might wonder
whether an equivalence relation ∼⊣

♯As⊥ (and its divergence-preserving variant),
which combines sharp bisimulation and orthogonal bisimulation as given by the
following definition:

R ∈ ∼⊣
♯As⊥ ⇔ R ∈ ∼⊣

♯As
∧ (∀(p, q) ∈ R) p

τ−→ ⇒ q
τ−→

would have the congruence property without requiring τ /∈ lesserA(Ω). (Note
that ∼⊣

⊥ = ∼⊣
♯A\{τ}⊥.) In other words, can we relax the definition of orthogonal

bisimulation so as to consider a reduced set of strong actions instead of all
visible actions, while preserving the congruence when τ may yield priority to
other actions? The answer is no, as shows the counter-example of Figure 1.

5 Signature-Based Sharp Minimization

5.1 Partition-Refinement using Signatures

Efficient LTS minimization algorithms are generally based on partition refine-
ment: starting from an initial partition6 {Σ} of the set of states Σ, refinement
(i.e., block splitting) is applied until each block represents an equivalence class.

Signature-based partition refinement was first proposed by Blom & Orzan [3,
4] as a conceptually simple way to implement partition refinement for strong and
(div)branching bisimulations, among others. Although signature-based partition
refinement algorithms are not optimal, with a worst-case time complexity of
O(mn2) where m is the number of transitions and n is the number of states (to
be compared with the best-known worst-case time complexity of O(m log n) for

6 A partition of a set S is a set of non-empty disjoint subsets of S (called blocks),
whose union is S itself.



both strong [33] and (div)branching [23] bisimulations), they are quite efficient
in practice and suitable for distributed implementations7. In the CADP tool-
box [14], the BCG MIN tool implements sequential signature-based partition
refinement for strong bisimulation, branching bisimulation, divbranching bisim-
ulation, as well as stochastic and probabilistic extensions. Its companion tool
BCG CMP checks bisimulation equivalence between LTS, by testing whether
the initial states of both LTS are in the same equivalence class. In this section,
we present a signature-based partition refinement algorithm that implements
sharp minimization and that is implemented in BCG MIN and BCG CMP.

Below, we present a generic signature-based partition refinement algorithm.
For a bisimulation equivalence R, this algorithm uses a function sigR(s, P ), which
returns the signature of a state s with respect to the current partition P . The
signature of a state is a set of ordered pairs, each consisting of a label and a block
belonging to P . Its precise definition for strong, branching, and divbranching
bisimulations will be detailed later. Function sigR naturally extends to blocks B
as follows:

sigR(B,P ) = {sigR(s, P ) | s ∈ B}

In a given partition P , a block B may be split into several blocks using the
function splitR(B,P ) defined as follows:

splitR(B,P ) = {{s | s ∈ B ∧ sigR(s, P ) = σ} | σ ∈ sigR(B,P )}

When a block cannot be split anymore, i.e., all states have the same signature,
splitR(B,P ) returns B itself. The generic signature-based partition refinement
algorithm can be defined as follows:

P := {Σ};
loop

P ′ := P;
P :=

⋃
B∈P splitR(B,P )

until P = P ′ end loop;
return P

This algorithm can be refined to avoid unnecessary work. For instance, during
an iteration, blocks can be partitioned into splitter and non-splitter blocks, so
that signatures of blocks which are not predecessors of splitter blocks do not
need to be split, as they will remain unchanged. However, we do not detail such
improvements further as they are not specific to sharp bisimulation.

7 The difference between O(m log n) and O(mn2) may seem big, and it is, indeed.
However, O(mn2) is the complexity upper bound, reached only in few corner cases
(e.g., long sequences or large trees of transitions all labelled by the same action).
Moreover, the bottleneck for state space reduction is usually memory rather than
time. Even though they may be sensibly slower, signature-based partition refinement
algorithms behave well in terms of memory consumption.



5.2 Computing Signatures

Definition 8. We use the following notations, where a is a label, B a block, P
a partition, s, s′ are states, and n is a natural number:

τB,P (s, s
′) = B ∈ P ∧ s, s′ ∈ B ∧ s

τ−→ s′

τnB,P (s, s
′) = (∃s0, . . . , sn) s = s0 ∧ (∀i ∈ 0..n− 1) τB,P (si, si+1) ∧ sn = s′

τ∗B,P (s, s
′) = (∃n ≥ 0) τnB,P (s, s

′)

τωB,P (s) = (∀n ≥ 0) (∃s′ ∈ B) τnB,P (s, s
′)

τP (s, s
′) = (∃B ∈ P ) τB,P (s, s

′)
τnP (s, s

′) = (∃B ∈ P ) τnB,P (s, s
′)

τ∗P (s, s
′) = (∃B ∈ P ) τ∗B,P (s, s

′)

τωP (s) = (∃B ∈ P ) τωB,P (s)

s
a−→P B = B ∈ P ∧ (∃s′ ∈ B) s

a−→ s′

s
a

=⇒P B = B ∈ P ∧ (∃s′ ∈ Σ, s′′ ∈ B) τ∗P (s, s
′) ∧ s′

a−→ s′′ ∧ (a ̸= τ ∨ s /∈ B)

A τ -transition is called inert w.r.t. a state partition P (or simply inert if
P is clear from the context) if its source and target states belong to the same
block. States s and s′ belonging to the same block B of partition P , the notation
τB,P (s, s

′) indicates that there is an inert transition from s to s′, τnB,P (s, s
′) that

there is a sequence of n inert transitions from s to s′, τ∗B,P (s, s
′) that there is a

sequence of (zero or more) inert transitions from s to s′, and τωB,P (s) that s is the
source of an infinite sequence of inert transitions. The variants of these notations
where B does not appear in the subscript have a similar meaning, except that the
block to which s and s′ belong is unspecified. The notation s

a−→P B indicates
that s has a transition labelled by a to some state that belongs to block B
of partition P and s

a
=⇒P B that there is an arbitrary long sequence of inert

transitions starting in s, which leads to a state that has a non-inert a-transition
to some state that belongs to block B of partition P .

The following are the signatures of a state for respectively strong, branching,
and divbranching bisimulations:

sig∼(s, P ) = {(a,B) | s a−→P B}
sig∼br

(s, P ) = {(a,B) | s a
=⇒P B}

sig∼dbr
(s, P ) = sig∼br

(s, P ) ∪ {(τ,B) | τωB,P (s)}
In the case of (div)branching bisimulation, computing the signature efficiently

in practice (i.e., with a complexity linear in the number of states) requires care,

due to the necessity to compute the relation
a

=⇒P , built upon the transitive
closure of the relation τP . In particular, one has to take care of circuits of τ -
transitions. However, one can observe that all states in the same circuit of τ -
transitions are (div)branching bisimilar. Therefore, before starting to minimize
an LTS, Tarjan’s SCC algorithm is used for two purposes:

– All states in a circuit of τ -transitions are compressed into a single represen-
tative state. In the case of divbranching bisimulation, a self τ -loop is added
to the representative state to reflect the existence of a circuit. This allows
the condition τωB,P (s) to be replaced by (∃s′ ∈ Σ) τ∗B,P (s, s

′) ∧ τB,P (s
′, s′).



– States are then ordered within the initial block, so that whenever there is a
transition s

τ−→ s′, then either s = s′ or s′ occurs before s. When splitting
a block, this order is maintained in the created subblocks. The signatures
of states in a block are computed in this order, so that if there is an inert
transition s

τ−→P s′ with s′ ̸= s, then the signature of s′ is computed before
starting to compute that of s. Therefore, the signature of s just has to be
extended with the signatures of its immediate inert successors (such as s′)
without having to traverse the LTS further.

For divergence-unpreserving sharp bisimulation and sharp bisimulation, the
signature of a state is a combination of the signatures for strong and (div)bran-
ching bisimulation, defined as follows:

sig∼⊣
♯As

(s, P ) = {(a,B) | (a ∈ As ∧ s
a−→P B) ∨ (a /∈ As ∧ s

a
=⇒P B)}

sig∼♯As
(s, P ) = sig∼⊣

♯As
(s, P ) ∪ {(τ,B) | τωB,P (s)}

As for branching and divbranching bisimulations, we must take care how we
compute the transitive closure of the relation τP . However, it is not possible to
compress circuits of τ -transitions beforehand, because states on such circuits are
not necessarily bisimilar, as illustrated below.

Example 4. The following LTS are ∼♯{a} bisimilar, while the rightmost one is
minimal with respect to ∼♯{a}. Observe that states p′0 and p′2 belong to the
same circuit of τ -transitions but are not ∼♯{a} bisimilar because p′0 is source of
a transition labelled by strong action a, whereas p′2 is not.

p0
a //

τ

��

p1

p2 τ
// p3

τ

``
a

OO p′0 a
//

τ

��

p′1

p′2

τ

[[

Instead, the Tarjan’s SCC algorithm is used whenever the signatures of a
block need to be updated (when computing the split operation), to traverse inert
transitions. Details are presented in Figure 2, auxiliary functions extend sig immediate,
extend sig rep, and extend sig scc being defined in Figure 3. The function call
signatures sharp(B,P ) computes the function sig that returns the signature
sig(s) of each state s in block B, corresponding to sig∼♯As

(s, P ). Underlined
statements are specific to the computation of signatures, whereas the remainder
of the code is the standard Tarjan’s SCC algorithm. The algorithm performs the
following steps:

1. When a new SCC is found, its states are on the so-called SCC stack of the
Tarjan’s SCC algorithm. One of these states (the bottommost one s0) is
defined as its SCC representative.



2. Then, the states of the SCC are popped one after the other from the SCC
stack. When popping a state s: (a) all ordered pairs (a,B′) such that s

a−→ B′

(not inertly if τ /∈ As) are added to the signature of the current state s, (b)

all ordered pairs (a,B′) such that a /∈ As and s
a−→ B′ are added to the

signature of the SCC representative s0, (c) all ordered pairs (a,B′) part
of the signature of some state s′ such that a /∈ As, τP (s, s

′), and s′ is in
a distinct SCC as s are added to the signature of the SCC representative
s0, and (d) if s has an inert transition internal to the SCC, then a di-
vergence is added to the signature of s0. Step (a) is achieved by a call to
function extend sig immediate(. . .), step (b) is achieved by a call to function
extend sig inert(. . .), and steps (c) and (d) are achieved by a call to func-
tion extend sig rep(. . .), which may call functions extend sig inert(. . .) and
extend sig div(. . .). To implement divergence-unpreserving sharp minimiza-
tion, the call to extend sig div(. . .) just has to be skipped.

3. Finally, once all states of the SCC have been popped from the SCC stack,
then the signature of the SCC representative s0 has accumulated all its
successors. This is not the case for the other states of the SCC, if any.
Therefore, if the SCC has more than one state, then the components (a,B′)
of s0 satisfying a /∈ As are added to the signatures of the other states of the
SCC. This step is achieved by the function call extend sig scc(. . .).

5.3 Performance

This sharp minimization algorithm was implemented in the tool BCG MIN and
released since CADP version 2021-f “Saarbruecken” (May 2021). Note that we
implemented only the divergence-preserving variant of sharp bisimulation so far,
because we did not feel the need for divergence-unpreserving sharp minimization.

To assess the performance of this implementation, we made several measure-
ments on a computer with Intel Core i5 quadri-processor running at 2.5 GHz
using 16 GB of RAM, running GNU/Linux.

First, we applied sharp minimization to the 180 parallel problems of the
RERS 2019 challenge8. We compared the obtained LTS sizes to those obtained
initially using the partial reduction algorithm presented in [27], which was ap-
plied compositionally. On average, the final LTS obtained using sharp minimiza-
tion has 7.69 times fewer states and 11.99 times fewer transitions than using
partial sharp reduction. The maximum is for problem 106#16, where the final
LTS obtained using sharp minimization has 3 states and 4 transitions instead of
527 states and 1314 transitions, that is 175 times fewer states and 328 times fewer
transitions. We also checked (without surprise) that the RERS 2019 properties
were preserved by minimization, as theoretically expected.

Second, we compared the memory and time consumed by sharp minimiza-
tion in the two particular cases where the set of strong actions is either empty
(∅) or maximal (A) with the (respectively equivalent in terms of resulting LTS)

8 http://www.rers-challenge.org/2019/



function signatures sharp(B,P ) is
scc stack, dfs stack, index count := ∅, ∅, 0;
foreach s ∈ B loop index (s), rep(s), sig(s) := −1, s, ∅ end loop;

foreach s ∈ B loop
if index (s) < 0 then
start:

index (s), lowlink(s) := index count, index count;
index count := index count+ 1;
push(s, scc stack);
succ := {s′ | τP (s, s′)};

continue:

if succ ̸= ∅ then
s′ := any state where s′ ∈ succ;
succ := succ \ {s′};
if index (s′) < 0 then

push((s, s′, succ), dfs stack);
s := s′;
goto start

else if s ∈ scc stack and index (s′) < lowlink(s) then
lowlink(s) := index (s′)

end if;
goto continue

end if;
if lowlink(s) = index (s) then

scc, s0 := ∅, s;
loop -- states above s0 on scc stack constitute s0’s SCC

s := pop(scc stack);
rep(s), scc := s0, scc ∪ {s};
sig := extend sig immediate(sig, s, B, P );

sig := extend sig inert(sig, s0, s);

sig := extend sig rep(sig, s0, s, rep, scc stack, B, P );

until s = s0 end loop;
sig := extend sig scc(sig, s0, scc);

end if;
if dfs stack ̸= ∅ then

(s, s′, succ) := pop(dfs stack);
if lowlink(s′) < lowlink(s) then lowlink(s) := lowlink(s′) end if;
goto continue

end if
end if

end loop;
return sig

end function

Fig. 2. Sharp signature computation (underlined) based on Tarjan’s algorithm



function extend sig immediate(sig, s, B, P ) is
-- extend s’s signature with (non-inert) immediate actions

sig(s) := sig(s) ∪ {(a,B′) | s a−→P B′ ∧ (τ ∈ As ∨ a ̸= τ ∨B′ ̸= B)};
return sig

end function

function extend sig inert(sig, s, s′) is
-- extend s’s signature with weak actions of s′’s signature,
-- knowing τ∗

P (s, s
′)

if s ̸= s′ then
sig(s) := sig(s) ∪ {(a,B) | (a,B) ∈ sig(s′) ∧ a /∈ As}

end if;
return sig

end function

function extend sig div(sig, s, B) is
-- extend s’s signature with a divergence in block B
sig(s) := sig(s) ∪ {(τ,B)};
return sig

end function

function extend sig rep(sig, s0, s, rep, scc stack, B, P ) is
-- extend s0’s signature with weak actions reachable by
-- inert transitions from s, knowing s0 and s in same SCC
foreach s′ such that τP (s, s

′) loop

-- s0
τ∗
−→ s′ inert

if rep(s′) = s0 ∨ s′ ∈ scc stack then
-- s0 and s′ are in same SCC: divergence
sig := extend sig div(sig, s0, B)

else
-- s0 and s′ are not in same SCC
sig := extend sig inert(sig, s0, s

′)
end if

end loop;
return sig

end function

function extend sig scc(sig, s0, scc) is
-- extend signature of states strongly connected to s0
-- with weak actions once s0’s signature is up to date
foreach s ∈ scc \ {s0} loop

-- s
τ∗
−→ s0 inert

sig := extend sig inert(sig, s, s0)
end loop;
return sig

end function

Fig. 3. Functions used in Figure 2



Package memory time fails memory time fails memory time

BCG1 2.6 0.14 0 2.7 0.21 0 1.04 1.82

BCG2 112 38 0 186 46 0 1.65 1.22

BCG3 646 52 16 1032 71 17 1.41 1.37

VLTS 242 15 0 363 22 0 1.34 1.46

∼
minimization

∼♯A
minimization

overhead
∼♯A / ∼

Table 2. Performance of ∼♯A∫ minimization vs. dedicated ∼ minimization

minimization algorithms specialized for strong and divbranching already imple-
mented in BCG MIN since 2010. This comparison allows us both to validate our
implementation in those two extreme cases, and to assess the overhead induced
by checking action strongness/weakness, as well as the use of the Tarjan’s SCC
algorithm to compute state signatures each time a block has been split.

We applied this comparison to four different packages of LTS accumulated
over time, represented in the BCG format of CADP: (1) a package BCG1 com-
prising 8995 “small” LTS having less than 500, 000 transitions; (2) a pack-
age BCG2 comprising 542 “medium-size” LTS having between 500, 000 and
5, 000, 000 transitions; (3) a package BCG3 comprising 265 “large” LTS having
between 5, 000, 000 and 50, 000, 000 transitions; and (4) the public benchmark
VLTS9 comprising 40 LTS ranging from 289 states and 1224 transitions up to
33, 949, 609 states and 165, 318, 222 transitions. The results are given in Tables 2
and 3, where for each package, we give the average memory, time consumption,
and number of LTS whose minimization requires more than the 16 GB of RAM
available on the computer to complete (column fails). Each overhead represents
the value (memory or time) obtained on a package using the general sharp min-
imization algorithm (using either A or ∅ as set of strong actions) divided by the
value obtained on the same package using the corresponding specialized mini-
mization algorithm (i.e., strong or divbranching minimization), once the entries
concerning LTS on which at least one minimization failed have been removed.
Time is expressed in seconds and memory is expressed in megabytes. This com-
parison shows that the overhead is not negligible, but rather small.

Our implementation of sharp minimization is most useful in cases where the
set of strong actions is somewhere between the two extremes A and ∅, where it
cannot be replaced by the implementation of strong or divbranching minimiza-
tion. From these experiments, we extrapolate that in such cases, the overhead
of sharp minimization should be compensated enough by the gain on LTS sizes,
compared to strong minimization.

Theorem 2 implies that orthogonal minimization can be implemented as a
minor variation of ∼⊣

♯A\{τ} minimization, by starting from an initial partition
having at most two blocks, one block containing those states which are the source
of a τ -transition (if any), and the other containing those which are not (if any).

9 http://cadp.inria.fr/resources/vlts



Package memory time fails memory time fails memory time

BCG1 2.7 0.26 0 2.9 0.28 0 1.02 1.21

BCG2 208 34 0 332 40 0 1.60 1.17

BCG3 1255 64 16 1468 73 18 1.16 1.15

VLTS 305 13 0 407 16 0 1.30 1.09

∼dbr

minimization
∼♯∅

minimization
overhead
∼♯∅ / ∼dbr

Table 3. Performance of ∼♯∅ minimization vs. dedicated ∼dbr minimization

Finally, states of the quotient which were originally in the block containing states
which are source of a τ -transition but are not anymore must be decorated with
a self-loop labelled by τ . We implemented this algorithm in BCG MIN, based
on the implementation of sharp minimization.

6 Compositional Verification: A Toy example

In Section 4, we showed that sharp minimization cannot reduce less than orthog-
onal minimization, as long as τ is a weak action. In this section, we provide a
toy example to illustrate how much compositional verification can be improved,
using sharp minimization rather than orthogonal minimization. This example is
crafted on-purpose to be favorable to sharp bisimulation.

Our example is defined using two series of LTS, namely Pm (m ≥ 1) and
Qn,m (n ≥ 0,m ≥ 1) defined as follows:

(∀m ≥ 1) Pm = p0
τ−→ p1

b−→ p2 . . . p2m−2
τ−→ p2m−1

b−→ p2m

(∀m ≥ 1) Q0,m = q0
a // q1

(∀m,n ≥ 1) Qn,m = prio a ≻ b in (Qn−1,m |[∅]|Pm)

Informally, Pm is a sequence of 2m transitions in which the labels τ and b
alternate, whereas Qn,m is the interleaving of n instances of Pm with an LTS
consisting of a single transition labelled by a, to which the priority rule a ≻ b is
applied.

We propose to generate the quotient of Qn,m for branching bisimulation
equivalence, which is a sequence consisting of one transition labelled by a fol-
lowed by nm transitions labelled by b. To this aim, we consider the compositional
minimization strategy that consists in minimizing Pm and the LTS corresponding
to Qi,m (i ∈ 0..n) in sequence. In principle, branching minimization cannot be
used for that purpose, as branching bisimulation equivalence is not a congruence
for “prio a ≻ b”. Instead, either minimization with respect to orthogonal bisim-
ulation equivalence ∼⊥ or sharp bisimulation equivalence ∼♯{a} can be used,
because they both preserve branching bisimulation equivalence and are congru-
ences for parallel composition and “prio a ≻ b”. A key difference is that Pm

is minimal for ∼⊥, whereas all its τ -transitions are inert with respect to ∼♯{a}



and can thus be eliminated. Since none of the LTS has divergences, taking the
divergence-preserving or divergence-unpreserving variants of these equivalence
relations does not matter.

We compare the effectiveness of this compositional verification strategy us-
ing both equivalence relations, for m and n ranging in the interval 1..9. The
results are given in Tables 4 and 5, in terms of the largest intermediate LTS
size, i.e., number of states of the LTS corresponding to Qn,m before the final
minimization. The tables show that while the largest intermediate LTS explodes
using orthogonal minimization, it grows almost linearly in function of both n
and m using sharp bisimulation. Note that the final LTS generated using sharp
minimization is minimal for branching bisimulation equivalence in this example.

To understand the difference of effectiveness, consider the case Q2,1. Using
compositional sharp minimization, we obtain the following LTS:

q0
a // q1

b // q2
b // q3

Using compositional orthogonal bisimulation, we obtain the following one, which
is branching equivalent but has a stairs shape:

q0

τ

��

a // q1

τ

��
q2

τ

��

a // q3

τ

��

b // q4

τ

��
q5

a // q6
b // q7

b // q8

Similar stairs shapes can be observed in all LTS obtained using orthogonal bisim-
ulation, for larger values of m and n.

This illustrates that orthogonal bisimulation actually keeps most often more
than one τ in every sequence of branching inert τ -transitions. Indeed, this can
be seen in the above LTS, which is minimal for orthogonal bisimulation equiva-
lence as none of its transitions labelled by τ is inert with respect to orthogonal
bisimulation:

– States q2, q3, and q4 are not orthogonally equivalent to respectively q5, q6,
and q7, as each of the former is the source of a transition labelled by τ ,
whereas each of the latter is not.

– State q1 is not orthogonally equivalent to q3, as q3 is the source of a transition
labelled by b, whereas q1 is not.

– Finally, state q0 is not orthogonally equivalent to q2 as the transition labelled
by a going out of q0 goes to state q1, which we have just shown to be not
orthogonally equivalent to q3, the target of the transition labelled by a going
out of q2.

In terms of verification time and memory usage, the compositional verifica-
tion scenario to generate Q9,9 takes:



– 18 minutes and 4.5 GB of memory, yielding an LTS with 4, 686, 835 states
and 28, 120, 969 transitions when orthogonal minimization is used

– 18 seconds and 4 MB of memory, yielding an LTS with 83 states and 82
transitions when ∼♯{a} minimization is used

As expected, both LTS are branching equivalent. Using ∼♯{a} minimization, we
were able to generate Q40,40 in 189 seconds using 6.4 MB of memory.

Following Theorem 2, we know that the quotient of an LTS w.r.t. orthogo-
nal bisimulation should not have more than twice the number of states as the
quotient of the same LTS w.r.t. sharp bisimulation when all visible actions are
strong. This shows that the gains observed here are mostly due to the possibility
offered by sharp bisimulation to consider some actions as weak, such as b in this
example.

1 2 3 4 5 6 7 8 9

1 5 13 24 38 55 75 98 124 153

2 7 29 81 183 360 642 1064 1666 2493

3 9 53 202 596 1480 3246 6482 12,028 21,039

4 11 85 411 1493 4465 11,595 27,041 57,931 115,848

5 13 125 732 3154 11,021 33,045 88,102 213,944 481,356

6 15 173 1189 5923 23,670 80,456 241,346 655,060 1,637,628

7 17 229 1806 10,208 45,910 174,432 581,414 1,744,216 4,796,568

8 19 293 2607 16,481 82,375 345,945 1,268,435 4,167,685 12,503,025

9 21 365 3616 25,278 138,995 639,343 2,557,338 9,133,316 29,683,243

n

m

Table 4. Largest intermediate LTS size (in number of states) during compositional
∼⊥ minimization of Qn,m

1 2 3 4 5 6 7 8 9

1 3 5 7 9 11 13 15 17 19

2 4 10 16 22 28 34 40 46 52

3 5 17 29 41 53 65 77 89 101

4 6 26 46 66 86 106 126 146 166

5 7 37 67 97 127 157 187 217 247

6 8 50 92 134 176 218 260 302 344

7 9 65 121 177 233 289 345 401 457

8 10 82 154 226 298 370 442 514 586

9 11 101 191 281 371 461 551 641 731

n

m

Table 5. Largest intermediate LTS size (in number of states) during compositional
∼⊣

♯{a} minimization of Qn,m



7 Case Study

As an example of a priority system, we consider a slight variation on the classic
bully leader election algorithm [15]. We assume a system of n nodes, or agents,
each with a unique numeric identifier, or id. In the typical bully election, each
agent continuously broadcasts advertisement messages with the id of their cur-
rent leader. Initially, every agent regards itself as the leader; however, whenever
an agent receives a message with an id i lower than its current leader, it appoints
i as its new leader. Therefore, the whole system eventually elects the agent with
the lowest identifier.

Our variation is written in LAbS [9], a simple language where agents cannot
perform explicit message passing, but instead exploit an indirect communication
mechanism based on stigmergy variables [31]. When an agent assigns a value to
such a variable, the value is timestamped with the time of assignment.10 Agents
asynchronously broadcast values after performing an assignment, and receivers
will replace their own value with the received one if the latter is newer (i.e., it
has a higher timestamp). The semantics of LAbS assume that the broadcast and
all potential value updates by the receivers happen atomically.

In this example, each agent stores the id of its current leader in a stigmergy
variable ℓ. We assume identifiers of agents to be in the range [0, n−1], and that ℓ
is initially set to n for every agent. As the system evolves, each agent repeatedly
assigns its own id to ℓ, but only as long as ℓ > id . Thus, it may happen that
agents with lower ids choose one with a higher id as their leader, simply because
that value is newer. However, high-id agents will eventually receive a value for ℓ
that makes them stop, while the one with the lowest id will be able to perform
one last assignment and one last broadcast to win the election.

A system of autonomous agents such as this one may be seen as a network of
LTS, namely one per agent plus an additional one that stores information about
the timestamps. For the scope of this work, we developed a new workflow in the
SLiVER11 tool [11, 10] that turns a LAbS specification into an LNT program
with this network structure, shown in Listing 1.1. Intuitively, agents in this
LNT program may perform refresh actions to obtain a fresh timestamp for
the stigmergy variable ℓ; l actions to signal that they set ℓ to a new value; and
request actions to compare timestamps with the sender of a stigmergy message.
These actions are always decorated with the identifier of the agent performing
them. For instance, a transition whose label starts with “request !0” denotes
that the agent with id 0 is performing a request action. To perform a request or
refresh action, an agent must synchronize with the timestamp process, whereas
l actions may be performed freely. The timestamp server performs an action
debug(...) before every synchronization, to display its current internal state.
Additionally, agents may synchronize to exchange stigmergy messages (over the

10 For the sake of simplicity, we assume that timestamps are provided by a global clock,
so that there cannot be two different values with the same timestamp.

11 Available at https://github.com/labs-lang/sliver



Listing 1.1. Structure of an LNT program encoding a LAbS system.

process Main[refresh , request , debug , tick , ... : any] is

par refresh , request in

Timestamps [refresh , request , debug]

||

hide put , qry: any in

par tick , put , qry in

Agent [...] (ID(0))

||

Agent [...] (ID(1))

||

Agent [...] (ID(n− 1))
end par

end hide

end par

end process

put, qry gates), or to decide which agent should act next (over the tick gate).
We hide the put, qry gates, and leave tick visible.

A potential drawback of this encoding is that agents may react to a new
message in any order: thus, each message-passing operation (which, as stated
earlier, is atomic in the LAbS semantics) is split into a diamond with a large
number of intermediate states and transitions which all lead to a single final
state. What is worse, the size of these diamonds increases exponentially with
the number of agents, as well as the number of transitions that each agent must
perform to carry out the message reception. Similar diamonds can appear in the
initialization phase of the system, where each agent initializes its state (in our
example, setting ℓ to n) in any order.

With priorities, we can prevent these diamonds from occurring by only con-
sidering a single, representative sequence of events for each one of them. Since
we are not interested in the intermediate states, this can be highly beneficial.
Consider, for instance, the diamond in Fig. 4: this is what we would obtain when
three agents with ids 0, 1, 2 independently react to the same message (sent by a
fourth agent, not shown). For the sake of simplicity, we assume that each agent
of id n only has to perform one transition, which is labelled by an. If we as-
sume the priority relation a0 ≻ a1 ≻ a2 during LTS generation, all the dashed
transitions in the diamond will be cut on the fly, leaving only the sequence
◦ a0−→ ◦ a1−→ ◦ a2−→ ◦.

To demonstrate the effect of priorities on these systems more concretely, we
consider two leader election systems leader3 and leader4, containing respec-
tively 3 and 4 agents, plus the aforementioned timestamp server. After trans-
lating each system to an LNT program, we use CADP to generate the LTS S
of its Main process, describing the whole system (as shown in Listing 1.1). We
then reduce S modulo strong, orthogonal, divbranching, and sharp bisimulation,



◦
a0 //

a2

��

◦
a2

��
◦

a1

??

a2

��

a0 // ◦
a1

??

a2

��

◦
a0 // ◦

◦
a1

??

a0

// ◦

a1

??

Fig. 4. Example of a diamond when 3 agents perform independent actions a0, a1, and
a2. Dotted transitions are cut by applying the priority relation a0 ≻ a1 ≻ a2.

refresh !0 ... //

��

refresh !1 ... //

uu

refresh !2 ... //

rr

refresh !3 ...

qq
l !0 ... //

��

l !1 ... //

uu

l !2 ... //

rr

l !3 ...

qq
request !0 ... // request !1 ... // request !2 ... // request !3 ...

Fig. 5. A representation of the priority relation Ω used for the experiments in Table 6.
An arrow x → y denotes that x ≻ y.

obtaining four additional LTS S∼, S⊥, Sdbr , and S♯. For sharp bisimulation, we
choose as set of strong actions As the set comprising all actions of the form
“refresh !.*”, “l !.*”, and “request !.*”.

We also generate an LTS SΩ = prio Ω in S, and minimize it modulo the
aforementioned bisimulations to obtain SΩ

∼ , SΩ
⊥ , SΩ

dbr , and SΩ
♯ . The priority

relation Ω used in this phase is visualized in Fig. 5, namely, refresh !.* ≻
l !.* ≻ request !.*, regardless of which agent is performing it; furthermore,
whenever two or more agents may perform the same action, the agent with the
lowest identifier has the highest priority. Notice that we merely use divbranching
reduction as a theoretical optimum that sharp minimization may achieve, since
in general ∼dbr is not a congruence for priorities.

Table 6 shows the number of states and transitions for each LTS, and the
overall resources (time and memory) needed to generate the LTS with priorities.
Reported times only refer to the actual LTS generation process, i.e., excluding
the time required to compile the LNT sources. On the one hand, we can observe
that orthogonal bisimulation is slightly more effective than strong bisimulation.
On the other hand, sharp minimization proves even more effective, producing
LTS as small as the ones obtained by divbranching minimization (i.e., the opti-
mum). Furthermore, since our choice of strong actions satisfies the premises of
Theorem 1 with respect to the priority rulesΩ, we also know∼♯As

to be a congru-



Main prio Ω in Main

states transitions states tr. time (s) memory (kB)

LTS 1372 2375 884 1453 1.93

12940
∼ 633 1115 427 733 2.17

∼⊣
⊥ 621 1097 415 715 2.19

∼dbr 582 1037 379 661 2.01
∼♯A 582 1037 379 661 2.00

LTS 16912 33368 6334 10427 110.02
∼ 5450 9895 2572 4458 110.35

∼⊣
⊥ 5402 9823 2524 4386 110.25

∼dbr 5138 9427 2324 4086 110.17
∼♯A 5138 9427 2324 4086 110.14

l
e
a
d
e
r
3

l
e
a
d
e
r
4

14628

Table 6. State space generation of leader election systems (with and without priorities)
using different bisimulations.

ence. Indeed, in our experiments CADP mechanically proves that SΩ ∼♯As
SΩ
♯

in both the 3- and the 4-agent systems. In both scenarios, memory consump-
tion is dominated by the generation of the initial LTS S, which requires around
12.6 MB for leader3 and 14.3 MB for leader4.

Another insight from Table 6 is that adding one agent induces a 10-fold in-
crease in the size of the LTS. This state space explosion makes “naive” state
space generation impractical for larger systems: in fact, we tried generating the
LTS for a leader5 system but hit a 1-hour timeout limit. Therefore, we per-
formed additional experiments using a compositional strategy, namely root leaf
reduction [12], to see whether it would bring significant improvements to state
space generation over the sequential approach used so far. This strategy consists
in generating and minimizing the individual LTS in the network, then compos-
ing them to generate the LTS of the network (applying priority rules on the
fly), and finally performing one last minimization of the composite LTS. In our
experiments, we carry out minimizations using either orthogonal or sharp bisim-
ulation. Results are shown in Table 7. In each sub-table, we first report the size
of the Timestamp and Agent processes, before and after minimization. Then, we
measure the size of the composite LTS (Main), before and after the last min-
imization. We do the same for the system with priorities (prio Ω in Main).
We also report the time and memory needed to generate each LTS with sharp
reduction. We omit measurements related to orthogonal reduction, as they do
not significantly differ from the reported ones. Again, all reported times ignore
the overhead introduced by LNT compilation.

Notice that, in a system of n agents, the procedure will generate n Agent LTS.
These have the same size, but different ids and therefore a potentially different
behaviour. For these LTSs, we report the average time and memory consumption.
To allow easier comparisons with the data in Table 6, the Main and prio Ω in

Main lines, before and after reduction, report aggregate measures. Namely, the
“time” column shows the time needed to generate each individual LTS, plus the



time required to compose them (and optionally to reduce the composite LTS);
the “memory” column reports the maximum amount of memory consumed at
any moment during the whole process.

From the table, one can still appreciate some form of explosive state space
growth as the number of agents in the system increases. This is most noticeable
in the Timestamps process, which displays the same 10-fold size increase seen in
the LTSs of Table 6. In any case, the compositional procedure appears to handle
larger systems more gracefully than the sequential one, at the cost of being
slightly less effective on smaller instances. In fact, when the system contains only
3 agents, the sequential approach is faster, requiring 2 seconds to generate the
LTS of the priority system compared to the 5.80 s of the compositional procedure.
The most likely explanation for this is that the intermediate steps needed by
the compositional approach introduce some amount of overhead, which at this
small scale is significant. Still, we observe that the procedure is slightly more
memory-efficient, consuming around 300 kB less than the sequential approach.
However, with 4 agents we can already see that the sequential approach takes
110.14 s, while the compositional procedure finishes in 7.05 s. Memory savings
are also significant, as the compositional approach uses 6.3 MB less than the
sequential one to complete its task. These observations suggest that the latter
may scale better with bigger systems. These gains become even more evident
on leader5, where the sequential procedure times out after 1 hour, but the
compositional one is able to complete the task in 9.79 s. Even when considering
the LNT compilation overhead, the whole procedure finishes in less than a minute
(namely, 55.43 s).

8 Related Work

Several approaches for priority in process languages have been proposed since
the early 80s. The interested reader may have a look at the introduction of [8]
for a classification. Our aim in this paper is not to promote one approach rather
than the other, but more pragmatically to provide a theoretical framework that
suits well with the priority operator that was implemented in the EXP.OPEN
tool of CADP 15 years ago.

Another congruence for parallel composition and priority in a setting close to
ours is prioritized weak bisimulation equivalence [8], which is based upon weak
(a.k.a. observational) bisimulation [29] rather than (div)branching. Weak bisimu-
lation equivalence is known to have less efficient algorithms than (div)branching.
As sharp bisimulation, prioritized weak bisimulation takes into account the set
of prioritized actions in its definition, which is however much more involved
than sharp bisimulation. We are not aware of any available implementation of
prioritized weak bisimulation. Also, there are differences in the definition of the
priority operator (based on CCS), which makes it difficult to precisely compare
both approaches in practice.

Orthogonal minimization has to face a similar problem as sharp minimiza-
tion, namely states in the same circuit of τ transitions are not necessarily or-



LTS ∼⊣
⊥ ∼♯As

states tr. states tr. states tr. time (s) mem. (kB)

Timestamps 27 131 26 130 26 130 0.83 7796
Agent 317 2661 117 453 113 449 1.33 12680
Main (before min.) — — 946 1556 892 1475 5.22 12680
Main — — 621 1097 582 1037 5.52 12680
prio Ω in Main (before min.) — — 632 979 584 907 5.18 12680
prio Ω in Main — — 415 715 379 661 5.80 12680

l
e
a
d
e
r
4

Timestamps 151 1276 150 1275 150 1275 0.83 7812
Agent 585 6960 250 1030 245 1025 1.37 7812
Main (before min.) — — 9520 17068 9208 16600 6.83 10888
Main — — 5402 9823 5138 9427 7.11 10888
prio Ω in Main (before min.) — — 4334 6527 4086 6155 6.78 8168
prio Ω in Main — — 2524 4386 2324 4086 7.05 8168

l
e
a
d
e
r
5

Timestamps 542 13550 541 13525 541 13525 1.02 8276
Agent 977 14291 461 1949 455 1943 1.45 12624
Main (before min.) — — 55627 140120 54647 139140 10.95 12624
Main — — 22924 51856 22339 51271 11.55 12624
prio Ω in Main (before min.) — — 15806 20470 15101 19765 9.41 12632
prio Ω in Main — — 7832 12496 7247 11911 9.79 12632

l
e
a
d
e
r
3

Table 7. Compositional state space generation of distributed leader election systems.

thogonally bisimilar. This issue was addressed by Vu [34], whose algorithm, sim-
ilarly to ours, also relies on a linear-time procedure for computing the strongly
connected components of a directed graph applied inside blocks, initially and
after each block splitting. This preserves the time complexity of the algorithm it
was based on, namely Groote & Vaandrager’s algorithm for branching minimiza-
tion [20]. The worst-case time complexity O(m.n) of this algorithm (where n and
m are respectively the numbers of states and transitions of the LTS) is lower
than that of signature-based minimization O(m.n2) on which our algorithm is
based. However, an experimental evaluation would be interesting to gain more
insight, as our experience indicates that signature-based minimization may be
more efficient than Groote & Vaandrager’s algorithm in many practical cases12,
see e.g., [18] (Fig. 9, right). Unfortunately, we could not find any implementa-
tion of Vu’s algorithm. Orthogonal bisimulation is also implemented in the tool
Sigref [35], which uses a symbolic representation of state spaces (in the form
of Binary Decision Diagrams) and implements the transitive closure of τ -inert
transitions using the iterative squaring method of symbolic model checking [6].

12 For the anecdote, branching minimization was based on Groote & Vaandrager’s
algorithm in version 1 of BCG MIN. In 2010, we released version 2, whose imple-
mentation based on signatures was found 20 times faster on a benchmark of 3700
realistic examples systematically collected over time.



Going further on complexity, there exists a recent algorithm for (div)bran-
ching minimization, with worst-case time complexity O(m logn) [23]. The ques-
tion whether this algorithm could be adapted to implement sharp minimization
while keeping its complexity is open.

Inductive sequentialization (IS) [24] is a technique where an asynchronous
program is analyzed by constructing a sequential reduction, i.e., a sequential
program that captures every behaviour of the original up to reordering of com-
mutative actions. This is similar to our use of priorities to remove diamonds from
LTS that encode a concurrent system (e.g., the leader election of Section 7). Both
approaches still require a certain amount of creative work. In IS one has to come
up with an idealized sequential execution, while our approach requires finding
an adequate priority set, and a corresponding set of strong actions for sharp
reduction.

9 Conclusion

Sharp bisimulation was already known as an efficient way to tackle verification
problems by taking a fine account of the temporal logic formula to be verified
and by being suitable for compositional verification of non-prioritized systems.
In this paper, we extended the set of fundamental results on sharp bisimulation
equivalence, by showing that it is also a congruence for action priority operators.
Therefore, it is also appropriate to verify compositionally systems with priority.
The relationship between sharp bisimulation and orthogonal bisimulation, an-
other congruence for priority, was clarified.

We also solved the problem of minimizing a process with respect to sharp
bisimulation equivalence in an efficient way, providing an extension of Blom
& Orzan’s signature-based partition-refinement algorithm for (div)branching
minimization. The extension is not trivial, as sharp bisimulation equivalence
does not allow circuits of τ -transitions to be eliminated beforehand, unlike
(div)branching. Instead, blocks must be traversed using a linear-time algorithm
for detecting strongly-connected components (we used the famous one by Tarjan)
at each partition-refinement step. Our results are implemented in tools in CADP,
namely BCG MIN and BCG CMP for sharp minimization and comparison, and
EXP.OPEN for action priority and other LTS composition operators.

We applied those tools successfully to a crafted toy example that shows gains
of several orders of magnitude on state space size that can be potentially ob-
tained using sharp bisimulation rather than orthogonal bisimulation, and to a
case study in the domain of collective adaptive systems, where action priority
is used to restrict the state space. Remarkably, minimization of the composed
processes with respect to sharp bisimulation equivalence offers more reduction
than strong and orthogonal bisimulations, and even as much reduction as di-
vbranching bisimulation, which is the maximal reduction that can be obtained
in our setting. Yet, contrary to divbranching bisimulation, sharp bisimulation
offers all theoretical guarantees for the resulting state space to preserve the se-
mantics of the non-reduced system. The effect of sharp minimization on state



space size could be greatly amplified in systems whose network definition is hi-
erarchical, the composed processes being themselves the result of compositions
and minimizations.
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