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KERNEL REPRESENTATION OF KALMAN OBSERVER AND

ASSOCIATED H-MATRIX BASED DISCRETIZATION

Matthieu Aussal1 and Philippe Moireau2,*

Abstract. In deterministic estimation, applying a Kalman filter to a dynamical model based on
partial differential equations is theoretically seducing but solving the associated Riccati equation leads
to a so-called curse of dimensionality for its numerical implementation. In this work, we propose
to entirely revisit the theory of Kalman filters for parabolic problems where additional regularity
results proves that the Riccati equation solution belongs to the class of Hilbert-Schmidt operators. The
regularity of the associated kernel then allows to proceed to the numerical analysis of the Kalman full
space-time discretization in adapted norms, hence justifying the implementation of the related Kalman
filter numerical algorithm with H-matrices typically developed for integral equations discretization.
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1. A deterministic optimal control framework for PDE-model
estimation

1.1. Introduction

Kalman filters have been very popular since their introduction in the 60s [31, 32] for estimating dynamical
systems from available measurements. They were originally designed and justified for finite-dimensional linear
systems of ordinary differential equations (ODE) with linearly generated observations. Moreover, the initial
formalism encompasses stochastic formulations associated with Gaussian independent disturbances where the
resulting estimator is proved to be the Best Linear Unbiased Estimator but also the Minimum Mean Square
Error estimator or the Least Squares Estimator [8]. Surprisingly, the exact same formulation of the Kalman
filter can be derived in a completely deterministic context [7], offering a theoretical alternative to adjoint based
minimization of least squares functional [12, 18, 40] known in the data assimilation community as the 4D-
Var approach [36, 37]. This time the Kalman estimator is defined as the observer equivalent to minimizing a
moving-window least squares functional integrating a data fitting term, under the constraints of the dynamics.
As a result, the initial dynamics is corrected by a feedback incorporating the available measurements, feedback
computed from an operator solution of a Riccati dynamics. When considering PDEs evolution problems, new
challenges appear to define adequate notions of solution of the initial problem, of the Riccati dynamics, and of
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the estimator – also called observer – dynamics, even in the deterministic context, and with additional subtlety
in the stochastic context, see [7] or the survey [19]. Moreover, refined question of regularity arises, in particular
concerning the Riccati operator. These questions have been widely studied in the literature, see [9, 21, 34] and
references therein, with new results in the class of Hilbert-Schmidt [14, 15, 20] obtained recently for certain
classes of parabolic equations. Building on these new results, we here proposed a complete vision of Kalman
theory for PDEs, from its deterministic definition and its essential properties up to its complete full space-time
numerical analysis in the space of Hilbert-Schmidt operators, completing in the sense the initial works of [14, 26].
Moreover here, in circumstances of adequate regularity, we aim at proving that the continuous Riccati operator
is associated with a regular kernel which can be discretized using Hierarchical matrix algebra [10, 30], as well
known when discretizing integral equations [2] but also experimented with Algebraic Riccati Equations [27].
Here, we mathematically justify in the context of the Kalman filter previous numerical experiments [38], while
proposing numerical improvements in the H-matrix treatment of the Riccati operators. This allows to overcome
– here for parabolic problems – the classical curse of dimensionality that faces the Kalman filter for PDEs,
sometimes limiting its use with respect to the least squares minimization using adjoint based methods [43]. In
fact, with our approach, we can consider discretization with millions of degrees of freedom and approximate the
corresponding Riccati operators, whereas classical research directions are more inclined to follow reduced basis
methods model approximation [5, 17, 42, 44] or reduced covariance strategies [16, 35, 46] to be computationally
effective.

1.2. Model setting

1.2.1. A general parabolic initial value problem

Let Z and V two separable Hilbert spaces with V dense in Z. Denoting Z ′ and V ′ their respective topological
dual spaces, we assume a compact injection i : V → Z such that we identify

V ⊂) Z ≡ Z ′ ⊂) V ′,

and we denote ‖·‖Z and ‖·‖V with associated scalar product (·, ·)Z and (·, ·)V . By contrast, the duality pairing
on V ′ × V is denoted by 〈·, ·〉V .

We consider an operator A ∈ L(V ′,V) associated with a continuous and coercive bilinear form a in V ×V → R

∀(v, w) ∈ V, 〈Av,w〉V = a(v, w),

with

∃cst, | ∀v ∈ V, a(v, v) ≥ cst‖v‖2V .

With a slight abuse of notation, we also consider A as an unbounded operator from D(A) to Z with

D(A) =
{
v ∈ V : ∃β ∈ Z s.t. ∀w ∈ V, a(v, w) = (β,w)Z

}
.

We denote A∗ of domain D(A∗), the adjoint operator. The fractional power Aρ, 0 ≤ ρ ≤ 1, are defined following

[33] – see also Section II-1.4 of [9] and we further restrict our study to the classical case D(A
1
2 ) = D(A

1
2∗) = V,

studied and illustrated in [41]. Given T > 0, we consider a dynamical system in Z represented by the following
dynamics {

ż +Az = Bν, in (0, T )

z(0) = z0,
(1.1)
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where we use the short notation ż = d
dtz. The quantity (0, T ) 3 t 7→ ν(t) ∈ U is typically an unknown contri-

bution to the dynamics – namely a so-called model error – and U is also assumed to be a Hilbert space with
associated norm ‖·‖U . For the sake of simplicity, we consider a model-error operator B ∈ L(U ,Z).

The operator (A,D(A)) is obviously maximal accretive, hence – by Lummer-Philips theorem [45] – is the
generator of a C0-semigroup of contraction Φ such that

∀z ∈ D(A), Az = − d

dt
(Φ(t)z)|t=0+ .

Moreover, Φ is analytical Theorem 3.6.1 of [49] – see Definition 2.3 and Theorem 2.11 of [9].
For the sake of completeness, we recall the various notions of solution of the non-homogeneous linear evolution

equations (1.1) that will be used in this work – see for instance ([9], Part II).

Definition 1.1 (Notions of solution). Given [0, T ] 3 t 7→ β(t) and z0 regular enough, we list 4 different types
of solution of {

ż +Az = β(t), in (0, T )

z(0) = z0.
(1.2)

(i) z is a strict solution of Problem (1.2) in L2((0, T );Z) if z belongs to H1((0, T );Z) ∩ L2((0, T );D(A)) and
(1.2) is satisfied in the strong sense.

(ii) z is a mild solution of Problem (1.2) in L2((0, T );Z) if z ∈ C0([0, T ];Z) is given by the Duhamel formula

z(t) = Φ(t)z0 +

∫ t

0

Φ(t− s)β(t) ds. (1.3)

(iii) z is a weak solution of Problem (1.2) if (1.) z ∈ L2((0, T );Z), (2.) for all q ∈ D(A∗), (q, z(·))Z belongs to
H1(0, T ) and (3.) for almost all t ∈ (0, T ),

∀q ∈ D(A∗),
d

dt
(q, z(t))Z + (A∗q, z(t))Z = (q, β(t))Z . (1.4)

(iv) z is a variational solution of Problem (1.2) if (1.) z ∈ L2((0, T );V) and (2.) dz
dt ∈ L2((0, T );V ′) and (3.)

for almost all t ∈ (0, T ),

∀w ∈ V,
〈dz

dt
+Az − β,w

〉
V

= 0.

We now recall the classical existence results.

Theorem 1.2 (Solution existence). We list different cases of solution of Problem (1.1) or (1.2):

(i) Given z0 ∈ D(A) and β ∈ L2((0, T );D(A)) (or β ∈ H1((0, T );Z) resp.), Problem (1.2) has a unique strict
solution which belongs to H1((0, T );Z) ∩ C0([0, T ];D(A)) (or to C1([0, T ];Z) ∩ C0([0, T ];D(A)) resp.).

(ii) Given z0 ∈ Z and β ∈ L2((0, T );Z), Problem (1.2) has a unique weak solution which coincides with the
mild solution given by the Duhamel formula and the variational solution.

(iii) Given z0 ∈ Z and β ∈ L2((0, T );V ′), Problem (1.2) has a unique variational solution.

Proof. We here aggregate several classical results. For (i), we refer for instance to II-1 Proposition 3.3 of [9],
For (ii), we refer to II-1 Proposition 3.2 of [9] and for (iii), we refer to II-2 - Theorem 1.1 of [9].
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1.3. Uncertainties and observation modeling

We are now going to introduce some model uncertainties in a deterministic framework of estimation. Let us
consider that we are interested in the prediction of a natural system that follows the dynamics (1.1). We denote
the target trajectory {ž(t), t ∈ [0, T ]}, obtained from (1.1) with unknown initial condition and model error ν̌.
More precisely concerning the initial condition, we separate the unknown part ζ from the known part ẑ0 of z(0)
such that

ž(0) = ẑ0 + ζ̌.

We typically assume to have an a priori on the level of uncertainty in ζ̌ namely ‖ζ̌‖Z = O(α) with α known.
Another choice could be to assume, as it is for ill-posed inverse problems, that the initial condition belongs to
a more regular space Vs, typically

Vs ⊂) V ⊂) Z,

with the injection is : Vs → V at least continuous. In this case, the estimation procedure should benefit from
knowing that ‖ζ‖Vs = O(α).

The source error is typically assumed to belong to L2((0, T );U) or more strongly to L∞((0, T );U) with for
instance

∀a.e. t ∈ [0, T ], ‖ν̌(t)‖U = O(κ) or ‖ν̌‖2L2((0,T );U) = O(κ2T ).

To circumvent this lack of information on this system, we assume to observe the given target trajectory, hence
we expect to estimate the associated initial condition and the model error from the available measurements.
We model the measurement procedure, by an observation operator C, such that a given measurement y ∈ Y is
modeled from the application of C on a given z ∈ Z, namely

C : Z 3 z 7→ y ∈ Y. (1.5)

For the sake of simplicity, we restrict ourselves to bounded observation operators. The available noisy measure-
ments are yδ and they are a perturbation of the unavailable perfect measurements y̌ = Cž such that, η = yδ − y̌
belongs to L∞((0, T );Y) or more strongly to L∞((0, T );Y) with for instance

∀a.e. t ∈ [0, T ], ‖η(t)‖Y = O(δ) or ‖η‖2L2((0,T );Y) = O(δ2T ).

We recall that compensating the lack of knowledge on (ζ̌, ν̌) by the known data yδ, consists in being able to
invert the operator

Ψ : Z × L2((0, T )) 3 (ζ, ν) 7→ y :
[
[0, T ] 3 t 7→ CΦ(t)ζ +

∫ t

0

CΦ(t− s)ν(s) ds
]
∈ ZT . (1.6)

The operator Ψ can be injective but is not surjective as A is analytical hence Φ is regularizing. Therefore,
inverting Ψ is ill-posed.

1.4. The advection-diffusion example

As an illuminating example all along this article, we consider an advection-diffusion problem. We introduce
a bounded domain Ω ⊂ Rd of C2 boundary where we will define solutions of an advection-diffusion equation
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with an unknown source term error. We introduce a strictly positive known continuous function f ∈ C0(Ω) with
∀x ∈ Ω, f(x) > 0 but a potentially unknown time dependent ν ∈ L2(0, T )

∂tz(x, t)− b(x) · ∇z(x, t)−∆z(x, t) = f(x)ν(t), (x, t) ∈ Ω× (0, T ),

z(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

z(x, 0) = z0(x), x ∈ Ω,

(1.7)

where b ∈ H1(Ω)∩ L∞(Ω) is a given velocity field such that ∇ · b = 0. The model defined by the dynamics (1.7)
enters the framework introduced in Section 1.2.1 with Z = L2(Ω), V = H1

0(Ω),

A = υ · ∇+ ∆, D(A) = H2(Ω) ∩H1
0(Ω),

and a model error operator given by

B : R 3 ν 7→ f(x)ν ∈ L2(Ω),

of corresponding adjoint operator

B∗ : L2(Ω) 3 ψ(x) 7→
∫

Ω

f(x)ψ(x) ∈ R.

Note in particular that D(A
1
2 ) = D(A

1
2∗) = V as justified in [41].

About the measurements, we typically consider to observe the system over a subdomain ω. Therefore, we
have

C : L2(Ω) 3 ϕ 7→ ϕ|ω ∈ L2(ω), C∗ : L2(ω) 3 µ 7→ 1ω(x)µ(x) ∈ L2(Ω).

In this case, Ψ – defined by (1.6) – is injective. Indeed, let us consider (ζ, ν) ∈ Z × L2(0, T ) such that
y = Ψ(ζ, ν) ≡ 0. We first have, using the equation (1.7) satisfied in ω ⊂ Ω , that

f(x)ν(t) = 0, (x, t) ∈ ω × (0, T ).

As f is strictly positive, we deduce that ν ≡ 0. Then, from classical observability inequalities for parabolic
equation from interior measurements – see [28] and references therein – we have

‖z(T )‖2L2(Ω) ≤ cst
∫ T

0

∫
ω

|z(x, t)|2 dx dt = 0.

Finally, by backward uniqueness of the solution z(T ) = 0⇒ ζ = 0.

1.5. Least squares estimation

1.5.1. least squares criterion

A classical estimation approach consists in formulating the estimation problem as an optimal control problem,
hence minimizing a least squares criterion balancing the uncertainties. We thus introduce, for γ ∈ R+,

JT (ζ, ν) =
1

2
as(ζ, ζ) +

1

2

∫ T

0

[
γ‖yδ(s)− Cz|ζ,ν(s)‖2Y + κ2‖ν(s)‖2U

]
ds, (1.8)
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where we denote by z|ζ,ν(s), a trajectory of (1.1) for a corresponding initial condition z(0) = ẑ0 + ζ.
On the one hand, the bilinear and symmetric form as is a penalization terms aiming at controlling the

regularity of the estimated initial condition of such ill-posed problem. Moreover as will be assumed to be
coercive and bounded in Vs, with typically the existence of 0 < ε < α−1 such that

ε2‖ζ‖2Vs ≤ as(ζ, ζ) ≤ α−2‖ζ‖2Vs .

Denoting As the Friedrichs extension of the triple (Z,Vs, as), we introduce

D(As) =
{
v ∈ Vs

∣∣∃f ∈ Z s .t. as(v, w) = (f, w), w ∈ Vs
}
,

and – again with a slight abuse of notation – the operator Π0 = A−1
s can be either consider as a bounded

application from Z to D(As) or from V ′s to Vs. The term

as(ζ, ζ) = 〈Π−1
0 ζ, ζ〉Vs ,

where 〈·, ·〉Vs stands for the duality product, is a generalized Tikhonov regularization term [23] enforcing a
regularity in Vs ⊂ Z. The operator Π0 will be called the a priori initial covariance operator, as we typically
expect that the target trajectory satisfies

〈Π−1
0 ζ̌, ζ̌〉Vs ≤ α−2‖ζ̌‖2Vs ≤ 1.

On the other hand, the parameter γ is a scaling positive parameters to balance uncertainty in the data infor-
mation with respect to uncertainty in the source and in the initial condition. In practice for a given Π−1

0 and
κ, γ is adjusted with respect to the estimated observation noise scale δ.

In this setting, our objective is typically to find the trajectory associated with

min
ζ∈Vs

ν∈L2((0,T );U)

JT (ζ, ν),

and we emphasize that minimizing JT must be understood as a minimization under the constraint that z|ζ,ν
follows the dynamics (1.1).

Theorem 1.3. There exists one, and only one minimizer couple (ζ̄T , ν̄T ) ∈ Vs × L2((0, T );U) of the criterion
JT ,

(ζ̄T , ν̄T ) = argmin
Vs×L2((0,T );U)

JT (ζ, ν).

Moreover,

ζ̄T = Π0q̄T (0), ν̄T (t) = κ−2B∗q̄T (t), t ∈ (0, T ), (1.9)

where (z̄T , q̄T ) is the unique solution
˙̄zT +Az̄T = κ−2BB∗q̄T , in (0, T )

˙̄qT −A∗q̄T = −γC∗(yδ − Cz̄T (t)), in (0, T )

z̄T (0) = ẑ0 +Π0q̄T (0),

q̄T (T ) = 0,

(1.10)
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and z̄T is thus the solution of (1.1) associated with (ζ̄T , ν̄T ).

Proof. From (1.3), we see that (1.8) defines a quadratic functional in the Hilbert space Vs × L2((0, T );U).
Moreover, from Duhamel’s formula

‖z|ζ,ν(t)‖Z ≤ ‖ζ‖Z +
√
t‖ν‖L2((0,T );U) ≤ ‖ζ‖Vs +

√
t‖ν‖L2((0,T );U),

ensures that JT (ζ, ν) is Fréchet differentiable and we directly infer that

JT (ζ2, ν2) ≥JT (ζ1, ν1) +
〈
DJT (ζ1, ν1), (ζ2 − ζ1, ν2 − ν1)

〉
Vs×L2((0,T );U)

+
1

2

(
ε2‖ζ1 − ζ2‖2Vs + κ2‖ν1 − ν2‖2L2((0,T );U)

)
,

where ε2 is the coercivity constant of Π−1
0 . Namely, JT is a strongly convex function.

Therefore, there exists one, and only one, optimal estimation (ζ̄T , ν̄T ) such that

(ζ̄T , ν̄T ) = argmin
Vs×L2((0,T );U)

JT (ζ, ν).

Note that (ζ̄T , ν̄T ) are indexed by T as JT is.
Let us now introduce for all z ∈ L2((0, T );Z) and y ∈ L2((0, T );Y) the adjoint dynamics{

q̇T −A∗qT = −γC∗(y − Cz), in (0, T )

qT (T ) = 0
(1.11)

which is also well posed as it is considered backward in time. Namely, we have qT ∈ C0([0, T ],Z) from Theo-
rem 1.2. The adjoint variable allows to easily compute the Fréchet derivatives with respect to ζ and ν. We find
for a given (ζ, ν) ∈ Vs × L2([0, T ],U)

∀ξ ∈ Vs
〈
DζJT (ζ, ν), ξ

〉
Vs

=
〈
ζ,Π−1

0 ξ
〉
Vs

+ (qT (0), ξ)Z ,

and

∀µ ∈ L2([0, T ],U)
〈
DνJT (ζ, ν), µ

〉
L2((0,T );U)

=

∫ T

0

κ2(ν(t), µ(t))U + (qT (t), Bµ(t))Z dt.

At extremum, we obtain the Euler equation associated with the minimization

∀(ζ, ν) ∈ Vs×L2((0, T );U), 〈Π−1
0 ζ̄T , ζ〉Vs + (q̄(0), ζ)Z +

∫ T

0

κ2(ν̄T (t), ν(t))U + (q̄T (t), Bν(t))Z dt = 0, (1.12)

where q̄T is the adjoint variable associated with the optimal trajectory z̄T = z|ζ̄T ,ν̄T and the available

measurements yδ. This leads to the so-called two-ends problem defining the optimal dynamics of the estimator:
˙̄zT +Az̄T = BQB∗q̄T , in (0, T )

˙̄qT −A∗q̄T = −C∗R(yδ − Cz̄(t)), in (0, T )

z̄T (0) = ẑ0 +Π0q̄T (0),

q̄T (T ) = 0.

(1.13)
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where Q = κ−2
1U and R = γ1Y .

Remark 1.4. Note that here, the proof is compatible with the semigroup theory solutions whereas a slightly
different approach based on the notion of variational solution could have been possible. In particular, the
variational frameworks allows to introduce the Lagrangian associated with the dynamics constraint hence to
illuminate the adjoint equation definition. We refer to the first chapters of [7] that adapts to observation theory
the variational evolution equation control framework initially developed in [39].

Remark 1.5. In general (1.13) is solved using a gradient descent approach. Defining the gradient from Riesz’
representation theorem in the space Vs × L2((0, T );U), the gradient descent approach reads

{
ζk+1 = ζk − ρkΠ0∇ζJT (ζk, νk), k ≥ 0

νk+1 = νk − ρkκ−2∇νJT (ζk, νk+1), k ≥ 0

from (ζ0, ν0) = (0, 0), can be proved to be convergent for an adequate relaxation parameter ρ < 1, small enough.
This gradient descent consists in solving, from (ζ0, ν0) = (0, 0) and for k ≥ 0, the weakly coupled system

{
żk+1 +Azk+1 = (1− ρk)Bνk + ρkBQB∗qkT , in (0, T )

zk+1(0) = (1− ρk)zk(0) + ρkΠ0q
k
T (0)

(1.14a)

and{
q̇k+1
T −A∗qk+1

T = −γC∗(yδ − Czk+1
T ), in (0, T )

qk+1
T (T ) = 0

(1.14b)

Note that the existence of a solution of (1.13) can be understood as the limit of the well-posed dynamics
(1.14a)–(1.14b).

1.5.2. Singular value decomposition

In this section, we want to give one example of possible choice of Π0 among many others. In this respect,
let us consider the compact operator T = A−1 : Z → Z. We introduce (en)n∈N and (fn)n∈N respectively the
orthonormal basis associated with the diagonalization of T ∗T and TT ∗ respectively. We denote (µn)n∈N the
sequence of positive eigenvalues which decrease to 0.

We recall the following decomposition

Tz =
∑
n≥0

µn(z, fn)Z en, T ∗z =
∑
n≥0

µn(z, en)Z fn.

with (em, en)Z = δmn, (fm, fn)Z = δmn, and Tfn = µnen, T ∗en = µnfn. We can then define

(TT ∗)sz =
∑

µ2s
n (z, en)Z en,

and given s > 0, we introduce

Vs = Im((TT ∗)s) =
{
z ∈ Z

∣∣∣ ∑
n≥0

(z, en)2
Z

µ4s
n

≤ +∞
}
.
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Note that we have in particular V 1
4

= V as we initially restrict our study to the case where D(A
1
2 ) = D(A

1
2∗) = V.

We further assume that there exists s0 ≥ 1
2 such that

∀s ≥ s0,
∑
n≥0

µ2s
n < +∞.

Then, we propose to define Π0 as

Π0z =
∑
n≥0

α2µ2s
n (z, en)Z en. (1.15)

If s ≥ 0, Π0 is compact. Moreover if s ≥ s0, Π0 is a Hilbert-Schmidt operator (see the recalled definition in
Sect. 2.1). Finally,

〈Π−1
0 z, z〉Vs =

∑
n≥0

α−2µ−2s
n (z, en)2

Z = α−2‖z‖2Vs ,

hence ensuring that as is bounded and coercive in Vs.

1.6. The Kalman sequential estimator

The principle of optimal sequential estimation [7] is to avoid solving (1.13) by decoupling the corresponding
two-ends dynamics. In this respect, we will find a Cauchy problem formulation of the so-called optimal sequential
estimator – also called optimal observer – defined by the following:

Definition 1.6 (The optimal sequential estimator). For all time t > 0, considering the optimal trajectory z̄t
associated with the minimizer of Jt, the optimal sequential estimator ẑ is defined by

∀t ≥ 0, ẑ(t) = z̄t(t). (1.16)

We are going to prove that the optimal sequential estimator is in fact given by the estimator proposed by [32],
and often called Kalman-Bucy estimator or simply Kalman estimator, here generalized to PDE formulations
[7]. Yet, we need to introduce the so-called Riccati operator solution to a Riccati dynamics before characterizing
the dynamics of ẑ.

1.6.1. Riccati dynamics

We introduce the spaces of linear auto-adjoint bounded operators

S(Z) =
{
Q ∈ L(Z)

∣∣Q = Q∗
}
,

and the cone in S(Z)

S+(Z) =
{
Q ∈ S(Z)

∣∣∀z ∈ Z, (z,Qz) ≥ 0
}
.

We then consider the following Riccati dynamics{
Π̇ +AΠ +ΠA∗ +ΠC∗RCΠ −B∗QB = 0, t > 0

Π(0) = Π0.
(1.17)
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for which we seek a solution in C0([0, T ],S+(Z)), the set of all continuous mappings from [0, T ] to S+(Z),
endowed with the topology of pointwise convergence:

lim
n→+∞

Pn = P ⇔ ∀z ∈ Z, lim
n→+∞

Pnz = Pz.

As for the evolution equation (1.2), we face several types of solution of (1.17), listed in the next Definition 1.7.
Before that, we need to introduce an operator over the set of bounded symmetric operator and its associated
domain. Let us denote

Υ :

∣∣∣∣∣S(Z)→ S(Z)

Q 7→ AQ+QA∗

with, for any Q ∈ S(Z), the corresponding bilinear form

υQ(z1, z2) = (Qz1, A
∗z2) + (A∗z1, Qz2), ∀(z1, z2) ∈ D(A∗),

so that Υ is defined with the domain

D(Υ) = {Q ∈ S(Z) | υP is continuous in Z × Z}.

Note that, going back to our definition of Π0 from the singular value decomposition of A in Section 1.5.2, we
have that Π0 ∈ D(Υ) when s ≥ 1

2 . Indeed, we easily find in this case

(Π0z1, A
∗z2) + (A∗z1, Π0z2)

=
∑
n≥0

α2µ2s
n

[
(z1, en)(A∗z2, en) + (z2, en)(A∗z1, en)

]
=
∑
n≥0

α2µ2s
n

[
(z1, en)(z2, Aen) + (z2, en)(z1, Aen)

]
=
∑
n≥0

α2µ2s−1
n

[
(z1, en)(z2, fn) + (z2, en)(z1, fn)

]
≤ cst

∑
n≥0

[
(z1, en)(z2, fn) + (z2, en)(z1, fn)

]
≤ c̃st‖z1‖Z‖z2‖Z .

Definition 1.7 (Notion of Riccati solution). We list 3 different notions of solution to Problem (1.17):

(i) A strict solution is a function Π ∈ C1([0, T ];S(Z)) solution to (1.17) where, for all t ∈ [0, T ], Π(t) ∈ D(Υ)
and Υ(P ) ∈ C0([0, T ],S(Z)).

(ii) A mild solution to (1.17) is a function Π ∈ C0([0, T ],S(Z)) that satisfies for all z ∈ Z, t ∈ [0, T ],

Π(t)z = Φ(t)Π0Φ
∗(t)−

∫ t

0

Φ(t− s)Π(s)C∗RCΠ(s)Φ∗(t− s) ds+

∫ t

0

Φ(s)BQB∗Φ∗(s) ds. (1.18)

(iii) A weak solution to (1.17) is a functionΠ ∈ C0([0, T ],S(Z)) such that for all (z1, z2) ∈ D(A∗), (Π(·)z1, z2)Z
is differentiable and verifies

d

dt
(Π(t)z1, z2)Z + (Π(t)z1, A

∗z2)Z + (Π(t)A∗z1, z2)Z

+ (CΠ(t)z1, RCΠ(t)z2)Y − (B∗z1, QB
∗z2)U = 0, t ∈ [0, T ]. (1.19)



KERNEL REPRESENTATION OF KALMAN OBSERVER AND ASSOCIATED H-MATRIX BASED DISCRETIZATION 11

Then we have the following existence results of the Riccati operator Π, also called covariance operator for
its interpretation in the stochastic filtering framework [7, 19].

Theorem 1.8 (Existence of Riccati solution). We list 2 cases of existence of a solution to Problem (1.17):

(i) Assuming that B and C are bounded and Π0 ∈ S+(Z), the Riccati dynamics (1.17) admits one and only
one weak solution Π ∈ C0([0, T ],S+(Z)), which is also a mild solution in the sense of (1.18).

(ii) Assuming moreover that Π0 ∈ D(Υ), then the Riccati dynamics (1.17) admits one and only one strict
solution Π ∈ C1([0, T ],S+(Z)).

Proof. The existence and uniqueness of a mild solution is justified in IV-1 Theorem 2.2 of [9]. The fact that this
solution is also a weak solution is given in IV-1 Proposition 2.1 of [9]. Finally, the existence of a strict solution
is proved for variational operator in IV-1 Proposition 3.2 of [9].

Remark 1.9 (Time-dependent observation and control operators). Theorem 1.8 directly extends to cases where
we have a time-dependent observation operator – time-dependent control operator resp. – as soon as t 7→ C(t)
is continuous in time – t 7→ B(t) is continuous in time resp. –

We finally conclude this section by recalling the benefit of relying on variational semigroup to impose addi-
tional regularity properties for the Riccati operator Π, proved in IV-1 Theorem 3.3 of [9] using an initial result
from [24].

Theorem 1.10. Let Π ∈ C1([0, T ];S+(Z)) be the strict solution to (1.17) initialized from (1.15). Then for any

t ∈ (0, T ) and z ∈ D(A∗
1
2 ) we have Π(t)z ∈ D(A

1
2 ). Moreover if D(A

1
2 ) = D(A∗

1
2 ) = V, then Π(t) ∈ L(V ′,V).

1.6.2. Comparison principle

Fundamental properties of the Riccati operator come from comparison principles. We have already seen
that for all t ≥ 0, Π(t) ∈ S(Z). Moreover, Theorem 1.8 also gives Π(t) ≥ 0, a property which can be easily
understood from the recast dynamics

Π̇ +
[
A+

1

2
Π(t)C∗RC

]
Π +Π

[
A∗ +

1

2
Π(t)C∗RC

]
−B∗QB = 0,

leading to the mild solution

Π(t) = Φ̃(t, 0)Π0Φ̃
∗(t, 0) +

∫ t

0

Φ̃(t, s)BQB∗Φ̃∗(t, s) ds, (1.20)

where Φ̃(s, t), 0 ≤ s ≤ t ≤ T is the evolution operator associated with the perturbed operator A + γ
2Π(t)C∗C

– see IV-1 Theorem 2.1 and I-1 §3.5 of [9]. From (1.20) indeed, we directly infer that Π(t) ≥ 0.
Then from (1.18), we infer that

Π(t) ≤ Φ(t)Π0Φ
∗(t) +

∫ t

0

Φ(s)BQB∗Φ∗(s) ds, (1.21)

where the order relation in S+(Z) is obviously given by

Q1 ≤ Q2 ⇔ ∀z ∈ Z, (z,Q1z)Z ≤ (z,Q2z)Z .

We now recall the classical comparison result of Riccati operator proved in IV-1 Propisiton 2.2 of [9]
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Proposition 1.11. Consider for i = {1, 2}, the two Riccati equations{
Π̇i +AΠi +ΠiA

∗ +ΠiC
∗
i RiCiΠi −BiQiBi = 0, t > 0

Π(0) = Π0,i

with Π0,1 ≤ Π0,2, B1Q1B1 ≤ B2Q2B2, C2R2C2 ≤ C1R1C1.
Then we have for all t ≥ 0, Π1(t) ≤ Π2(t).

By a direct use of Proposition 1.11, we obtain the following comparison

∀t > 0, Π(t) ≥ Πc(t),

where Πc – given our choice of Π0 – is the strict solution of{
Π̇c +AΠc +ΠcA

∗ +ΠcC
∗RCΠc = 0, t > 0

Πc(0) = Π0

(1.22)

Let us now specify Πc, which is given by the following decomposition.

Proposition 1.12. The unique strict solution of (1.22) is given by

Πc(t) = Φ(t)
(
Π−1

0 +

∫ t

0

Φ∗(s)C∗RCΦ(s) ds
)−1

Φ∗(t). (1.23)

Proof. On the one hand, we introduce the operator Λ solution of{
Λ̇ + ΛΦ∗C∗RCΦΛ = 0, t > 0

Λ(0) = Π0

(1.24)

As Π0 is a bounded operator, Λ ∈ C1([0, T ],S+(Z)) is the strict solution – see Theorem 1.8 and Remark 1.9 –
of the Riccati equation (1.24). Moreover, as a mild solution, Λ satisfies

Λ : R 3 t 7→ Π0 −
∫ t

0

Λ(s)Φ∗(s)C∗RCΦ(s)Λ(s) ds ∈ S+(Z),

On the other hand, we introduce

∀t ∈ [0, Tε], U(t) = Π−1
0 +

∫ t

0

Φ∗(s)C∗RCΦ(s) ds.

which is also C1 in time since s 7→ Φ∗(s)C∗RCΦ(s) ∈ C0([0, T ],S+(Z)). Moreover U ≥ Π−1
0 is invertible in

[0, T ]. By composing the derivatives, we find that

d

dt
(U−1) = −U−1U̇U−1 = −U−1Φ∗C∗RCΦU−1, in [0, T ] (1.25)

Namely U−1 = Λ in [0, T ] by uniqueness of the strict solution of (1.24). In addition, we find that ΠΛ =
Φ(t)Λ(t)Φ∗(t) is solution of

ΠΛ(t)z = Φ(t)Λ(t)Φ∗(t)z
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= Φ(t)
[
Λ(0)−

∫ t

0

Λ(s)Φ(s)C∗RCΦ(s)Λ(s) ds
]
Φ∗(t)z

= Φ(t)Λ(0)Φ∗(t)z −
∫ t

0

Φ(t− s)ΠΛ(s)C∗RCΠΛ(s)Φ∗(t− s)z ds.

This ensures, by uniqueness of the mild solution of (1.22), that ΠΛ = Πc. Therefore Πc = ΦΛΦ∗ = ΦU−1Φ∗.

To summarize, we have found in this section that, for all t ≥ 0,

0 ≤ Φ(t)
(
Π−1

0 +

∫ t

0

Φ∗(s)C∗RCΦ(s) ds
)−1

Φ∗(t) ≤ Π(t) ≤ Φ(t)Π0Φ
∗(t) +

∫ t

0

Φ(s)BQB∗Φ∗(s) ds, (1.26)

hence controlling the asymptotic behavior of Π.

1.6.3. Estimator dynamics

Once we have clarified the sense given to the covariance operator Π solution to the Riccati dynamics (1.17),
we are able to give to (1.16) a closed loop dynamics, as recall in the next theorems.

Theorem 1.13. Let A be the generator of C0-semigroup Φ. Let C be a bounded operator and Π a mild solution
of the (1.17). There exists one and only one mild solution in C0([0, T ];Z) of the dynamics{

˙̂z +Aẑ = ΠC∗R(yδ − Cẑ), in (0, T )

ẑ(0) = ẑ0

(1.27)

in the sense that

ẑ(t) = Φ(t)ẑ0 +

∫ t

0

Φ(t− s)Π(s)C∗[yδ(s)− Cẑ(s)] ds. (1.28)

Moreover, this solution is the unique weak solution in the sense that, (1.) z ∈ L2((0, T );Z), (2.) for all q ∈
D(A∗), 〈q, ẑ(·)〉 belongs to H1(0, T ) and (3.) for almost all t ∈ (0, T ),

∀q ∈ D(A∗),
d

dt
(ẑ, q) + (ẑ, A∗q) = γ(yδ − Cẑ, CΠ(t)q)Y . (1.29)

Proof. Let us denote β : t 7→ γΠ(t)C∗yδ(t) ∈ L2((0, T ),Z), and G : t 7→ γΠ(t)C∗C ∈ C0([0, T ];L(Z)). The
dynamics (1.27) is a specific case of {

˙̂z +Aẑ = G(t)ẑ(t) + β(t), t > 0

ẑ(0) = ẑ0

(1.30)

with ẑ0 ∈ Z and β ∈ L2((0, T );Z). From II-1 Propostion 3.4 of [9], Problem (1.30) admits a unique weak in
H1((0, T );D(A∗)′) ∩ C0([0, T ];Z) which coincides with the mild solution in the sense of (1.28).

Note that we can also deduce that ẑ is also the unique varitionnal solution in the sense that, (1.) z ∈
L2((0, T );V) and (2.) dz

dt ∈ L2((0, T );V ′) and (3.) for almost all t ∈ (0, T ),

∀w ∈ V,
〈 d

dt
ẑ +Aẑ, w

〉
V

= γ(yδ − Cẑ, CΠ(t)w)Y (1.31)
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Theorem 1.14. The Kalman observer defined by (1.16) is the unique solution of (1.27). Moreover assuming
that Π0 ∈ D(Υ), we have the fundamental identity

∀t ∈ [0, T ], z̄T (t) = ẑ(t) +Π(t)q̄T (t). (1.32)

Proof. From Theorem 1.3, we have the existence of a weak solution of the two-ends problem (1.13). From
Theorem 1.8, we have the existence of a strict solution of the covariance operator Π ∈ C1([0,∞[;S+(Z)).
Additionally, a weak solution of the Kalman estimator ẑ exists from Theorem 1.13.

Now let us introduce η = ẑ − z̄T +Πq̄T and v ∈ D(A∗), and compute

d

dt
(η(t), v)Z = −

(
ẑ(t), A∗v

)
Z + γ

(
yδ(t)− Cẑ(t), CΠ(t)v

)
Y

+
(
z̄T (t), A∗v

)
Z − κ

−2
(
B∗q̄T (t), B∗v

)
U

+
d

dt

(
Π(t)q̄T (s), v

)
Z

∣∣∣
s=t

+
d

dt

(
q̄T (t), Π(s)v

)
Z

∣∣∣
s=t

. (1.33)

Moreover, as Π is a weak solution of (1.17) such that for all t ≥ 0 and v ∈ D(A∗), Π(t)z ∈ D(A∗), we have
from (1.19)

d

dt
(Π(t)q̄T (s), v)

∣∣∣
s=t

+ (Π(t)q̄T (t), A∗v)Z + (q̄T (t), A∗Π(t)v)Z

+ γ(CΠ(t)q̄T (t), CΠ(t)v)Y − κ−2(B∗q̄T (t), B∗v)U = 0, (1.34)

and, as q̄ is a weak solution of (1.13),

d

dt
(q̄T (t), Π(s)v)

∣∣∣
s=t

= (q̄T (t), A∗Π(t)v)Z − γ
(
yδ(t)− Cz̄T (t), CΠ(t)v

)
Y . (1.35)

Gathering (1.33), (1.34) and (1.35), we finally obtain


d

dt
(η(t), v)Z + (η, [A∗ + C∗RCΠ(t)]v)Z = 0, t ∈ [0, T ]

η(0) = 0,

whence, by Theorem 1.13, η = 0 in [0, T ], which concludes the proof

We directly deduce from (1.32) that

∀T > 0, z̄T (T ) = ẑ(T ).

As a consequence, the Kalman-Bucy estimator, solution of (1.27), is the optimal estimator in the sense of
Definition 1.16.

Remark 1.15. The condition Π0 ∈ D(Υ) is a technical assumption facilitating the chain rule computations.
It can be relaxed by using only mild solutions and Duhamel formulae. However, the proof of Theorem 1.14 is
simplified in this case, and the next sections will be based on such regularity condition on Π0.
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2. Kernel representation of continuous-time infinite dimensional
Riccati solutions

We are now going to show an additional regularity property of the Riccati solution which for Π0 regularizing
enough can be of Hilbert-Schmidt type as it is sometime highlighted for control problem – see for instance [20]
and references therein – or [13–15] for observation problems. The benefit of such property will be the existence
of an associated kernel, regular enough so that it will be numerically approximated and efficiently computed.

2.1. Hilbert-Schmidt Riccati solutions and Kernel representation

We denote by J2(Z) the spaces of Hilbert-Schmidt operators, over the separable Hilbert space Z. We recall
that

J2(Z) ⊂ K(Z) ⊂ L(Z),

where K(Z) is the space of compact operators. For any Hilbert basis (en)n≥0 of Z.

‖Π‖2 =
√

tr(ΠΠ∗) =
(∑
n≥0

(en, Π
2en)Z

) 1
2

.

We point out that this definition can be shown to be independent of the choice of the Hilbert basis. Moreover,
if Π ∈ J2(Z) ∩ S+(Z) then ‖Π‖ ≤ ‖Π‖2. We have the following result taken from Theorem 3.6 of [14] – see
also [13, 15] and the seminal work [50].

Theorem 2.1 ([14]). Let us assume that (1) Π0 ∈ S+(Z)∩J2(Z), (2) BB∗ ∈ S+(Z)∩J2(Z) and (3) C∗C ∈
S+(Z). Then, the Riccati dynamics (1.17) admits one and only one mild solution Π in the sense of (1.18) and
Π ∈ C([0, T ],S+(Z)) ∩ C([0, T ],J2(Z)).

We now recall the following Kernel Theorems for Hilbert-Schmidt operators, see Theorem 12.6.2 and Theorem
12.7.2 of [4]

Theorem 2.2 (Kernel Theorem in L2). An operator Π from L2(Ω) to L2(Ω) is a Hilbert-Schmidt operator if
and only if it is associated with a kernel π ∈ L2(Ω× Ω) such that

∀ϕ ∈ L2(Ω), ∀x ∈ Ω, (Πϕ)(x) =

∫
Ω

π(x′, x)ϕ(x′) dx′.

and

‖Π‖2 = ‖π‖L2(Ω×Ω). (2.1)

Theorem 2.3 (Kernel Theorem in Sobolev Spaces). Let (m, p) ∈ N2. An operator Π from Hm(Ω)′ to Hp(Ω)
is a Hilbert-Schmidt operator if and only if it is associated with a kernel π ∈ Hm,p(Ω× Ω) such that

∀ψ ∈ Hm(Ω)′, (Πψ)(x) = 〈ψ, π(·, x)〉Hm .

Therefore in our framework, as we proved that Π(t) ∈ L(V ′,V) for t ∈ (0, T ), we can expect an additional
regularity for the kernel π associated with Π. This will be specified in the next section for the advection diffusion
case.



16 M. AUSSAL AND P. MOIREAU

2.2. Kernel representation of the Kalman estimator for an advection-diffusion problem

Considering our specific advection-diffusion example of dynamics defined in (1.7), we have the following
representation theorem.

Theorem 2.4. Let Π0 ∈ D(Υ) ∩ J2(L2(Ω)) ∩ L(H−1(Ω),H1
0(Ω)). The Riccati dynamics (1.17) associated with

the model (1.7) admits one and only one mild solution Π in the sense of (1.18) which is associated with a kernel
π ∈ C1([0, T ]; L2(Ω×Ω)) ∩ L2([0, T ]; H1

0(Ω×Ω)) such that for all t ∈ (0, T ), (∆x + ∆′x)π(t) ∈ L2(Ω×Ω) and π
is solution to the dynamics



∂tπ(x′, x, t)

− v(x′) · ∇x′π(x′, x, t)− v(x) · ∇xπ(x′, x, t)

− (∆x + ∆x′)π(x′, x, t)

= κ−2f(x′)f(x)

−γ
∫
ω

π(t, x, x′′)π(t, x′′, x′) dx′′, (x′, x, t) ∈ Ω× Ω× (0, T ),

π(x′, x, t) = 0 (x′, x, t),∈ ∂Ω× Ω× (0, T ),

π(x′, x, t) = 0 (x′, x, t),∈ Ω× ∂Ω× (0, T ),

π(x′, x, 0) = π0(x′, x), (x′, x) ∈ Ω× Ω.

(2.2)

where π0 ∈ H1(Ω× Ω) is the kernel associated with the initial covariance operator Π0.

Proof. We introduce the sequence of eigenvalues (λn)n∈N of (−∆)−1, which is decreasing to 0. The corresponding
eigenvectors (un)n∈N define an orthonormal basis of L2(Ω),

From Theorem 2.1, The Riccati dynamics (1.17) admits a unique strict solution Π ∈ C1([0, T ];S+(Z)) with
also Π ∈ C0([0, T ];J2(Z)). Therefore, we have for all t ∈ (0, T ),

∑
n≥0(un, Π

2(t)un) < +∞ which implies from

Theorem 2.2 that Π(t) admits a kernel representation π(t) ∈ L2(Ω×Ω) . Moreover, from Theorem 1.10, we also
have that for all t ∈ (0, T ), Π(t) ∈ L(V ′,V). Let us define for all n, hn = 1√

λn
un and gn =

√
λnun. We know

that (hn)n∈N is a Hilbert basis of V ′ = H−1(Ω) and (gn)n∈N is a Hilbert basis of V = H1
0(Ω). We thus have

∑
n≥0

(gn, Π
2(t)hn) =

∑
n≥0

(un, Π
2(t)un) < +∞,

which implies that Π(t) is a Hilbert-Schmidt operator from H−1(Ω) to H1
0(Ω). Therefore this time, from Theo-

rem 2.3, Π(t) admits a kernel representation π(t) ∈ H1(Ω×Ω). In particular, π admits a trace at the boundary
∂(Ω× Ω)

Let us now characterize more specifically this kernel π. First, we have for all t ∈ [0, T ], Π(t) ∈ S+(Z), hence

∀(x, x′, t) ∈ Ω× Ω× [0, T ], π(x′, x, t) = π(x, x′, t).

Second, we recall that, from Theorem 1.10, for t > 0 and z ∈ D(A∗
1
2 ) = H1

0(Ω), P (t)z ∈ D(A
1
2 ) = H1

0(Ω).
Therefore, for all t ∈ (0, T ), and by density of H1

0(Ω) in L2(Ω)

∀ϕ ∈ H1
0(Ω),∀(x, t) ∈ ∂Ω× [0, T ],

∫
Ω

π(x′, x, t)ϕ(x′) dx′ = 0,

⇒ ∀(x′, x, t) ∈ Ω× ∂Ω× [0, T ] π(x′, x, t) = 0,
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and by symmetry

∀(x′, x, t) ∈ ∂Ω× Ω× [0, T ], π(x′, x, t) = 0.

Third, let consider (z1, z2) ∈ D(Ω)×D(Ω), using Fubini and the boundary property of π,

〈∆xπ, z1z2〉D(Ω×Ω) = −
∫

Ω

∫
Ω

∇xπ(x′, x, t)z1(x′)∇z2(x) dx′ dx

=

∫
Ω

∫
Ω

π(x′, x, t)z1(x′)∆z2(x) dx′ dx = (Π(t)z1,∆z2)Z .

We also find

〈b · ∇xπ, z1z2〉D(Ω×Ω) = −
∫

Ω

∫
Ω

π(x′, x, t)z1(x′)∇x · (b(x)z2(x)) dx′ dx

= −
∫

Ω

∫
Ω

π(x′, x, t)z1(x′)b(x) · ∇z2(x) dx′ dx

= (Π(t)z1,− b · ∇z2)Z .

giving 〈
b · ∇xπ + ∆xπ, z1z2

〉
D(Ω×Ω)

= (Π(t)z1, A
∗z2)Z .

Identically, we have 〈
b · ∇x′π + ∆x′π, z1z2

〉
D(Ω×Ω)

= (A∗z1, Π(t)z2)Z .

Now, we recall that for all t ∈ (0, T ), Π(t) ∈ D(Υ). Therefore, there exists a constant cst such that

|〈b · ∇xπ + b · ∇x′π + ∆xπ + ∆x′π, z1z2| ≤ | (Π(t)z1, A
∗z2)Z + (A∗z1, Π(t)z2)Z | ≤ cst‖z1‖L2(Ω)‖z2‖L2(Ω)

As π(t) ∈ H1(Ω× Ω), this implies that there exists a constant cst such that

|〈∆xπ + ∆x′π, z1z2| ≤ cst‖z1‖L2(Ω)‖z2‖L2(Ω).

By density of D(Ω)⊗D(Ω) in D(Ω× Ω), we conclude that ∆xπ(t) + ∆x′π(t) ∈ L2(Ω× Ω).
Additionally, we have

(CΠ(t)z1, CΠ(t)z2)Y =

∫
Ω

∫
Ω

∫
ω

π(t, x, x′′)π(t, x′′, x′)z1(x′)z2(x) dx′′ dx′ dx,

and also

(B∗z1, QB
∗z2)U =

∫
Ω

∫
Ω

κ−2f(x′)f(x)z1(x′)z2(x) dx′ dx.

Moreover Π ∈ C1([0, T ];S+(Z)) implies that ∂tπ ∈ L2(Ω× Ω), with

〈∂tπ, z1z2〉D(Ω×Ω) =

∫
Ω

∫
Ω

∂tπ(t, x, x′′)z1(x′)z2(x) dx′′ dx′ = 〈Π̇(t)z1, z2〉
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As Π is a weak solution of Riccati in the sense of (1.19), and D(Ω)⊗D(Ω) is dense into D(Ω×Ω), we have for
all ψ ∈ D(Ω× Ω)

∫
Ω

∫
Ω

[
∂tπ(x′, x, t)− b(x′) · ∇x′π(x′, x, t)− b(x) · ∇xπ(x′, x, t)

− (∆x + ∆x′)π(x′, x, t)γ

∫
ω

π(t, x, x′′)π(t, x′′, x′) dx′′ + κ−2f(x′)f(x)
]
ψ(x, x′) dx dx′ = 0.

ending the justification of (2.2).

Remark 2.5. Such non-linear integro-differential equation associated with the Riccati kernel was already
mentioned in Chapter 3, Section 5 of [39], but without justifying the necessary regularity conditions allowing to
write (2.2). In [50], the regularity question was fully treated, however with different arguments and a slightly
different Riccati equation.

From the kernel representation of the covariance operator, we can now specify the weak form and strong
form of the optimal estimator in the context of an advection-diffusion problem. We directly find from the weak
solution associated with (1.27) that

(
∂tẑ, w

)
L2(Ω)

−
(
b · ∇ẑ, w

)
L2(Ω)

−
(
∇ẑ,∇w

)
L2(Ω)

=

∫
ω

∫
Ω

γπ(x′, x, t)w(x′, t)
(
yδ(x, t)− ẑ(x, t)

)
dx′ dx. (2.3)

Then using the symmetry of Π – and of its associated kernel π – we recall that

(
CΠ(t)w, (yδ − Cẑ)

)
Y =

∫
ω

∫
Ω

π(x′, x, t)w(x′, t)
(
yδ(x, t)− ẑ(x, t)

)
dx′ dx

=

∫
Ω

∫
ω

π(x′, x, t)
(
yδ(x, t)− ẑ(x, t)

)
w(x′, t) dx′ dx

=
(
w,Π(t)C∗(yδ − Cẑ)

)
Z ,

which directly gives the strong form of the Kalman estimator for our advection-diffusion example:
∂tẑ(x, t)− v(x) · ∇ẑ(x, t)−∆ẑ(x, t) = γ

∫
ω

γπ(x′, x, t)
(
yδ(x′, t)− ẑ(x′, t)

)
dx′, x ∈ Ω, t > 0,

ẑ(x, t) = 0, x ∈ ∂Ω, t > 0

ẑ(x, 0) = ẑ0(x), x ∈ Ω

(2.4)

Here, we recognize a nonlinear integro-differential equation that we proved to define a well-posed problem.

Remark 2.6. For clarity, we have limited the kernel representation calculations to the initial advection-diffusion
example. However, an analogous representation could be performed for many other types of parabolic equations,
provided that Π is a Hilbert-Schmidt operator and, furthermore, Π ∈ L(V ′,V). This last property is justified by

Theorem 1.10, unfortunately – to our knowledge – under the restrictive condition that D(A
1
2 ) = D(A∗

1
2 ) = V.

3. Numerical analysis

3.1. Discretization of the direct model

We consider a spatial discretization of the model (1.1) using Ritz-Galerkin method, for instance a finite
element method. To be more specific with our example of advection-diffusion equation (1.7), we consider a
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Lagrange finite element discretization in a finite dimensional space Vh ' RNZ . The orthogonal projection from
Z to Zh is denoted by Ph. We now introduce the operator Ah defined by

∀(uh, vh) ∈ Zh, (Ahuh, vh)Z = a(uh, vh) = 〈Auh, vh〉V .

We proceed identically with the model error and the observations. For the sake of simplicity, we restrict the
present article to the case where only the state needs to be discretized. Our discretize observation operator is
hence given by

Ch = CPh∗ ∈ L(Y,Zh)

For the model error, the same reasoning applies but as in our specific example we have dim(U) finite hence,

there is no need to introduce a specific notation for its spatial discretization. We just introduce Bh = PhB ∈ Zh′.
Therefore, our model dynamics (1.1) is spatially discretized in Zh ⊂ Z as{

żh +Ahzh = Bhν, in (0, T ),

zh(0) = Phẑ0 + ζh,
(3.1)

Of note, in a very general configuration, a full numerical analysis should also take into account the observation
sampling and discretization, and the model error discretization.

We now proceed to the full space-time discretization using a backward Euler time scheme. We consider the
following uniform discretization of the time interval [0, T ]: tk = k∆t for k = 0, 1, · · · , n, where T = n∆t. We
have 

zh,τk+1 − z
h,τ
k

τ
+Ahzh,τk+1 = Bhντk+1, 0 ≤ k ≤ n− 1,

zh0 = Phẑ0 + ζh,

(3.2)

We denote

Φh,τn = (1Zh + τAh)−n

which is clearly invertible as Ah is maximal monotone. Moreover, we recall the following estimate ([25], Thm.
2.7)

∀z0 ∈ Z, ‖Φ(tn)z0 − Φh,τn z0‖Z ≤ cst
h2 + τ

tn
‖z0‖Z , n ≥ 0. (3.3)

Finally, we also introduce ẑh0 = Phẑ0 and

Bh,τ = τ(1+ τAh)−1Bh = τΦh,τ1 Bh,

such that the discrete-time dynamics (3.2) rewrites{
zh,τk+1 = Φh,τ1 zh,τk +Bh,τντk+1, 0 ≤ k ≤ n− 1,

zh0 = ẑh0 + ζh,
(3.4)
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3.2. Discretization of the estimator

Using a quadrature rule to approximate the integrals in (1.8), we obtain the following time-discretized
criterion:

J h,τ
n (ζh, (ντk )1≤k≤n) =

1

2

(
ζh, (PhΠ0P

h∗)−1ζh
)
Z+

1

2

n∑
k=1

κ2τ‖ντk‖2U

+
1

2

n−1∑
k=0

τγ‖yδk − Chz
h,τ
k|ζh,(ντk )0≤k≤n

‖2Y . (3.5)

We denote by

zh,τk|n = zh,τk|ζ,(ντk )1≤k≤n
, zh,τ|n = (zh,τk|n)1≤k≤n, ντ|n = (ντk )1≤k≤n,

and by (ζ̄h,τ|n , ν̄h,τ|n ) the minimizer of the full-discretized criterion J h,τ
n . This minimizer generates a trajectory

z̄h,τ|n . As in the continuous case, we can easily prove the following theorem

Theorem 3.1. The minimizer (ζ̄h,τ|n , ν̄h,τ|n ) of J h,τ
n satisfies

ζ̄h,τ|n = Πh
0 q̄

h,τ
0|n , ν̄k|n = QτBh,τ∗q̄h,τk|n, k = 1, · · · , n,

where Qτ = κ−2τ−1
1U , Rh,τ = γτ1Yh , Πh

0 = PhΠ0P
h∗ and



z̄h,τk+1|n = Φh,τ1 z̄h,τk|n +Bh,τQτBh,τ∗q̄h,τk|n, 0 ≤ k ≤ n− 1,

z̄h,τ0|n = ẑh0 +Πh
0 q̄

h,τ
0|n ,

q̄h,τk|n = Φh,τ∗1 q̄h,τk+1|n + Ch∗Rh,τ
(
yδk − Chz̄

h,τ
k|n
)
, 0 ≤ k ≤ n− 1,

q̄h,τn|n = 0.

(3.6a)

(3.6b)

(3.6c)

(3.6d)

Proof. We recall that we are in the case of the minimization of strictly convex quadratic functional in finite
dimension under a linear discrete-time dynamics constraint, hence we have one and only one minimizer. We
then introduce the following Lagrangian

L h,τ
n (zh,τ|n , qh,τ|n , ντ|n) =

1

2

(
zh,τ0|n , (Π

h
0 )−1zh,τ0|n

)
Z +

1

2

n∑
k=1

κ2τ‖ντk‖2U

+
1

2

n−1∑
k=0

τγ‖yδk − Chz
h,τ
k|n‖

2
Y

+

n−1∑
k=0

(
qh,τk+1|n, z

h,τ
k+1 − Φ

h,τ
1 zh,τk −Bh,τντk+1

)
Z (3.7)

and minimizing J h,τ
n in the finite dimensional Hilbert space Zh × Un under the constraint of the discrete-

time dynamics (3.4), is equivalent to find the saddle point of L h,τ
n . Derivating L h,τ

n , we obtain in particular
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for 0 < k < n,

∀ξ ∈ Zh,
〈
Dzh,τ

k|n
L h,τ
n (zh,τ|n , qh,τ|n , ντ|n), ξ

〉
Zh = −τγ

(
yδk − Chz

h,τ
k|n, C

hξ
)
Y +

(
qh,τk|n, ξ

)
Z −

(
qh,τk+1|n, Φ

h,τ
1 ξ

)
Z .

When applied to the stationary point (z̄h,τ|n , q̄h,τ|n , ν̄τ|n), we get (3.6c) for 0 < k < n− 1, while for k = n,

∀ξ ∈ Zh,
〈
Dzh,τ

n|n
L h,τ
n (zh,τ|n , qh,τ|n , ντ|n), ξ

〉
Zh =

(
qh,τn|n, ξ

)
Z ,

leads to (3.6d). And for k = 0,

∀ξ ∈ Zh,
〈
Dzh,τ

0|n
L h,τ
n (zh,τ|n , qh,τ|n , ντ|n), ξ

〉
=
(
zh,τ0|n , (Π

h
0 )−1ξ

)2
Z − τγ

(
yδ,h0 − Chzh,τ0|n , C

hξ
)
Y −

(
qh,τ1|n , Φ

h,τ
1 ξ

)
Z ,

gives (3.6b) for the stationary point as soon as we extend the Lagrange multiplier definition up to q̄h,τ0|n in (3.6c).

Finally, we have

∀µ ∈ U ,
〈
Dνh,τ

k|n
L h,τ
n (zh,τ|n , qh,τ|n , ντ|n), µ

〉
U =

(
νh,τk|n , µ

)
U −

(
Bh,τ∗qh,τk+1|n, µ

)
U ,

which coupled to

∀λ ∈ Zh,
〈
Dqh,τ

k+1|n
L h,τ
n (zh,τ|n , qh,τ|n , ντ|n), λ

〉
Z =

(
zh,τk+1 − Φ

h,τ
1 zh,τk −Bh,τντk+1, λ

)
Z ,

gives (3.6a) at the stationary point.

The analogous version of Theorems 1.13–1.14 in the fully discrete case is stated as follows:

Theorem 3.2. We have the following identity:

z̄h,τk|n = ẑh,τ−k +Πh,τ−
k q̄h,τk|n, ∀0 ≤ k ≤ n+ 1, (3.8)

where (ẑh,τ−k , Πh,k−
k )

k≥0
are defined by


ẑh,τ−0 = ẑh0 ,

ẑh,τ+
n = ẑh,τ−n +Πh,τ+

n Ch∗Rh,τ
(
yδn − Chẑh,τ−n

)
, n ≥ 0,

ẑh,τ−n+1 = Φh,τ1 ẑh,τ+
n , n ≥ 0,

(3.9a)

(3.9b)

(3.9c)

and 
Πh,τ−

0 = Πh
0 ,

Πh,τ+
n =

[
(Πh,τ−

n )−1 + Ch∗Rh,τCh
]−1

, n ≥ 0,

Πh,τ−
n+1 = Φh,τ1 Πh,τ+

n Φh,τ∗1 +Bh,τQτBh,τ∗, n ≥ 0.

(3.10a)

(3.10b)

(3.10c)

We recall that Φh,τ1 is invertible, hence Πh,τ−
n+1 is positive definite if Πh,τ+

n is. This recursively ensures that
Πh,τ−
n is well defined and positive definite for all n.



22 M. AUSSAL AND P. MOIREAU

The discrete-time dynamics (3.9) defines the discrete-time optimal sequential estimator as we clearly follow
the definition (3.14) from the identity (3.8). The equations of (3.9) constitute what is called the prediction/cor-
rection algorithm for the discrete-time Kalman estimator as initially developed by R.E. Kalman in his seminal
paper [31]: (3.9) consists in the step of prediction of the observer and filter (3.10b), which is followed (or pre-
ceded) by the correction step given by (3.9b). This prediction/correction algorithm can be seen as a splitting

algorithm of the continuous-time dynamics (1.27). Indeed, we find that ẑh,τ+
n+1 follows the one-step time scheme.

ẑh,τ+
n+1 = Φh,τ1 ẑh,τ+

n +Πh,τ+
n+1 C

h∗Rh,τ
(
yδ,hn+1 − ChΦ

h,τ
1 ẑh,τ+

n

)
, (3.11)

which is a consistent time scheme of order 1 in τ of (1.27), as soon as the discrete covariance operator converges
to the continuous covariance operator as it will be proved in Section 3.3.

We also want to point out that a simple computation gives for all n > 0

Gh,τn = Πh,τ+
n Ch∗Rh,τn

= Πh,τ+
n Ch∗Rh(ChΠh,τ−

n Ch∗ +Wh,τ )(ChΠh,τ−
n Ch∗ +Wh,τ )−1

= Πh,τ+
n (Ch∗Rh,τCh + (Πh,τ−)−1)Πh,τ−Ch∗(ChΠh,τ−

n Ch∗ +Wh,τ )−1

= Πh,τ−
n Ch∗

(
ChΠh,τ−

n Ch∗ +Wh,τ
n

)−1
, (3.12)

An alternative formula of the Kalman gain. Finally, note that from the Sherman-Morrison-Woodbury identity,
we also have an alternative formula for Πh,τ−

n+1 where the inversions are performed in the observation space,
namely for all n > 0

Πh,τ+
n+1 = Πh,τ−

n+1 −Π
h,τ−
n+1 C

h∗[ChΠh,τ−
n+1 C

h∗ +Wh,τ
]−1

Ch,τΠh,τ−
n+1 . (3.13)

Proof of Theorem 3.2. We proceed by induction:

� We have from (3.6b),

z̄h,τ0|n = ẑh0 +Πh
0 q̄

h,τ
0|n = ẑh,τ−0 +Πh

0 q̄
h,τ
0|n ,

which is exactly the formula (3.8) for k = 0.
� Let us assume that the formula (3.8) is satisfied for all i ∈ {0, 1, . . . , k}. Since

z̄h,τk+1|n = Φh,τ1 z̄h,τk|n +Bh,τQτBh,τ∗q̄h,τk|n,

we deduce

z̄h,τk+1|n = Φh,τ1

(
ẑh,τ−k +Πh,τ−

k q̄h,τk|n

)
+Bh,τQτBh,τ∗q̄h,τk|n.

Taking into account the equations giving ẑh,τ+
k and Πh,τ+

k from ẑh,τ−k and Πh,τ−
k respectively, we obtain

z̄h,τk+1|n = Φh,τ1

(
ẑh,τ+
k −Gh,τk

(
yδk − Cẑ

h,τ−
k

))
+ Φh,τ1

(
Πh,τ+
k +Gh,τk ChΠh,τ−

k

)
q̄h,τk|n+1 +Bh,τQτBh,τ∗q̄h,τk+1|n

= Φh,τ1 ẑ+
k − Φ

h,τ
1 Gh,τk

(
yδk − Ch

(
ẑh,τ−k +Πh,τ−

k q̄h,τk|n
))

+ Φh,τ1 Πh,τ+
k q̄h,τk|n +Bh,τQτBh,τ∗q̄h,τk+1|n.
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We deduce from the hypothesis on k,

z̄h,τk+1|n = Φh,τ1 ẑh,τ+
k − Φh,τ1 Gh,τk

(
yδk − Chz̄

h,τ
k|n

)
+ Φh,τ1 Πh,τ+

k q̄h,τk|n +Bh,τQτBh,τ∗q̄h,τk+1|n.

The equation (3.10b) giving ẑh,τ−k+1 from ẑh,τ+
k implies that

z̄h,τk+1|n = ẑh,τ−k+1 − Φ
h,τ
1 Gh,τk

(
yδk − Ch,τ z̄

h,τ
k|n

)
+ Φh,τ1 Πh,τ+

k q̄h,τk|n +Bh,τQτBh,τ∗q̄h,τk+1|n.

Replacing q̄h,τk|n using (3.6c), we obtain

z̄h,τk+1|n = ẑh,τ−k+1 − Φ
h,τ
1 Gh,τk

(
yδk − Chz̄

h,τ
k|n

)
+ Φh,τ1 Πh,τ+

k

(
Φh,τ∗1 q̄h,τk+1|n + Ch∗Rh,τ

(
yδk − Ch,τ z̄

h,τ
k|n

))
+Bh,τQτBh,τ∗q̄h,τk+1|n

= ẑh,τ−k+1 − Φ
h,τ
1

(
Gh,τk −Πh,τ+

k Ch∗Rh,τ
)(

yδk − Chz̄
h,τ
k|n

)
+
(
Φh,τ1 Πh,τ+

k Φh,τ∗1 +Bh,τQτBh,τ∗
)
q̄h,τk+1|n.

Using (3.10c) defining Πh,τ−
k+1 from Πh,τ+

k , we deduce that

z̄h,τk+1|n = ẑh,τ−k+1 +Πh,τ−
k+1 q̄

h,τ
k+1|n − Φ

h,τ
1

(
Gh,τk −Πh,τ+

k Ch∗Rh,τk

)(
yδk − Chz̄

h,τ
k|n

)
.

Therefore, we have proved that z̄h,τk+1|n = ẑh,τ−k+1 +Πh,τ−
k+1 q̄

h,τ
k+1|n, namely the formula (3.8) is satisfied at step

k + 1, which ends the proof by induction.

From Theorem 3.2, we see that the discrete-time Kalman filter is exactly the discrete-time optimal sequential
estimator in the sense of the following definition.

Definition 3.3. The discrete-time optimal sequential estimator is defined by

∀n ∈ N, ẑh,τn = z̄h,τn|n. (3.14)

This definition then allows to justify the discrete-time Kalman filter optimality in a purely deterministic
framework, far from the original stochastic setting envisioned by R.E. Kalman in his seminal work [31].

3.3. Space-time convergence analysis

From the prediction-correction splitting time scheme (3.10) we can deduce a one-step recursive formula for
the discretized covariance operator Πh,τ−

n . Indeed by combining (3.13) and (3.12), we have for all n ∈ N

Πh,τ−
n+1 = Φh,τ1 Πh,τ−

n Φh,τ∗1 +Bh,τQτBh,τ∗ −Πh,τ+
n Ch∗Rh,τChΠh,τ−

n , (3.15)

which ensures that the discretized covariance operator Πh,τ+
n satisfied a discrete-time version of (1.18) with for

all n ∈ N

Πh,τ−
n = Φh,τn Πh,τ

0 Φh,τ∗n +

n−1∑
k=0

Φh,τk Bh,τQτBh,τ∗Φh,τ∗k −
n−1∑
k=0

Φh,τn−kΠ
h,τ+
k Ch∗Rh,τChΠh,τ−

k Φh,τ∗n−k. (3.16)
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In fact, (3.16) mixes Πh,τ+
n and Πh,τ−

n . However, using (3.9c) or (3.13), we will prove – see the next proposition
proof – that

∀n > 0, ‖Πh,τ+
k −Πh,τ−

k ‖ = O(h).

Moreover, a variant of (3.16), namely

Πh,τ−
n = Φh,τn Πh,τ

0 Φh,τ∗n +

n−1∑
k=0

Φh,τk Bh,τQτBh,τ∗Φh,τ∗k

−
n−1∑
k=0

Φh,τn−kΠ
h,τ+
k Ch∗[Rh,τChΠh,τ−

n Ch∗Rh,τ +Rh,τ ]ChΠh,τ+
k Φh,τ∗n−k, (3.17)

recursively ensures that Πh,τ−
n satisfies

∀n > 0, 0 < Πh,τ+
n ≤ ‖Πh,τ

0 ‖+ T‖Bh,τ‖ (3.18)

and identically from (3.9c), Πh,τ+
n > 0

We can now propose a full space-time numerical analysis of the Riccati solution, in the spirit of what was
done in [26] for a space discretization only.

Theorem 3.4. Let Π be the solution of Problem (1.18) in C1([0, T ],J2(Z)), and (Πh,τ−
n )n∈N ∈ (J2(Zh))N the

solution of (3.16). We have

lim
h,τ→0

sup
k∈[0,n]

‖Πh,τ−
k − PhΠ(tk)Ph∗‖2 = 0.

Proof. Our proof is inspired by Theorem 3 of [26], with the additional treatment of the time discretization. We
first compute

‖Πh,τ−
n − PhΠ(tn)Ph∗‖2 =

∥∥∥∥Φh,τn Πh,τ
0 Φh,τ∗n +

n−1∑
k=0

Φh,τk Bh,τQτBh,τ∗Φh,τ∗k

−
n−1∑
k=0

Φh,τn−kΠ
h,τ+
k Ch∗Rh,τChΠh,τ−

k Φh,τ∗n−k

− PhΦ(tn)Π0Φ
∗(tn)Ph∗ −

∫ tn

0

PhΦ(s)BQB∗Φ∗(s)Ph∗ ds

+

∫ tn

0

PhΦ(tn − s)Π(s)C∗RCΠ(s)Φ∗(tn − s)Ph∗ ds

∥∥∥∥
2

.

Therefore, we have

‖Πh,τ−
n − PhΠ(tn)Ph∗‖2 ≤ ehinit + eτquad +

n−1∑
k=0

[eh,τk,obs + eh,τk,err]

where

ehinit =
∥∥Φh,τn Πh,τ

0 Φh,τ∗n − PhΦ(tn)Π0Φ
∗(tn)Ph∗

∥∥
2
,
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and

eτquad =

∥∥∥∥ ∫ tn

0

PhΦ(tn − s)Π(s)C∗RCΠ(s)Φ∗(tn − s)Ph∗ ds−
∫ tn

0

PhΦ(s)BQB∗Φ∗(s)Ph∗ ds

−
n∑
k=0

τPhΦ(tn − tk)Π(tk)C∗RCΠ(tk)Φ∗(tn − tk)Ph∗ −
n∑
k=1

τPhΦ(tk)BQB∗Φ∗(tk)Ph∗
∥∥∥∥

2

,

are combined with a summation of terms of the form

eh,τk,obs =
∥∥Φh,τn−kΠh,τ+

k Ch∗Rh,τChΠh,τ−
k Φh,τ∗n−k − τP

hΦ(tn − tk)Π(tk)C∗RCΠ(tk)Φ∗(tn − tk)Ph∗
∥∥

2
,

and

eh,τk,err =
∥∥Φh,τk Bh,τQτBh,τ∗Φh,τ∗k − τPhΦ(tk+1)BQB∗Φ∗(tk+1)Ph∗

∥∥
2
.

We now proceed to the estimation of each term. Using Lemma 3 of [26], we first have

lim
h→0
τ→0

eh,τinit = lim
h→0
τ→0

∥∥Φh,τn [PhΠ0P
h∗]Φh,τ∗n − Ph[Φ(tn)Π0Φ

∗(tn)]Ph∗
∥∥

2
= 0.

Identically, we show from Bh,τ = τΦh,τ1 PhB and Qτ = τ−1κ−2 = τ−1Q that

lim
h→0
τ→0

τ−1eh,τk,err = lim
h→0
τ→0

∥∥Φh,τk+1[PhBQB∗Ph∗]Φh,τ∗k+1 − P
h[Φ(tk+1)BQB∗Φ∗(tk+1)]Ph∗

∥∥
2

= 0.

The term associated with the observation operator is more intricate. First we decompose

eh,τk,obs ≤
∥∥Φh,τn−kΠh,τ+

k Ch∗Rτ,hChΠh,τ+
k Φh,τ∗n−k

− τPhΦ(tn − tk)Π(tk)C∗RCΠ(tk)Φ∗(tn − tk)Ph∗
∥∥

2

+
∥∥Φh,τn−kΠh,τ+

k Ch∗
{
Rh,τChΠh,τ−

n Ch∗Rh,τ
}
ChΠh,τ+

k Φh,τ∗n−k
∥∥

2
,

Then, we remark that

‖Rh,τChΠh,τ−
n Ch∗Rh,τ‖ = O(τ2).

We obtain

lim
h→0
τ→0

τ−1eh,τk,obs = lim
h→0
τ→0

∥∥Φh,τn−kΠh,τ−
k Ph∗C∗RCPhΠh,τ−

k Φh,τ∗n−k
− PhΦ(tn − tk)Π(tk)C∗RCΠ(tk)Φ∗(tn − tk)Ph∗

∥∥
2
.
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Following the exact same computation as in Proof of Theorem 3 of [26] we obtain

∥∥Φh,τn−kΠh,τ−
k PhC∗RCPh∗Πh,τ−

k Φh,τ∗n−k

− PhΦ(tn − tk)Π(tk)C∗RCΠ(tk)Φ∗(tn − tk)Ph∗
∥∥

2

≤ c1st
∥∥Πh,τ−

k − PhΠ(tk)Ph
∥∥

2
+ c2st

∥∥Ph∗PhΠ(tk)−Π(tk)
∥∥

2

+ c3st
∥∥Φh,τn−k[PhΠ(tk)C∗RCΠ(tk)Ph]Φh,τ∗n−k

− Ph[Φ(tn − tk)Π(tk)C∗RCΠ(tk)Φ(tn − tk)]Ph
∥∥

2

Again, the last term tends to 0 from Lemma 3 of [26], whereas the second term goes to 0 with h.
Finally, let us analyze the error eτquad introduced by replacing the integral form with a quadrature rule. We

introduce

Γt : [0, t] 3 s 7→ Φ(t− s)Π(s)C∗RCΠ(s)Φ∗(t− s),

which belongs to C0([0, t],S+). Indeed, it is the mild solution of

{
Γ̇t(s) +AΓ(s) + ΓA∗(s) + Et(s) = 0, s ∈ (0, t)

Γt(0) = Φ(t)Π0C
∗SCΠ0Φ

∗(t)

with

Et(s) = Φ(t− s)Ξ(t)C∗SCΠ(t)Φ(t− s) + Φ(t− s)Π(t)C∗SCΞ(t)Φ(t− s)

and Ξ = Π̇ ∈ C0([0, T ],S+) since in our case Π ∈ C1([0, T ],S+). Furthermore, taking (z1, z2) ∈ Z, we have

υΓ(0)(z1, z2) = (Γ(0)z1, A
∗z2)Z + (A∗z1,Γ(0)z2)Z

= (CΠ0Φ
∗(t)z1, CΠ0Φ

∗(t)A∗z2)Y + (CΠ0Φ
∗(t)A∗z1, CΠ0Φ

∗(t)z2)Y

= (CΠ0Φ
∗(t)z1, CΠ0A

∗Φ∗(t)z2)Y + (CΠ0A
∗Φ∗(t)z1, CΠ0Φ

∗(t)z2)Y

We have chosen Π0 ∈ D(Υ), hence υΠ0
is bounded and

∣∣υΓ(0)(z1, z2)
∣∣ ≤ ‖C‖2‖υΠ0

‖‖Φ(t)‖2‖z1‖Z‖z2‖Z ,

hence, Γ(0) ∈ D(Υ) which implies that Γt ∈ C1([0, t],S+). From Peano’s Kernel Theorem [22],

∥∥∥∥∫ tn

0

Γtn(s) ds−
n∑
k=1

τΓtn(tk+1)

∥∥∥∥ ≤ τ2

2
sup

s∈[0,tn]

‖Γ̇tn(s)‖.

Therefore, we find that

lim
h→0
τ→0

eτquad = 0.



KERNEL REPRESENTATION OF KALMAN OBSERVER AND ASSOCIATED H-MATRIX BASED DISCRETIZATION 27

Combining all the estimations, we finally get that there exists εh,τ satisfying limh,τ→0 ε
h,τ = 0 and a constant

cst such that

‖Πh,τ−
n − PhΠ(tn)Ph∗‖2 ≤ εh,τ + cst

n∑
k=1

τ‖Πh,τ+
k − PhΠ(tk)Ph∗‖2,

which yields the theorem by Gronwall’s inequality.

Note that convergence analysis of Riccati problems has been widely studied, in particular when considering
space discretization [34], even with more general unbounded observation and control operators. Our result,
in the wave of [14, 26], gives convergence in the class of Hilbert-Schmidt operators. This will validate our
choice of numerical tools, aka H-matrices, adapted to such operators with kernel. Moreover, our choice of
time discretization corresponds to the discrete-time Kalman filter hence fills the gap between the deterministic
approach and the Kalman filter as it is understood in a stochastic framework, when the time-sampling is studied,
see for instance the recent analysis in [1].

4. H-matrix based algorithm

4.1. Matrix-based algorithm

We consider a spatial discretization using Pk Lagrange finite elements and denotes by (ϕi)1≤i≤Nz the asso-
ciated basis functions where Nz = dim(Vh). Typically for a given vh ∈ Vh, we associate the vector of degrees of
freedom in vh ∈ RNz such that

vh ∼ vh =

 v1

...
vNz

⇔ vh(x) =

Nz∑
i=1

vhi ϕi(x), x ∈ Ω.

Note that here, we consider only the degrees of freedom associated with an actual unknown of the problem,
namely after elimination of the Dirichlet conditions for instance. We then define for all Vh × Vh 3 (vh, uh) ∼
(vh,uh) ∈ RNz ×RNz ,

vhᵀMhuh = (vh, uh)Z , vhᵀKhu = (vh, uh)V ,

The discretization of the bilinear form reads similarly

vhᵀAhuh = a(vh, uh), Vh × Vh 3 (vh, uh) ∼ (vh,uh) ∈ RNz ×RNz .

We further introduce the invertible matrix

Φh,τ1 = (Mh + τAh)−1Mh,

and

Bh,τ = τ(Mh + τAh)−1MhBh,

where with dim(U) <∞,

Vh 3 vh ∼ vh ∈ RNz , vhᵀMBhν = (vh, PhBν)Z .
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Moreover, the operator Qτ is already finite dimensional leading to Qτ = κ−2τ−1
1.

Finally for the observations, as we assume that they are available at each discretization node, hence Ch is
simply the matrix selecting the observed nodes, such that

yh,ᵀMh
obsC

hzh = (yh, C
hzh)Y , Vh × Yh 3 (zh, yh) ∼ (zh, yh) ∈ RNz ×RNy

with

yᵀ
1Mh

obsy2 = (yh1 , y
h
2 )Y , Yh × Yh 3 (yh1 , y

h
2 ) ∼ (yh1 , y

h
2 ) ∈ RNy ×RNy

Then, Ch∗ is discretized by (Mh)−1ChᵀMh
obs and Rh,τ by Rh,τ = γτMh

obs.
We now proceed to the matrix-based formulation of the discrete-time Kalman filter following the initial

algorithm introduced by [32]. It starts with the initialization-step:

ẑh,τ−0 ∼ Ph(ẑ0), (4.1a)

Πh,τ−
0 = Mh(AhᵀAh)−sMh, (4.1b)

and then alternates with a correction-step:

ẑ+
n+1 = ẑ−n+1 + Πh,τ+

n+1 ChᵀRh,τ
(

y δn+1 − Cẑ−n+1

)
, n ≥ 0. (4.2a)

Πh,τ+
n+1 =

[
(Πh,τ−

n+1 )−1 + ChᵀRh,τCh
]−1

, n ≥ 0. (4.2b)

followed by a prediction-step:

ẑh,τ−n+1 = Φh,τ1 ẑh,τ+
n , n ≥ 0, (4.3a)

Πh,τ−
n+1 = Φh,τ1 Π+

nΦh,τᵀ1 + Bh,τQτBh,τᵀ, n ≥ 0, (4.3b)

Note that the above algorithm is well defined because Φh,τ1 is here an invertible matrix. This implies, indeed,

that Πh,τ−
n+1 and Πh,τ+

n+1 are invertible for all n.
We deduce by mixing the prediction step (4.3) and the correction step (4.2), a one-step time scheme for the

covariance matrix

Πh,τ+
n+1 = Φh,τ1 Πh,τ+

n Φh,τᵀ1 + Bh,τQτBh,τᵀ

− Φh,τ1 Πh,τ+
n Ch,ᵀ

(
ChΠh,τ+

n Chᵀ + (Rh,τ )−1
)−1

ChΠh,τ+
n Φh,τᵀ1 , n ≥ 0, (4.4)

where we have used the Sherman–Morrison–Woodbury formula [48].
Let us now compute, with the obtained matrices and

Φh,τ1 = (1+ τ(Mh)−1Ah) = 1− τ(Mh)−1Ah +O(τ2),

the Taylor expansion

Πh,τ+
n+1 Mh −Πh,τ+

n Mh

τ
=− (Mh)−1Ah

(
Πh,τ+
n Mh

)
−
(
Πh,τ+
n Mh

)
(Mh)−1Ahᵀ

+ Bh,τQτBᵀMh

−
(
Πh,τ+
n Mh

)
(Mh)−1ChᵀMh

obsC
h(Mh)−1

(
Πh,τ+
n Mh

)ᵀ
+O(τ2),
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which is consistent with the Riccati dynamics of Π(tn). This confirms that the Mh-symmetrical matrix Πh,τ+
n Mh

is the matrix representative of Πh,τ+
n . The same result holds for Πh,τ−

n Mh is the matrix representative of Πh,τ−
n .

We deduce that Πh,τ−
n and Πh,τ+

n are in fact the degrees of freedom representative of the kernel πh,τ−(x, x′) ∈
H1(Ω×Ω) and πh,τ+(x, x′) ∈ H1(Ω×Ω) which converges in L2(Ω×Ω) to the kernel π(x, x′, tn). In other words,
using Pk finite elements, we have

∀(xi, xj) ∈ Th, Πh,τ−
n,ij = πh,τ−(xi, xj) = Πh,τ−

n,ji ,

and identically

∀(xi, xj) ∈ Th, Πh,τ+
n,ij = πh,τ+(xi, xj) = Πh,τ−

n,ji .

4.2. H-matrix representation

Hierarchical matrices have been first introduced recently (see e.g. [10, 11, 29, 30]) in the context of Partial
Differential Equations in order to compress the matrices that typically come from their discretization when using
the Boundary Element Method. The main intuitive idea behind this is that the matrices discretize operators
acting on spatial functions. The operators under consideration are typically obtained by discretizing convolution
operators with Green functions or kernel operators. In the construction of H-matrices, the spatial unknowns
are recursively scattered into smaller and smaller boxes in a dyadic tree. The interactions between groups of
unknowns of different boxes at different levels correspond to additional diagonal blocks in the matrix and can
be approximated using a low-rank representation. It turns out that this approximation can be very accurate for
regular kernels and leads to a compressed approximation to the original block. Namely, if one considers a block
B of size m× n in the original matrix, and approximate it to the desired accuracy by a matrix B̃ of rank r, one
can compute r pairs of vectors (ui, vi)1≤i≤r such that

B ' B̃ =

r∑
i=1

uiv
ᵀ
i .

Since, ui ∈ Rm and vi ∈ Rn, storing B̃ requires only r(m+ n) data which is much lower than mn if the rank r
is much smaller than min(m,n).

Remarkably, H-matrices not only provide a way to compress matrices in a problem but allow the user to
perform algebraic operations, such as additions, multiplications or matrix inversions. Those operations are by
now classical and we refer to [10, 30] for their practical implementations which lead to a complete algebra. A
native Matlab version, openHmx, developed by M. Aussal1 is also available on an open source basis inside the
Gypsilab software [2].

We have proved that the covariance operator of the Kalman filter is associated with a kernel of certain
regularity, see Theorems 2.3 and 2.4. We have also shown a comparison principle (1.26). Since Φ is the semigroup
associated with the heat-like equation, our comparison principle ensures that the operator has lower and upper
bounds represented by low-rank operators generated by the first modes of A and the directions introduced by
B. All these theoretical elements justify that the Kalman filter algorithm defined by (4.1)–(4.3)–(4.2) can be
well approximated by an H-matrix representation once the following conditions are satisfied:

C1 – the covariance initialization (4.1b) can be proved to be well approximated by an H-matrix;
C2 – the H-matrix linear algebra can recursively detect the H-matrix evolution compression when performing

(4.2b) and (4.3b).

For the first condition C1 we know that FEM -based matrices as in (4.1b) are well represented by the H-matrix
formalism, with a controlled tolerance [6]. We have introduced a method to obtain a hierarchical representation

1The software can be dowloaded at https://github.com/matthieuaussal/gypsilab/tree/master/openHmx

https://github.com/matthieuaussal/gypsilab/tree/master/openHmx
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of a sparse operator and its inverses. We consider a spatial partition of the degrees of freedom with a binary tree
leading to the classical 2x2 block partition. For a sparse matrix, during the subdivision steps, far interactions
lead to empty leaves (without data) and close interactions lead to sparse leaves. Only the sparse leaves are
subdivided recursively to the deepest part of the tree. This choice allows us to limit the size of the full leaves
that appear during the inversion of the sparse leaves to optimize the hierarchical storage of the inverse matrix.
For example, in Figure 4, a hierarchical sparse matrix is similar to a renumbering with hierarchical permutations,
and the inverse is well compressed. Only the diagonal leaves are full (red) and the rank of the extra-diagonal
leaves is weak (blue), regardless of the size of the block.

To satisfy the second condition C2, we develop an iterative strategy to follow the evolution of the H-matrix
representation through the prediction and the correction to preserve the hierarchical structure over time. In
particular, the correction requires special treatment. Considering Π−n+1 an H-matrix representing the covariance
matrix at the unknowns degrees of freedom, and C a sparse matrix, representing the reduction matrix from
the unknowns degrees of freedom to the measurement degrees of freedom, Kalman filtering must first calculate
the reduction product CΠ−n+1Cᵀ. This operation is performed in the hierarchical domain, converting the sparse
restriction matrix into an H-matrix. However, if the number of measurements is much smaller than the number
of unknowns, the standard algebra may no longer be efficient enough to move from one space to another. This is
because the transition matrices C become rectangular, which has a large impact on memory and computational
cost, as the low-rank representation loses effectiveness. For example, using a low-rank representation P = XY ᵀ

with P ∈ Mmn, X ∈ Mmr and Y ∈ Mnr, the case m � n leads to m ≈ r, which is clearly inefficient. To
circumvent this limitation in this particular case, we develop a special H-matrix builder, with a recursive
construction directly from the result of CΠ−n+1Cᵀ, instead of successive algebraic operations. Finally, the H
matrix algebra is used at each step of the algorithm, constantly transitioning from state space to measurement
space and vice versa. This allows us to maintain a maximum compressibility rate of the operators throughout
the process, enabling the computation of large systems. We note that our approach has an analogy with the
much more comprehensive H-matrix study [27], but the structure of our matrix equation differs as we consider
the H-matrix of the discrete-time Kalman filter.

5. Numerical illustrations

5.1. The 1D heat example

We consider a 1D heat equation on the domain Ω = (0, 1) with homogeneous Dirichlet conditions. The
state space is therefore Z = L2(0, 1) whereas V = H1

0(0, 1). The observation domain is ω = (0.3, 0.6), namely
Y = L2(0.3, 0.6). Therefore C is the restriction operator to ω and C∗ extend a function defined in ω by 0 in
Ω\ω. Additionally, we define B ∈ L(R,Z) such that for all x ∈ [0, L] and ν ∈ R, (Bν)(x) = ν1Ω(x). We then
have

B∗z =

∫
Ω

z dx.

Concerning the initial condition of the covariance operator, we can choose in this 1D case

∀(u, v) ∈ V, as(u, v) = (∇u,∇v)L2(Ω)(0,1).

Indeed here, the eigenvalue associated with the Laplacian on (0, 1) with Dirichlet boundary conditions are given
by λi = π2i2 and ui = x 7→ sin(iπx) is a Hilbert basis of L2(0, 1). Therefore, by choosing Π0 = −∆−1

0 , we have

Π0ui =
1

π2i2
and

∑
i≥1

1

π2i2
<∞,

hence, Π0 ∈ J2 and obviously Π0 ∈ D(Υ).
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% Estimation parameters

covInit = 1;

covObs = 1e-2;

covError = 1e-2;

% Dynamics

[L,U] = lu(M+dt*K);

PHI = (U \ (L \ M));

% Kalmann operators

P = covInit * M*inv(K)*M;

Bdt = dt * (MpdtK \ B);

Q = covError/dt;

BQBt = Bdt*Q*Bdt ’;

W = inv(C*M*C’).* covObs/dt;

% Implicit scheme

for t = 1:Nt+1

% Correction

Mz = inv(C*P*C’ + W);

yhat = yhat + P*(C’*(Mz*(zh(:,t)-C*yhat)));

P = P - P*C’*Mz*C*P;

% Prediction

yhat = MpdtK \ (M*yhat);

P = PHI*P*PHI ’ + BQBt;

end

% Estimation parameters

covInit = 1;

covObs = 1e-2;

covError = 1e-2;

tol = 1e-6;

% Dynamics;

Mh = hmx(Xunk ,Xunk ,M,tol);

Kh = hmx(Xunk ,Xunk ,K,tol);

[Lh ,Uh] = lu(Mh+dt*Kh);

PHIh = (Uh \ (Lh \ Mh));

% Kalmann operators

Ph = covInit * Mh*inv(Kh)*Mh;

Bdt = dt * (MpdtK\B);

Q = covError/dt;

BQBth = hmx(Xunk ,Xunk ,Bdt*Q,Bdt ’,tol);

Wh = inv(hmx(Xmes ,Xmes ,C*M*C’,tol) ).*( covObs/dt);

% Implicit scheme

for t = 1:Nt+1

% Correction

CPCth = hmxBuilderPrj(Xmes ,Xmes ,C,Ph,C’,tol);

Mzh = inv(CPCth + Wh);

CtPzCh = hmxBuilderPrj(Xunk ,Xunk ,C’,Mzh ,C,tol);

yhat = yhat + Ph*(C’*(Mz*(zh(:,t) - C*yhat)));

Ph = Ph - Ph * CtPzCh * Ph;

% Prediction

yhat = MpdtK \ (M*yhat);

Ph = PHIh * Ph * PHIh ’ + BQBth;

end

Table 1. Matlab Code listing for a simple Kalman filter implementation and its corresponding
H-matrix version in Gypsilab.
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From a numerical point of view, we discretize the problem with P1 finite element and choose grids from
N = 103 to N = 104 elements. We have Nz = N − 2 and the initial covariance Πh,τ+

0 = Mh(Kh)−1Mh can be
stored in a full format. Then, Πh,τ−

n and Πh,τ−
n can be computed in full format, following the algorithm built

on (4.2)–(4.3), and implemented as in the script presented in Table 1-(top) – see the illustrative time-steps of
the kernel evolution presented in Figure 1.

This allows to proceed to the numerical verification of Theorem 3.4. In this respect we consider a fine
discretization h1 = 10−4, τ1 = 10−3 and coarser discretizations 10−4 ≤ h2 ≤ 10−3, 10−2 < τ2 < 10−3 with
τ2/τ1 ∈ N. We expect to compute for tn = nτ2 = k(τ2/τ1)τ1 with 0 ≤ n ≤ T/τ2,

‖Ph2

h1
Πh1,τ1,−
n Ph2∗

h1
−Πh2,τ2,+

n ‖2 =

( ∑
1≤i≤Ny

(
eh2
i ,
[
Ph2

h1
Πh1,τ1,+
n Ph2∗

h1
−Πh2,τ2,−

n

]2
eh2
i

)
L2(0,1)

) 1
2

where Ph2

h1
∈ L(Zh1 ,Zh2) is the orthogonal projection from Zh1 to Zh2 and (eh2

i )1≤i≤Ny is the finite element

basis of Zh2 . Therefore, we get using matrices

‖Ph2

h1
Πh1,τ1,−
n Ph2∗

h1
−Πh2,τ2,+

n ‖2 =

( ∑
1≤i≤Ny

eh2ᵀ
i Mh2

[
Ph2

h1
Πh1,τ1,−
n Mh1Ph2ᵀ

h1
Mh2 −Πh2,τ2,−

n Mh2
]
eh2
i

) 1
2

with Ph2

h1
= (Mh2)−1Ih2

h1
– while Ih2

h1
∈ RN2×N1 is the interpolation matrix from the grid of step h1 to the grid of

step h2 – and its corresponding adjoint Ph2ᵀ
h1

.Mh2 . We obtain

‖Ph2

h1
Πh1,τ1,−
n Ph2∗

h1
−Πh2,τ2,−

n ‖2 = ‖Ih2

h1
Mh1Πh1,τ1,−

n Mh1Ih2ᵀ
h1
−Mh2Πh2,τ2,−

n Mh2‖F (5.1)

where ‖·‖F denotes the Frobenius matrix norm. This last identity allows us to investigate the convergence of
the Kalman filter algorithm in dense format when h and τ tend to 0. The convergence results are presented in
Figure 2 (Top), hence illustrating Theorem 3.4.

In the same Figure 2 (Bottom), we also numerical illustrate the approximation by an H-matrix Π̃h,τ,ε,−
n of

the covariance operator Πh,τ,−
n as the tolerance ε tends to 0. At final time T = 1 and ε = 10−6, the H-matrix

Π̃h,τ,ε,−
n is only represented by a low rank matrix of d = 6 vectors (wk)1≤k≤d plotted in Figure 3. Namely we

have

Π̃h,τ,ε,−
NT

=

d∑
k=1

wᵀ
kwk ' Πh,τ,−

NT
.

One existing numerical question is whether a low rank strategy based on Riccati operator reduction [35, 46]
could have given the same type of results directly without relying on the H-matrix machinery. We typically
could have thought on directly projecting the initial covariance matrix on

Em = span(e0, e1, . . . , em),

where (ui)1≤i≤m are the first m eigenvectors of the Laplacian with Dirichlet conditions and e0 = (1− τA)−1w ∈
D(A) ∈ V is defined from the vector w = 1Ω used to construct B∗. Indeed in Figure 3 we recognize e0 as very

close to the first vector w1 in the low rank representation of Π̃h,τ,ε,−
NT

. This is natural with respect to the
Duhamel-like formula (1.18) and the comparison principle in Section 1.6.2.
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Figure 1. Kernel evolution π(x, x′, t) at different time step t = 0, τ, 2τ, 5τ, 10τ, 100τ , approxi-
mated with πh,τ,−n ∼ Πh,τ,−

n , with n ∈ {0, 1, 2, 5, 10, 100}.
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Figure 2. Convergence results with respect to the space-discretization, time-discretization and
the H-matrix representation precision.

To investigate numerically this question, we can compute a sort of distance between the vector spaces Em
and the space W6 = span(w1, · · · , w6) as m increases. In this respect, we use the quantity introduced in [47]

θm = min

 sup
v∈W6

‖v‖=1

d(v, Em), sup
v∈Em
‖v‖Z=1

d(v,W6)

 .
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sup
v∈Em
‖v‖Z=1

d(v,Wd) = sup
v∈Em

inf
w∈Wd

‖v − w‖2Z
‖v‖2Z

.

Computing the distance, can be done numerically based on the following computation. We introduce the
Grammian matrices

Λd = ((wi, wj)Z)1≤i,j≤d, Λm = ((ui, uj)Z)0≤i,j≤m, Λn,m = ((wi, uj)Z) 1≤i≤d
0≤j≤m

.

As we have the following decomposition

∀w ∈ Wd, w =
∑

1≤i≤d

wiwi, with w =

w1

...
wd

 ∈ Rd,
we can compute

d(v,Wd) = inf
w∈Rd

wᵀΛdw + vᵀΛmv − 2wᵀΛd,mv

vᵀΛdv
.

As the minimum is obtained in w = Λ−1
d Λd,mv, we get

sup
v∈Em

d(v,Wd) = sup
v∈Rm

{
R(Λm − Λ′d,mΛ−1

d Λd,m,Λm, v) =
vᵀ(Λm − Λ′d,mΛ−1

d Λd,m)v

vᵀΛmv

}
,

where we recognize the supremum of the Rayleigh quotient with real symmetric matrices, hence corresponding
to the largest eigenvalue of the eigenvalue problem

(Λm − Λᵀ
d,mΛ−1

d Λd,m)v = λΛmv.

Therefore by solving two eigenvalue problems, we easily compute numerically

θm = min
(

max
v∈Rm

R(Λm − Λ′d,mΛ−1
d Λd,m,Λm, v), max

w∈Rm
R(Λd − Λd,mΛ−1

m Λᵀ
d,m,Λd,w)

)
,

giving a space-similarity index between 0 and 1, as plotted in Figure 3 (right). We see here that the first 3

vectors could have been envisioned a priori in the decomposition of Π̃h,τ,ε,−
N , whereas, we need much more

eigenvectors to represent the additional 3 vectors. Our H-matrix formulation offers therefore a real new point
of view with respect to reduced-based strategy with a priori reduction of the covariance operator.

5.2. The 2D heat example

We now proceed to a 2D case Ω = (0, 1)2 with an observation domain ω = (0.3, 0.6)2. The eigenvalue
associated with the Laplacian on (0, 1)2 with Dirichlet boundary conditions are given by λi,j = π2(i2 + j2)
and ui = x 7→ sin(iπx) sin(jπx). We choose Π0 = ∆−1

0 ∈ L(L2(Ω),H2(Ω)). As H2(Ω) ⊂ L∞(Ω), we know that
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Figure 3. (Left) final normalized base of vector generating the low rank approximation Πh,τ,ε
T .

(Right) Dissimilarity index between subspace Wh,k and Eh,k.

Figure 4. H-matrix evolution for the heat equation.
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Figure 5. Geometry, mesh and initial condition of the advection-diffusion problem.

Figure 6. H-matrix evolution for the advection-diffusion equation.

Π0 ∈ J2(Z) – see Section 1.8.4 of [3]. This is also confirmed by

∑
(i,j)∈N2

1

λ2
i,j

=
∑
k∈N2

∑
(i,j)∈N2

i2+j2=k2

1

r4
=
∑
k∈N2

r2
2(k2)

r4
< +∞,

where r2
2(k2) = ]{(i, j) ∈ N2 | i2 + j2 = k2} < k2.
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Figure 7. Direct solution and corresponding state estimator for the advection-diffusion
problem: first time steps.
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Figure 8. Direct solution and corresponding state estimator for the advection-diffusion
problem: larger time steps.
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We discretize the square with h = 10−3 in each direction, leading to 106 degrees of freedom for the full
discretized problem. Storing the dense matrix representation of Πh,τ,+

n and Πh,τ,−
n require at each iteration n.

However, with our H-matrix representation, we circumvent the curse of dimensionality and the memory cost
diminishes through time as the covariances become closer and closer to a low rank operator. This is illustrated
in Figure 4, where we plot the H-matrix representation through time.

5.3. An advection diffusion example

Finally, we propose a final illustration of our approach through the more involved advection-diffusion example
in a circular geometry see Figure 5. The advection field is orthoradial to be compatible with the boundary
condition and the target initial solution is a Gaussian function positioned north-east with observation on the
south-east quadrant. The H-matrix evolution is pictured in Figure 6 while the estimation results are presented
in Figure 7-8, illustrating the algorithm performance on this more advanced case.
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[8] A. Bensoussan, Estimation and Control of Dynamical Systems. Interdisciplinary Applied Mathematics. Springer, Cham (2018).

[9] A. Bensoussan, M.C. Delfour, G. Da Prato and S.K. Mitter, Representation and Control of Infinite Dimensional Systems,
second edition. Birkhauser Verlag, Boston (2007).
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