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Abstract

This paper explores how reliable broadcast can be implemented when facing a dual adversary
that can both corrupt processes and remove messages. More precisely, we consider an asynchronous
n-process message-passing systems in which up to tb processes are Byzantine and where, at the
network level, for each message broadcast by a correct process, an adversary can prevent up to tm
processes from receiving it (the integer tm defines the power of the message adversary). So, dif-
ferently from previous works, this work considers that not only computing entities can be faulty
(Byzantine processes), but also that the network can lose messages. To this end, the paper first in-
troduces a new basic communication abstraction denoted k`-cast, and studies its properties in this
new bi-dimensional adversary context. Then, the paper deconstructs existing Byzantine-tolerant
asynchronous broadcast algorithms and, with the help of the k`-cast communication abstraction,
reconstructs versions of them that tolerate both Byzantine processes and message adversaries. In-
terestingly, these reconstructed algorithms are also more efficient than the Byzantine-tolerant-only
algorithms from which they originate. The paper also shows that the condition n > 3tb + 2tm is
necessary and sufficient (with signatures) to design such reliable broadcast algorithms.

Keywords: Asynchronous system, Byzantine processes, Communication abstraction, Delivery pred-
icate, Fault-Tolerance, Forwarding predicate, Message adversary, Message loss, Modularity, Quo-
rum, Reliable broadcast, Signature-free algorithm, Two-phase commit.

1 Introduction

Context: reliable broadcast. Reliable broadcast (RB) is a fundamental abstraction in distributed
computing that lies at the core of many higher-level constructions (including distributed memories, dis-
tributed agreement, and state machine replication). Essentially, RB requires that non-faulty (i.e. correct)
processes agree on the set of messages they deliver so that this set includes at least all the messages that
correct processes have broadcast.

In a failure-free system, implementing reliable broadcast on top of an asynchronous network is
relatively straightforward [23]. If processes may fail, and in particular if failed processes may behave
arbitrarily (a failure known as Byzantine [17, 22]), implementing reliable broadcast becomes far from
trivial as Byzantine processes may collude to fool correct processes [24]. An algorithm that solves
reliable broadcast in the presence of Byzantine processes is known as implementing BRB (Byzantine
reliable broadcast).

BRB in asynchronous networks (in which no bound is known over message delays) has been exten-
sively studied over the last forty years [1, 2, 5, 8, 9, 14, 16, 18, 20, 21, 24]. Existing BRB algorithms
typically assume they execute over a reliable point-to-point network, i.e. essentially a network in which
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sent messages are eventually received. This is a reasonable assumption as most unreliable networks can
be made reliable using re-transmissions and acknowledgments (as illustrated in the TCP protocol).

In this work, we take a drastic turn away from this usual assumption and explore how BRB might be
provided when processes execute on an unreliable network that might lose point-to-point messages. Our
motivation is threefold: (i) First, in volatile networks (e.g. mobile networks or networks under attack),
processes might remain disconnected over long periods (e.g. weeks or months), leading in practice
to considerable delays (a.k.a. tail latencies) when using re-transmissions. Because most asynchronous
Byzantine-tolerant algorithms exploit intersecting quorums, these tail latencies have the potential to limit
the performance of BRB algorithms drastically, a well-known phenomenon in systems research [11, 12,
30]. (ii) Second, re-transmissions require that correct processes be eventually able to receive messages
and cannot, therefore, model the permanent disconnection of correct processes. (iii) Finally, this question
is interesting in its own right, as it opens up novel trade-offs between algorithm guarantees and network
requirements, with potential application to the design of reactive distributed algorithms tolerant to both
processes and network failures.

The impact of network faults on distributed algorithms has been studied in several works, in par-
ticular using the concept of message adversaries (MA). Message adversaries were initially introduced
by N. Santoro and P. Widmayer in [27, 28]1, and then used (sometimes implicitly) in many works
(e.g., [3, 4, 10, 25, 26, 28, 29]). Initially proposed for synchronous networks, an MA may suppress
point-to-point network messages according to rules that define its power. For instance, a tree MA in
a synchronous network might suppress any message except those transiting on an (unknown) spanning
tree of the network, with this spanning tree possibly changing in each round.

Content of the paper. This paper combines a Message Adversary with Byzantine processes, and
studies the implementation of Byzantine Reliable Broadcast (BRB) in an asynchronous fully connected
network subject to this MA and to at most tb Byzantine faults. The MA models lossy connections by
preventing up to tm point-to-point messages from reaching their recipient every time a correct process
seeks to communicate with the rest of the network.2 To limit as much as possible our working assump-
tions, we further assume that the computability power of the adversary is unbounded (except for the
cryptography-based algorithm presented in Section 6), which precludes the use of signatures. (We do
assume, however, that each point-to-point communication channel is authenticated.)

This represents a particularly challenging environment, as the MA may target different correct pro-
cesses every time the network is used, or focus indefinitely on the same (correct) victims. Further, the
Byzantine processes may collude with the MA to mislead correct processes.

For clarity, in the remainder of the paper, we call “implementation messages” (or imp-messages)
the point-to-point network messages used internally by a BRB algorithm. (The MA may suppress imp-
messages.) We distinguish these imp-messages from the messages that the BRB algorithm seeks to
disseminate, which we call “application messages” (app-messages for short). In such a context, the
paper presents the following results.

• It first introduces a new modular abstraction, named k`-cast, which appears to be a base building
block to implement BRB abstractions (with or without the presence of an MA). This communi-
cation abstraction, which is based on a systematic dissociation of the predicate used to forward
imp-messages from the predicate that allows a process to deliver an app-message, is at the heart of
the work presented in the paper. When proving the k`-cast communication abstraction, the paper

1Where the terminology communication failure model and ubiquitous faults is used instead of MA. While we consider only
message losses, the work of Santoro and Widmayer also considers message additions and corruptions.

2A close but different notion was introduced in [13], which considers static κ-connected networks. If the adversary selects
statically, for each correct sender, tm correct processes that do not receive any of this sender’s messages, the proposed model
includes Dolev’s model where κ = n− tm.
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presents an in-depth analysis of the power of the two-dimensional adversary that constitutes the
pair made up of at most tb Byzantine processes + an MA of power tm.

• Then, the paper deconstructs two BRB algorithms (Bracha’s [8] and Imbs and Raynal’s [16] al-
gorithms) and reconstructs versions of them that tolerate both Byzantine processes and MA. In
an interesting way, when considering Byzantine failures only, these deconstructed versions use
smaller quorum sizes and are therefore more efficient than their initial counterparts.

So, this paper is not only the first to present signature-free BRB algorithms in the context of asyn-
chrony and MA but also the first to propose an intermediary communication abstraction that allows us
to obtain efficient BRB algorithms.3

Roadmap. The paper is composed of 7 sections and 4 appendices. Section 2 describes the underly-
ing computing model. Section 3 presents the k`-cast abstraction and its properties. Section 4 defines
the MA-tolerant BRB communication abstraction. Section 5 shows that thanks to the k`-cast abstrac-
tion, existing BRB algorithms can give rise to MA-tolerant BRB algorithms which, when tm = 0, are
more efficient than the BRB algorithms they originate from. Section 6 presents a signature-based im-
plementation of k`-cast that possesses optimal guarantees. Finally, Section 7 concludes the paper. Due
to page limitation, some contributions are presented in appendices: (1) some proofs, (2) the fact that
n > 3tb + 2tm is a necessary and sufficient condition (with/without signatures) for BRB in the presence
of an MA, and (3) a numerical evaluation of the k`-cast abstraction.

2 Computing Model

Process model. The system is composed of n asynchronous sequential processes denoted p1, ..., pn.
Each process pi has an identity, and all the identities are different and known by the processes. To
simplify the presentation and without loss of generality, we assume that i is the identity of pi.

On the failure side, up to tb ≥ 0 processes can be Byzantine, where a Byzantine process is a process
whose behavior does not follow the code specified by its algorithm [17, 22]. Let us notice that Byzantine
processes can collude to fool the non-Byzantine processes (also called correct processes). Let us also
notice that, in this model, the premature stop (crash) of a process is a Byzantine failure. In the following,
given an execution, c denotes the number of processes that behave correctly in that execution. We always
have n−tb ≤ c ≤ n. While this number remains unknown to correct processes, it is used in the following
to analyze and characterize (more precisely than using its worse value n − tb) the guarantees provided
by the proposed algorithms.

Finally, the processes have no access to random numbers, and their computability power is un-
bounded. Hence, the algorithms presented in the paper are deterministic, and signature-free (except the
signature-based algorithm presented in Section 6).

Communication model. The processes communicate by exchanging imp-messages through a fully
connected asynchronous point-to-point communication network, which is assumed to be reliable in the
sense it neither corrupts, duplicates nor creates imp-messages. As far as imp-messages losses are con-
cerned, the network is under the control of an adversary (see below) that can suppress imp-messages.

Let MSG be an imp-message type and v the associated value. A process can invoke the best-
effort broadcast macro-operation denoted ur_broadcast(MSG(v)), which is a shorthand for “for all
i ∈ {1, · · · , n} do send MSG(v) to pj end for”. It is assumed that all the correct processes invoke

3As already said, the algorithm presented in [3] is a signature-based BRB algorithm that tolerates imp-message losses.
Moreover, directly expressed on top of the lowest level network operations, namely the send and receive operations, it does not
benefit from an underlying communication abstraction that would improve its efficiency.
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ur_broadcast to send imp-messages, and we say that the imp-messages are ur-broadcast and received.
The operation ur_broadcast(MSG(v)) is not reliable. For example, if the invoking process crashes dur-
ing its invocation, an arbitrary subset of processes receive the imp-message MSG(v). Moreover, due
to its very nature, a Byzantine process can send fake imp-messages without using the macro-operation
ur_broadcast.

Message adversary. Let tm be an integer constant such that 0 ≤ tm < c. The communication
network is controlled by an MA (as defined in Section 1), which eliminates imp-messages broadcast
by the processes, so these imp-messages are lost. More precisely, when a correct process invokes
ur_broadcast(MSG(v)), the MA is allowed to arbitrarily suppress up to tm copies of the imp-message
MSG(v) intended to correct processes4. This means that, despite the sender being correct, up to tm cor-
rect processes can miss the imp-message MSG(v). The extreme case tm = 0 corresponds to the case
where no imp-message is lost.

As an example, let us consider a set D of correct processes, where 1 ≤ |D| ≤ tm, such that during
some period of time, the MA suppresses all the imp-messages sent to them. It follows that, during
this period of time, this set of processes appears as being input-disconnected from the other correct
processes. Note that the size and the content ofD can vary with time and are never known by the correct
processes.

3 k`-Cast Abstraction

3.1 Definition

k`-cast is a communication abstraction belonging to the many-to-many family5. Each of the k`-cast
instances is defined by the values of four parameters denoted k′, k, `, and δ. k`-cast provides two
operations denoted k`_cast and k`_deliver, and we consequently say that a process k`-casts and k`-
delivers app-messages. Moreover, an app-message m has an identity id . (Typically, such an identity
is a pair consisting of a process identity and a sequence number.) Intuitively, given an app-message
m with identity id , k`-cast relates the number k of correct processes that k`-cast the pair (m, id) with
the minimal number ` of correct processes that k`-deliver (m, id). More precisely, an object k`-cast
(k′,k,`,δ) is defined by the following properties:

4This definition can be generalized for an operation ur_multicast that sends an imp-message to an arbitrary subset of
processes if we suppose that the MA can still suppress up to tm copies of this imp-message. In this context, the best way for
correct processes to disseminate an imp-message is to communicate using the ur_broadcast operation.

5An example that belongs to this family is the binary reliable broadcast introduced in [19], which is defined by specific
delivery properties -not including MA-tolerance- allowing binary consensus to be solved efficiently with the help of a common
coin.
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• Safety:

– k`-VALIDITY. If a correct process pi k`-delivers an app-message m with identity id , then
at least k′ correct processes k`-cast m with identity id .

– k`-NO-DUPLICATION. A correct process k`-delivers at most one app-messagem with iden-
tity id .

– k`-CONDITIONAL-NO-DUPLICITY. If the Boolean δ is true, then no two different correct
processes k`-deliver different app-messages with the same identity id .

• Liveness6:

– k`-LOCAL-DELIVERY. If at least k correct processes k`-cast an app-message m with iden-
tity id and no correct process k`-casts a app-message m′ 6= m with identity id , then at least
one correct process k`-delivers the app-message m with identity id .

– k`-WEAK-GLOBAL-DELIVERY. If a correct process k`-delivers an app-message m with
identity id , then at least ` correct processes k`-deliver an app-message m′ with identity id
(each of them possibly different from m).

– k`-STRONG-GLOBAL-DELIVERY. If a correct process k`-delivers an app-message m with
identity id , and no correct process k`-casts an app-message m′ 6= m with identity id , then
at least ` correct processes k`-deliver the app-message m with identity id .

Let us note that, when k′ = 0, this specification does not prevent correct processes from k`-
delivering an app-message k`-cast only by Byzantine processes. Let us also note that when δ is true,
the k`-CONDITIONAL-NO-DUPLICITY property implies that all the app-messages m′ involved in the
k`-WEAK-GLOBAL-DELIVERY property are equal to m.

When one wants to implement the k`-cast communication abstraction, the main difficulty lies in the
noise created by the imp-messages sent/forwarded by (unknown) Byzantine processes, while striving
to have k′ and ` as great as possible and k as small as possible. Let obj 1 and obj 2 be k`-cast objects
defined by the parameters (k′1, k1, `1, δ1) and (k′2, k2, `2, δ2), respectively: obj 1 is at least as strong
as obj 2 if (k′1 ≥ k′2) ∧ (k1 ≤ k2) ∧ (`1 ≥ `2) ∧ (δ2 ⇒ δ1). It is strictly stronger if additionally
(k′1 > k′2) ∨ (k1 < k2) ∨ (`1 > `2). As we will see, if obj 1 is strictly stronger than obj 2, it ensures
more k`-deliveries than obj 2, while having weaker constraints on the number of required corresponding
k`_cast operations invoked by correct processes.

3.2 A Signature-Free Implementation of k`-Cast

Among the many possible implementations of k`-cast, this section presents a quorum-based7 signature-
free implementation8 of the abstraction. To overcome the disruption caused by Byzantine processes
and message losses from the MA, our algorithm disseminates imp-messages to capture each process’s
perception of the system’s state, and relies on two thresholds to drive this dissemination and decide
delivery (a pattern also found for instance in Bracha’s BRB algorithm [8]):

6The liveness properties comprise a local delivery property that provides a necessary condition for the k`-delivery of an
app-message by at least one correct process, and two global delivery properties that consider the collective behavior of correct
processes.

7In this paper, a quorum is a set of processes that (at the implementation level) ur-broadcast the same imp-message. This
definition takes quorums in their ordinary sense. In a deliberative assembly, a quorum is the minimum number of members
that must vote the same way for an irrevocable decision to be taken. Let us notice that this definition does not require quorum
intersection. However, if quorums have a size greater than n+tb

2
, the intersection of any two quorums contains, despite

Byzantine processes, at least one correct process [8, 24].
8Another k`-cast implementation, which uses digital signatures and allows to reach optimal values for k and `, is presented

in Section 6.
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• A first threshold, qd , triggers the delivery of an app-message m when enough imp-messages have
been received for m.

• A second threshold, qf , which is lower than qd , controls how imp-messages messages are for-
warded during the algorithm’s execution.

The forwarding mechanism driven by qf is instrumental in ensuring the k`-cast properties of the
algorithm. Forwarding creates a phase transition in which, as soon as some critical “mass” of agree-
ing imp-messages accumulates within the system, a chain reaction ensures that a minimum num-
ber of correct processes eventually k`-deliver the corresponding app-message. Concretely, our al-
gorithm takes the form of an object (SigFreeKLCast, Algorithm 1), instantiated using the function
SigFreeKLCast(qd , qf , single) according to three input parameters:

• qd : the number of matching ur-broadcast imp-messages that must be received from distinct pro-
cesses in order to k`-deliver an app-message.

• qf : the number of matching ur-broadcast imp-messages that must be received from distinct pro-
cesses in order to forward the received app-message.

• single: a Boolean that controls under which conditions k`-CONDITIONAL-NO-DUPLICITY is
provided by the algorithm. When single is false, the algorithm allows a single correct process
to forward different app-message with the same identity id , otherwise it does not.

object SigFreeKLCast(qd , qf , single) is

(1) operation k`_cast(m, id) is
(2) if

(
MSG(−, id) not already ur-broadcast

)
(3) then ur_broadcast(MSG(m, id))
(4) end if.

(5) when MSG(m, id) is received do
% forwarding step

(6) if
(

MSG(m, id) received from at least qf processes
∧
((
¬single ∧ MSG(m, id) not already ur-broadcast

)
∨ MSG(−, id) not already ur-broadcast

))
(7) then ur_broadcast(MSG(m, id))
(8) end if;

% delivery step
(9) if

(
MSG(m, id) received from at least qd processes
∧ (−, id) not already k`-delivered

)
(10) then k`_deliver(m, id)
(11) end if.

end object.

Algorithm 1: Signature-free k`-cast (code for pi)

Underlying system

〈n, tb, tm, c〉

sf-k`-Assumptions 1-4

Implementation

〈qd , qf , single〉

Theorem 1

k`-cast object

〈k′, k, `, δ〉

Figure 1: From the sys-
tem parameters to a k`-
cast implementation

The module exports operations k`_cast and k`_deliver. Given an app-message m with identity id ,
the operation k`_cast(m, id) ur-broadcasts the imp-message MSG(m, id) only if no identity-conflicting
imp-message was previously ur-broadcast (lines 2-4). The reception of the imp-message MSG(m, id) by
a process pi entails the execution of two steps. The first one is a forwarding step, controlled by the size
qf of the forwarding quorum (lines 6-8), while the second is a k`-delivery step controlled by the size qd
of the k`-delivery quorum (lines 9-11).

For the sake of clarity, we define α = n + qf − tb − tm − 1. Given an execution defined by the
system parameters n, tb, tm, and c, Algorithm 1 requires the following assumptions to hold for the input
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parameters qf and qd of a k`-cast instance (a global picture linking all parameters is presented in Fig. 1).
The prefix “sf” stands for signature-free.

• sf-k`-Assumption 1: c− tm ≥ qd ≥ qf + tb ≥ 2tb + 1,

• sf-k`-Assumption 2: α2 − 4(qf − 1)(n− tb) ≥ 0,

• sf-k`-Assumption 3: α(qd − 1)− (qf − 1)(n− tb)− (qd − 1)2 > 0,

• sf-k`-Assumption 4: α(qd − 1− tb)− (qf − 1)(n− tb)− (qd − 1− tb)2 ≥ 0.

In particular, the safety of Algorithm 1 algorithm relies solely on sf-k`-Assumption 1, while its
liveness relies on all four of them. sf-k`-Assumption 2 through 4 constrain the solutions of a second-
degree inequality resulting from the combined action of the MA, the Byzantine nodes, and the message-
forwarding behavior of Algorithm 1. We show in Appendix B that, in practical cases, these assumptions
can be satisfied by a bound of the form n > λtb + ξtm + f(tb, tm), where λ, ξ ∈ N and f(tb, 0) =
f(0, tm) = 0. Together, the assumptions allow Algorithm 1 to provide a k`-cast abstraction (with values
of the parameters k′, k, `, and δ defining a specific k`-cast instance) as stated by the following theorem.

Theorem 1 (k`-CORRECTNESS). If sf-k`-Assumptions 1–4 are verified, Algorithm 1 implements k`-cast
with the following guarantees:

• k`-VALIDITY with k′ = qf − n+ c,

• k`-NO-DUPLICATION,

• k`-CONDITIONAL-NO-DUPLICITY with δ =

(
qf >

n+ tb
2

)
∨
(
single ∧ qd >

n+ tb
2

)
,

• k`-LOCAL-DELIVERY with k =
⌊

c(qf−1)
c−tm−qd+qf

⌋
+ 1,

•

{
if single = false, k`-WEAK-GLOBAL-DELIVERY

if single = true, k`-STRONG-GLOBAL-DELIVERY

}
with ` =

⌈
c
(

1− tm
c−qd+1

)⌉
.

3.3 Proof of the Signature-Free k`-Cast Algorithm

The proofs of the k`-cast safety properties stated in Theorem 1 (k`-VALIDITY, k`-NO-DUPLICATION,
and k`-CONDITIONAL-NO-DUPLICITY) are fairly straightforward. Due to page limitation, these proofs
(Lemmas 10-13) are given in Appendix A.1.

Informal sketches of the proofs of the k`-cast liveness properties (k`-LOCAL-DELIVERY, k`-
WEAK-GLOBAL-DELIVERY, k`-STRONG-GLOBAL-DELIVERY) are given below (Lemmas 1-9), but
the full developments can be found in Appendix A.2. To violate the liveness properties of k`-cast, the
attacker can control the distribution of imp-messages across correct processes to some extent, thanks
to the MA. Considering an execution of our k`-cast algorithm in which kI correct processes k`-cast
(m, id), and `e correct processes receive at least qd ur-broadcast imp-messages MSG(m, id)9, we iden-
tify the subsets of correct processes depicted in Fig. 2a. Let us first identify subsets based on the number
of MSG(m, id) imp-messages they receive.

• The subset A contains the `e correct processes that receive at least qd MSG(m, id) imp-messages
(whether it be from correct or from Byzantine processes).

9Because of the condition at line 9, these processes do not necessarily k`-deliver (m, id), but all do k`-deliver an app-
message for identity id .
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A B C

UNF

F

NB
remaining

correct
processes

(a) Subsets of correct processes based on the num-
ber of received imp-messages (A, B and C), and
based on their ur-broadcast actions (U , F , NF , and
NB )

# received
msgs.

# correct
processes

kU+kF

`eA

wcA

qd−1

kF+kNF+kNB

B

wcB
qf−1

cC

wcC

(b) Distribution of imp-messages among correct
processes of A, B, and C, sorted by decreasing
number of imp-messages received

Figure 2: Subsets of correct processes and distribution of imp-messages among them

• The subset B contains the correct processes that receive at least qf but less than qd MSG(m, id)
imp-messages and thus do not k`-deliver (m, id).

• The subset C contains the remaining correct processes that receive less than qf MSG(m, id) imp-
messages.

The notation wcA (resp. wcB , wcC) denotes the total number of MSG(m, id) imp-messages ur-
broadcast by correct processes and received by processes of A (resp. B, C). We also identify subsets
based on the ur-broadcast operations they perform.

• The subset U consists of the correct processes that ur-broadcast MSG(m, id) at line 3.

• The subset F denotes the correct processes of A ∪ B that ur-broadcast MSG(m, id) at line 7 (i.e.
they perform forwarding).

• The subset NF denotes the correct processes of A ∪B that ur-broadcast MSG(m, id) at line 3.

• The subset NB denotes the correct processes of A ∪ B that never ur-broadcast MSG(m, id), be
it at line 3 or at line 7. These processes have received at least qf imp-messages MSG(m, id), but
do not forward MSG(m, id), because they have already ur-broadcast MSG(m′, id) at line 3 or at
line 7 for an app-message m′ 6= m.

As previously, we denote the cardinality of each of these subsets as: kU = |U |, kF = |F |, kNF =
|NF |, kNB = |NB |. We can then observe that kU ≤ kI and that kNF ≤ kU , as all the (correct)
processes in U and NF invoke k`-cast. Let us remark that (kU + kF ) represents the total number
of correct processes that ur-broadcast an imp-message MSG(m, id). Fig. 2b presents a distribution of
imp-messages across A, B and C.

Observation. By construction, we can bind wcA by observing that each of the `e correct processes
in A can receive at most one imp-message from each of the (kU + kF ) correct processes that send
them. We can also bind wcB by observing that there are (kNF + kNB + kF − `e) processes in B and
that each can receive at most qd − 1 imp-messages. Similarly, we can bind wcC by observing that the
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(c− kNF − kNB − kF ) processes of C can receive at most qf − 1 imp-messages. Thus:

wcA ≤ (kU + kF )`e, (1)

wcB ≤ (qd − 1)(kNF + kNB + kF − `e), (2)

wcC ≤ (qf − 1)(c− kNF − kNB − kF ). (3)

Moreover, the MA can suppress tm copies of the imp-message that should be received by the c
correct processes. Thus, the total number of imp-messages received by correct processes (wcA + wcB +
wcC) is such that:

wcA + wcB + wcC ≥ (kU + kF )(c− tm). (4)

Lemma 1. `e × (kU + kF − qd + 1) ≥ (kU + kF )(c− tm − qd + qf )− c(qf − 1)− kNB (qd − qf ).

Proof sketch. We get this result by combining (1), (2), (3) and (4), and using sf-k`-Assumption 1 with
the fact that kNF ≤ kU . (Full derivations in Appendix A.2.)

Lemma 2. If no correct process k`-casts (m′, id) with m′ 6= m, then no correct process forwards
MSG(m′, id) at line 7 (and then kNB = 0). (Proof in Appendix A.2.)

Lemma 3 (k`-LOCAL-DELIVERY). If at least k =
⌊

c(qf−1)
c−tm−qd+qf

⌋
+ 1 correct processes k`-cast an

app-message m with identity id and no correct process k`-casts any app-message m′ with identity id
such that m 6= m′, then at least one correct process pi k`-delivers m with identity id .

Proof sketch. From the hypotheses, Lemma 2 helps us determine that kNB = 0. Then, the property is
proved by contraposition, by assuming that no correct process k`-delivers (m, id), which leads us to
`e = 0. Using prior information and sf-k`-Assumption 1, we can rewrite the inequality of Lemma 1
to get the threshold of k`-casts above which there is at least one k`-delivery. (Full derivations in Ap-
pendix A.2.)

Lemma 4. (single = false) =⇒ (kNB = 0). (Proof in Appendix A.2.)

Lemma 5. If at least one correct process k`-delivers (m, id) and x = kU + kF (the number of correct
processes that ur-broadcast MSG(m, id) at line 3 or 7), then x ≥ qd − tb and x2− x(c− tm + qf − 1−
kNB ) ≥ −(c− kNB )(qf − 1).

Proof sketch. We prove this lemma by counting the total number of messages (Byzantine or not) that
are received by processes of A, and by using (1), (3) (4), and sf-k`-Assumption 1. (Full derivations in
Appendix A.2.)

Lemma 6. If kNB = 0, and at least one correct process k`-delivers (m, id), then kU + kF ≥ qd .

Proof sketch. Given that kNB = 0, we can rewrite the inequality of Lemma 5, which gives us a second-
degree polynomial (where x = kU + kF is the unknown variable). We compute its roots and show that
the smaller one contradicts Lemma 5, and that the larger one is greater than or equal to qd . The fact that
x must be greater than or equal to the larger root to satisfy Lemma 5 proves the lemma. (Full derivations
in Appendix A.2.)
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Lemma 7. If kNB = 0 and kU +kF ≥ qd , then at least
⌈
c
(

1− tm
c−qd+1

)⌉
correct processes k`-deliver

some app-message with identity id (not necessarily m).

Proof sketch. From the hypotheses, we can rewrite the inequality of Lemma 1 to get a lower bound on
`e. Using sf-k`-Assumption 3, we can determine that this lower bound is decreasing with the number
of ur-broadcasts by correct processes (x = kU + kF ). Hence, this lower bound is minimum when x is
maximum, that is when x = c. This gives us the minimum number of correct processes that k`-deliver
under the given hypotheses. (Full derivations in Appendix A.2.)

Lemma 8 (k`-WEAK-GLOBAL-DELIVERY). If single = false, if a correct process k`-delivers an
app-message m with identity id , then at least ` =

⌈
c
(

1− tm
c−qd+1

)⌉
correct processes k`-deliver an

app-message m′ with identity id (each possibly different from m).

Proof sketch. As single = false and one correct process k`-delivers (m, id), Lemmas 4 and 6 apply,
and we have kNB = 0 and kU +kF ≥ qd . This provides the prerequisites for Lemma 7, which concludes
the proof. (Full derivations in Appendix A.2.)

Lemma 9 (k`-STRONG-GLOBAL-DELIVERY). If single = true, if a correct process k`-delivers an
app-message m with identity id , and if no correct process k`-casts an app-message m′ 6= m with
identity id , then at least ` =

⌈
c
(

1− tm
c−qd+1

)⌉
correct processes k`-deliver m with identity id .

Proof sketch. As single = true, Lemma 2 holds and implies that kNB = 0. Like above, Lemma 6 and
Lemma 7 hold, which leads us to the conclusion of the proof. (Full derivations in Appendix A.2.)

4 BRB in the Presence of Message Adversary (MBRB): Definition

The MBR-broadcast abstraction (for Message-adversarial Byzantine Reliable Broadcast) is composed of
two matching operations denoted mbrb_broadcast and mbrb_deliver. It considers that an identity 〈sn, i〉
(sequence number, sender identity) is associated with each app-message, and assumes that any two
app-messages mbrb-broadcast by the same correct process have different sequence numbers. Sequence
numbers are one of the easiest ways to design “multi-shot” reliable broadcast algorithms (be the app-
messages received in their sending order or not), when the mbrb_broadcast operation can be invoked
multiple times by the same process.

When, at the application level, a process pi invokes mbrb_broadcast(m, sn), where m is the app-
message, we say it “mbrb-broadcasts (m, sn)”. Similarly when the invocation of mbrb_deliver returns
the tuple (m, sn, j) to the client application, we say it “mbrb-delivers (m, sn, j)”. So, the app-message
are mbrb-broadcast and mbrb-delivered. Because of the MA, we cannot always guarantee that an app-
message mbrb-delivered by a correct process is eventually received by all correct processes. Hence, in
the MBR-broadcast specification, we introduce a variable `MBRB (reminiscent of the ` of k`-cast) which
indicates the strength of the global delivery guarantee of the primitive: if one correct process mbrb-
delivers an app-message, then `MBRB correct processes eventually mbrb-deliver this app-message10.
MBR-broadcast is defined by the following properties:

• Safety:

– MBRB-VALIDITY. If a correct process pi mbrb-delivers an app-message m from a correct
process pj with sequence number sn , then pj mbrb-broadcast m with sequence number sn .

10If there is no MA (i.e. tm = 0), we should have `MBRB = c ≥ n− tb.
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– MBRB-NO-DUPLICATION. A correct process pi mbrb-delivers at most one app-message
from a process pj with sequence number sn .

– MBRB-NO-DUPLICITY. No two different correct processes mbrb-deliver different app-
messages from a process pi with the same sequence number sn .

• Liveness:

– MBRB-LOCAL-DELIVERY. If a correct process pi mbrb-broadcasts an app-messagemwith
sequence number sn , then at least one correct process pj eventually mbrb-delivers m from
pi with sequence number sn .

– MBRB-GLOBAL-DELIVERY. If a correct process pi mbrb-delivers an app-message m from
a process pj with sequence number sn , then at least `MBRB correct processes mbrb-deliver
m from pj with sequence number sn .

It is implicitly assumed that a correct process does not use the same sequence number twice. Let us
observe that, as at the implementation level the MA can always suppress all the imp-messages sent to a
fixed set D of tm processes, these mbrb-delivery properties are the strongest that can be implemented.
More generally, the best guaranteed value for `MBRB is c−tm. So, the previous specification boils down
to Bracha’s specification [8] for `MBRB = c.

5 k`-Cast in Action: From Classical BRB to MA-Tolerant BRB (MBRB)
Algorithms

This section revisits two signature-free BRB algorithms [8, 16] that were initially proposed in a pure
Byzantine context (i.e. without any MA), and uses the k`-cast abstraction to transform them into
Byzantine-MA-tolerant versions (hence they are MBRB algorithms). Moreover, when we take tm = 0,
our two revisited BRB algorithms are more efficient than the original algorithms that gave rise to them.

To make the reading easier for people who are familiar with the previous algorithms, the tag of
the imp-messages (INIT, ECHO, READY, WITNESS) are the same in the original algorithms and in their
revisited formulations.

5.1 Bracha’s BRB algorithm revisited

Revisited version. Bracha’s BRB algorithm is a kind of three-phase commit algorithm. When a pro-
cess invokes brb_broadcast(m, sn), it disseminates the app-messagemwith the help of an imp-message
tagged INIT (first phase). The reception of this imp-message by a correct process entails its participation
in a second phase implemented by the exchange of imp-messages tagged ECHO. Finally, when a process
has received ECHO imp-messages from “enough” processes, it enters the third phase implemented by
the exchange of imp-messages tagged READY, at the end of which it brb-delivers the app-message m.
Algorithm 2 is a revisited version of the Bracha’s BRB which assumes n > 3tb + 2tm + 2

√
tbtm.

The algorithm requires two instances of k`-cast, denoted obj E and obj R, associated with the ECHO

imp-messages and the READY imp-messages, respectively. For both these objects, the Boolean single is
set to true. For the quorums we have the following:

• obj E: qf = tb + 1 and qd = bn+tb
2 c+ 1, • obj R: qf = tb + 1 and qd = 2tb + tm + 1.

The integer sn is the sequence number of the app-message m mbrb-broadcast by pi. The identity of m
is consequently the pair 〈sn, i〉.
Algorithm 2 provides `MBRB =

⌈
c
(

1− tm
c−2tb−tm

)⌉
under:

• B87-Assumption: n > 3tb + 2tm + 2
√
tbtm;

its proof of correctness can be found in Appendix B.1.

11



init: obj E ← SigFreeKLCast(qd=bn+tb
2
c+1, qf=tb+1, single=true);

obj R ← SigFreeKLCast(qd=2tb+tm+1, qf=tb+1, single=true).

(1) operation mbrb_broadcast(m, sn) is ur_broadcast(INIT(m, sn)).

(2) when INIT(m, sn) is received from pj do obj E.k`_cast(ECHO(m), (sn, j)).

(3) when (ECHO(m), (sn, j)) is obj E.k`_delivered do obj R.k`_cast(READY(m), (sn, i)).

(4) when (READY(m), (sn, j)) is obj R.k`_delivered do mbrb_deliver(m, sn, j).

Algorithm 2: k`-cast-based rewriting of Bracha’s BRB algorithm (code of pi)

Comparison. When tm = 0, the quorum sizes in Bracha’s algorithm and its revisited version are the
same for the READY phase. Those for the ECHO phase appear instead in Table 1. As the algorithm
requires n > 3tb, we define ∆ = n − 3tb as the slack between the lower bound on n and the actual
value of n. When considering the delivery threshold qf , we have

⌊
n+tb

2

⌋
+ 1 = 2tb +

⌊
∆
2

⌋
+ 1 > tb + 1.

As a result, the revisited version of Bracha’s algorithm always has a lower forwarding threshold than
the original. This causes it to forward messages more rapidly and therefore reach the delivery quorum
faster, even if the two delivery quorums are the same.

Original version (ECHO phase) k`-cast-based version (obj E)

Forwarding threshold qf

⌊n+ tb
2

⌋
+ 1 tb + 1

Delivery threshold qd

⌊n+ tb
2

⌋
+ 1

⌊n+ tb
2

⌋
+ 1

Table 1: Bracha’s original version vs. k`-cast-based rewriting when tm = 0

5.2 Imbs and Raynal’s BRB algorithm revisited

Revisited version. Imbs and Raynal’s BRB is another implementation of Byzantine reliable broadcast
which achieves an optimal good-case latency (only two communication steps) at the cost of a non-
optimal tb-resilience. The revisited version of Imbs and Raynal’s BRB algorithm requires n > 5tb +
12tm + 2tbtm

tb+2tm
.

init: obj W ← SigFreeKLCast(qd=
⌊
n+3tb

2

⌋
+ 3tm + 1, qf=

⌊
n+tb

2

⌋
+ 1, single=false).

(1) operation mbrb_broadcast(m, sn) is ur_broadcast(INIT(m, sn)).

(2) when INIT(m, sn) is received from pj do obj W.k`_cast(WITNESS(m), (sn, j)).

(3) when (WITNESS(m), (sn, j)) is obj W.k`_delivered do mbrb_deliver(m, sn, j).

Algorithm 3: k`-cast-based rewriting of Imbs and Raynal’s BRB algorithm (code of pi)

The algorithm requires a single k`-cast object, denoted obj W, associated with the WITNESS imp-
message, and which is instantiated with qf =

⌊
n+tb

2

⌋
+ 1 and qd =

⌊
n+3tb

2

⌋
+ 3tm + 1, and the Boolean

single = false. Similarly to Bracha’s revisited BRB, an identity of app-message in this algorithm is a
pair 〈sn, i〉 containing a sequence number sn and a process identity i.
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Algorithm 3 provides `MBRB =

⌈
c

(
1− tm

c−
⌊
n+3tb

2

⌋
−3tm

)⌉
under:

• IR16-Assumption: n > 5tb + 12tm + 2tbtm
tb+2tm

; (where tb + tm > 0)

its proof of correctness can be found in Appendix B.2.

Comparison. The original Imbs and Raynal’s algorithm and its k`-revisited version are compared for
tm = 0 in Table 2. Let us recall that this algorithm saves one communication step with respect to
Bracha’s algorithm at the cost of a weaker tb-tolerance, namely it requires n > 5tb. Like for Bracha, let
us define the slack between n and its minimum as ∆ = n− 5tb, we have ∆ ≥ 1.

• Let us first consider the size of the forwarding quorum (first line of the table). We have n− 2tb =
3tb + ∆ and bn+tb

2 c + 1 = 3tb + b∆
2 c + 1. When ∆ > 2, we always have ∆ > b∆

2 c + 1, it
follows that the forwarding predicate of the revisited version is equal or weaker than the one of
the original version.

• The same occurs for the size of the delivery quorum (second line of the table). We have n− tb =
4tb + ∆ and bn+3tb

2 c + 1 = 4tb + b∆
2 c + 1. So both revisited quorums are lower than those of

the original version when ∆ > 2, making the revisited algorithm quicker as soon as n ≥ 5tb + 3.
The two version algorithms behave identically for 5tb + 1 ≥ n ≥ 5tb + 2 (∆ ∈ {1, 2}).

Original version (WITNESS phase) k`-cast-based version (obj W)

Forwarding threshold qf n− 2tb

⌊n+ tb
2

⌋
+ 1

Delivery threshold qd n− tb
⌊n+ 3tb

2

⌋
+ 1

Table 2: Imbs and Raynal’s original version vs. k`-cast-based rewriting when tm = 0

5.3 Numerical evaluation of the MBRB algorithms

Fig. 3 provides a numerical evaluation of the delivery guarantees of both k`-cast-based MBRB algo-
rithms (Algorithms 2 and 3) in the presence of Byzantine processes and an MA. Results were obtained
for n = 100, and show the values of `MBRB for different combinations of tb and tm. For instance, Fig. 3a
shows that with 6 Byzantine processes, and an MA suppressing up to 9 ur-broadcast imp-messages, Al-
gorithm 2 ensures that the MBRB-GLOBAL-DELIVERY property is verified with `MBRB = 83. The
figures illustrate that the revisited Bracha algorithm performs on a wider range of parameter values
as indicated by the bounds on n, tb, and tm in assumptions B87-Assumption and IR16-Assumption.
Nonetheless, both algorithms exhibit values of `MBRB that can support real-world applications in the
presence of an MA. Appendix E presents more in-depth results on both algorithms and their constituent
k`-cast instances.

6 A Signature-Based Implementation of k`-Cast

This section presents an implementation of k`-cast based on digital signatures. The underlying model is
the same as the one presented in Section 2 (page 3), except that we assume that the computing power of
the attacker is bounded, which allows us to leverage asymmetric cryptography.
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Figure 3: Provided values of `MBRB for the revisited BRB algorithms with varying values of tb and tm
(n = 100)

Although this signature-based implementation of k`-cast provides better guarantees than its
signature-free counterpart (Algorithm 1), using it to reconstruct signature-free BRB algorithms would
be counter-productive. This is because signatures allow for MA-tolerant BRB algorithms that are more
efficient in terms of round and message complexity [3].

However, a signature-based k`-cast does make sense in contexts in which many-to-many commu-
nication patterns are required [7], and we believe opens the path to novel ways to handle local state
resynchronization resilient to Byzantine failures and message adversaries.

6.1 Algorithm

The signature-based algorithm is described in Algorithm 4. It uses an asymmetric cryptosystem to sign
imp-messages and verify their authenticity. Every process has a public/private key pair. We suppose
that the public keys are known by everyone and that each correct process is the only one to know its
private key (while Byzantine processes can exchange their private keys). Each process also knows the
mapping between process indexes and associated public keys, and each process can produce a unique
valid signature for a given imp-message, and check if a signature is valid.

It is a simple and classical algorithm taking into account the fact that an app-message must be k`-
cast by at least k correct processes to be k`-delivered by at least ` correct processes. For the sake
of simplicity, we say that a correct process pi “ur-broadcasts a set of signatures” if it ur-broadcasts a
BUNDLE(m, id , sigs i) in which sigs i contains the signatures at hand. A correct process pi ur-broadcasts
an app-message m with identity id at line 5 or line 11.

• If this occurs at line 5, pi includes in the imp-message it ur-broadcasts all the signatures it has
already received for (m, id) plus its own signature.

• If this occurs at line 11, pi has just received an imp-message containing a set of signatures sigs
for the pair (m, id). The process pi then aggregates in sigs i the valid signatures it just received
with the ones it did know about beforehand (line 10).

This algorithm simply assumes: (the prefix “sb” stands for signature-based)

• sb-k`-Assumption 1: c > 2tm,

• sb-k`-Assumption 2: c− tm ≥ qd ≥ tb + 1.
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object SigBasedKLCast(qd) is

(1) operation k`_cast(m, id) is
(2) if

(
(−, id) not already signed by pi

)
then

(3) sig i ← signature of (m, id) by pi;
(4) sigsi ← {all valid signatures for (m, id) ur-broadcast by pi} ∪ {sig i};
(5) ur_broadcast(BUNDLE(m, id , sigsi));
(6) check_delivery()
(7) end if.

(8) when BUNDLE(m, id , sigs) is received do
(9) if

(
sigs contains valid signatures for (m, id) not already ur-broadcast by pi

)
then

(10) sigsi ← {all valid signatures for (m, id) ur-broadcast by pi}
∪ {all valid signatures for (m, id) in sigs};

(11) ur_broadcast(BUNDLE(m, id , sigsi));
(12) check_delivery()
(13) end if.

(14) internal operation check_delivery() is
(15) if

(
pi ur-broadcast at least qd valid signatures for (m, id)
∧ (−, id) not already k`-delivered

)
(16) then k`_deliver(m, id)
(17) end if.

end object.

Algorithm 4: k`-cast implementation with signatures (code for pi)

Similarly to the signature-free k`-cast implementation presented in Section 3.2, this k`-cast object
can be instantiated using the function called SigBasedKLCast(qd ), which only takes as a parameter the
size of the delivery quorum qd . Thanks to digital signatures, processes can relay the imp-messages of
other processes in this signature-based implementation, however, it does not use forwarding in the same
sense as in its signature-free free counterpart: there is no equivalent of qf in this algorithm, that is, the
only way to “endorse” an app-message (which, in this case, is equivalent to signing this app-message)
is to invoke the k`_cast operation. Furthermore, only one app-message can be endorsed by a correct
process for a given identity (which is the equivalent of single = true in the signature-free version).

6.2 Guarantees

The proof of the following theorem can be found in Appendix C.

Theorem 2 (k`-CORRECTNESS). If sb-k`-Assumption 1 and 2 are verified, Algorithm 4 implements
k`-cast with the following guarantees: (i) k′ = qd − n + c, (ii) k = qd , (iii) ` = c − tm, and (iv)
δ = qd >

n+tb
2 .

7 Conclusion

This paper discussed reliable broadcast in asynchronous systems where failures are under the control of
a two-dimensional adversary: some processes can be Byzantine and imp-messages can be suppressed.
Its starting point was the design of generic reliable broadcast abstractions suited to applications that do
not require total order on the delivery of application messages (as shown in [6, 15], distributed money
transfers are such applications).

Applying the k`-cast-based approach for local-state process re-synchronization seems worth study-
ing. More generally, the construction of quorums able to thwart a two-dimensional adversary (Byzantine
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processes + MA) is a new approach that can be applied to the design of a wide range of quorum-based
distributed algorithms other than reliable broadcast.
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A Proof of the Signature-Free k`-cast Implementation

A.1 Safety Proof

Lemma 10. If a correct process pi k`-delivers (m, id), then at least (qf −n+c) correct processes have
ur-broadcast MSG (m,id ) at line 3.

Proof. If pi k`-delivers (m, id) at line 10, then it received qd copies of MSG(m, id) (because of the
predicate at line 9). The effective number of Byzantine processes in the system is n − c, such that
0 ≤ n− c ≤ tb. Therefore, pi must have received at least qd − n+ c (which is strictly positive because
qd ≥ qf > tb ≥ n − c by sf-k`-Assumption 1) imp-messages MSG(m, id) that correct processes ur-
broadcast, either during a k`_cast(m, id) invocation at line 3, or during a forwarding step at line 7.
There are two cases.

• If no correct process has forwarded MSG(m, id) at line 7, then at least qd − n + c ≥ qf − n + c
(as qd ≥ qf by sf-k`-Assumption 1) correct processes have ur-broadcast MSG(m, id) at line 3.

• If at least one correct process forwarded MSG(m, id), then let us consider pj , the first correct
process that forwards MSG(m, id). Because of the predicate at line 6, pj must have received at
least qf distinct copies of the MSG(m, id) imp-message, out of which at most n − c have been
ur-broadcast by Byzantine processes, and at least qf − n + c (which is strictly positive because
qf > tb ≥ n− c by sf-k`-Assumption 1) have been sent by correct processes. Moreover, as pj is
the first correct process that forwards MSG(m, id), all of the qf − n+ c imp-messages it receives
from correct processes must have been sent at line 3.

Lemma 11 (k`-VALIDITY). If a correct process pi k`-delivers an app-message m with identity id , then
at least k′ = qf − n+ c correct processes have k`-cast m with id .

Proof. The condition at line 2 implies that the correct processes that ur-broadcast MSG(m, id) at line 3
constitute a subset of those that k`-cast (m, id). Thus, by Lemma 10, their number is at least k′ =
qf − n+ c.

Lemma 12 (k`-NO-DUPLICATION). A correct process pi k`-delivers an app-message m with identity
id at most once.

Proof. This property derives trivially from the predicate at line 9.

Lemma 13 (k`-CONDITIONAL-NO-DUPLICITY). If the Boolean δ =
(
(qf >

n+tb
2 ) ∨ (single ∧ qd >

n+tb
2 )
)

is true, then no two different correct processes k`-deliver different app-messages with the same
identity id .

Proof. Let pi and pj be two correct processes that respectively k`-deliver (m, id) and (m′, id). We want
to prove that, if the predicate

(
(qf >

n+tb
2 ) ∨ (single ∧ qd >

n+tb
2 )
)

is satisfied, then m = m′. There
are two cases.

• Case
(
qf >

n+tb
2

)
.

We denote by A and B the sets of correct processes that have respectively ur-broadcast
MSG(m, id) and MSG(m′, id) at line 3. By Lemma 10, we know that |A| ≥ qf − n + c >
n+tb

2 − n+ c and |B| ≥ qf − n+ c > n+tb
2 − n+ c. As A and B contain only correct processes,

we have |A ∩ B| > 2(n+tb
2 − n + c) − c = tb − n + c ≥ tb − tb = 0. Hence, at least one cor-

rect process px has ur-broadcast both MSG(m, id) and MSG(m′, id) at line 3. But because of the
predicate at line 2, px ur-broadcasts at most one imp-message MSG(−, id) at line 3. We conclude
that m is necessarily equal to m′.
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• Case
(
single ∧ qd >

n+tb
2

)
.

Thanks to the predicate at line 9, we can assert that pi and pj must have respectively received
at least qd distinct copies of MSG(m, id) and MSG(m′, id), from two sets of processes, that we
respectively denote A and B, such that |A| ≥ qd >

n+tb
2 and |B| ≥ qd >

n+tb
2 . We have |A ∩

B| > 2n+tb
2 − n = tb. Hence, at least one correct process px has ur-broadcast both MSG(m, id)

and MSG(m′, id). But because of the predicates at lines 2 and 6, and as single = true, px ur-
broadcasts at most one imp-message MSG(−, id), either during a k`_cast(m, id) invocation at
line 3 or during a forwarding step at line 7. We conclude that m is necessarily equal to m′.

A.2 Liveness Proof

Lemma 1. `e × (kU + kF − qd + 1) ≥ (kU + kF )(c− tm − qd + qf )− c(qf − 1)− kNB (qd − qf ).

Proof. Combining (1), (2), (3) and (4) yields:

(kU + kF )`e + (qd − 1)(kNF + kNB + kF − `e) +

(qf − 1)(c− kNF − kNB − kF ) ≥ (kU + kF )(c− tm),

`e × (kU + kF − qd + 1) ≥ (kU + kF )(c− tm)− (qd − 1)(kNF + kNB + kF )−
(qf − 1)(c− kNF − kNB − kF ),

≥ (kU + kF )(c− tm)− (qd − qf )(kNF + kNB + kF )− c(qf − 1).

Using sf-k`-Assumption 1, we have qd − qf ≥ 0. By definition, we also have kNF ≤ kU , which yields:

`e × (kU + kF − qd + 1) ≥ (kU + kF )(c− tm)− (qd − qf )(kU + kF + kNB )− c(qf − 1),

≥ (kU + kF )(c− tm − qd + qf )− c(qf − 1)− kNB (qd − qf ).

Lemma 2. If no correct process k`-casts (m′, id) with m′ 6= m, then no correct process forwards
MSG(m′, id) at line 7 (and then kNB = 0).

Proof. Assume there is a correct process that ur-broadcasts MSG(m′, id) at line 7 with m′ 6= m. Let us
consider the first such process pi. To execute line 7, pi must first receive qf imp-messages MSG(m′, id)
from distinct processes. Since qf > tb (sf-k`-Assumption 1), at least one of these processes, pj , is
correct. Since pi is the first correct process to forward MSG(m′, id) at line 7, the MSG(m′, id) imp-
message of pj must come from line 3, and pj must have k`-cast (m′, id). We have assumed that no
correct process k`-cast m′ 6= m, therefore m′ = m. Contradiction.

We conclude that, under these assumptions, no correct process ur-broadcasts MSG(m′, id) withm′ 6=
m, be it at line 3 (by assumption), or at line 7 (shown by this proof). As a result, kNB = 0.

Lemma 3 (k`-LOCAL-DELIVERY). If at least k =
⌊

c(qf−1)
c−tm−qd+qf

⌋
+ 1 correct processes k`-cast an

app-message m with identity id and no correct process k`-casts any app-message m′ with identity id
such that m 6= m′, then at least one correct process pi k`-delivers m with identity id .

Proof. Let us assume that no correct process k`-casts (m′, id) with m′ 6= m. No correct process
therefore ur-broadcasts MSG(m′, id) with m′ 6= m at line 3. Lemma 2 also applies and no correct
process forwards MSG(m′, id) with m′ 6= m at line 7 either, so kNB = 0. Because no correct process
ur-broadcasts MSG(m′, id) with m′ 6= m whether at line 3 or 7, a correct process receives at most tb
imp-messages MSG(m′, id) (all coming from Byzantine processes). As by sf-k`-Assumption 1, tb < qd ,
no correct process k`-delivers (m′, id) with m′ 6= m at line 10.

We now prove the contraposition of the Lemma. Let us assume no correct process k`-delivers
(m, id). Since, by our earlier observations, no correct process k`-delivers (m′, id) with m′ 6= m either,
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the condition at line 9 implies that no correct process ever receives at least qd MSG(m, id), and therefore
`e = 0. By Lemma 1 we have c(qf − 1) ≥ (kU + kF )(c − tm − qd + qf ). sf-k`-Assumption 1
implies that c − tm − qd ≥ 0 ⇐⇒ c − tm − qd + qf > 0 (as qf ≥ tb + 1 ≥ 1), leading to
kU + kF ≤

c(qf−1)
c−tm−qd+qf

. Because of the condition at line 2, a correct process pj that has k`-cast (m, id)

but has not ur-broadcast MSG(m, id) at line 3 has necessarily ur-broadcast MSG(m, id) at line 7. We
therefore have kI ≤ kU + kF , which gives kI ≤

c(qf−1)
c−tm−qd+qf

. By contraposition, if kI >
c(qf−1)

c−tm−qd+qf
,

then at least one correct process must k`-deliver (m, id). Hence, we have k =
⌊

c(qf−1)
c−tm−qd+qf

⌋
+ 1.

Lemma 4. (single = false) =⇒ (kNB = 0).

Proof. Let us consider a correct process pi ∈ A ∪ B. If we assume pi 6∈ F , pi never executes line 7 by
definition. Because pi ∈ A∪B, pi has received at least qf imp-messages MSG(m, id), and therefore did
not fulfill the condition at line 6 when it received its qf th imp-message MSG(m, id). As single = false

by Lemma assumption, to falsify this condition, pi must have had already ur-broadcast MSG(m, id)
when this happened. Because pi never executes line 7, this implies that pi ur-broadcasts MSG(m, id) at
line 3, and therefore pi ∈ NF . This reasoning proves that A ∪ B \ F ⊆ NF . As the sets F , NF and
NB partition A ∪B, this shows that NB = ∅, and kNB = |∅| = 0.

Lemma 5. If at least one correct process k`-delivers (m, id) and x = kU + kF (the number of correct
processes that ur-broadcast MSG(m, id) at line 3 or 7), then x ≥ qd − tb and x2− x(c− tm + qf − 1−
kNB ) ≥ −(c− kNB )(qf − 1).

Proof. Let us write wbA the total number of MSG(m, id) imp-messages from Byzantine processes re-
ceived by the processes of A, and wA = wcA + wbA the total of number MSG(m, id) imp-messages re-
ceived by the processes ofA, whether these imp-messages originated from correct or Byzantine senders.
By definition, wbA ≤ tb`e and wA ≥ qd`e. By combining these two inequalities with (1) on wcA we ob-
tain:

qd`e ≤ wA = wcA + wbA ≤ (kU + kF )`e + tb`e = (tb + kU + kF )`e,

qd ≤ tb + kU + kF , (as `e > 0)

qd − tb ≤ kU + kF = x. (5)

This proves the first inequality of the lemma. The processes in A∪B each receive at most kU + kF
distinct MSG(m, id) imp-messages from correct processes, so we have wcA + wcB ≤ (kNF + kF +
kNB )(kU + kF ). Combined with the inequalities (3) on wcC and (4) on wcA + wcB + wcC that remain
valid in this case, we now have:

(kNF + kF + kNB )(kU + kF ) + (qf − 1)(c− kNF − kNB − kF ) ≥ (kU + kF )(c− tm),

(kNF + kF + kNB )(kU + kF − qf + 1) ≥ (kU + kF )(c− tm)− c(qf − 1). (6)

Let us determine the sign of (kU + kF − qf + 1). We derive from (5):

kU + kF − qf + 1 ≥ qd − tb − qf + 1

≥ 1 > 0. (as qd − qf ≥ tb by sf-k`-Assumption 1)

As (kU + kF − qf + 1) is positive and we have kU ≥ kNF by definition, we can transform (6) into:

(kU + kF + kNB )(kU + kF − qf + 1) ≥ (kU + kF )(c− tm)− c(qf − 1),

(x+ kNB )(x− qf + 1) ≥ x(c− tm)− c(qf − 1), (as x = kU + kF )

x2 − x(c− tm + qf − 1− kNB ) ≥ −(c− kNB )(qf − 1).
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Lemma 6. If kNB = 0, and at least one correct process k`-delivers (m, id), then kU + kF ≥ qd .

Proof. By Lemma 5 we have:

x2 − x(c− tm + qf − 1− kNB ) ≥ −(c− kNB )(qf − 1), (7)

As (7) holds for all, values of c ∈ [n− tb, n], we can in particular consider c = n− tb. Moreover as by
hypothesis, kNB = 0, we have.

x2 − x(n− tb − tm + qf − 1) + (qf − 1)(n− tb) ≥ 0,

x2 − αx+ (qf − 1)(n− tb) ≥ 0. (by definition of α) (8)

Let us first observe that the discriminant of the second-degree polynomial in (8) is non negative, i.e.
α2−4(qf −1)(n− tb) ≥ 0 by sf-k`-Assumption 2. This allows us to compute the two real-valued roots
as follows:

r0 =
α

2
−
√
α2 − 4(qf − 1)(n− tb)

2
and r1 =

α

2
+

√
α2 − 4(qf − 1)(n− tb)

2
.

Thus (8) is satisfied if and only if x ≤ r0 ∨ x ≥ r1.

• Let us prove r0 ≤ qd − 1− tb. We need to show that:

α

2
−
√
α2 − 4(qf − 1)(n− tb)

2
≤ qd − 1− tb

α

2
− (qd − 1) + tb ≤

√
α2 − 4(qf − 1)(n− tb)

2√
α2 − 4(qf − 1)(n− tb)

2
≥ α

2
− (qd − 1) + tb√

α2 − 4(qf − 1)(n− tb) ≥ α− 2(qd − 1) + 2tb.

The inequality is trivially satisfied if α − 2(qd − 1) + 2tb < 0. For all other cases, we need to
verify that:

α2 − 4(qf − 1)(n− tb) ≥ (α− 2(qd − 1) + 2tb)
2,

α2 − 4(qf − 1)(n− tb) ≥ α2 + 4(qd − 1)2 + 4t2b − 4α(qd − 1) + 4αtb − 8tb(qd − 1),

−4(qf − 1)(n− tb) ≥ 4(qd − 1)2 + 4t2b − 4α(qd − 1) + 4αtb − 8tb(qd − 1),

−(qf − 1)(n− tb) ≥ (qd − 1)2 + t2b − α(qd − 1) + αtb − 2tb(qd − 1),

−(qf − 1)(n− tb) ≥ (qd − 1− tb)2 − α(qd − 1− tb),

and thus α(qd−1−tb)−(qf −1)(n−tb)−(qd−1−tb)2 ≥ 0, which is true by sf-k`-Assumption 4.

• Let us prove r1 > qd − 1. We want to show that:

α

2
+

√
α2 − 4(qf − 1)(n− tb)

2
> qd − 1

Let us rewrite the inequality as follows:

α+
√
α2 − 4(qf − 1)(n− tb) > 2(qd − 1)√
α2 − 4(qf − 1)(n− tb) > 2(qd − 1)− α
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The inequality is trivially satisfied if 2(qd − 1) − α < 0. For all other cases, we can take the
squares as follows:

α2 − 4(qf − 1)(n− tb) > (2(qd − 1)− α)2,

α2 − 4(qf − 1)(n− tb) > 4(qd − 1)2 + α2 − 4α(qd − 1),

−4(qf − 1)(n− tb) > 4(qd − 1)2 − 4α(qd − 1),

4α(qd − 1)− 4(qf − 1)(n− tb)− 4(qd − 1)2 > 0,

α(qd − 1)− (qf − 1)(n− tb)− (qd − 1)2 > 0,

which is true by sf-k`-Assumption 3.

We now know that r0 ≤ qd − 1 − tb and that r1 > qd − 1. In addition, as x ≤ r0 ∨ x ≥ r1, we
have x ≤ qd − tb − 1 ∨ x > qd − 1. But Lemma 5 states that x ≥ qd − tb, which is incompatible with
x ≤ qd − tb − 1. So we are left with x > qd − 1, which implies, as qd and x are integers that x ≥ qd ,
thus proving the lemma for c = n− tb.

Let us now consider the set E0 of all executions in which tb processes are Byzantine, and therefore
c = n− tb, and a set Ec of executions in which there are fewer Byzantine processes, and thus c > n− tb
correct processes. We show thatEc ⊆ E0 in that a Byzantine process can always simulate the behavior of
a correct process. In particular, if the simulated correct process is not subject to the message adversary,
the simulating Byzantine process simply operates like a correct process. If, on the other hand, the
simulated correct process misses some messages as a result of the message adversary, the Byzantine
process can also simulate missing such messages. As a result, the executions that can happen when
c > n− tb can also happen when c = n− tb. Thus our result proven for c = n− tb can be extended to
all possible values of c.

Lemma 7. If kNB = 0 and kU +kF ≥ qd , then at least
⌈
c
(

1− tm
c−qd+1

)⌉
correct processes k`-deliver

some app-message with identity id (not necessarily m).

Proof. As kNB = 0 and kU + kF ≥ qd , we can rewrite the inequality of Lemma 1 into:

`e × (kU + kF − qd + 1) ≥ (kU + kF )(c− tm − qd + qf )− c(qf − 1).

From kU + kF ≥ qd we derive kU + kF − qd + 1 > 0, and we transform the above inequality into:

`e ≥
(kU + kF )(c− tm − qd + qf )− c(qf − 1)

kU + kF − qd + 1
.

Let us now focus on the case in which c = n− tb, we obtain:

`e ≥
(kU + kF )(n− tb − tm − qd + qf )− (n− tb)(qf − 1)

kU + kF − qd + 1
.

The right side of the inequality is of the form:

`e ≥
φx− β
x− γ

= φ+
φγ − β
x− γ

(9)

with:

x = kU + kF ,

γ = qd − 1,

α = n− tb − tm + qf − 1,

φ = n− tb − tm − qd + qf ,

β = c(qf − 1).
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Since, by hypothesis, x = kU + kF ≥ qd , we have:

x− γ = kU + kF − qd + 1 > 0. (10)

We also have:

φγ − β = (α− γ)γ − c(qf − 1) = αγ − γ2 − c(qf − 1),

= α(qd − 1)− (qd − 1)2 − (n− tb)(qf − 1) > 0, (by sf-k`-Assumption 3)

φγ − β > 0. (11)

Injecting (10) and (11) into (9), we conclude that φ + φγ−β
x−γ is a decreasing hyperbole defined

over x ∈]γ,∞] with asymptotic value φ when x → ∞. As x is a number of correct processes,
x ≤ c. The decreasing nature of the right-hand side of (9) leads us to: `e ≥ φ + φγ−β

c−γ = φc−β
c−γ ≥

c(c−tm−qd+qf )−c(qf−1)
c−qd+1 ≥ c× c−tm−qd+1

c−qd+1 = c
(

1− tm
c−qd+1

)
.

Since `e is a positive integer, we conclude that at least `min =
⌈
c
(

1− tm
c−qd+1

)⌉
correct processes

receive at least qd imp-message MSG(m, id) at line 9. As each of these processes either k`-delivers
(m, id) when this first happens, or has already k`-delivered another app-message m′ 6= m with identity
id , we conclude that at least `min correct processes k`-deliver some app-message (whether it be m or
m′ 6= m) with identity id when c = n − tb. The reasoning for extending this result to any value of
c ∈ [n− tb, n] is identical to the one at the end of the proof of Lemma 6 just above.

Lemma 8 (k`-WEAK-GLOBAL-DELIVERY). If single = false, if a correct process k`-delivers an
app-message m with identity id , then at least ` =

⌈
c
(

1− tm
c−qd+1

)⌉
correct processes k`-deliver an

app-message m′ with identity id (each possibly different from m).

Proof. Let us assume single = false, and one correct process k`-delivers (m, id). By Lemma 4,
kNB = 0. The prerequisites for Lemma 6 are verified, and therefore kU + kF ≥ qd . This provides
the prerequisites for Lemma 7, from which we conclude that at least ` =

⌈
c
(

1− tm
c−qd+1

)⌉
correct

processes k`-deliver an app-message m′ with identity id , which concludes the proof of the lemma.

Lemma 9 (k`-STRONG-GLOBAL-DELIVERY). If single = true, if a correct process k`-delivers an
app-message m with identity id , and if no correct process k`-casts an app-message m′ 6= m with
identity id , then at least ` =

⌈
c
(

1− tm
c−qd+1

)⌉
correct processes k`-deliver m with identity id .

Proof. Let us assume that (i) single = true, (ii) no correct process k`-casts (m′, id) with m′ 6= m, and
(iii) one correct process k`-delivers (m, id). Lemma 2 holds and implies that kNB = 0. From there, as
above, Lemma 6 and Lemma 7 hold, and at least ` =

⌈
c
(

1− tm
c−qd+1

)⌉
correct processes k`-deliver an

app-message for identity id .
By hypothesis, no correct process ur-broadcasts MSG(m′, id) at line 3 with m′ 6= m. Similarly,

because of Lemma 2, no correct process ur-broadcasts MSG(m′, id) at line 7 with m′ 6= m. As a result,
a correct process can receive at most receive tb imp-messages MSG(m′, id) at line 9 (all from Byzantine
processes). As qd > tb (by sf-k`-Assumption 1), the condition of line 9 never becomes true form′ 6= m,
and as result no correct process delivers an app-message m′ 6= m with identity id . All processes that
k`-deliver an app-message with identity id therefore k`-deliver m, which concludes the lemma.

B Proof of the Signature-Free MBRB Implementations

The proofs that follow use integer arithmetic. Given a real number x and an integer i, let us recall
that x − 1 < bxc ≤ x ≤ dxe < x + 1, bx + ic = bxc + i, dx + ie = dxe + i, b−xc = −dxe,
(i > x) ⇐⇒ (i ≥ bxc+ 1), (i < x) ⇐⇒ (i ≤ dxe − 1).
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B.1 Proof of MBRB with Bracha’s revisited algorithm

B.1.1 Instantiating the parameters of the k`-cast objects

In Algorithm 2 (page 12), we instantiate the k`-cast objects obj E and obj R using the signature-free
implementation presented in Section 3.2. Let us mention that, given that obj E.single = obj R.single =
true, then we use the strong variant of the global-delivery property of k`-cast (k`-STRONG-GLOBAL-
DELIVERY) for both objects obj E and obj R. Moreover, according to the definitions of k′, k, ` and δ
(page 5) and their values stated in Theorem 1, we have:

• obj E.k
′ = obj E.qf − n+ c = tb + 1− n+ c ≥ tb + 1− tb = 1,

• obj E.k =

⌊
c(obj E.qf − 1)

c− tm − obj E.qd + obj E.qf

⌋
+ 1 =

⌊
c(tb + 1− 1)

c− tm − bn+tb
2 c − 1 + tb + 1

⌋
+ 1

=

⌊
ctb

c− tm − bn−tb2 c

⌋
+ 1,

• obj E.` =

⌈
c

(
1− tm

c− obj E.qd + 1

)⌉
=

⌈
c

(
1− tm

c− bn+tb
2 c − 1 + 1

)⌉

=

⌈
c

(
1− tm

c− bn+tb
2 c

)⌉
,

• obj E.δ =

((
obj E.qf >

n+ tb
2

)
∨
(
obj E.single ∧ obj E.qd >

n+ tb
2

))
=

((
tb + 1 >

n+ tb
2

)
∨
(
true ∧

⌊
n+ tb

2

⌋
+ 1 >

n+ tb
2

))
= (false ∨ (true ∧ true)) = true,

• obj R.k
′ = obj R.qf − n+ c = tb + 1− n+ c ≥ tb + 1− tb = 1,

• obj R.k =

⌊
c(obj R.qf − 1)

c− tm − obj R.qd + obj R.qf

⌋
+ 1 =

⌊
c(tb + 1− 1)

c− tm − 2tb − tm − 1 + tb + 1

⌋
+ 1

=

⌊
ctb

c− 2tm − tb

⌋
+ 1,

• obj R.` =

⌈
c

(
1− tm

c− obj R.qd + 1

)⌉
=

⌈
c

(
1− tm

c− 2tb − tm − 1 + 1

)⌉
=

⌈
c

(
1− tm

c− 2tb − tm

)⌉
,

• obj R.δ =

((
obj R.qf >

n+ tb
2

)
∨
(
obj R.single ∧ obj R.qd >

n+ tb
2

))
=

((
tb + 1 >

n+ tb
2

)
∨
(
true ∧ 2tb + tm + 1 >

n+ tb
2

))
∈ {true, false}

We recall that parameter δ controls the conditional no-duplicity property. The value for obj E.δ is
true, but that of value for obj R.δ may be either true or false depending on the values of n, tb, and tm.
This is fine because, in Bracha’s revisited algorithm (Algorithm 2), it is the first round (obj E) that ensures
no-duplicity. Once this has happened, the second round (obj R) does not need to provide no-duplicity but
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only needs to guarantee the termination properties of local and global delivery. This observation allows
obj R to operate with lower values of qd and qf .

Finally, we observe that for Algorithm 2, sf-k`-Assumption 1 through 4 are all satisfied by B87-
Assumption n > 3tb + 2tm + 2

√
tbtm. We prove this fact in Appendix 14. In the following, we prove

that 3tb + 2tm + 2
√
tbtm ≥ 2tb + tm +

√
t2b + 6tbtm + t2m ≥ 3tb + 2tm.

Observation 1. For tm, tb ∈ N0 non-negative integers, we have:

3tb + 2tm + 2
√
tbtm ≥ 2tb + tm +

√
t2b + 6tbtm + t2m ≥ 3tb + 2tm.

Proof. Let us start by proving the first inequality.

t2b + 6tbtm + t2m + 4
√
tbtm(tb + tm) ≥ t2b + 6tbtm + t2m,

t2b + t2m + 4tbtm + 4tb
√
tbtm + 4tm

√
tbtm + 2tbtm ≥ t2b + 6tbtm + t2m,

(tb + tm + 2
√
tbtm)2 ≥ t2b + 6tbtm + t2m,

tb + tm + 2
√
tbtm ≥

√
t2b + 6tbtm + t2m,

3tb + 2tm + 2
√
tbtm ≥ 2tb + tm +

√
t2b + 6tbtm + t2m.

Let us then prove the second inequality:

t2b + 6tbtm + t2m ≥ t2b + 2tbtm + t2m = (tb + tm)2,√
t2b + 6tbtm + t2m ≥ tb + tm,

2tb + tm +
√
t2b + 6tbtm + t2m ≥ 3tb + 2tm.

B.1.2 Proof of satisfaction of the assumptions of Algorithm 1

In this section, we prove that all the assumptions of the signature-free k`-cast implementation presented
in Algorithm 1 (page 6) are well respected for the two k`-cast instances used in Algorithm 2 (obj E and
obj R).

Lemma 14. Algorithm 1’s assumptions are well respected for obj E.

Proof. Let us recall that qf = tb + 1 and qd = bn+tb
2 c+ 1 for obj E.

• Proof of satisfaction of sf-k`-Assumption 1 (c− tm ≥ obj E.qd ≥ obj E.qf + tb ≥ 2tb + 1):

By B87-Assumption and Observation 1, we have the following:

c− tm ≥ n− tb − tm =
2n− 2tb − 2tm

2
, (by definition of c)

>
n+ 3tb + 2tm − 2tb − 2tm

2
=
n+ tb

2
, (as n > 3tb + 2tm)

≥
⌊
n+ tb

2

⌋
+ 1. (12)

We also have:⌊
n+ tb

2

⌋
+ 1 ≥

⌊
3tb + 2tm + 1 + tb

2

⌋
+ 1, (as n > 3tb + 2tm)

≥ b2tb + tm + 1/2c+ 1 = 2tb + tm + 1 ≥ 2tb + 1. (13)
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By combining (12) and (13), we get:

c− tm ≥
⌊
n+ tb

2

⌋
+ 1 ≥ 2tb + 1 ≥ 2tb + 1,

c− tm ≥ obj E.qd ≥ obj E.qf + tb ≥ 2tb + 1. (sf-k`-Assumption 1)

• Proof of satisfaction of sf-k`-Assumption 2 (α2 − 4(obj E.qf − 1)(n− tb) ≥ 0):

Let us recall that, for object obj E, we have qf = tb + 1 and qd = bn+tb
2 c+ 1. We therefore have

α = n+ qf − tb − tm − 1 = n− tm. Let us now consider the quantity:

∆ = α2 − 4(qf − 1)(n− tb) = (n− tm)2 − 4tb(n− tb)
= 4t2b + t2m + n2 + n (−4tb − 2tm)

The inequality is satisfied if n > 2
√
tbtm+2tb+ tm, which is clearly the case as n > 3tb+2tm+

2
√
tbtm. This proves sf-k`-Assumption 2.

• Proof of satisfaction of sf-k`-Assumption 3 (α(obj E.qd −1)− (obj E.qf −1)(n− tb)− (obj E.qd −
1)2 > 0):

Let us consider the quantity on the left-hand side of sf-k`-Assumption 3 and substitute qf = tb+1,
qd = bn+tb

2 c+ 1:

α(qd − 1)− (qf − 1)(n− tb)− (qd − 1)2,

= (n+ qf − tb − tm − 1)(qd − 1)− (qf − 1)(n− tb)− (qd − 1)2,

= (n− tm)

(⌊
n+ tb

2

⌋)
− tb(n− tb)−

(⌊
n+ tb

2

⌋)2

. (14)

We now observe that
(⌊

n+tb
2

⌋)
=
(
n+tb−ε

2

)
with ε = 0 if n + tb = 2k is even, and ε = 1 if

n+ tb = 2k + 1 is odd. We thus rewrite (14) as follows:

(n− tm)

(
n+ tb − ε

2

)
− tb(n− tb)−

(
n+ tb − ε

2

)2

,

=
n+ tb − ε

2
× 2n− 2tm − n− tb + ε

2
− tb(n− tb),

=
(n+ tb − ε)(n− 2tm − tb + ε)− 4tb(n− tb)

4
,

=
n2 − t2b − 2tbtm + 2tbε− 2ntm + 2tmε− ε2 − 4ntb + 4t2b

4
,

=
n2 + 3t2b − 2tbtm − 2n(tm + 2tb) + ε(2tb + 2tm − ε)

4
.

As we want to show that the above quantity is positive, the result will not change if we multiply it
by 4:

n2 + 3t2b − 2tbtm − 2n(tm + 2tb) + ε(2tb + 2tm − ε) > 0. (15)

We now solve the inequality to obtain:

n > 2tb + tm +
√
t2b + 6tbtm + t2m − ε(2tb + 2tm − ε).
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We observe that, for tb + tm ≥ 1, the quantity −ε(2tb + 2tm − ε) is strictly negative if ε = 1,
therefore:

n > 3tb + 2tm + 2
√
tbtm,

≥ tb + tm +
√
t2b + 6tbtm + t2m, (by Observation 1)

≥ 2tb + tm +
√
t2b + 6tbtm + t2m − ε(2tb + 2tm − ε).

This leaves out the case tb = tm = 0 ∧ n = 2k + 1 is odd, for which we can show that (15) is
positive or null for n ≥ 1:

(15) : n2 + 3t2b − 2tbtm − 2n(tm + 2tb) + ε(2tb + 2tm − ε),
= n2 − 1 ≥ 0 for n ≥ 1.

This completes the proof of sf-k`-Assumption 3.

• Proof of satisfaction of sf-k`-Assumption 4 (α(obj E.qd − 1 − tb) − (obj E.qf − 1)(n − tb) −
(obj E.qd − 1− tb)2 ≥ 0):

Let us consider the quantity on the left-hand side of sf-k`-Assumption 4 and substitute qf = tb+1,
qd = bn+tb

2 c+ 1:

α(qd − 1− tb)− (qf − 1)(n− tb)− (qd − 1− tb)2,

= (n+ qf − tb − tm − 1)(qd − 1− tb)− (qf − 1)(n− tb)− (qd − 1− tb)2,

= (n− tm)

(⌊
n+ tb

2

⌋
− tb

)
− tb(n− tb)−

(⌊
n+ tb

2

⌋
− tb

)2

. (16)

Like before, we observe that
(⌊

n+tb
2

⌋)
=
(
n+tb−ε

2

)
with ε = 0 if n+ tb = 2k is even, and ε = 1

if n+ tb = 2k + 1 is odd. We thus rewrite (16) as follows:

(n− tm)

(
n+ tb − ε

2
− tb

)
− tb(n− tb)−

(
n+ tb − ε

2
− tb

)2

,

= (n− tm) · n− tb − ε
2

− tb(n− tb)−
(
n− tb − ε

2

)2

,

=
n− tb − ε

2
· 2n− 2tm − n+ tb + ε

2
− tb(n− tb),

=
(n− tb − ε)(n− 2tm + tb + ε)− 4ntb + 4t2b

4
,

=
−t2b + 2tbtm − 2tbε+ 2tmε− 2tmn− ε2 + n2

4
.

As we want to show that the above quantity is non negative, the result will not change if we
multiply it by 4:

− t2b + 2tbtm − 2tbε+ 2tmε− ε2 − 2tmn+ n2.

We then solve the inequality to obtain: n ≥ max(tb+ε,−tb+2tm−ε), which is clearly satisfied as
n ≥ 3tb+2tm+2

√
tbtm+1. This proves all previous inequality and thus sf-k`-Assumption 4.

Lemma 15. Algorithm 1’s assumptions are well respected for obj R.
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Proof. Let us recall that qf = tb + 1 and qd = 2tb + tm + 1 for obj R. Let us observe that we have then
qd − qf − tb − tm = 0.

• Proof of satisfaction of sf-k`-Assumption 1 (c− tm ≥ obj R.qd ≥ obj R.qf + tb ≥ 2tb + 1):

From Observation 1, we have:

c− tm ≥ n− tb − tm ≥ 3tb + 2tm + 1− tb − tm ≥ 2tb + tm + 1, (as n > 3tb + 2tm)

c− tm ≥ 2tb + tm + 1 ≥ 2tb + 1 ≥ 2tb + 1,

c− tm ≥ obj R.qd ≥ obj R.qf + tb ≥ 2tb + 1. (sf-k`-Assumption 1)

• Proof of satisfaction of sf-k`-Assumption 2 (α2 − 4(obj R.qf − 1)(n− tb) ≥ 0):

Let us recall that, for object obj R, we have qf = tb + 1 and qd = 2tb + tm + 1. As sf-k`-
Assumption 2 depends on qd but not on qf , and since obj E.qf = obj R.qf , we refer the reader to
the proof we gave in Lemma 14 for obj E.

• Proof of satisfaction of sf-k`-Assumption 3 (α(obj R.qd −1)− (obj R.qf −1)(n− tb)− (obj R.qd −
1)2 > 0):

Let us consider the quantity on the left-hand side of sf-k`-Assumption 3:

α(qd − 1)− (qf − 1)(n− tb)− (qd − 1)2,

= (n+ qf − tb − tm − 1)(qd − 1)− (qf − 1)(n− tb)− (qd − 1)2,

= (n− tm)(2tb + tm)− tb(n− tb)− (2tb + tm)2,

= 2ntb + ntm − 2tbtm − t2m − ntb + t2b − 4t2b − t2m − 4tbtm,

= n(tb + tm)− 6tbtm − 2t2m − 3t2b ,

= n(tb + tm)− (6tbtm + 2t2m + 3t2b). (17)

Then, we observe that we can lower bound the quantity on the left side of (17) by substituting B87-

Assumption, i.e. n > 3tb + 2tm + 2
√
tbtm ≥ 2tb + tm +

√
t2b + 6tbtm + t2m. For convenience,

in the following we write ρ = t2b + 6tbtm + t2m, thus n > 2tb + tm +
√
ρ. We get:

n(tb + tm)− (3t2b + 6tbtm + 2t2m),

> (2tb + tm +
√
ρ)(tb + tm)− (3t2b + 6tbtm + 2t2m),

=
√
ρ(tb + tm)− t2m − t2b − 3tbtm.

We now want to show that the above quantity is positive or null, i.e.:
√
ρ(tb + tm)− t2m − t2b − 3tbtm ≥ 0. (18)

We now rewrite (18) as follows:
√
ρ(tb + tm) ≥ t2m + t2b + 2tbtm + tbtm,
√
ρ(tb + tm) ≥ (tm + tb)

2 + tbtm,

(t2b + 6tbtm + t2m)(tb + tm)2 ≥ ((tm + tb)
2 + tbtm)2, (as (tm + tb)

2 + tbtm ≥ 0)

((tb + tm)2 + 4tbtm)(tb + tm)2 ≥ ((tm + tb)
2 + tbtm)2,

(tb + tm)4 + 4tbtm(tb + tm)2 ≥ (tm + tb)
4 + (tbtm)2 + 2tbtm(tb + tm)2,

2tbtm(tb + tm)2 ≥ (tbtm)2,

2tbtm(t2b + t2m + 2tbtm) ≥ (tbtm)2,

2tbtm(t2b + t2m) + 4(tbtm)2 ≥ (tbtm)2,

2tbtm(t2b + t2m) + 3(tbtm)2 ≥ 0.
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This proves (18) and all previous inequalities and ultimately sf-k`-Assumption 3.

• Proof of satisfaction of sf-k`-Assumption 4 (α(obj R.qd − 1 − tb) − (obj R.qf − 1)(n − tb) −
(obj R.qd − 1− tb)2 ≥ 0):

Let us consider the quantity on the left-hand side of sf-k`-Assumption 4:

α(qd − 1− tb)− (qf − 1)(n− tb)− (qd − 1− tb)2, (19)

= (n+ qf − tb − tm − 1)(qd − 1− tb)− (qf − 1)(n− tb)− (qd − 1− tb)2,

= (n+−tm)(tb + tm)− tb(n− tb)− (tb + tm)2,

= (tb + tm)(n+−2tm − tb)− tb(n− tb),
= ntb + ntm − 2tbtm − 2t2m − t2b − tbtm − ntb + t2b ,

= ntm − 3tbtm − 2t2m,

= ntm − 3tbtm − 2t2m,

= tm(n− 3tb − 2tm). (20)

Like before, we observe that we can lower bound the quantity on the left side of (20) by substitut-
ing B87-Assumption, i.e. n > 3tb + 2tm + 2

√
tbtm ≥ 3tb + 2tm, so we have:

(20) : tm(n− 3tb − 2tm)

> tm(3tb + 2tm − 2tm − 3tb) = 0. (21)

which recursively proves that (19) is positive or zero and thus sf-k`-Assumption 4.

B.1.3 Correctness proof

This section proves the following theorem:

Theorem 3 (MBRB-CORRECTNESS). If B87-Assumption is verified, then Algorithm 2 implements
MBRB with the guarantee `MBRB =

⌈
c
(

1− tm
c−2tb−tm

)⌉
.

The proof follows from the next lemmas.

Lemma 16. c− tm ≥ obj E.k.

Proof. We want to show that:

c− tm ≥

⌊
ctb

c− tm − bn−tb2 c

⌋
+ 1 = obj E.k. (22)

As the left-hand side is also integer, we can rewrite (22) as follows:

c− tm >
ctb

c− tm − bn−tb2 c
, (23)

(c− tm)(c− tm − b
n− tb

2
c) > ctb. (as (c− tm − bn−tb2 c) > 0)

We now observe that
(⌊

n+tb
2

⌋)
=
(
n+tb−ε

2

)
with ε = 0 if n + tb = 2k is even, and ε = 1 if

n+ tb = 2k + 1 is odd, which leads us to:

(c− tm)(c− tm −
n− tb − ε

2
) > ctb,

(c− tm)(2c− 2tm − n+ tb + ε) > 2ctb,

(c− tm)(2c− 2tm − n+ tb + ε)− 2ctb > 0.
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Like for the proofs of Lemma 6 and Lemma 7, we leverage the fact that the executions that can
happen when c > n− tb can also happen when c = n− tb. We thus rewrite our inequality for c = n− tb:

(n− tb − tm)(n− tb − 2tm + ε)− 2(n− tb)tb > 0,

(n− tb)(n− tb − 2tm + ε− 2tb)− tm(n− tb − 2tm + ε) > 0,

(n− tb)2 + (n− tb)(−2tm + ε− 2tb)− tm(n− tb − 2tm + ε) > 0,

n2 + t2b − 2ntb − 2ntm + nε− 2ntb + 2tbtm − tbε+ 2t2b − ntm + tbtm + 2t2m − εtm > 0,

n2 + 3t2b − 4ntb − 3ntm + nε+ 3tbtm − tbε+ 2t2m − εtm > 0,

n2 − n(4tb + 3tm − ε) + 3t2b + 3tbtm + 2t2m − ε(tb + tm) > 0.

We now solve the second-degree inequality with respect to n. It is easy to see that the discriminant
is non negative for non negative values of tb and tm. So we obtain:

n > 2tb +
3tm
2
− ε

2
+

√
4t2b + 12tbtm − 4tbε+ t2m − 2tmε+ ε2

2
,

− 4tb − 3tm + ε+ 2n−
√

4t2b + 12tbtm − 4tbε+ t2m − 2tmε+ ε2 > 0,

which is implied by the following as n ≥ 3tb + 2tm + 2
√
tbtm + 1:

4
√
tbtm + 2tb + tm + 2 + ε−

√
4t2b + 12tbtm − 4tbε+ t2m − 2tmε+ ε2 > 0,

4
√
tbtm + 2tb + tm + 2 + ε >

√
4t2b + 12tbtm − 4tbε+ t2m − 2tmε+ ε2.

Taking the squares as both the argument of the square root and the left-hand side are non negative
leads to:(

4
√
tbtm + 2tb + tm + ε+ 2

)2
> 4t2b + 12tbtm − 4tbε+ t2m − 2tmε+ ε2,

16t
3
2
b

√
tm + 8

√
tbt

3
2
m + 8

√
tb
√
tmε+ 16

√
tb
√
tm + 4t2b + 20tbtm + 4tbε+ 8tb + t2m + 2tmε

+ 4tm + ε2 + 4ε+ 4 > 4t2b + 12tbtm − 4tbε+ t2m − 2tmε+ ε2,

which simplifies to:

16t
3
2
b

√
tm + 8

√
tbt

3
2
m + 8

√
tb
√
tmε+ 16

√
tb
√
tm + 8tbtm + 8tbε+ 8tb + 4tmε

+ 4tm + 4ε+ 4 > 0. (24)

We can then easily observe that the left-hand side of (24) is strictly positive, thereby proving all
previous inequalities and thus the lemma.

Lemma 17. obj E.` ≥ obj R.k.

Proof. We need to prove:

obj E.` =

⌈
c

(
1− tm

c− bn+tb
2 c

)⌉
≥
⌊

ctb
c− 2tm − tb

⌋
+ 1 = obj R.k. (25)

We observe that x ≥ bmc + 1 if and only if x > m, and that m ≥ bmc. Therefore (25) is implied
by the following:

c

(
1− tm

c− n+tb−ε
2

)
≥ ctb
c− tb − 2tm

,

c− 2tmc

2c− tb − n+ ε
>

ctb
c− tb − 2tm

.
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As both denominators are positive, we can solve:

− tb (−tb + 2c+ ε− n)− 2tm (−tb − 2tm + c) + (−tb − 2tm + c) (−tb + 2c+ ε− n) > 0,

− tb (−tb + 2c+ ε− n) + (−tb − 2tm + c) (−tb − 2tm + 2c+ ε− n) > 0,

− tb (−2tb + c+ ε) + (−tb − 2tm + c) (−2tb − 2tm + c+ ε) > 0, (as c ≥ n− tb)
− tb (−2tb + c+ ε) + (−tb − 2tm + c) (−2tb − 2tm + c+ ε) > 0,

− tb (−tb + 2c− n) + ε (−3tb − 2tm + c) + (−tb − 2tm + c)2 > 0,

t2b − 2tbc+ tbn+ ε (−3tb − 2tm + c) + (−tb − 2tm + c)2 > 0,

t2b − 2tbc+ tb
(
2
√
tb
√
tm + 3tb + 2tm + 1

)
+ ε (−3tb − 2tm + c) + (−tb − 2tm + c)2 > 0,

(as n ≥ 3tb + 2tm + 2
√
tbtm)

2t
3
2
b

√
tm + 4t2b + 2tbtm − 2tbc+ tb + ε (−3tb − 2tm + c) + (−tb − 2tm + c)2 > 0,

2t
3
2
b

√
tm + 5t2b + 6tbtm − 4tbc+ tb + 4t2m − 4tmc+ c2 + ε (−3tb − 2tm + c) > 0.

We now consider the two possible values of ε:

• ε = 0:

2t
3
2
b

√
tm + 5t2b + 6tbtm − 4tbc+ tb + 4t2m − 4tmc+ c2 > 0 (26)

We solve the inequality with respect to c to obtain (when the discriminant is positive):

c > 2tb + 2tm +

√
−2t

3
2
b

√
tm − t2b + 2tbtm − tb

which we prove by observing that c ≥ n− tb ≥ 2tb + 2tm + 2
√
tbtm + 1 and that:

2tb + 2tm + 2
√
tbtm + 1 > 2tb + 2tm +

√
−2t

3
2
b

√
tm − t2b + 2tbtm − tb,

as all terms except 2tbtm inside the square root are negative. When the discriminant is negative
(e.g. for tm = 0), inequality (26) is satisfied for all values of c.

• ε = 1:

In this case we obtain:

2t
3
2
b

√
tm + 5t2b + 6tbtm − 4tbc− 2tb + 4t2m − 4tmc− 2tm + c2 + c > 0,

which is implied by a negative discriminant or by:

c > 2tb + 2tm +

√
−2t

3
2
b

√
tm − t2b + 2tbtm + 1/4− 1

2
.

Like before we simply observe that:

2
√
tbtm ≥

√
2tbtm +

1

2
− 1

2
,

≥
√

2tbtm + 1/4− 1

2
,

≥
√
−2t

3
2
b

√
tm − t2b + 2tbtm + 1/4− 1

2
,

thereby proving the second case and the lemma.
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Lemma 18 (MBRB-VALIDITY). If a correct process pi mbrb-delivers an app-message m from a cor-
rect process pj with sequence number sn , then pj mbrb-broadcast m with sequence number sn .

Proof. If pi mbrb-delivers (m, sn, j) at line 1, then it k`-delivered (READY(m), (sn, j)) using obj R.
From k`-VALIDITY, and as obj R.k

′ = 1, we can assert that at least one correct process px k`-cast
(READY(m), (sn, j)) at line 3, after having k`-delivered (ECHO(m), (sn, j)) using obj E. Again, from
k`-VALIDITY, we can assert that at least obj E.k

′ = 1 correct process py k`-cast (ECHO(m), (sn, j))
at line 2, after having received an INIT(m, sn) imp-message from pj . And as pj is correct and
the network channels are authenticated, then pj has ur-broadcast INIT(m, sn) at line 1, during a
mbrb_broadcast(m, sn) invocation.

Lemma 19 (MBRB-NO-DUPLICATION). A correct process pi mbrb-delivers at most one app-message
from a process pj with sequence number sn .

Proof. By k`-NO-DUPLICATION, we know that a correct process pi can k`-deliver at most one
READY(−) with identity (sn, j). Therefore, pi can mbrb-deliver only one app-message from pj with
sequence number sn .

Lemma 20 (MBRB-NO-DUPLICITY). No two different correct processes mbrb-deliver different app-
messages from a process pi with the same sequence number sn .

Proof. We proceed by contradiction. Let us consider two correct processes pw and px that respectively
mbrb-deliver (m, sn, i) and (m′, sn, i) at line 4, such thatm 6= m′. It follows that pw and px respectively
k`-delivered (READY(m), (sn, i)) and (READY(m′), (sn, i)) using obj R.

From k`-VALIDITY, and as obj R.k
′ ≥ 1, we can assert that two correct processes py and pz re-

spectively k`-cast (READY(m), (sn, i)) and (READY(m′), (sn, i)) at line 3, after having respectively
k`-delivered (ECHO(m), (sn, i)) and (ECHO(m′), (sn, i)) using obj E. But as obj E.δ = true, then, by
k`-CONDITIONAL-NO-DUPLICITY, we know that m = m′. There is a contradiction.

Lemma 21 (MBRB-LOCAL-DELIVERY). If a correct process pi mbrb-broadcasts an app-message m
with sequence number sn , then at least one correct process pj eventually mbrb-delivers m from pi with
sequence number sn .

Proof. If pi mbrb-broadcasts (m, sn) at line 1, then it invokes ur-broadcasts INIT(m, sn). By the defi-
nition of the MA, the imp-message INIT(m, sn) is then received by at least c − tm correct processes at
line 2, which then k`-cast (ECHO(m), sn, i). As pi is correct and ur-broadcasts only one imp-message
INIT(−, sn), then no correct process k`-casts any different (ECHO(−), sn, i). Moreover, thanks to
Lemma 16, we know that:

c− tm ≥ obj E.k =

⌊
ctb

c− tm −
⌊
n−tb

2

⌋⌋+ 1.

Hence, from k`-LOCAL-DELIVERY and k`-STRONG-GLOBAL-DELIVERY, at least obj E.` =⌈
c

(
1− tm

c−bn+tb
2
c

)⌉
correct processes eventually k`-deliver (ECHO(m), (sn, i)) using obj E and then

k`-cast (READY(m), (sn, i)) using obj R at line 3. By k`-VALIDITY, and as obj R.k
′ ≥ 1, then no correct

process can k`-cast a different (READY(−), (sn, i)), because otherwise it would mean that at least one
correct process would have k`-cast a different (ECHO(−), (sn, i)), which is impossible (see before).
Moreover, thanks to Lemma 17, we know that:⌈

c

(
1− tm

c− bn+tb
2 c

)⌉
= obj E.` ≥ obj R.k =

⌊
ctb

c− 2tm − tb

⌋
+ 1.

Therefore, k`-LOCAL-DELIVERY applies and we know that at least one correct processes eventually
k`-delivers (READY(m), (sn, i)) using obj R and then mbrb-delivers (m, sn, i) at line 4.
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Lemma 22 (MBRB-GLOBAL-DELIVERY). If a correct process pi mbrb-delivers
an app-message m from a process pj with sequence number sn , then at least

`MBRB =
⌈
c
(

1− tm
c−2tb−tm

)⌉
correct processes mbrb-deliver m from pj with sequence num-

ber sn .

Proof. If pi mbrb-delivers (m, sn, j) at line 4, then it has k`-delivered (READY(m), (sn, j)) us-
ing obj R. From k`-VALIDITY, we know that at least obj R.k

′ ≥ 1 correct process k`-cast
(READY(m), (sn, j)) using obj R at line 3 and thus k`-delivered (ECHO(m), (sn, j)) using obj E. From
k`-CONDITIONAL-NO-DUPLICITY, and as obj E.δ = true, we can state that no correct process k`-
delivers any (ECHO(m′), (sn, j)) where m′ 6= m using obj E, so no correct process k`-casts any
(READY(m′), (sn, j)) where m′ 6= m using obj R at line 3. It means that k`-STRONG-GLOBAL-
DELIVERY applies, and we can assert that at least obj R.` =

⌈
c
(

1− tm
c−2tb−tm

)⌉
= `MBRB correct

processes eventually k`-deliver (READY(m), (sn, j)) using obj R and thus mbrb-deliver (m, sn, j) at
line 4.

B.2 Proof of MBRB with Imbs and Raynal’s revisited algorithm

B.2.1 Instantiating the parameters of the k`-cast object

In Algorithm 3 (page 12), we instantiate the k`-cast object obj W using the signature-free implementation
presented in Section 3.2 with parameters qd =

⌊
n+3tb

2

⌋
+3tm+1, qf =

⌊
n+tb

2

⌋
+1, and single = false.

Based on Theorem 1 (page 7), these parameters lead to the following values for k′, k, ` and δ.

• obj W.k
′ = obj W.qf − n+ c =

⌊
n+ tb

2

⌋
+ 1− n+ c

≥
⌊
n+ tb

2

⌋
+ 1− n+ n− tb =

⌊
n− tb

2

⌋
+ 1,

• obj W.k =

⌊
c(obj W.qf − 1)

c− tm − obj W.qd + obj W.qf

⌋
+ 1

=

⌊
c(
⌊
n+tb

2

⌋
+ 1− 1)

c− tm − (
⌊
n+3tb

2

⌋
+ 3tm + 1) +

⌊
n+tb

2

⌋
+ 1

⌋
+ 1

=

⌊
c
⌊
n+tb

2

⌋
c− tb − 4tm

⌋
+ 1,

• obj W.` =

⌈
c

(
1− tm

c− obj E.qd + 1

)⌉
=

⌈
c

(
1− tm

c− (
⌊
n+3tb

2

⌋
+ 3tm + 1) + 1

)⌉

=

⌈
c

(
1− tm

c−
⌊
n+3tb

2

⌋
− 3tm

)⌉
,

• obj W.δ =

((
obj W.qf >

n+ tb
2

)
∨
(
obj W.single ∧ obj W.qd >

n+ tb
2

))
=

((⌊
n+ tb

2

⌋
+ 1 >

n+ tb
2

)
∨
(
false ∧

⌊
n+ 3tb

2

⌋
+ 3tm + 1 >

n+ tb
2

))
= (true ∨ (false ∧ true)) = true.

Finally, we observe that for Algorithm 3, sf-k`-Assumption 1 through 4 are all satisfied by IR16-
Assumption (n > 5tb + 12tm + 2tbtm

tb+2tm
), as we prove in Appendix B.2.2.
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B.2.2 Proof of satisfaction of the assumptions of Algorithm 1

This section proves that all the assumptions of the signature-free k`-cast implementation presented in
Algorithm 1 (page 6) are well respected for the k`-cast instance used in Algorithm 3 (obj W).

Lemma 23. Algorithm 1’s sf-k`-Assumptions are well respected for obj W.

Proof. Let us recall that qf =
⌊
n+tb

2

⌋
+ 1 and qd =

⌊
n+3tb

2

⌋
+ 3tm + 1 for object obj W.

• Proof of satisfaction of sf-k`-Assumption 1 (c− tm ≥ obj W.qd ≥ obj W.qf + tb ≥ 2tb + 1):

From IR16-Assumption (n > 5tb + 12tm + 2tbtm
tb+2tm

), we get that n > 5tb + 8tm, which yields:

c− tm ≥ n− tb − tm =
2n− 2tb − 2tm

2
, (by definition of c)

>
n+ 5tb + 8tm − 2tb − 2tm

2
=
n+ 3tb

2
, (as n > 5tb + 8tm)

≥
⌊
n+ 3tb + 6tm

2

⌋
+ 1 =

⌊
n+ 3tb

2

⌋
+ 3tm + 1. (27)

We also have:⌊
n+ 3tb

2

⌋
+ 1 >

⌊
5tb + 8tm + 3tb

2

⌋
+ 1 = 4tb + 4tm + 1, (as n > 5tb + 8tm)

≥ 2tb + 1. (28)

By combining (27) and (28), we obtain:

c− tm ≥
⌊
n+ 3tb

2

⌋
+ 3tm + 1 ≥

⌊
n+ 3tb

2

⌋
+ 1 ≥ 2tb + 1,

c− tm ≥ obj W.qd ≥ obj W.qf + tb ≥ 2tb + 1.

• Proof of satisfaction of sf-k`-Assumption 2 (α2 − 4(obj W.qf − 1)(n− tb) ≥ 0):

Let us recall that for object obj W we have qf =
⌊
n+tb

2

⌋
+ 1 and qd =

⌊
n+3tb

2

⌋
+ 3tm + 1. We

therefore have α =
⌊

3n−tb
2

⌋
− tm. Let us now consider the following quantity:

∆ = α2 − 4(qf − 1)(n− tb),

=

(⌊
3n− tb

2

⌋
− tm

)2

− 4

⌊
n+ tb

2

⌋
(n− tb). (29)

We now observe that
(⌊

m
2

⌋)
=
(
m−ε

2

)
with ε = 0 if m = 2k is even, and ε = 1 if m = 2k + 1 is
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odd. We thus rewrite (29) as follows:(
3n− tb − ε

2
− tm

)2

− 4
n+ tb − ε

2
(n− tb),

=

(
3n− tb − ε− 2tm

2

)2

− 4
n+ tb − ε

2
(n− tb),

=
t2b + 4tbtm + 2tbε− 6tbn+ 4t2m + 4tmε− 12tmn+ ε2 − 6εn+ 9n2

4

+
8t2b − 8tbε+ 8εn− 8n2

4
,

=
9t2b + 4tbtm − 6tbε− 6tbn+ 4t2m + 4tmε− 12tmn+ ε2 + 2εn+ n2

4
,

=
9t2b − 6tbn+ n2 + 4tbtm − 12tmn+ 4t2m + 4tmε− 6tbε+ ε2 + 2εn

4
,

=
(n− 3tb)

2 + 4tm(tb − 3n+ tm) + ε(4tm − 6tb + ε+ 2n)

4
.

We now multiply by 4 and solve the inequality:

n2 − 6n(tb + 2tm) + 9t2b + 4tbtm + 4t2m + ε (−6tb + 4tm + ε+ 2n) ≥ 0,

n ≥ 3tb + 4
√
tm
√

2tb + 2tm − ε+ 6tm − ε. (30)

By IR16-Assumption we have n > 5tb + 12tm + 2tbtm
tb+2tm

. To prove (30), we therefore show that
5tb + 12tm + 2tbtm

tb+2tm
≥ 3tb + 4

√
tm
√

2tb + 2tm + 6tm:

5tb + 12tm +
2tbtm
tb + 2tm

≥ 3tb + 4
√
tm
√

2tb + 2tm + 6tm

⇐⇒ 2tb + 6tm +
2tbtm
tb + 2tm

≥ 4
√
tm
√

2tb + 2tm

⇐⇒
(

2tb + 6tm +
2tbtm
tb + 2tm

)2

≥ 16tm(2tb + 2tm) ⇐⇒

⇐⇒ − 16tm (tb + 2tm) (2tb + 2tm) + (2tbtm + 2tb (tb + 2tm) + 6tm (tb + 2tm))2 ≥ 0

⇐⇒ 4t4b + 48t3btm + 192t2bt
2
m − 32t2btm + 288tbt

3
m − 96tbt

2
m + 144t4m − 64t3m ≥ 0. (31)

We observe that (31) holds as 144t4m ≥ 64t3m, 288tbt
3
m ≥ 96tbt

2
m, and 192t2bt

2
m ≥ 32t2btm,

therefore proving sf-k`-Assumption 2.

• Proof of satisfaction of sf-k`-Assumption 3 (α(obj W.qd−1)−(obj W.qf −1)(n−tb)−(obj W.qd−
1)2 > 0):

Let us consider the quantity on the left-hand side of sf-k`-Assumption 3 and substitute qf =⌊
n+tb

2

⌋
+ 1, qd =

⌊
n+3tb

2

⌋
+ 3tm + 1, and α =

⌊
3n−tb

2

⌋
− tm:

α(qd − 1)− (qf − 1)(n− tb)− (qd − 1)2,

=

(⌊
3n− tb

2

⌋
− tm

)(⌊
n+ 3tb

2

⌋
+ 3tm

)
−
(⌊

n+ tb
2

⌋)
(n− tb)

−
(⌊

n+ 3tb
2

⌋
+ 3tm

)2

.
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We now observe that
(⌊

m
2

⌋)
=
(
m−ε

2

)
with ε = 0 if m = 2k is even, and ε = 1 if m = 2k + 1 is

odd, and rewrite the expression accordingly:

3n− tb − 2tm − ε
2

· n+ 3tb + 6tm − ε
2

− (n+ tb − ε)(n− tb)
2

−
(
n+ 3tb + 6tm − ε

2

)2

,

=
(n+ 3tb + 6tm − ε)(3n− tb − 2tm − ε− n− 3tb − 6tm + ε)

4
− (n+ tb − ε)(n− tb)

2
,

=
(n+ 3tb + 6tm − ε)(2n− 4tb − 8tm)

4
− (n+ tb − ε)(n− tb)

2
,

=
−12t2b − 48tbtm + 4tbε+ 2tbn− 48t2m + 8tmε+ 4tmn− 2εn+ 2n2 + 2t2b − 2tbε+ 2εn− 2n2

4
,

=
−10t2b − 48tbtm + 2tbε+ 2tbn− 48t2m + 8tmε+ 4tmn

4
.

As the coefficients of n are all positive, we can lower-bound the quantity using n > 5tb + 12tm +
2tbtm
tb+2tm

:

−10t2b − 48tbtm − 48t2m + 2n(tb + 2tm) + 2ε(tb + 8tm)

4
,

=
−10t2b − 48tbtm − 48t2m + 2(5tb + 12tm + 2tbtm

tb+2tm
)(tb + 2tm) + 2ε(tb + 8tm)

4
,

=
−10t2b − 48tbtm − 48t2m + 10t2b + 44tbtm + 48t2m + 4tbtm + 2ε(tb + 8tm)

4
,

=
ε(tb + 8tm)

2
≥ 0,

which proves all previous inequalities and thus sf-k`-Assumption 3.

• Proof of satisfaction of sf-k`-Assumption 4 (α(obj W.qd − 1 − tb) − (obj W.qf − 1)(n − tb) −
(obj W.qd − 1− tb)2 ≥ 0):

Let us consider the quantity on the left-hand side of sf-k`-Assumption 4 and substitute qf =⌊
n+tb

2

⌋
+ 1, qd =

⌊
n+3tb

2

⌋
+ 3tm + 1, and α =

⌊
3n−tb

2

⌋
− tm:

α(qd − 1− tb)− (qf − 1)(n− tb)− (qd − 1− tb)2,

=

(⌊
3n− tb

2

⌋
− tm

)(⌊
n+ 3tb

2

⌋
+ 3tm − tb

)
−
(⌊

n+ tb
2

⌋)
(n− tb)

−
(⌊

n+ 3tb
2

⌋
+ 3tm − tb

)2

.

We now observe that
(⌊

m
2

⌋)
=
(
m−ε

2

)
with ε = 0 if m = 2k is even, and ε = 1 if m = 2k + 1 is
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odd, and rewrite the expression accordingly:

=

(
3n− tb − ε

2
− tm

)(
n+ 3tb − ε

2
+ 3tm − tb

)
−
(
n+ tb − ε

2

)
(n− tb)

−
(
n+ 3tb − ε

2
+ 3tm − tb

)2

,

=

(
3n− tb − 2tm − ε

2

)(
n+ tb + 6tm − ε

2

)
−
(
n+ tb − ε

2

)
(n− tb)

−
(
n+ tb + 6tm − ε

2

)2

,

=
(n+ tb + 6tm − ε)(3n− tb − 2tm − ε− n− tb − 6tm + ε)

4
−
(

(n+ tb − ε)(n− tb)
2

)
,

=
(n+ tb + 6tm − ε)(2n− 2tb − 8tm)

4
−
(

(n+ tb − ε)(n− tb)
2

)
,

=
(n+ tb + 6tm − ε)(n− tb − 4tm)− (n+ tb − ε)(n− tb)

2
,

=
−10tbtm − 24t2m + 4tmε+ 2tmn

2
.

As the coefficients of n are all positive, we can lower bound using n > 5tb + 12tm + 2tbtm
tb+2tm

>
5tb + 12tm to obtain:

=
−10tbtm − 24t2m + 4tmε+ 2tm(5tb + 12tm)

2
,

=
−10tbtm − 24t2m + 4tmε+ 10tbtm + 24t2m)

2
,

= 2tmε ≥ 0,

which proves sf-k`-Assumption 4.

B.2.3 Correctness proof

This section proves the following theorem:

Theorem 4 (MBRB-CORRECTNESS). If IR16-Assumption is verified, then Algorithm 3 implements

MBRB with the guarantee `MBRB =

⌈
c

(
1− tm

c−
⌊
n+3tb

2

⌋
−3tm

)⌉
.

The proof follows from the next lemmas.

Lemma 24. c− tm ≥ obj W.k.

Proof. This proof is presented in reverse order: we start from the result we want to prove, and we finish
with a proposition we know to be true. In this manner, given two consecutive propositions, we only need
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that the latter implies the former, and not necessarily the converse. We want to show that:

c− tm ≥

⌊
c
⌊
n+tb

2

⌋
c− tb − 4tm

⌋
+ 1 = obj W.k,

c− tm >
cbn+tb

2 c
c− tb − 4tm

, (as x ≥ byc+ 1 ⇐⇒ x > y)

c− tm >
cn+tb

2

c− tb − 4tm
,

c− tm >
c(n+ tb)

2(c− tb − 4tm)
,

c− tm >
c(n+ tb)

2c− 2tb − 8tm
,

(c− tm)(2c− 2tb − 8tm) > c(n+ tb), (as 2c− 2tb − 8tm > 0 by IR16-Assumption)

(c− tm)(2c− 2tb − 8tm) > c(c− 2tb) ≥ c(n+ tb), (as n ≤ c+ tb)

(c− tm)(2c− 2tb − 8tm)− c(c− 2tb) > 0,

c2 + 2tbtm − 4tbc+ 8t2m − 10tmc > 0,

2tbtm + 8t2m + c2 + c (−4tb − 10tm) > 0.

The left-hand side of the above inequality is a second-degree polynomial, whose roots we can solve:[
2tb + 5tm −

√
4t2b + 18tbtm + 17t2m, 2tb + 5tm +

√
4t2b + 18tbtm + 17t2m

]
.

We now need to show that:

c > 2tb + 5tm +
√

4t2b + 18tbtm + 17t2m.

By IR16-Assumption, we know that:

n ≥ 5tb + 12tm +
2tbtm
tb + 2tm

+ 1,

and thus that:

n ≥ 5tb + 12tm + 1,

c ≥ 4tb + 12tm + 1.

So we want to show that:

4tb + 12tm + 1 > 2tb + 5tm +
√

4t2b + 18tbtm + 17t2m,

2tb + 7tm + 1 >
√

4t2b + 18tbtm + 17t2m.

It is easy to see that the right-hand side of the above inequality is non negative, so we get:

(2tb + 7tm + 1)2 > 4t2b + 18tbtm + 17t2m,

4t2b + 28tbtm + 4tb + 49t2m + 14tm + 1 > 4t2b + 18tbtm + 17t2m,

10tbtm + 4tb + 32t2m + 14tm + 1 > 0.

This concludes the proof.
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Lemma 25 (MBRB-VALIDITY). If a correct process pi mbrb-delivers an app-message m from a cor-
rect process pj with sequence number sn , then pj mbrb-broadcast m with sequence number sn .

Proof. If pi mbrb-delivers (m, sn, j) at line 1, then it k`-delivered (WITNESS(m), (sn, j)) using obj W.
From k`-VALIDITY, and as obj R.k

′ ≥ 1, we can assert that at least one correct process p′i k`-cast
(WITNESS(m), (sn, j)) at line 2, after having received an INIT(m, sn) imp-message from pj . And as
pj is correct and the network channels are authenticated, then pj has ur-broadcast INIT(m, sn) at line 1,
during a mbrb_broadcast(m, sn) invocation.

Lemma 26 (MBRB-NO-DUPLICATION). A correct process pi mbrb-delivers at most one app-message
from a process pj with sequence number sn .

Proof. By k`-NO-DUPLICATION, we know that a correct process pi can k`-deliver at most one
READY(−) with identity (sn, j). Therefore, pi can mbrb-deliver only one app-message from pj with
sequence number sn .

Lemma 27 (MBRB-NO-DUPLICITY). No two different correct processes mbrb-deliver different app-
messages from a process pi with the same sequence number sn .

Proof. As obj W.δ = true, then, by k`-CONDITIONAL-NO-DUPLICITY, we know that no two correct
processes can k`-deliver two different app-messages with the same identity using obj W at line 3. Hence,
no two correct processes mbrb-deliver different app-messages for a given sequence number sn and
sender pi.

Lemma 28 (MBRB-LOCAL-DELIVERY). If a correct process pi mbrb-broadcasts an app-message m
with sequence number sn , then at least one correct process pj eventually mbrb-delivers m from pi with
sequence number sn .

Proof. If pi mbrb-broadcasts (m, sn) at line 1, then it invokes ur-broadcasts INIT(m, sn). By the defi-
nition of the MA, the imp-message INIT(m, sn) is then received by at least c − tm correct processes at
line 2, which then k`-cast (WITNESS(m), sn, i). But thanks to Lemma 24, we know that:

c− tm ≥ obj W.k =

⌊
c
⌊
n+tb

2

⌋
c− tb − 4tm

⌋
+ 1.

As pi is correct and ur-broadcasts only one imp-message INIT(−, sn), then no correct process k`-
casts any different (WITNESS(−), sn, i), k`-LOCAL-DELIVERY applies and at least one correct pro-
cesses eventually k`-delivers (WITNESS(m), (sn, i)) using obj W and thus mbrb-delivers (m, sn, i) at
line 3.

Lemma 29 (MBRB-GLOBAL-DELIVERY). If a correct process pi mbrb-delivers
an app-message m from a process pj with sequence number sn , then at least

`MBRB =

⌈
c

(
1− tm

c−
⌊
n+3tb

2

⌋
−3tm

)⌉
correct processes mbrb-deliver m from pj with sequence

number sn .

Proof. If pi mbrb-delivers (m, sn, j) at line 3, then it has k`-delivered (WITNESS(m), (sn, j)) using
obj W. As obj W.δ = true, we can assert from k`-WEAK-GLOBAL-DELIVERY and k`-CONDITIONAL-
NO-DUPLICITY that at least obj W.` =

⌈
c
(

1− tm
c−qd+1

)⌉
correct processes eventually k`-deliver

(WITNESS(m), (sn, j)) using obj W and thus mbrb-deliver (m, sn, j) at line 3. By substituting the values

of qf and qd , we obtain obj W.` =

⌈
c

(
1− tm

c−
⌊
n+3tb

2

⌋
−3tm

)⌉
= `MBRB thus proving the lemma.
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C Proof of the Signature-Based k`-cast Implementation

For the proofs provided in this section, let us remind that, given two sets A and B, we have |A ∩ B| =
|A| + |B| − |A ∪ B|. Moreover, the number of correct processes c is superior or equal to n − tb.
Additionally, if A and B are both sets containing a majority of correct processes, we have |A ∪B| ≤ c,
which implies that |A∩B| ≥ |A|+ |B|−c. Furthermore, let us remind the assumptions of Algorithm 4:

• sb-k`-Assumption 1: c > 2tm,

• sb-k`-Assumption 2: c− tm ≥ qd ≥ tb + 1.

C.1 Safety Proof

Lemma 30. If a correct process pi k`-delivers (m, id), then at least qd − n+ c correct processes have
signed (m, id) at line 3.

Proof. If pi k`-delivers (m, id) at line 16, then it sent qd valid signatures for (m, id) (because of the
predicate at line 15). The effective number of Byzantine processes in the system is n − c, such that
0 ≤ n − c ≤ tb. Therefore, pi must have sent at least qd − n + c (which, due to sb-k`-Assumption 2,
is strictly positive because qd > tb ≥ n − c) valid distinct signatures for (m, id) that correct processes
made at line 3, during a k`_cast(m, id) invocation.

Lemma 31 (k`-VALIDITY). If a correct process pi k`-delivers an app-message m with identity id , then
at least k′ = qd − n+ c correct processes k`-cast m with identity id .

Proof. The condition at line 2 implies that the correct processes that k`-cast (m, id) constitute a superset
of those that signed (m, id) at line 3. Thus, by Lemma 30, their number is at least k′ = qd − n+ c.

Lemma 32 (k`-NO-DUPLICATION). A correct process k`-delivers at most one app-message m with
identity id .

Proof. This property derives trivially from the predicate at line 15.

Lemma 33 (k`-CONDITIONAL-NO-DUPLICITY). If the Boolean δ = qd >
n+tb

2 is true, then no two
different correct processes k`-deliver different app-messages with the same identity id .

Proof. Let pi and pj be two correct processes that respectively k`-deliver (m, id) and (m′, id). We want
to prove that, if the predicate (qd >

n+tb
2 ) is satisfied, then m = m′.

Thanks to the predicate at line 15, we can assert that pi and pj must have respectively sent at least qd
valid signatures for (m, id) and (m′, id), made by two sets of processes, that we respectively denote A
and B, such that |A| ≥ qd >

n+tb
2 and |B| ≥ qd >

n+tb
2 . We have |A ∩ B| > 2n+tb

2 − n = tb. Hence,
at least one correct process px has signed both (m, id) and (m′, id). But because of the predicates at
lines 2, px signed at most one couple (−, id) during a k`_cast(m, id) invocation at line 3. We conclude
that m is necessarily equal to m′.

C.2 Liveness Proof

Lemma 34. All signatures made by correct processes at line 3 are eventually received by at least c− tm
correct processes at line 8.

Proof. Let {s1, s2, ...} be the set of all signatures for (m, id) made by correct processes at line 3. We first
show by induction that, for all z, at least c − tm correct processes receive all signatures {s1, s2, ..., sz}
at line 8.

Base case z = 0. As no correct process signed (m, id), the proposition is trivially satisfied.
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Induction. We suppose that the proposition is verified at z: signatures s1, s2, ..., sz are received by a
set of at least c − tm correct processes that we denote A. We now show that the proposition is verified
at z + 1: at least c− tm correct processes eventually receive all signatures s1, s2, ..., sz+1.

The correct process that makes the signature sz+1 ur-broadcasts a BUNDLE(m, id , sigs) imp-
message (at line 5) where sigs contains sz+1. From the definition of the MA, BUNDLE(m, id , sigs)
is eventually received by a set of at least c − tm correct processes that we denote B. We have
|A ∩ B| = 2(c − tm) − c = c − 2tm > 2tm − 2tm = 0 (from sb-k`-Assumption 1). Hence,
at least one correct process pj eventually receives all signatures s1, s2, ..., sz+1, and thereafter ur-
broadcasts BUNDLE(m, id , sigs ′) where {s1, s2, ..., sz+1} ⊆ sigs ′. Again, from the definition of the
MA, BUNDLE(m, id , sigs ′) is eventually received by a set of at least c − tm correct processes at
line 8.

Lemma 35. If no correct process k`-casts (m, id) at line 1, then no correct process k`-delivers (m, id)
at line 16.

Proof. Looking for a contradiction, let us suppose that a correct process pi k`-delivers (m, id) while no
correct process k`-cast (m, id). Because of the condition at line 15, pi must have ur-broadcast at least
qd valid signatures for (m, id), out of which at most tb are made by Byzantine processes. As qd > tb
(sb-k`-Assumption 2), we know that qd − tb > 0. Hence, at least one correct process must have k`-cast
(m, id). Contradiction.

Lemma 36 (k`-LOCAL-DELIVERY). If at least k = qd correct processes k`-cast an app-message m
with identity id and no correct process k`-casts an app-message m′ 6= m with identity id , then at least
one correct process pi k`-delivers the app-message m with identity id .

Proof. As no correct process k`-casts an app-message m′ 6= m with identity id , then Lemma 35 holds,
and no correct process can k`-deliver (m′, id) where m′ 6= m. Moreover, no correct process can sign
(m′, id) where m′ 6= m at line 3, and thus all k = qd correct processes that invoke k`_cast(m, id) at
line 1 also pass the condition at line 2, and then sign (m, id) at line 3. From Lemma 34, we can assert
that all qd signatures are received at line 8 by a set of at least c − tm correct processes, that we denote
A. Let us consider pj , one of the processes of A. There are two cases:

• If pj passes the condition at line 9, then it sends all qd signatures at line 11, then invokes
check_delivery() at line 12, passes the condition at line 15 (if it was not already done before)
and k`-delivers (m, id) at line 16;

• If pj does not pass the condition at line 9, then it means that it has already sent all qd signatures
before, whether it be at line 5 or 11, but after that, it necessarily invoked check_delivery() (at
line 6 or 12, respectively), passed the condition at line 15 (if it was not already done before) and
k`-delivered (m, id) at line 16.

Lemma 37 (k`-WEAK-GLOBAL-DELIVERY). If a correct process k`-delivers an app-message m with
identity id , then at least ` = c − tm correct processes k`-deliver an app-message m′ with identity id
(each of them possibly different from m).

Proof. If pi k`-delivers (m, id) at line 16, then it has necessarily ur-broadcast the BUNDLE(m, id , sigs)
imp-message containing the qd valid signatures before, whether it be at line 5 or 11. From the defini-
tion of the MA, a set of at least c − tm correct processes, that we denote A, eventually receives this
BUNDLE(m, id , sigs) imp-message at line 8. If some processes of A do not pass the condition at line 9
upon receiving this BUNDLE(m, id , sigs) imp-message, it means that they already ur-broadcast all sig-
natures of sigs . Thus, in every scenario, all processes of A eventually ur-broadcast all signatures of sigs
at line 5 or 11. After that, all processes of A necessarily invoke the check_delivery() operation at line 6
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or 12, respectively, and then evaluate the condition at line 15. Hence, all correct processes of A, which
are at least c − tm = `, k`-deliver some app-message for identity id at line 16, whether it be m or any
other app-message.

Lemma 38 (k`-STRONG-GLOBAL-DELIVERY). If a correct process k`-delivers an app-message m
with identity id , and no correct process k`-casts an app-message m′ 6= m with identity id , then at least
` = c− tm correct processes k`-deliver m with identity id .

Proof. If a correct process k`-delivers (m, id) at line 16, then by Lemma 37, we can assert that at least
` = c−tm correct process eventually k`-deliver some app-message (not necessarilym) with identity id .
Moreover, as no correct process k`-casts (m′, id) withm′ 6= m, then Lemma 35 holds, and we conclude
that all ` correct processes k`-deliver (m, id).

D Necessary and Sufficient Condition for MBR-Broadcast

This section shows that n > 3tb+2tm is necessary and sufficient to build BRB algorithm in the presence
of an MA (i.e. MBRB). Intuitively, the constraint n ≥ 3tb comes from the Byzantine processes while the
constraint n ≥ 2tm comes from the MA (this constraint prevents the MA from partitioning the system).
Their “addition” n > 3tb + 2tm comes from the fact Byzantine failures and MA are not reducible to
each other.

Definition. An algorithm implementing a broadcast communication abstraction is event-driven if, as
far as the correct processes are concerned, only (i) the invocation of the broadcast operation that is
built or (ii) the reception of an imp-message–sent by a correct or a Byzantine process– can generate the
sending of imp-messages (realized with the underlying unreliable ur_broadcast operation).

Theorem 5 (MBRB-Necessary-condition). When n ≤ 3tb + 2tm, there is no event-driven algorithm
implementing the MBR-broadcast communication abstraction on top of an n-process asynchronous sys-
tem in which up to tb processes may be Byzantine and where an MA may suppress up to tm copies of
each imp-message ur-broadcast by a process.

Proof. Without loss of generality, the proof considers the case n = 3tb + 2tm. Let us partition the n
processes into five setsQ1, Q2, Q3,D1, andD2, such that |D1| = |D2| = tm and |Q1| = |Q2| = |Q3| =
t.11 So, when considering the sets Q1, Q2, and Q3, there are executions in which all the processes of
either Q1 or Q2 or Q3 can be Byzantine, while the processes of the two other sets are not.

The proof is by contradiction. So, assuming that there is an event-driven algorithm A that builds
the MBR-broadcast abstraction for n = 3tb + 2tm, let us consider an execution E of A in which the
processes of Q1, Q2, D1, and Q2 are not Byzantine while all the processes of Q3 are Byzantine.

Let us observe that the MA can isolate up to tm processes by preventing them from receiving any
imp-message. Without loss of generality, let us assume that the adversary isolates a set of tm correct
processes not containing the sender of the app-message. As A is event-driven, these tm isolated pro-
cesses do not send imp-messages during the executionE ofA. As a result, no correct process can expect
imp-messages from more than (n− tb − tm) different processes without risking being blocked forever.
Thanks to the assumption n = 3tb+2tm, this translates as “no correct process can expect imp-messages
from more than (2tb + tm) different processes without risking to be blocked forever”.

In the execution E, the (Byzantine) processes of Q3 simulate the mbrb-broadcast of an app-message
such that this app-message appears as being mbrb-broadcast by one of them and is mbrb-delivered as
the app-message m to the processes of Q1 (hence the processes of Q3 appear, to the processes of Q1,
as if they were correct) and as the app-message m′ 6= m to the processes of Q2 (hence, similarly to

11For the case n < 3tb + 2tm, the partition is such that max(|Q1|, |D2|) ≤ tm and max(|Q1|, |Q2|, |Q3|) ≤ tb.
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the previous case, the processes of Q3 appear to the processes of Q2 as if they were correct). Let us
call m-messages (resp., m′-messages) the imp-messages generated by the event-driven algorithm A that
entails the mbrb-delivery of m (resp., m′). Moreover, the execution E is such that:

• concerning the m-messages: the MA suppresses all the m-messages sent to the processes of D2,
and asynchrony delays the reception of all the m-messages sent to Q2 until some time τ defined
below12. So, as |Q1 ∪D1 ∪Q3| = n− tb− tm = 2tb + tm, Algorithm A will cause the processes
of Q1 and D1 to mbrb-deliver m13.

• concerning the m′-messages: the MA suppresses all the m′-messages sent to the processes of
D1, and the asynchrony delays the reception of all the m′-messages sent to Q1 until time τ . As
previously, as |Q2 ∪D2 ∪Q3| = n− tb − tm = 2tb + tm, Algorithm A will cause the processes
of Q2 and D2 to mbrb-deliver m′.

• Finally, the time τ occurs after the mbrb-delivery of m by the processes of D1 and Q1, and after
the mbrb-delivery of m′ by the processes of D2 and Q2.

It follows that different non-Byzantine processes mbrb-deliver different app-messages for the same
mbrb-broadcast (or a fraudulent simulation of it) issued by a Byzantine process (with possibly the help
of other Byzantine processes). This contradicts the MBRB-No-Duplicity property, which concludes the
proof of the theorem.

Theorem 6 (MBRB-Failure-Tolerance-Optimality). The condition n > 3tb + 2tm is both necessary
and sufficient to build an event-driven MBRB algorithm in an n-process asynchronous message-passing
system in which up to tb process are Byzantine and the network is controlled by a tm-MA.

Proof. Theorem 5 has shown the the condition n > 3tb + 2tm is necessary. The sufficiency comes from
the existence of the algorithm presented in [3] which, assuming n > 3tb + 2tm, builds (with the help of
signatures) the MBRB abstraction despite asynchrony, MA, and Byzantine processes.

E Numerical Evaluation

This section presents additional numerical results that complement those of Section 5.3, and provides
concrete lower-bound values for the k and ` parameters of the k`-cast objects used in the revisited
Bracha MBRB algorithm (Algorithm 2, page 12). Results were obtained by considering a network with
n = 100 processes and varying values of tb and tm. Fig. 4 and Fig. 5 present the values of k and ` for
the obj E and obj R of Algorithm 2.

The numbers in each cell show the value of k (Figs. 4a and 5a), resp. ` (Figs. 4b and 5b), that is
required, resp. guaranteed, by the corresponding k`-cast object. The two plots show the two different
roles of the two k`-cast objects. The first, obj E, needs to provide agreement among the possibly different
messages sent by Byzantine processes (Fig. 4). As a result, it can operate in a more limited region of the
parameter space. obj R on the other hand, would in principle be able to support larger values of tm and
tb, but it needs to operate in conjunction with obj E (Fig. 5).

Figure 3b on page 14 already displays the values of ` provided by obj W in the IR algorithm. Figure 6
complements it by showing the required values of k for obj W. The extra constraint introduced by chain-
ing the two objects suggests that a single k`-cast algorithm could achieve better performance. But this is
not the case if we examine the performance of the revisited Imbs-Raynal algorithm depicted in Fig. 3b.

12In an equivalent way, we could also say that asynchrony delays the reception of all the m-messages sent to D2 ∪ Q2

until time τ . The important point is here that, due to the assumed existence of Algorithm A, the processes of Q1 and D1

mbrb-deliver m with m-messages from at most 2tb + tm different processes.
13Let us notice that this is independent of the fact that the processes in Q3 are Byzantine or not.
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The reason lies in the need for higher quorum values in obj W due to the fact the single = false. In
the future, we plan to investigate if variants of this algorithm can achieve tighter bounds and explore the
limits of signature-free k`-cast-based broadcast in the presence of an MA and Byzantine processes.

0 3 6 9 12 15
tm

30
27

24
21

18
15

12
9

6
3

0
t b

61

55 65

49 58

43 50 61

37 43 51

31 35 42 53

25 28 34 41

19 21 25 30 39

13 14 17 20 25

7 7 8 10 12 16

1 1 1 1 1 1

15

30

45

60

(a) Minimum required k

0 3 6 9 12 15
tm

30
27

24
21

18
15

12
9

6
3

0
t b

70

73 40

76 56

79 64 42

82 70 54

85 75 62 44

88 79 68 54

91 83 74 62 47

94 87 78 68 56

97 91 83 74 63 50

100 94 87 79 69 58
40

50

60

70

80

90

100

(b) Minimum provided `

Figure 4: Required values of k and provided values of ` for obj E in the revisited Bracha BRB algorithm
with varying values of tb and tm
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