
HAL Id: hal-03642462
https://inria.hal.science/hal-03642462

Submitted on 15 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Interaction Fields: Intuitive Sketch-based Steering
Behaviors for Crowd Simulation

Adèle Colas, Wouter van Toll, Katja Zibrek, Ludovic Hoyet, Anne-Hélène
Olivier, Julien Pettré

To cite this version:
Adèle Colas, Wouter van Toll, Katja Zibrek, Ludovic Hoyet, Anne-Hélène Olivier, et al.. Interaction
Fields: Intuitive Sketch-based Steering Behaviors for Crowd Simulation. Computer Graphics Forum,
In press, pp.1-14. �10.1111/cgf.14491�. �hal-03642462�

https://inria.hal.science/hal-03642462
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


EUROGRAPHICS 2022 / R. Chaine and M. H. Kim
(Guest Editors)

Volume 41 (2022), Number 2

Interaction Fields: Intuitive Sketch-based Steering Behaviors
for Crowd Simulation

A. Colas1 , W. van Toll1,2 , K. Zibrek1 , L. Hoyet1 , A.-H. Olivier1 , J. Pettré1

1Univ Rennes, Inria, CNRS, IRISA, France 2 Breda University of Applied Sciences, The Netherlands

Figure 1: We present interaction fields (IFs) for sketch-based design of local agent interactions in crowd simulation. Left: A user sketches
guide curves (shown in blue), which are converted to an IF grid. The purpose of this specific IF is to let agents move behind one object to
hide from another. Middle: 2D top view of the simulation. We let all gray obstacles and orange agents emit this IF. The blue agent perceives
these IFs, causing it to hide from the red agent. Right: 3D impression of this scenario, combined with body animation per agent.

Abstract
The real-time simulation of human crowds has many applications. In a typical crowd simulation, each person (‘agent’) in the
crowd moves towards a goal while adhering to local constraints. Many algorithms exist for specific local ‘steering’ tasks such
as collision avoidance or group behavior. However, these do not easily extend to completely new types of behavior, such as
circling around another agent or hiding behind an obstacle. They also tend to focus purely on an agent’s velocity without
explicitly controlling its orientation. This paper presents a novel sketch-based method for modelling and simulating many
steering behaviors for agents in a crowd. Central to this is the concept of an interaction field (IF): a vector field that describes the
velocities or orientations that agents should use around a given ‘source’ agent or obstacle. An IF can also change dynamically
according to parameters, such as the walking speed of the source agent. IFs can be easily combined with other aspects of
crowd simulation, such as collision avoidance. Using an implementation of IFs in a real-time crowd simulation framework,
we demonstrate the capabilities of IFs in various scenarios. This includes game-like scenarios where the crowd responds to a
user-controlled avatar. We also present an interactive tool that computes an IF based on input sketches. This IF editor lets users
intuitively and quickly design new types of behavior, without the need for programming extra behavioral rules. We thoroughly
evaluate the efficacy of the IF editor through a user study, which demonstrates that our method enables non-expert users to
easily enrich any agent-based crowd simulation with new agent interactions.

CCS Concepts
• Computing methodologies → Motion path planning; Intelligent agents; Real-time simulation; • Human-centered computing
→ Graphical user interfaces;

1. Introduction

Crowd simulation is useful for creating lively virtual scenes popu-
lated by many moving characters. This has many applications, in-
cluding games, movies, and VR.

Most crowd simulation techniques are agent-based in that they
simulate each character as an individual intelligent agent. To steer
each agent through the environment in interaction with other
agents, many algorithms have been developed for specific purposes
such as path planning, collision avoidance, and grouping. Although

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0002-1215-2955
https://orcid.org/0003-1225-1272
https://orcid.org/0002-0204-3472
https://orcid.org/0002-7373-6049
https://orcid.org/0002-2833-020X
https://orcid.org/0003-1812-1436


A. Colas et al. / Interaction Fields: Intuitive Sketch-based Steering Behaviors for Crowd Simulation

the resulting models are highly successful, it is difficult to adapt
them so that the agents display new kinds of behavior for which the
algorithms were not designed. A designer can influence the over-
all paths that agents take, and they can tune simulation parameters
to change properties of a specific algorithm, but they cannot easily
let agents interact in completely different ways, such as making an
agent circle around another agent or hide behind an obstacle. Fur-
thermore, parameter tuning and scenario-specific scripting can be
time-consuming.

In response to these problems, the goal of this paper is to simplify
the design of local steering behaviours in crowds, by letting users
sketch how agents should move in relation to other agents, obsta-
cles, or the environment. Our central concept is an interaction field
(IF) that defines the velocities or orientations that agents should use
around a particular source, such as an obstacle or another agent. An
IF can also be made parametric to change dynamically according
to simulation parameters, such as the current speed of an agent.
We also present an editor in which users can sketch IFs, allowing
them to quickly and intuitively create a wide variety of new types
of agent behavior. IFs can be combined with other crowd simu-
lation techniques, so that users can focus on sketching only those
behaviors for which traditional algorithms do not suffice.

Previous research has led to several other methods for artisti-
cally modifying the behavior of a crowd,cbut these methods focus
on other aspects, such as controlling simulation parameters or edit-
ing global trajectories. To the best of our knowledge, we present
the first method that allows users to intuitively sketch local inter-
actions, i.e. to sketch how agents should move relatively to other
(moving) obstacles or agents. By generating IFs from sketches,
users can quickly design new behaviors that would otherwise re-
quire laborious programming and parameter tuning. Our method
enables designers to easily create a wider variety of scenarios, and
to drastically speed up the design process of a scenario.

In short, the main contributions of this paper are the following:

• We present interaction fields (IFs) as a simple yet effective way
to model new kinds of steering behaviors in crowds. We show the
capabilities of IFs in various scenarios that would be difficult to
simulate using traditional models alone.
• We present a novel way to compute IFs based on user sketches.

This results in an IF editor that allows designers to draw new
agent behaviors in a small amount of time.
• We present the results of a thorough user study that confirms the

efficacy of the IF editor for fast behavior sketching.

A preliminary version of this work was presented as a 2-page poster
paper [CvTH*20]. We emphasize that we focus on the steering be-
havior of agents, and not on full character animation. As it is com-
mon in crowd simulation research, we will model our scenarios in
2D, with agents simplified to disks. Of course, these agents repre-
sent (humanoid) characters, and 3D applications must combine the
agents’ trajectories with appropriate 3D body animations. Although
combining steering behaviors with realistic human animation is not
the purpose of this work, we will briefly discuss several ways to
handle it, and our supplementary video will show examples.

2. Related work

Crowd simulation is a large research area with many facets. Sev-
eral books and surveys give a good overview [ANMS13; TM13;
PAKB16; vTP21]. As this paper focuses on sketch-based design of
interactions in agent-based crowd simulation, we will now discuss
related work in these areas only.

2.1. Agent-based crowd simulation

Most crowds simulation models are agent-based, also referred to
as microscopic. These models simulate the behavior of each person
(‘agent’) in the crowd individually. This is in contrast to macro-
scopic approaches that simulate the crowd as a whole [TCP06].
The behavior per agent consists of multiple components, such as
global path planning and local collision avoidance. Many frame-
works exist that use this principle to simulate large crowds in real-
time [PAB07; vTJG15; CBM16; KBB16].

The research in this domain mostly focuses on local interac-
tions between agents: updating each agent’s velocity at a certain
frequency so that each agent proceeds to its goal while respond-
ing adequately to neighboring agents and obstacles. The most fre-
quently studied type of local behavior is collision avoidance. Algo-
rithms for this purpose let agents move according to a certain prin-
ciple, such as forces [HM95; KHVO09; ZIK11; KSG14], velocity
cost functions [PPD07; vdBLM08; GCC*10; KO10; MHT11; vd-
BGLM11], or vision [OPOD10; DMC*17; LCMP19]. The orienta-
tion of an agent is usually not explicitly controlled, although some
exceptions to this rule exist [HOD15].

Next to collision avoidance, many other types of local behav-
ior can be considered, such as grouping and following. Reynolds
[Rey99] was among the first to propose and implement a list of such
‘steering’ behaviors. To add a new type of behavior to a crowd sim-
ulation, it is common to add a new algorithm, force, or cost function
for that specific purpose. Each new behavior requires programming
effort, knowledge of simulation details, and parameter tuning.

Some methods increase the range of possibilities by stretching
the concept of an agent. For example, Yeh et al. [YCP*08] have
modeled special interactions by adding invisible ‘proxy agents’ to
the simulation. This can model (for example) an agent that makes
less or more room in a crowd depending on its walking speed.
Comparably, the ‘situation agents’ by Schuerman et al. [SSKF10]
are abstract agent-like entities designed to solve specific problems,
such as deadlocks at narrow passages. Although such techniques
can indeed model additional behaviors, designing a new type of
behavior still requires substantial effort and expert knowledge.

The interaction fields (IFs) of this paper are an alternative way
to design local behavior. One could argue that IFs are still ‘rule-
based’, in the sense that a single IF could be seen as a local behav-
ioral rule. The main difference to traditional local algorithms is that
the behavior of IFs follows directly from an input sketch, so new
IFs for new types of behavior can easily be sketched by a novice
user. We emphasize that IFs are not meant to replace existing algo-
rithms for e.g. collision avoidance; rather, IFs introduce a new way
to generate a wide variety of local behaviors based on sketches,
without the need to program or tweak simulation details.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



A. Colas et al. / Interaction Fields: Intuitive Sketch-based Steering Behaviors for Crowd Simulation

2.2. Controlling simulation setting and tuning parameters

The behavior produced by a local algorithm usually depends on
a number of parameters. By tuning these parameters, designers
have some control over how agents behave, but this tuning is not
always intuitive and requires expert knowledge of the simulation
model. To improve this, several researchers have proposed systems
where a user can interactively edit parameters while the simula-
tion is running [MR05; MMHR16], possibly even by immersing
the user into the simulation itself [BBEK20]. Other work has ex-
plored ways to automatically tune simulation parameters to match
particular data, such as quantitative metrics [WGO*14], controlled
randomization [NLS14], textual descriptions [CWL20; LWC20],
and start and goal positions of agents [ACC14].

Naturally, in all systems that operate purely on simulation pa-
rameters, the results are limited to what parameter variations can
produce. Parameters alone do not enable designers to create com-
pletely new types of behavior.

2.3. Sketch-based control of agents

Various methods exist that try to give users more intuitive control
over a crowd via sketch-based techniques. Most of these provide
control over global paths, by letting users draw curves for agents
to follow [UdHT04; KSA*09; OO09; MM17; BBEK20] or direc-
tional hints that are converted to a flow field [PWJ*08; PvdBC*11;
KK*14]. Some of these methods also propose sketch-based control
of other simulation parameters, such as the walking speed and the
smoothness of paths [UdHT04; OO09]. Other work focuses more
on changing the geometry of the environment [MMHR16; MM19;
SGH20], on fitting a group into a formation [GD13; HSK14], or
on giving users high-level control over where agents go and which
actions they perform [MR05; KSRF11; KBK16; MBA20].

Another set of solutions is more oriented towards editing ex-
isting crowd motion clips to adapt to new situations. Following
up on the concept of ‘crowd patches’ that can be stitched to-
gether [YMPT09], there are several methods that let users intu-
itively deform crowd motion clips to create crowds of different
shapes [JPCC14; KSKL14; KL16] or densities [JCC*15]. There
is also a line of work that models a crowd as a deformable mesh,
to steer it efficiently along (user-specified) paths in the presence
of obstacles [KLLT08; HSK12; HSK14; ZZZY20]. A model by
Ju et al. [JCP*10] converts example crowd motion to a continuous
space, allowing for interpolations between types of motion. Shen
et al. [SHW*18] proposed a data-driven technique that chooses the
appropriate crowd motions based on multi-touch gestures.

These techniques are all successful, but they focus on other sim-
ulation aspects than the local interactions between agents. Thus,
they operate on a different scale than the method we propose.

The idea of sketch-based control is also popular in many other
computer-graphics domains [BC20], including character body an-
imation [GCR13; GRGC15; CBL*16; CZWL20]. We remind the
reader that our method focuses on generating trajectories for
agents, and not on animating their bodies in 3D. For this reason,
we will not discuss animation-related work in detail here.

2.4. Positioning

This paper proposes a new sketch-based method for designing lo-
cal interactions between agents. A concept that seems close at first
sight is the navigation field by Patil et al. [PvdBC*11]: a grid that
proposes an optimal walking direction at any point in the environ-
ment, possibly based on sketches. However, whereas navigation
fields specify global paths through the environment, interaction
fields (IFs) specify how agents locally behave around other agents
or obstacles. As such, IFs can move through the environment dur-
ing the simulation, and they can change according to parameters.

We believe that the difficulty of creating new kinds of interac-
tions has limited the variety of scenarios that can be simulated. As
such, the list of local interactions proposed by Reynolds [Rey99]
has never been substantially extended, despite the many develop-
ments in terms of simulation models. As discussed earlier, the agent
concept can be applied in a more abstract way to model additional
behaviors [YCP*08; SSKF10], but this does not necessarily make
new behaviors easy to design for non-experts. By contrast, IFs are
specified in a purely visual way, allowing novice users to create
new behaviors with relative ease.

3. System overview

Our crowd simulation takes place in a bounded 2D environment
E ⊂ R2 with m≥ 0 obstacles {Oi}m−1

i=0 and n≥ 0 agents {Ai}n−1
i=0 .

It is common to implement obstacles as simple polygons and to
model each agent Ai as a disk with radius ri. However, our method
does not explicitly rely on these implementation choices.

The simulation uses discrete time steps (frames). In each frame,
every agent Ai compute a new value for its acceleration ai, which
will induce a change in its velocity vi and position pi. As explained
in Section 2.1, the process of computing ai can be based on algo-
rithms for e.g. path following, collision avoidance, and group be-
havior. Each agent Ai also has an orientation oi ∈ S1 (a 2D unit
vector) that represents the direction that Ai is facing. This paper
will present interaction fields (IFs) as an additional way to control
the velocities and orientations of agents. IFs can be used together
with other navigation algorithms, as well as independently.

Figure 2 shows an overview of the proposed system that com-
bines IF design, crowd simulation, and character animation. The
details per component will be provided throughout this paper.

First, a user sketches an IF in an editing tool, which we will
describe in Section 5. The user can draw elements onto a canvas,
and this sketch is automatically converted to an IF. The user can
then inspect the resulting agent behavior in the simulation (to be
described below) and return to the sketching phase if they wish,
until they obtain the desired agent behavior. To set up a complete
simulation scenario, the user should also specify which objects emit
the IF (as sources) and which agents respond to it (as receivers).

Next, the sketched IFs are applied to the simulation in the way
presented in Section 4. (For ease of comprehension, this paper will
discuss the simulation first and the IF editor second.) In each simu-
lation frame, every agent Ai performs a sequence of tasks. First, Ai
should respond to the IFs emitted by nearby sources, which results
in an IF velocity and IF orientation proposed by these IFs. Next, Ai

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



A. Colas et al. / Interaction Fields: Intuitive Sketch-based Steering Behaviors for Crowd Simulation

Sketch behavior
(Section 5.1)

Convert sketch to IF
(Section 5.2)

Assign IF to sources
and receivers

Scenario design per interaction field Simulation loop per agent

Compute IF vel./ori.
(Section 4.2)

Combine IF vectors
with other behavior

Move

Animation loop per agent
(optional)

/ Move

(Section 4.3)

Select clip
/ Move

(Section 6.2)

Figure 2: Outline of a complete simulation system with interaction fields. See Section 3 for a textual overview.

can combine this result with other behavior such as collision avoid-
ance, resulting in a new velocity and orientation to use. Finally, Ai
moves and rotates according to the computed vectors.

It is also possible to combine the 2D simulation output with an-
imated 3D characters. Although this is not the focus of our work,
it is an important and non-trivial component for many applications.
We will discuss the options and our implementation in Section 6.2.

4. Interaction fields

This section defines the concept of an interaction field (IF) and
explains how to integrate IFs into a crowd simulation loop.

4.1. Basic definition of an IF

Overall, a single IF describes either the velocities or the orienta-
tions that agents should use in the vicinity of a particular source,
which we denote by s. We also say that the source emits the IF.
A source can be an agent, an obstacle, or any other aspect of the
environment that should induce a certain kind of behavior.

D

s

(a) IF definition

s

(b) Mapped onto the environment

Figure 3: (a) An interaction field is a vector field (shown here in
blue) that prescribes velocity or orientation vectors in a domain
D around a source object s (here: the red agent). (b) During the
simulation, the IF is mapped onto the environment to match the
current position and orientation of s. Other agents (in orange) use
this mapped IF to compute a velocity or orientation (in green),
which they can apply directly or combine with other navigation
algorithms. Agents outside the domain (in yellow) are not affected.

Because an IF prescribes behavior around a source s, we define it
in a Euclidean coordinate system relative to s, with s located at the
origin (0,0) and oriented towards the negative y-axis. Using this, a
velocity IF with source s and domain D⊂ R2 is a vector field

VIFs,D : D→ R2

that maps any position p ∈ D to a 2D vector VIFs,D(p), indicating
the velocity that any agent should use at this position.

Likewise, an orientation IF is a function

OIFs,D : D→ S1

that maps any p ∈ D to a 2D unit vector OIFs,D(p) that agents
should use as their orientation. Figure 3(a) shows an abstract exam-
ple of an IF. Whenever it does not matter whether an IF concerns
velocities or orientations, we will use the notation IFs,D. Note that
an IF prescribes a vector for all points in the domain D. Our figures
will only show sample velocities for the sake of illustration.

4.2. Applying IFs during the simulation

An IF is defined relatively to a source s. During the crowd simula-
tion, the position ps and orientation os of s may change over time,
especially if s is an agent. To apply the function IFs,D at runtime,
the IF should be translated and rotated to match the current values
of ps and os. Informally, if we see IFs,D as a pre-defined ‘picture’
around s, we should always line up this picture with how s is cur-
rently positioned and oriented. We call the result the mapped IF,
and we denote it by IF′s,D. Figure 3(b) shows an example.

It is important to note that this mapping can remain implicit dur-
ing the simulation. There is no need to translate and rotate complete
IFs at run-time. For any position q ∈ E , we can easily compute the
relevant IF vector IF ′s,D(q) by applying the inverse mapping to q.

One special case is worth mentioning: if the source s is the entire
environment E , then D = E as well, and there is no mapping to
apply during the simulation (IF ′s,D = IFs,D). Such an IF is similar to
a navigation field [PvdBC*11]: it prescribes vectors for the whole
environment, and not for the neighborhood of one specific object.

The purpose of an IF is to model a single type of behavior around
a source, so most simulations will feature multiple IFs at the same
time. As part of the scenario’s design, the user should specify for

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



A. Colas et al. / Interaction Fields: Intuitive Sketch-based Steering Behaviors for Crowd Simulation

each IF which objects emit it and which agents respond to it. Conse-
quently, it is possible for agents to respond to only some IFs and to
ignore others, i.e. to model different behavior for different agents.

At any moment in the simulation, each agent Ai should respond
to the relevant interaction fields emitted by nearby sources. To this
end, let I = {VIFs j ,D j}

k−1
j=0 be the set of all velocity IFs to which

Ai can respond and that currently have pi in their mapped domain.
The IF velocity vIF

i for Ai is defined as a weighted average of the
vectors that these IFs propose:

vIF
i =

∑ j VIF′s j ,D j
(pi) ·w j

∑ j w j
(1)

where the w j are weights for prioritizing between IFs, e.g. to in-
crease the influence of an IF as an agent moves closer to the source.
It will often be sufficient to use w j = 1 for all j. For orientation IFs,
we define the IF orientation oIF

i for Ai analogously, the only differ-
ence being that we explicitly normalize the result.

4.3. Combining IFs with other simulation components

There are several ways to combine the IF velocity and orientation
with other simulation aspects (such as collision avoidance). In most
traditional crowd simulations, the behavior of each agent Ai per
simulation frame is already subdivided into multiple steps:

1. Compute a preferred velocity vpref
i that would send the agent to-

wards its goal, possibly with the help of a global path.
2. Compute a new velocity vnew

i that stays close to vpref
i while fol-

lowing local rules for collision avoidance, group behavior, etc.
This yields an acceleration ai := (vnew

i −vi)/∆t, where ∆t is the
length of this simulation frame in seconds.

3. If the agent is currently colliding with other agents or obstacles,
compute contact forces fc

i and update the acceleration: ai := ai+
fc
i /m, where m is the agent’s mass (usually 1).

4. Update the agent’s velocity and position via Euler integration:

vi := vi +ai ·∆t, pi := pi +vi ·∆t.

Both vnew
i and vi are typically clamped to a maximum walking

speed vmax
i to prevent unrealistically large velocities.

As mentioned earlier, most crowd simulations do not explicitly
control the agent’s orientation oi. Thus, orientation IFs can be triv-
ially added to the simulation loop in a separate step:

5. Compute the IF orientation oIF
i . If oIF

i 6= 0, update the agent’s
orientation as oi := oIF

i . Otherwise, keep oi unchanged, or update
it in a ‘traditional’ way, e.g. as an average of vpref

i and vnew
i .

To add velocity IFs to the system, we have the choice between
letting the IF velocity vIF

i (Equation 1) influence an agent’s pre-
ferred velocity (in step 1) or its new velocity (in step 2). We will
use the first option in our implementation. This allows for an intu-
itive combination of IFs and collision avoidance, where IFs play an
‘advising’ role and collision avoidance has the final say. The navi-
gation fields of Patil et al. [PvdBC*11] are also used in this way.

Thus, we use IFs as an alternative way to compute a preferred
velocity vpref

i . It is also possible to let vpref
i depend on IFs and on

other factors (such as goal reaching) at the same time. We will use

this in some of our example scenarios; Section 6.1 will describe the
underlying simulation settings.

4.4. Parametric interaction fields

Next, we extend IFs so that they can change during the simula-
tion according to parameters. These parameters may affect both the
vectors and the domain of the IF. In other words, a parametric IF
encapsulates different ‘ordinary’ IFs for different parameter values.

Formally, a parametric velocity IF with l scalar parameters can
be described as a function

PVIFs : Rl → (D∗→ R2)

where the resulting velocity vectors and the domain D∗ now also
depend on the l parameter values. A parametric orientation IF can
be defined analogously. Theoretically, there is no limit on the num-
ber of parameters. In this work, though, we create IFs based on user
sketches, and we will use at most 1 parameter to keep the design
process intuitive. We will now discuss two specific types of para-
metric IFs that are supported by our sketching tool.

4.4.1. Keyframes and interpolation

One way to specify a parametric IF is to define IFs for a few specific
values of a single parameter. These IFs then act as keyframe IFs at
runtime, and the IF for any other parameter value is defined via
linear interpolation between the two nearest keyframe IFs.

For example, Figure 4(a) shows a parametric velocity IF with
two keyframes, where the parameter is the speed of the source agent
s. When s is standing still, agents will gather around s in a circle.
When s is moving at a certain predefined speed, agents will attempt
to follow s from behind. There are infinitely many vector fields for
the source speeds in-between. During the simulation, agents will
use an interpolated field that matches the current speed of s.

Next to the speed of the source agent, other examples of param-
eters could be the width or height of a source obstacle (to apply
the IF to obstacles of various sizes), the current simulation time (to
model behavior that changes over time), or the local crowd den-
sity around an agent (to model density-dependent behavior). A pa-
rameter could also represent an agent’s state of mind, such as its
hastiness or the amount of panic it experiences.

The simulation never needs to fully compute an interpolated IF.
In any simulation frame, an agent only needs to compute a single
output vector for each parametric IF in range.

Formally, let there be k keyframe IFs associated to k parameter
values: {〈q j,KIF j〉}k−1

j=0 , ordered by increasing q j values. Assume
for now that all keyframe IFs have the same domain D. Given a
parameter value q, the parametric IF is defined as follows for any
point p ∈ D:

• If q < q0, then PIFs(p) = KIF0(p).
• If q≥ qk−1, then PIFs(p) = KIFk−1(p).
• Otherwise, q j ≤ q < q j+1 for some j, and

PIFs(p) = (1−λ) ·KIF j(p)+λ ·KIF j+1(p),

where λ = (q−q j)/(q j+1−q j).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



A. Colas et al. / Interaction Fields: Intuitive Sketch-based Steering Behaviors for Crowd Simulation

s

D

(a) Based on the source speed

s

o

D

(b) Based on an angular relation

Figure 4: Parametric interaction fields. (a) Example of an IF that
depends on the speed of its source agent s. (b) Example of an IF that
depends on the angular relation between the source s and another
object o. Section 4.4 explains the behavior modelled by these IFs.

If two subsequent keyframe IFs have different domains, we re-
quire that any domain in-between can be obtained via linear inter-
polation as well. For example, this is the case if the domains are
both axis-aligned rectangles or both disks. The IF vector PIFs(p)
is then only defined if p lies inside the interpolated domain.

The concept of keyframe IFs can be extended to more than one
parameter. In that case, each keyframe will be associated to a point
in a higher-dimensional parameter space. As mentioned earlier,
though, we will focus on single-parameter examples because these
are still relatively intuitive for non-expert users to design.

4.4.2. Relation between objects

A parameter of an IF could also be a relation between two objects
a and b. Possible examples are the distance between pa and pb, or
the angle between the vector pb−pa and the x-axis.

As a concrete example, Figure 4(b) shows a velocity IF that lets
agents move behind a source s (typically an obstacle) to hide from
another object o (typically a specific agent Ak). In this specific ex-
ample, the parameter of the IF is the angle α between po−ps and
the x-axis. The effect of α is that it simply rotates the IF: it does
not affect the IF vectors themselves, but it only changes how the
IF is mapped onto the environment. In contrast to regular IFs, this
mapping now no longer depends on the orientation of the source s.

Note that this example can theoretically be combined with
keyframe IFs, where the keyframes determine the IF vectors and the
angular relation determines the mapping onto E . The result would
be a parametric IF with two parameters.

In our IF editor, for simplicity, an angular relation between s

and another object o is currently the only object relation that users
can draw. A distance-based relation between two objects could be
implemented with the help of keyframes again: the user specifies
which two objects determine the distance parameter, and then they
draw keyframes with different distances between these objects.

5. Sketch-based construction of interaction fields

We have developed a graphical interface in which users can intu-
itively sketch IFs. This section describes the components of this ‘IF
editor’ and their mathematical meaning for the IF being drawn.

In the IF editor, the user starts by defining a bounding shape Db,
which will serve as the IF domain D. The IF editor then creates
a rectangular canvas on which the user can draw. Next, the user
can draw elements onto the IF canvas to specify parts of the IF.
Section 5.1 will describe these elements in more detail.

Finally, the program can convert a drawing to a discretized IF: a
rectangular grid of vectors, with a user-specified level of precision.
This conversion process, which we will describe in Section 5.2,
uses an interpolation scheme to fill in any regions where the user
has not drawn. Of course, the user can adapt this result if desired,
by drawing additional elements and then rebuilding the grid.

5.1. Main elements of the IF editor

The user can draw three main types of elements in the IF editor,
and a sketch can contain multiple elements of each type.

An object is anything that can serve as the source of an IF. In
our IF editor, it can be an agent (visualized as a disk) or a polygon
(which can represent an obstacle or something more abstract). One
of the objects on the canvas can be marked as the source object s.
Other (non-source) objects can be drawn as a visual aid, or to help
define a parametric IF. We will explain this further in Section 5.3.

A guide curve is a curve Ci : [0,1]→ R2, with an associated
magnitude vi, that exactly specifies the IF vectors along that curve.
For any point p that lies on Ci (i.e. if p = Ci(t) for some value t),
the curve prescribes a vector ci with magnitude vi and direction
d
dt Ci(t). Figure 5(a) contains two examples of a guide curve. In the
final IF, the vector IFs,D(p) at any point p will be an interpolation
of the vectors proposed by all guide curves. Section 5.2.1 will de-
scribe this interpolation. In the IF editor, users can draw a guide
curve as a piecewise-linear curve or as a freehand curve. For veloc-
ity IFs, the default value for vi is the maximum walking speed of
our agents (1.8 m/s), but the user can change this value per curve.
For orientation IFs, vi is fixed to 1 so that Ci proposes unit vectors.

Finally, a zero area is a region H j ⊂R2 where the IF is ‘empty’.
For velocity IFs, H j prescribes the zero vector, meaning that an
agent will stand still when it is located inside H j . For orientation
IFs, H j acts as a hole in the domain D, i.e. as a region where the IF
does not propose any specific orientation. Figure 5(a) contains one
example of a zero area. Note that zero areas always have priority
over guide curves, as will be further clarified in Section 5.2. In the
IF editor, users can draw zero areas with a paintbrush tool, or they
can erase IF vectors after converting their sketch to a grid.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



A. Colas et al. / Interaction Fields: Intuitive Sketch-based Steering Behaviors for Crowd Simulation

C0

C1
H0

(a) IF editor elements

p

C0

C1

(b) Interpolation

Figure 5: Concepts of the IF editor. (a) The user can draw guide
curves (blue) and zero areas (red) to specify IF vectors; example
vectors are shown in black. IF vectors for points in-between will
be interpolated (green). (b) For any point p outside all zero areas,
the IF vector is a weighted average of all vectors along all guide
curves, where weights depend on the distance to p.

5.2. Converting a sketch to an IF

The user draws the elements of Section 5.1 onto the canvas. We
now describe how to convert this sketch to an IF.

5.2.1. Interpolating between guide curves

An important aspect of the conversion is to ‘fill in’ the IF for ar-
eas where nothing has been drawn. To infer a meaningful IF vector
for any point p in the domain D, we interpolate between all vec-
tors proposed along all guide curves. This interpolation is based on
inverse distance weighting [She68], a commonly used method for
estimating values among scattered data points.

Given a set of c guide curves C = {Ci}c−1
i=0 , the estimated IF vec-

tor for a point p ∈ D is the following:

u(p,C) =
∑

c−1
i=0

(∫ 1
0 w(p,Ci(t)) ·vi(t) dt

)
∑

c−1
i=0

(∫ 1
0 w(p,Ci(t)) dt

) (2)

Here, w(p,q) = 1
‖p−q‖κ , and κ ∈ R+ is a power parameter that

determines how strongly the influence of a curve point decays along
with the distance to p. Preliminary experiments have led to a use of
κ= 1.9 in our implementation. This yields IFs where all vectors are
meaningful even with a small number of guide curves. We remind
the reader that users can still edit their drawing after the conversion,
in case the resulting IF does not match their expectations.

In practice, the integrals in Equation (2) can be approximated
by sums, using regularly spaced sample points on each curve. Fig-
ure 5(b) gives a visual impression of this interpolation scheme.
Note that the number of samples does not affect the curve’s impor-
tance; it only determines the precision by which C is approximated.

This type of interpolation has several useful properties. First, if
a point p lies exactly on a curve point Ci(t), then u(p) = vi(t),
and other curves do not matter (unless p is visited multiple times
due to curve intersections). Second, if there are intersections be-
tween or within curves, they do not need to be handled explicitly:
the interpolation scheme will simply produce an average vector at
an intersection point. Third, the distance-based decay of a curve’s

Figure 6: Examples of guide curves (shown in blue) and their re-
sulting IFs. The gray arrows are the IF vectors (following from the
interpolation scheme of Section 5.2.1) on a 20×20 sample grid.

influence is only relative and not absolute. Moving away from a
curve point Ci(t) does not ‘shrink’ the vector that it proposes; it
only reduces the relative weight by which it is taken into account.

Figure 6 shows a number of examples of IFs for different guide
curves. Note that the simplest example contains only one straight
guide curve, and its IF contains a uniform vector everywhere.

5.2.2. Computing the final IF

We now define the overall interaction field that can be obtained
from a source s, a bounding shape Db, a set of guide curves C =
{Ci}c−1

i=0 , and a set of zero areasH = {H j}h−1
j=0 .

For a velocity IF, the domain D is equal to Db, and the velocity
function VIFs,D works as follows for any point p ∈ D:

• If p is inside any zero area H j ∈H, then VIFs,D(p) = 0.
• Otherwise, VIFs,D(p) = u(p,C) (see Equation (2)).

For an orientation IF, recall that zero areas are treated as holes in
the domain. In other words, the domain D is equal to Db−

⋃h−1
i=0 Hi,

i.e. the set of points that is not covered by any zero area. For any
point p in the remaining domain D, the final orientation function
normalizes the interpolated vector from Equation (2) to unit length:

OIFs,D(p) =
u(p,C)
‖u(p,C)‖ .

The IF editor finally converts a drawing to a grid by computing
IFs,D(pi) for a set of regularly sampled grid points pi. The resulting
grid of vectors can be used in the crowd simulation.

5.3. Sketching parametric IFs

Recall from Section 4.4 that a parametric IF is an IF that depends
on additional scalar parameters. To draw a parametric IF based on

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



A. Colas et al. / Interaction Fields: Intuitive Sketch-based Steering Behaviors for Crowd Simulation

keyframes, the user can simply draw separate IFs and specify the
corresponding parameter values. To draw a parametric IF based on
an object relation, the user can draw a line-segment connection (a
link) between the two relevant objects. As mentioned in Section 4.4,
the IF editor currently only supports a link between the source s
and another object o, and this link implies an angle-based relation
between s and o. We leave other types of links for future work.

6. Implementation details

We have implemented the IF editor and an IF-enriched crowd simu-
lation in platform-independent C++. To convert a drawing to an IF,
guide curves are sampled at curve-length intervals of 0.1 meters.

6.1. Crowd simulation framework and settings

We have extended UMANS, an existing real-time agent-based crowd
simulation framework [vTGG*20], to support interaction fields.
The simulation represents each IF by a grid. We compute an IF
vector using bilinear interpolation between the nearest grid cells.
For parametric IFs based on keyframes, recall from Section 5.3
that any interpolated IFs are not explicitly computed. However, we
sometimes visualize an interpolated IF for the sake of illustration.

In line with other research, our simulations use Euler integration
and a fixed frame length ∆t = 0.1 s. Each agent has a disk radius
of 0.3 m, unit mass, a preferred speed of 1.3 m/s, and a maximum
speed of 1.8 m/s. For contact forces in case of collisions, we use
the model by Helbing et al. [HFV00] with coefficients Kag = 5000

80
for agent forces and Kobs =

2500
80 for obstacle forces. These values

are commonly used in literature when the agents have unit mass.

Next to these overall simulation settings, each agent Ai will use
one of the following behavior profiles:

• IFs-Only: Ai uses the IF velocity vIF
i directly as the preferred

velocity vpref
i and as the new velocity vnew

i . There is no additional
goal reaching or collision avoidance.
• IFs+GoalReaching: Ai computes vpref

i as the average of vIF
i and

a velocity that sends Ai to a pre-defined goal at the preferred
speed. There is no collision avoidance, so vnew

i := vpref
i .

• IFs+RVO: Ai computes vpref
i using IFs. It then computes vnew

i
using the RVO algorithm for collision avoidance [vdBLM08],
using the default settings suggested by its authors. Overall, RVO
looks for a velocity close to vpref

i that has a low collision risk.
• UserControl: Ai receives vpref

i and vnew
i directly from a user (e.g.

via keyboard or controller input). The agent still receives con-
tact forces in case of a collision. In our figures and videos, user-
controlled agents will always be visualized in red.

Of course, and most importantly, each scenario will use its own
specific interaction fields to model specific types of behavior, and
different agents can emit and receive different IFs.

6.2. Coupling with character animation

To visualize our results using animated 3D characters for our sup-
plementary video, we have connected the crowd simulation to the
Unity game engine. Synchronizing a 2D simulation (of 10 FPS)

with an animated 3D scene (of a higher framerate) is not a trivial
task. There are at least two options to choose between:

Simulation priority: Let the 3D characters move exactly to the
positions produced by the crowd simulation, and use interpola-
tion to fill in the additional animation frames. For body anima-
tion, apply a suitable motion clip to each character, accepting
possible artifacts such as footsliding.

Animation priority: Use the output of the simulation as input for
an animation system that chooses an appropriate motion clip per
character. The chosen animation determines where a character
actually moves, and this overrides the simulation results.

The first option is often used in crowd simulation papers, whenever
a perfect correspondence to the simulation is more important than
animation accuracy. The second option is popular for e.g. control-
lable characters in games, where the animation should be smooth
and natural. It can also help filter out motion for which no anima-
tion clips exist, such as fast backward motion or sudden rotations.

For crowd simulations with IFs, we see use cases for both op-
tions. In our supplementary video, we consistently use the second
option, based on a Unity plugin for motion matching [Ani20].

7. Demonstration of results

This section shows the capabilities of interaction fields in a number
of example scenarios. Our main purpose is to demonstrate specific
features of IFs (such as the use of parameters), and to show that
these can easily be combined into more complex scenarios.

For each scenario, we will show the input IFs created in our ed-
itor, as well as screenshots of the resulting simulation. All simula-
tion screenshots include a grid with cells of 1×1 m, to illustrate the
scale of the environment. For visualization purposes, we also show
several IFs mapped onto the environment. Recall from Section 4.2
that the simulation itself does not need to compute any mapped IFs.

We also invite the reader to watch the supplementary video of
this paper, which shows several results in motion, including the IF
design process and combinations with 3D character animation.

7.1. Scenario 1: Hide and seek

Our first scenario uses an angle-dependent parametric velocity IF
to let an agent hide behind an object. This IF, shown in Figure 7(a),
was drawn using 7 guide curves and a rotation link. In the simplest
version of the scenario, one obstacle O emits this IF, with a user-
controlled agent A0 as the linked object. An agent A1 with the IFs-
Only profile responds to the IF. As the user moves A0 around, A1
automatically hides behind O depending on where A0 is located.
Figure 7(b) shows a screenshot of the simulation.

In the extended scenario shown in Figure 7(c), we have added
several obstacles and agents (with the IFs+RVO profile) that
all emit the same IF. Consequently, the agent A1 hides behind
whichever object is nearby, treating obstacles and agents in the
same way. The extra agents do not respond to any IFs, but they
use collision avoidance to make way for the user if necessary. Fig-
ure 7(d) and the supplementary video visualize the scenario in 3D.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



A. Colas et al. / Interaction Fields: Intuitive Sketch-based Steering Behaviors for Crowd Simulation

(a) Velocity IF (5×5 m) (b) Simulation (simple) (c) Simulation (extended) (d) 3D visualization

Figure 7: Results for the Hide and Seek scenario (Section 7.1). (a) A velocity IF with a rotation link (red dashed segment) between the source
(red) and a second object (orange). Guide curves are shown in blue. (b) A simulation where the blue agent uses this IF to hide from the
user-controlled red agent. (c) A simulation where the blue agent can hide behind all obstacles and orange agents, each emitting the same IF.
(d) A 3D impression with the two main agents on the left.

(a) Velocity IF perceived by the crowd, for v = 0 m/s
(1×1 m), 1 m/s (3×3 m), and 1.8 m/s (3×4 m)

(b) Orientation IF perceived
by the crowd (20×20 m)

(c) Velocity IF perceived by the bodyguards, for v = 0 m/s
and v = 1 m/s (5×5 m)

(d) Simulation (VIP speed: 0.6 m/s) (e) Simulation (VIP speed: 1.8 m/s) (f) Simulation with bodyguards

Figure 8: Results for the VIP in a Crowd scenario (Section 7.2). (a) Keyframes of the velocity IF used by the crowd. (b) The orientation IF
used by the crowd. (c) Keyframes of the velocity IF used by the bodyguards. (d–e) Simulation examples with different speeds for the VIP (in
red). The interpolated IF is shown as well. (f) Simulation example with bodyguards (in dark blue). Here, all IFs are omitted for clarity.

(a) Velocity IF (corridor) (b) Velocity IFs (paintings) (c) Simulation

Figure 9: Results for the Museum scenario (Section 7.3). (a) One of the velocity IF for walking around the central pillar. (b) The velocity
IFs for all five paintings. (c) Screenshot of the simulation, also showing the parametric IFs around standing and moving agents.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



A. Colas et al. / Interaction Fields: Intuitive Sketch-based Steering Behaviors for Crowd Simulation

7.2. Scenario 2: VIP in a crowd

Next, we show an example where a crowd makes room for a user-
controlled ‘VIP’ agent. To model this, we make the VIP agent emit
two IFs: a parametric velocity IF that depends on the source speed
(Figure 8(a)) and an orientation IF that makes agents look at the
source (Figure 8(b)). For the velocity IF, the domain grows and the
pushing effect becomes stronger as the speed increases.

The simulation features a small crowd of agents with the
IFs+GoalReaching profile. The goal of each agent is set to its start-
ing position, so that the agents move back to their old position after
the VIP has passed. Figures 8(d) and 8(e) show how the crowd re-
sponds differently depending on the speed of the VIP agent.

Finally, we extend the scenario to include five ‘bodyguard’
agents with the IFs-Only profile. We make the VIP agent emit an-
other velocity IF to which only the bodyguards respond. This IF
(shown in Figure 8(c)) is parametric again: it lets the bodyguards
align with the VIP when it is moving, and (re-)group around the
VIP when it stands still. The latter keyframe IF uses zero areas to
let the bodyguards stop in a circle around the VIP. Furthermore, the
bodyguards themselves also emit the same pushing IF as the VIP.
Figure 8(f) shows an example of the simulation with bodyguards.

7.3. Scenario 3: Museum

Our final example is a museum scenario where 8 IFs+RVO agents
move through a corridor and look at paintings. The central pillar
emits two velocity IFs for walking around it in a clockwise or coun-
terclockwise way; each agent uses one of these two IFs. Figure 9(a)
shows the clockwise IF. Next, each painting emits a velocity IF with
a zero area that lets agents stand still at a certain distance from that
painting; these IFs are shown in Figure 9(b). Each painting also
emits an orientation IF that lets agents face the painting; we have
omitted these IFs from our figures for clarity reasons.

Also, each agent Ai emits a parametric velocity IF that prevents
others from entering Ai’s line of sight when it is standing still. This
way, others will avoid Ai politely when it is looking at a painting.
Figure 9(c) shows a screenshot of the simulation and the agents’
IFs. Again, more results can be found in our supplementary video.

To let agents switch between walking around and studying a
painting, we have added the ability to (de)activate IFs using timers.
Whenever an agent enters the domain of a painting velocity IF for
the first time, the agent will ignore the corridor IF for a number of
seconds. When this timer has passed, the agent ignores the painting
IF and uses the corridor IF again, so it continues exploring the mu-
seum. However, the orientation IFs stay active all the time, so that
agents always face paintings that are in range. The timer system is
not part of the IF technique itself, and it required some additional
modelling/programming effort specifically for this scenario. Note
that this is the only example with such an extra system.

8. User study

To evaluate the efficacy of IFs and the IF editor for non-expert
users, we conducted a user study with 22 users who were familiar
with computer animation but not with IFs. Our goal was to eval-
uate how easily they could learn to independently sketch IFs to

design specific agent interactions. Please note that the scenarios in
this study are different from those in Section 7: thus, the user study
shows even more examples of IF use cases. We will describe the
study only briefly in this section. For in-depth experimental details
and results, we refer the reader to the supplementary material.

All participants completed the study at the institution with the
experimenter present, using two 24-inch screens with 1 GUI win-
dow to draw the fields and 1 simulation window to see the resulting
behavior. They could always update their IF sketch interactively un-
til they were satisfied with the simulation results. All participants
started with a short video-guided training session, where they could
freely explore our IF tool and interact with the experimenter.

After the introduction phase, participants were asked to sketch
IFs for scenarios of increasing complexity.

Figure 10: Results of the user study, per task. Box plots show medi-
ans, interquartile ranges and maximum/minimum values (excluding
outliers). Top: user ratings for the ease of design (in blue) and sat-
isfaction with the result (in orange). Bottom: completion time for
each task (in minutes).

Each scenario started with a video example and training tasks
covering a specific concept, such as controlling the velocity or cre-
ating parametric IFs. Each training was followed by one or more
evaluation tasks, where participants were asked to create a given
scenario based on a number of high-level instructions. There were
seven of these evaluation tasks in total. The tasks were designed
to require a small number of IFs each (e.g. one orientation IF and
one velocity IF), and ordered so as to gradually introduce the users
to all IF features (e.g. by saving parametric IFs for last). After each
evaluation task, participants reported their satisfaction with their re-
sult on a 7-point Likert scale using an online form. They also filled
out a usability questionnaire based on SUS [Bro96] at the end. The
time to complete the study varied between participants but never
exceeded 2 hours.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



A. Colas et al. / Interaction Fields: Intuitive Sketch-based Steering Behaviors for Crowd Simulation

Figure 10 shows that the participants found the tool easy to use
and were very satisfied with the behaviors they designed. The aver-
age completion time per task was between 2 minutes 24 (for the
fastest task) and 5 minutes 43 (for the slowest task). The final
usability questionnaire showed a high average score of 80.6 per-
centile, which gives our IF editor a A- rating on the Sauro-Lewis
Grading scale [LS18]. Knowing that the IF editor is a simple inter-
face not yet designed for commercial use, this grade shows a very
high usability performance. Overall, our study suggests that novice
users can easily use the IF editor to sketch agent interactions.

9. Discussion

Advantages and relation to other methods Interaction fields al-
low users to intuitively sketch local agent interactions for real-time
crowd simulations. To our knowledge, this is the first method with
this specific focus. Our scenarios show that interesting simulations
can be obtained based on a few simple IF sketches. Thus, sketching
IFs is an effective way to create particular behaviors in a crowd.

Compared to traditional models where the behavior of agents can
only be influenced via parameters, IFs can be drawn directly and
have a more intuitive visual effect on agent behavior. This makes
IFs ideal for scenarios where a designer has in mind how agents
should move, without knowing how to define this motion math-
ematically. We acknowledge that there are also simulation tasks
(such as multi-agent collision avoidance) for which highly success-
ful traditional algorithms already exist. This is why we have shown
that IFs can easily be combined with such algorithms; such a com-
bination is more sensible than attempting to use IFs for everything.

The concept of letting agents move according to vector fields is
not revolutionary. As mentioned before, our method is inspired by
the navigation fields (NFs) of Patil et al. [PvdBC*11]. NFs and IFs
can both control the global paths of agents: an IF with the entire en-
vironment as its source is essentially an NF. However, IFs can also
model the local interactions between agents because of two distinc-
tive properties: they are defined relative to sources that can move
during the simulation (such as other agents), and they can change
according to parameters (such as the source’s speed or a relation to
another object). Our scenarios focused on these distinctive aspects,
as well as on the ease of designing IFs visually.

Applicability It is important to understand which types of interac-
tions an IF can(not) encode. Overall, a non-parametric IF describes
an agent’s velocity or orientation at different positions relative to
another object. A parametric IF can change this behavior according
to scalar parameters or to a relation between two objects. In the-
ory, IFs support any behavior that can be described in such terms.
However, behavior depending on more than two objects is difficult
to encode in an IF. Examples include moving towards the center
of a group of agents, or avoiding multiple agents at the same time
without considering them individually. Other techniques are more
suitable for this. As mentioned, IFs are not meant to fully replace
traditional algorithms, and techniques can easily be combined.

When combining many IFs for different purposes, it is possible
that the results average out and agents become indecisive. However,
this is also the case for traditional methods, and modeling many
behaviors simultaneously is a difficult problem in general.

Usability and authoring capabilities Our user study indicates
that the IF editor is a powerful tool for non-expert users to design
agent interactions. Recall that the design process itself is interac-
tive as well: in our study, users could edit their IFs on the fly and
immediately see the effect in the simulation. Overall, the IF edi-
tor allows users to design new types of behavior that typically take
much more time and effort to model using traditional techniques.

Setting up a complete scenario still required some additional
manual work, e.g. for assigning IFs to sources and receivers, and
for specifying the behavior profile of each agent. Likewise, there is
not yet a reusable system for (de)activating IFs over time; we have
scripted this manually for the Museum scenario in Section 7.3. Of
course, our software can be improved to a fully integrated design
pipeline with such additional features, but this is engineering labor
that does not yield new research insights.

Parametric fields The concept of parametric IFs can still be ex-
plored further. As mentioned, other examples of scalar parameters
could be the local crowd density (for creating density-dependent
behavior) and the elapsed simulation time (for creating behav-
ior that evolves temporally). We also have not yet considered IFs
with multiple parameters, mostly because drawing keyframes in a
higher-dimensional space is less intuitive. Also, we are interested
in implementing other types of object relations, e.g. to create an IF
that depends on the distance between two objects.

Computational performance In terms of performance, our sce-
narios are too small for meaningful time measurements. However,
the software that we use as a basis can simulate tens of thousands of
agents in real-time. It is well-known in our community that nearest-
neighbor queries between agents is the least scalable simulation
task, which will dominate the overall running time when the crowd
is large. Collision avoidance can also be an expensive task, depend-
ing on the algorithms used. Relatively, IFs have very little impact
on the simulation complexity. In a simulation frame, each agent Ai
performs simple arithmetic operations for each perceived IF. This is
similar in complexity to e.g. force-based collision avoidance. Thus,
nothing prevents IFs from being usable for large crowds.

Animation and motion quality To give users freedom in design-
ing agent behavior, our technique deliberately controls velocities
and orientations separately, and it allows these vectors to change
quickly during the simulation. Also, users are free to draw veloc-
ity IFs with ‘local minima’ where agents end up standing still (e.g.
using zero areas or by drawing curves that cancel each other out).
This freedom of design may cause agent behavior that is not realis-
tic or ‘human-like’, which may be seen as a disadvantage for some
applications, especially when animated 3D characters are involved.

We have chosen not to place any ‘realism’-related constraints in-
side the IF method itself, to keep the method generic and suitable
for many applications. Instead, we believe that the best place for
filtering out unrealistic motion (if desired) is the animation loop.
As described in Section 6.2, we have created an implementation
where the 3D character animation system has the final say over a
2D agent’s trajectory, thus overriding the simulation result if nec-
essary. This way, the (transitions between) motions of an agent are
limited to what the provided animation clips support. Note that this

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



A. Colas et al. / Interaction Fields: Intuitive Sketch-based Steering Behaviors for Crowd Simulation

also allows for the personalization of behavior by providing differ-
ent animations per character.

Current limitations The IF editor converts sketches to interaction
fields using inverse-distance weighting of guide curves. While this
type of interpolation has several advantages (as explained in Sec-
tion 5.2), there may be situations where the result is not yet ideal.
For example, a point in the IF is currently always influenced by
all guide curves to some extent, even by (parts of) curves that are
far away. To prevent this, we could let users control the influence
distance of a guide curve, so that far-away points are ignored.

Our simulation currently approximates IFs by grids. This has
limitations in terms of precision (e.g. for describing behavior
around detailed obstacles) and scalability to large environments.
To alleviate this, the simulation could also directly use the guide
curves and zero areas from the IF editor. This would come at a
computational cost, though, as computing a velocity or orientation
from one IF would no longer take constant time.

There are a few other limitations to how we currently define and
use IFs. First, we do not enforce any smoothness, and trajectories
may be non-smooth especially when an agent enters or exits the
domain of an IF. As mentioned, a coupling with character anima-
tion improves this greatly. On a simulation level, we could also
consider letting the influence of an IF decay smoothly around the
border of its domain. Second, IFs cannot yet specify variability:
the same situation will always result in the same agent trajecto-
ries. This makes it difficult to, for example, design how agents can
move around an obstacle in different ways. Such variability could
be added by letting the simulation choose (or interpolate) between
multiple IFs. Third, we currently combine the results of multiple
IFs as a weighted average. We can imagine cases where more ad-
vanced combination mechanisms are useful, e.g. to prioritize cer-
tain IFs only if certain conditions are satisfied. Such additional rules
could be part of an advanced authoring tool. In short, none of these
issues are fundamental, and they can be resolved in future work.

Finally, we have deliberately decided that velocity IFs prescribe
absolute velocities, and not relative velocities (or even acceleration
vectors). Such alternative representations could make certain sce-
narios easier to model, but they would strongly reduce the method’s
intuitiveness and user-friendliness. Similarly, applying concepts
such as incompressibility may lead to smoother velocity fields, but
not necessarily to a more intuitive user experience. In future work,
we plan to explore if/how such extensions can be integrated into a
user-friendly tool.

10. Conclusions and future work

In agent-based crowd simulations, the behavior of each agent is
usually described via rules and equations. In this paper, we have
presented interaction fields (IF) as an alternative way to model
agent behavior in crowds. An IF specifies the velocities or orien-
tations that agents should use around a given object, possibly de-
pending on parameters such as that object’s speed. Combined with
an editor that computes IFs based on user sketches, we obtain a
system for efficiently and intuitively sketching new agent behav-
iors. Our example scenarios show that complex simulation results

can be obtained using a few simple sketches. IFs can easily be com-
bined with other simulation components (such as collision avoid-
ance) without affecting real-time performance. Our user study in-
dicates that non-expert users can easily use the IF editor to draw
agent behaviors that match overall instructions.

Next to the discussion points mentioned in Section 9, there are
several other directions for future work. First, all IFs in this pa-
per have been drawn by hand in the IF editor. However, for some
types of behaviors with a clear geometric meaning (e.g. moving to a
given point or following an agent), it should be possible to generate
an IF automatically without guide curves. An IF could also be gen-
erated based on recordings of a real crowd, by using the recorded
trajectories as guide curves. By leveraging machine learning, it may
even be possible to detect patterns in such data and create a sepa-
rate IF for each ‘sub-behavior’. This would yield a ‘palette’ of IFs
from which many different types of crowds can be composed. An-
other interesting direction for future work would be to enable IF
authoring based on text input, e.g., associating words with IFs and
building a ‘grammar’ to describe agent interactions.

Second, while is common to visualize a crowd simulation from
a 2D top view, IFs are also useful for modelling subtle personal
interactions that are better judged from an agent’s perspective. We
therefore intend to integrate our simulation into a virtual-reality
environment where the user itself is embedded as an agent. This is
an important step towards evaluating the realism of our results.

Overall, we are confident that interaction fields give an un-
precedented level of creative control over the steering behaviors in
crowds. This is an important step towards fully immersive crowd
simulations where all agents display human-like behavior, and
where the crowd responds realistically to the user’s actions.

Acknowledgment

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation program under grant agreement
No 856879 PRESENT.

References
[ACC14] ALLAIN, PIERRE, COURTY, NICOLAS, and CORPETTI,

THOMAS. “Optimal crowd editing”. Graphical Models 76.1 (2014), 1–
16 3.

[Ani20] ANIMATION UPRISING. Motion Matching for Unity. 2020. URL:
https : / / assetstore . unity . com / packages / tools /
animation/motion-matching-for-unity-145624 8.

[ANMS13] ALI, S., NISHINO, K., MANOCHA, DINESH, and SHAH, M.
Modeling, Simulation and Visual Analysis of Crowds: A Multidisci-
plinary Perspective. Springer, 2013 2.

[BBEK20] BÖNSCH, ANDREA, BARTON, SEBASTIAN J, EHRET,
JONATHAN, and KUHLEN, TORSTEN W. “Immersive sketching to au-
thor crowd movements in real-time”. Proc. ACM International Confer-
ence on Intelligent Virtual Agents. 2020, 1–3 3.

[BC20] BHATTACHARJEE, SUKANYA and CHAUDHURI, PARAG. “A sur-
vey on sketch based content creation: from the desktop to virtual and
augmented reality”. Computer Graphics Forum 39.2 (2020), 757–780 3.

[Bro96] BROOKE, JOHN. “SUS: a quick and dirty usability scale”. Usabil-
ity Evaluation in Industry 189 (1996) 10.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://assetstore.unity.com/packages/tools/animation/motion-matching-for-unity-145624
https://assetstore.unity.com/packages/tools/animation/motion-matching-for-unity-145624


A. Colas et al. / Interaction Fields: Intuitive Sketch-based Steering Behaviors for Crowd Simulation

[CBL*16] CHOI, BYUNGKUK, BLANCO I RIBERA, ROGER, LEWIS, J. P.,
et al. “SketchiMo: Sketch-based motion editing for articulated charac-
ters”. ACM Transactions on Graphics 35.4 (2016) 3.

[CBM16] CURTIS, SEAN, BEST, ANDREW, and MANOCHA, DINESH.
“Menge: A modular framework for simulating crowd movement”. Col-
lective Dynamics 1.A1 (2016), 1–40 2.

[CvTH*20] COLAS, AD‘ELE, van TOLL, WOUTER, HOYET, LUDOVIC,
et al. “Interaction Fields: Sketching Collective Behaviours”. Proc. ACM
SIGGRAPH Conference on Motion in Games (Poster). 2020 2.

[CWL20] CHEN, CHIEN-YUAN, WONG, SAI-KEUNG, and LIU, WEN-
YUN. “Generation of small groups with rich behaviors from natural lan-
guage interface”. Computer Animation and Virtual Worlds 31.4-5 (2020),
e1960 3.

[CZWL20] CANNAVÒ, ALBERTO, ZHANG, CONGYI, WANG, WENPING,
and LAMBERTI, FABRIZIO. “Posing 3D characters in virtual reality
through in-the-air sketches”. Proc. International Conference on Com-
puter Animation and Social Agents. 2020, 51–61 3.

[DMC*17] DUTRA, TEOFILO B., MARQUES, RICARDO, CAVALCANTE-
NETO, JOAQUIM B., et al. “Gradient-based steering for vision-
based crowd simulation algorithms”. Computer Graphics Forum 36.2
(2017), 337–348 2.

[GCC*10] GUY, STEPHEN J., CHHUGANI, JATIN, CURTIS, SEAN, et al.
“PLEdestrians: A least-effort approach to crowd simulation”. Proc. ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. Euro-
graphics Association. 2010, 119–128 2.

[GCR13] GUAY, MARTIN, CANI, MARIE-PAULE, and RONFARD, RÉMI.
“The line of action: An intuitive interface for expressive character pos-
ing”. ACM Transactions on Graphics 32.6 (2013) 3.

[GD13] GU and DENG. “Generating freestyle group formations in agent-
based crowd simulations”. IEEE Computer Graphics and Applications
33.1 (2013), 20–31 3.

[GRGC15] GUAY, MARTIN, RONFARD, RÉMI, GLEICHER, MICHAEL,
and CANI, MARIE-PAULE. “Space-time sketching of character anima-
tion”. ACM Transactions on Graphics 34.4 (2015) 3.

[HFV00] HELBING, DIRK, FARKAS, ILLÉS, and VICSEK, TAMÁS. “Sim-
ulating dynamical features of escape panic”. Nature 407 (2000), 487–
490 8.

[HM95] HELBING, DIRK and MOLNÁR, PÉTER. “Social force model for
pedestrian dynamics”. Physical Review E 51.5 (1995), 4282–4286 2.

[HOD15] HUGHES, ROWAN, ONDŘEJ, JAN, and DINGLIANA, JOHN.
“Holonomic Collision Avoidance for Virtual Crowds”. Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 2015, 103–
111 2.

[HSK12] HENRY, JOSEPH, SHUM, HUBERT, and KOMURA, TAKU.
“Environment-Aware Real-Time Crowd Control”. Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 2012, 193–
200 3.

[HSK14] HENRY, JOSEPH, SHUM, HUBERT, and KOMURA, TAKU. “In-
teractive formation control in complex environments”. IEEE Transac-
tions on Visualization and Computer Graphics 20 (2014), 211–222 3.

[JCC*15] JORDAO, KEVIN, CHARALAMBOUS, PANAYIOTIS, CHRISTIE,
MARC, et al. “Crowd art: Density and flow based crowd motion design”.
Proc. ACM SIGGRAPH Conference on Motion in Games. 2015, 167–
176 3.

[JCP*10] JU, EUNJUNG, CHOI, MYUNG GEOL, PARK, MINJI, et al.
“Morphable crowds”. ACM Transactions on Graphics 29.6 (2010), 1–
10 3.

[JPCC14] JORDAO, KEVIN, PETTRÉ, JULIEN, CHRISTIE, MARC, and
CANI, M-P. “Crowd sculpting: A space-time sculpting method for
populating virtual environments”. Computer Graphics Forum 33.2
(2014), 351–360 3.

[KBB16] KIELAR, PETER M., BIEDERMANN, DANIEL H., and BOR-
RMANN, ANDRÉ. MomenTUMv2: A modular, extensible, and generic
agent-based pedestrian behavior simulation framework. Tech. rep.
TUM-I1643. Technische Universität München, Institut für Informatik,
2016 2.

[KBK16] KRONTIRIS, ATHANASIOS, BEKRIS, KOSTAS E, and KAPA-
DIA, MUBBASIR. “Acumen: Activity-centric crowd authoring using in-
fluence maps”. Proc. International Conference on Computer Animation
and Social Agents. 2016, 61–69 3.

[KHVO09] KARAMOUZAS, IOANNIS, HEIL, PETER, VAN BEEK, PAS-
CAL, and OVERMARS, MARK H. “A predictive collision avoidance
model for pedestrian simulation”. Proc. International Workshop on Mo-
tion in Games. 2009, 41–52 2.

[KK*14] KANG, SHIN JIN, KIM, SOO-KYUN, et al. “Crowd control with
vector painting”. Journal of Research and Practice in Information Tech-
nology 46.2-3 (2014), 119 3.

[KL16] KIM, JONGMIN and LEE, JEHEE. “Interactive editing of crowd an-
imation”. Simulating Heterogeneous Crowds with Interactive Behaviors.
2016, 115–130 3.

[KLLT08] KWON, TAESOO, LEE, KANG HOON, LEE, JEHEE, and TAKA-
HASHI, SHIGEO. “Group motion editing”. ACM Transactions on Graph-
ics 27.3 (2008), 1–8 3.

[KO10] KARAMOUZAS, IOANNIS and OVERMARS, MARK H. “A
velocity-based approach for simulating human collision avoidance”.
Proc. International Conference on Intelligent Virtual Agents. 2010, 180–
186 2.

[KSA*09] KAPADIA, MUBBASIR, SINGH, SHAWN, ALLEN, BRIAN, et
al. “SteerBug: an interactive framework for specifying and detecting
steering behaviors”. Proc. ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. 2009, 209–216 3.

[KSG14] KARAMOUZAS, IOANNIS, SKINNER, BRIAN, and GUY,
STEPHEN J. “Universal power law governing pedestrian interactions”.
Physical Review Letters 113 (23 2014), 238701:1–5 2.

[KSKL14] KIM, JONGMIN, SEOL, YEONGHO, KWON, TAESOO, and
LEE, JEHEE. “Interactive manipulation of large-scale crowd animation”.
ACM Transactions on Graphics 33.4 (2014), 1–10 3.

[KSRF11] KAPADIA, MUBBASIR, SINGH, SHAWN, REINMAN, GLENN,
and FALOUTSOS, PETROS. “A behavior authoring framework for multi-
actor simulations”. IEEE Computer Graphics and Applications 31
(2011) 3.

[LCMP19] LÓPEZ, AXEL, CHAUMETTE, FRANÇOIS, MARCHAND,
ERIC, and PETTRÉ, JULIEN. “Character navigation in dynamic en-
vironments based on optical flow”. Computer Graphics Forum 38.2
(2019), 181–192 2.

[LS18] LEWIS, JAMES R and SAURO, JEFF. “Item benchmarks for the sys-
tem usability scale”. Journal of Usability Studies 13.3 (2018) 11.

[LWC20] LIU, WEN-YUN, WONG, SAI-KEUNG, and CHEN, CHIEN-
YUAN. “A natural language interface with casual users for crowd anima-
tion”. Computer Animation and Virtual Worlds 31.4-5 (2020), e1965 3.

[MBA20] MATHEW, THARINDU, BENES, BEDRICH, and ALIAGA,
DANIEL. “Interactive inverse spatio-temporal crowd motion design”.
Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games. 2020, 1–9 3.

[MHT11] MOUSSAÏD, MEHDI, HELBING, DIRK, and THERAULAZ, GUY.
“How simple rules determine pedestrian behavior and crowd disasters”.
Proc. National Academy of Sciences 108 (17 2011), 6884–6888 2.

[MM17] MONTANA, LUIS RENE and MADDOCK, STEVE. “Sketching for
real-time control of crowd simulations”. Proc. Conference on Computer
Graphics & Visual Computing. 2017, 81–88 3.

[MM19] MONTANA GONZALEZ, LR and MADDOCK, SC. “A sketch-
based interface for real-time control of crowd simulations that use navi-
gation meshes”. Proc. International Conference on Computer Graphics
Theory and Applications. Vol. 1. 2019, 41–52 3.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



A. Colas et al. / Interaction Fields: Intuitive Sketch-based Steering Behaviors for Crowd Simulation

[MMHR16] MCILVEEN, JAMES, MADDOCK, STEVE C, HEYWOOD,
PETER, and RICHMOND, PAUL. “PED: Pedestrian Environment De-
signer”. Proc. Conference on Computer Graphics & Visual Computing.
2016, 105–112 3.

[MR05] MILLÁN, ERIK and RUDOMIN, ISAAC. “Agent paint: Intuitive
specification and control of multiagent animations”. Proc. International
Conference on Computer Animation and Social Agents. Vol. 2. 3. 2005 3.

[NLS14] NORMOYLE, ALINE, LIKHACHEV, MAXIM, and SAFONOVA,
ALLA. “Stochastic activity authoring with direct user control”. 2014, 31–
38 3.

[OO09] OSHITA, MASAKI and OGIWARA, YUSUKE. “Sketch-based inter-
face for crowd animation”. International Symposium on Smart Graphics.
2009, 253–262 3.

[OPOD10] ONDŘEJ, JAN, PETTRÉ, JULIEN, OLIVIER, ANNE-HÉLÈNE,
and DONIKIAN, STÉPHANE. “A synthetic-vision based steering ap-
proach for crowd simulation”. ACM Transactions on Graphics 29.4
(2010), 123 2.

[PAB07] PELECHANO, NURIA, ALLBECK, JAN M., and BADLER, NOR-
MAN I. “Controlling individual agents in high-density crowd simula-
tion”. Proc. ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 2007, 99–108 2.

[PAKB16] PELECHANO, NURIA, ALLBECK, JAN M., KAPADIA, MUB-
BASIR, and BADLER, NORMAN I. Simulating Heterogeneous Crowds
with Interactive Behaviors. CRC Press, 2016 2.

[PPD07] PARIS, SÉBASTIEN, PETTRÉ, JULIEN, and DONIKIAN,
STÉPHANE. “Pedestrian reactive navigation for crowd simulation: A
predictive approach”. Computer Graphics Forum 26.3 (2007), 665–
674 2.

[PvdBC*11] PATIL, SACHIN, van den BERG, JUR, CURTIS, SEAN, et al.
“Directing crowd simulations using navigation fields”. 17.2 (2011), 244–
254 3–5, 11.

[PWJ*08] PARAVISI, M., WERHLI, A., JUNIOR, J. J., et al. “Contin-
uum crowds with local control”. Proc. Computer Graphics International.
2008, 108–115 3.

[Rey99] REYNOLDS, CRAIG W. “Steering behaviors for autonomous
characters”. Game Developers Conference. Vol. 1999. Citeseer.
1999, 763–782 2, 3.

[SGH20] SAVENIJE, NOUD, GERAERTS, ROLAND, and HÜRST, WOLF-
GANG. “CrowdAR table : An AR system for real-time interactive crowd
simulation”. Proc. IEEE International Conference on Artificial Intelli-
gence and Virtual Reality. 2020, 57–59 3.

[She68] SHEPARD, DONALD. “A two-dimensional interpolation func-
tion for irregularly-spaced data”. Proc. ACM National Conference.
1968, 517–524 7.

[SHW*18] SHEN, YIJUN, HENRY, JOSEPH, WANG, HE, et al. “Data-
driven crowd motion control with multi-touch gestures”. Computer
Graphics Forum 37.6 (2018), 382–394 3.

[SSKF10] SCHUERMAN, MATTHEW, SINGH, SHAWN, KAPADIA, MUB-
BASIR, and FALOUTSOS, PETROS. “Situation agents: Agent-based exter-
nalized steering logic”. Computer Animation and Virtual Worlds 21.3-4
(2010), 267–276 2, 3.

[TCP06] TREUILLE, ADRIEN, COOPER, SETH, and POPOVIĆ, ZO-
RAN. “Continuum crowds”. ACM Transactions on Graphics 25.3
(2006), 1160–1168 2.

[TM13] THALMANN, DANIEL and MUSSE, SORAIA R. Crowd Simula-
tion. 2nd ed. Springer, 2013 2.

[UdHT04] ULICNY, BRANISLAV, de HERAS CIECHOMSKI, PABLO, and
THALMANN, DANIEL. “CrowdBrush: Interactive authoring of real-time
crowd scenes”. Proc. ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. 2004, 243–252 3.

[vdBGLM11] Van den BERG, JUR P., GUY, STEPHEN J., LIN, MING
C., and MANOCHA, DINESH. “Reciprocal n-body collision avoidance”.
Proc. International Symposium of Robotics Research. 2011, 3–19 2.

[vdBLM08] Van den BERG, JUR, LIN, MING, and MANOCHA, DINESH.
“Reciprocal velocity obstacles for real-time multi-agent navigation”.
Proc. IEEE International Conference on Robotics and Automation.
IEEE. 2008, 1928–1935 2, 8.

[vTGG*20] Van TOLL, WOUTER, GRZESKOWIAK, FABIEN, GANDÍA,
AXEL LÓPEZ, et al. “Generalized microscropic crowd simulation using
costs in velocity space”. Proc. ACM SIGGRAPH Symposium on Inter-
active 3D Graphics and Games. New York, NY, USA: Association for
Computing Machinery, 2020. ISBN: 9781450375894 8.

[vTJG15] Van TOLL, WOUTER, JAKLIN, NORMAN, and GERAERTS,
ROLAND. “Towards believable crowds: A generic multi-level framework
for agent navigation”. ASCI.OPEN. 2015 2.

[vTP21] Van TOLL, WOUTER and PETTRÉ, JULIEN. “Algorithms for mi-
croscopic crowd simulation: Advancements in the 2010s”. Computer
Graphics Forum 40.2 (2021) 2.

[WGO*14] WOLINSKI, DAVID, GUY, STEPHEN J., OLIVIER, ANNE-
HÉLÈNE, et al. “Parameter estimation and comparative evaluation of
crowd simulations”. Computer Graphics Forum 33.2 (2014), 303–312 3.

[YCP*08] YEH, HENGCHIN, CURTIS, SEAN, PATIL, SACHIN, et al.
“Composite agents”. Proc. ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. 2008 2, 3.

[YMPT09] YERSIN, BARBARA, MAÏM, JONATHAN, PETTRÉ, JULIEN,
and THALMANN, DANIEL. “Crowd patches: Populating large-scale vir-
tual environments for real-time applications”. Proc. Symposium on In-
teractive 3D Graphics and Games. 2009, 207–214 3.

[ZIK11] ZANLUNGO, FRANCESCO, IKEDA, TETSUSHI, and KANDA,
TAKAYUKI. “Social force model with explicit collision prediction”. EPL
(Europhysics Letters) 93.6 (2011), 68005 2.

[ZZZY20] ZHANG, YONG, ZHANG, XINYU, ZHANG, TAO, and YIN,
BAOCAI. “Crowd motion editing based on mesh deformation”. Interna-
tional Journal of Digital Multimedia Broadcasting 2020 (2020) 3.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.


