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Abstract

We address the problem of deterministic sequential estimation for a nonsmooth dynamics gov-
erned by a variational inequality. An example of such dynamics is the Skorokhod problem with
a reflective boundary condition. For smooth dynamics, Mortensen introduced in 1968 a nonlinear
estimator based on likelihood maximisation. Then, starting with Hijab in 1980, several authors
established a connection between Mortensen’s approach and the vanishing noise limit of the robust
form of the so-called Zakai equation. In this paper, we investigate to what extent these methods can
be developed for dynamics governed by a variational inequality. On the one hand, we address this
problem by relaxing the inequality constraint by penalization: this yields an approximate Mortensen
estimator relying on an approximating smooth dynamics. We verify that the equivalence between
the deterministic and stochastic approaches holds through a vanishing noise limit. On the other
hand, inspired by the smooth dynamics approach, we study the vanishing viscosity limit of the
Hamilton-Jacobi equation satisfied by the Hopf-Cole transform of the solution of the robust Zakai
equation. In contrast to the case of smooth dynamics, the zero-noise limit of the robust form of the
Zakai equation cannot be understood in our case from the Bellman equation on the value function
arising in Mortensen’s procedure. This unveils a violation of equivalence for dynamics governed by
a variational inequality between the Mortensen approach and the low noise stochastic approach for
nonsmooth dynamics.
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1 Problem setting

In this paper, we consider the problem of estimating the deterministic state resulting from a nonsmooth
dynamical system given an observation. The system state is the solution of a variational inequality,
and both the state dynamics and the observation are subjected to disturbances. We aim at finding
the “best” deterministic estimate of the state from the observation. The state estimation of various
fundamental examples motivates our problem. This includes: a) elasto-plasticity (transition from elastic
and plastic phases) [14], b) dry friction (transition from static and dynamic phases) [6] or c¢) impacts
(switch of velocity at the instant of contact with an obstacle) [5]. The state variable in these models is
non-differentiable at the transition from one phase to another, and variational inequalities are well-suited
to describe such situations

As a an example of simple representative nonsmooth dynamics, we study the Skorokhod problem with
a reflective boundary condition at 0. We then consider the R*-valued state variable z = (x(t))e[o,7)
solution of the variational inequality (VI)

Vae te[0,T], V220, (f(z(t)) +w(t) —z(t))(z —x(t)) <0, (1)

where f : R — R is a Lipschitz function from R to R, and the state disturbance w : [0,7] — R is a square
integrable function. The map ¢ — x(t) is continuous and differentiable almost everywhere. Adequate
conditions of existence and uniqueness for this classical system are stated in [7]. When f = 0, z is
solution of the deterministic Skorokhod problem [34, p.231]. Given ¢ € R™, the deterministic Skorokhod
problem is to find a pair (z, k) satisfying the following four conditions: 1) z is a non negative continuous
function with given initial value ¢ at ¢ = 0, 2) k is a continuous non increasing function vanishing at 0,

3) x(t) + k(t) = C+ Séw(s)ds and 4) k varies only when z = 0. For this simple constrained dynamics,
the solution is explicit:

x(t) + k(t) =+ th(s) ds where k(t) := min min<0; ¢+ JSW(T) d7>.

0 0<s<t 0

Figure 1 illustrates the above trajectory.
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Figure 1: Example of a trajectory with an oscillating Séw(s)ds. ¢+ Séw(s)ds is represented in black,
k in gray and x in red. The “upward push" k ensures that the resulting state variable x stays positive.
Pushes occur only when x = 0.

To link the dynamics (1) to the available observation, we model the measurement procedure using an
observation map h € C?(R*,R). The observation is related to dynamics (1) by

Vi =0, y(t) = h(z(t)) +n(t), (2)



where 7(t) € R is the observation disturbance. We follow the usual convention in stochastic filtering,
denoting the left hand side (lhs) of (2) by y. However, in most deterministic observation problems, the
lhs of (2) is denoted by y. The interest of the filtering convention will become clear when connecting
deterministic and stochastic settings. In the deterministic framework, we introduce the notation {Z(t)}+>0
to denote the state trajectory (intended to correspond to the actual behavior of a real system). We refer to
it as the (partially) observed trajectory, since from it, a measurement procedure produces the observation
{9(t)}+=0. From now on we consider that observations are fixed. In this setting, n : t — y(t) — h(&(t),t)

is a measurement error. Both the state and observation disturbances are unknown but we will assume
that they are small in L? norm, as detailed below.

Based on the available information {g(t)};>0, we aim at designing a causal estimator — also called
observer — of the partially observed trajectory {#(t)};=0. The observer should be understood in the sense
of [24]. This observer is a causal estimator, in the sense that the estimation at time ¢ > 0 only depends
on the measurements {§(s)}o<s<¢- In other words, the observer is non-anticipative.

For smooth dynamical systems, an “optimal” deterministic approach to non-linear system filtering is
proposed by Mortensen [28]. This procedure relies on the minimisation of an energy functional. This
energy relates to the likelihood that the state variable produces a given observation — up to disturbances —
on a finite time interval, the final time value of the state being imposed. The lower the energy of a target
state, the more likely the state is. The Mortensen filter is the minimiser of this energy, also known, since
then, as the minimum energy estimator [18, 23]. Moreover, for smooth dynamical systems, Mortensen
also proposes a differential equation for the dynamics of this estimator. This equation is based on the
computation of the energy which is solution, in the viscosity sense, of a Hamilton-Jacobi-Bellman(HJB)
dynamics [20, 16]. This provides an efficient sequential strategy for estimating nonlinear dynamical
systems.

We want to investigate to what extent the Mortensen formalism can be extended to the nonsmooth case
of the Skorokhod problem with a reflective boundary condition at 0. Given (w,() € L?(0,t) x [0, ),
there exists a continuous function z, ¢ satisfying (1) with x(0) = ¢, x|, ¢ being differentiable almost
everywhere. We then define the finite energy

t

T(w,Cot) = (0 + f Ueo(), Ty (5), 5)ds,

0

where ¢ : Rt — R* is locally Lipschitz and
1, 1, )
b, s) = S+ 2[is) — M@

If (w*,¢*) € L%(0,t) x [0,00) is the unique (respectively one of the) minimizer(s) of J, then the (respec-
tively one of the) most likely state(s) of & is x|« ¢~. Let us fix the terminal state x at the terminal time
t. Given the observation {(s),0 < s < t}, the cost-to-come to the point z at time ¢ is defined by

Vi) = inf TG0, )

where the admissible set is defined as

Ans = {(0.6) € ZH0.) % [0.2), 0lt) = o
The Mortensen estimator is then defined as

Vi =0, &(t):=argminV(x,t;9(.)), when the minimizer is unique. (4)
zeR

In the smooth setting, the cost-to-come is proven to be a viscosity solution of a HJB with initial condition
1. This enables the sequential computation of the cost-to-come, and then of the Mortensen estimator
Z(t) as a minimizer of x — V(x,t). From the nonsmooth dynamics given by the variational inequality
(1), a Mortensen estimator ¢ — @(t) could still be defined as a minimizer of x — V(z,t). However, the
HJB equation for the corresponding cost-to-come ) remains unclear.
In the smooth setting, several authors established a connection between the Mortensen approach and the
vanishing noise limit of stochastic filtering methods, see e.g. [18, 20, 16]. The central tool in stochastic



filtering is the Zakai equation, whose solution is an unnormalised version of the conditional density of
the state given the observation [38, 21, 37]. The minimum energy approach is then recovered as the
vanishing noise limit of the robust form (path-wise form) of the Zakai equation. A proof of this fact
can be found in [18], using probabilistic tools from the large deviation theory. The stochastic filtering
framework has been similarly applied to the Skorokhod problem, see e.g. [32]. Therefore, it sounds
plausible that the HJB equation on the cost-to-come (3) can be obtained as a vanishing noise limit of
the stochastic filtering procedure for the Skorokhod problem. However, we will see that the picture is
more subtle for this nonsmooth dynamics, because the zero-noise limit of the stochastic approach does
not provide the desired equation for the deterministic cost-to-come.

The paper is organized as follows. In Section 2, we propose an approximation of the Mortensen estimator
using a penalization approach. This penalization approach reviews in the same time the general results
related to the Mortensen estimator in the smooth case. In Section 3, we start from the non-smooth
stochastic filtering procedure and perform a vanishing noise limit similar to the smooth case. This limit
provides a candidate for the HJB equation that the cost-to-come (3) should solve. In Section 4, we
interpret the solution of this latter HJIB equation as the value function of a control problem. We then
show that this value function cannot be identified to the cost-to-come (3) related to the nonsmooth
dynamics (1). This breaks the equivalence between small noise stochastic filtering and the Mortensen
deterministic estimation.

2 The penalized case

We begin our study by considering a smooth dynamics version of the Skorokhod problem where the
boundary constraint is penalized. This allows us to review all the basic ingredients that lead to the
Mortensen estimator, paving the way for the nonsmooth problem. In addition, the penalized dynamics
provides a way to define an approximate Mortensen estimator from measurements associated with the
nonsmooth problem, as an alternative to obtain the Mortensen estimator directly from the nonsmooth
problem.

2.1 An approximate Mortensen estimator from nonsmooth dynamics penal-
ization

We relax the boundary constraint of the underlying dynamics (1) for the energy V(z,¢;9(.)). The
inequality is replaced by a nonlinear equation with a drift penalizing the solution whenever it takes
negative values. We then introduce a modified cost-to-come V*(z,t;y(.)) whose definition is similar to
V(z,t;9(.)) in (3), except that A, ; is replaced by

Af = {(w, () € L?(0,t) x R, 32" that satisfies #* = f*(z") + w, a.e. with 2"(0) = ¢, 2"(t) = z}.

Here 2" is an approximate version in R of (1) where
() = fr(z"(t)) + w(t), ae t>0, (5)
a"(0) = ¢,

the penalty function f* being a C! approximation of the Moreau-Yosida regularisation of f§ : x
kmax(—z,0) + f(z). For large enough x > 0, we require that f* agrees with the Moreau-Yosida
regularisation over (—oo,—x~1) U Ry, and that the slope of f* belong to [—2k,0] for x € (—x~1,0).
This is possible because f is Lipschitz continuous. The additional term k max(—zx,0) vanishes as soon
as ¥ > 0, and introduces a drift of strength x towards the non-negative half-line as soon as x < —x 1.
This term is also responsible for a drift of strength between 0 and 2k towards the non-negative half-line
when —k~! < 2 < 0. As k — +00, the solution of (5) converges towards the solution z of (1) in the max
norm on any finite time interval, using techniques analogous to the Moreau-Yosida regularisation [7].
We then define a relaxed version of the Mortensen estimator as follows:

Vi =0, &"(t):=argminV"(x,t;y(.)), (6)
zeR



under the condition of existence and uniqueness of such a minimizer for the function x — V*(z, ¢;y(.)).
In V%(x,t;9(.)), we point out that the the given observation ¢(.) was produced — up to measurement
errors — from a target system & governed by a variational inequality. In other words, the trajectory x*,
generated from g(.) by the penalized dynamics, adds a model error to the already present measurement
error. For the ease of reading, we will now write V*(z,t) = V*(x, t;9(.)).

2.2 The HJB equation for the cost-to-come with penalized dynamics

If we consider an optimal control pair (wjjo,¢], ¢ ) for the “cost-to-come” problem with terminal state = at
time ¢ then for any intermediate time ¢ — 7 between the times 0 and ¢, the part of this control enclosed
by the times 0 and ¢ — 7, namely w[g,;—,], remains optimal for the “cost-to-come” problem with terminal
state xfw’c(t — 1) at time ¢ — 7. This is summarized by the following theorem proved in [20].

Theorem 2.1 (Bellman’s principle). Let 0 < t; <t3 <, and choose (w,() € A} ;. Then, we have

to

1% (Zliﬁj’c(tg),tg) <P (a:ﬁu)c(tl),tl) -I—L 14 <w(s),xﬁu’<(3),s> ds.

where if, - = fﬁ(f‘:ﬁu,g) + w.

We here want to emphasize the importance of the reversibility in time of the penalized problem to

properly define the cost-to-come. Indeed, we can consider =%, : 7 — z"(t — 7) following the dynamics

—a (T) = fH(25 (7)) + w(7) with 2.,(0) = z. In this way, we find that A%, # & and Aj, =
U  {(w,zk,(t)}. The infinitesimal version of Bellman’s principle above becomes (7).

weL2(0,t)

Using the previous definition and Bellman’s principle, we obtain, as a direct adaptation of [20], that the

dynamics followed by the cost-to-come V* is given by the following HJB equation

(7)

OV (z,t) + H(x, t, 0,V (x,t)) =0, (z,t) e R x R*
Vi(2,0) = ¢(x), zeR

where the Hamiltonian is given by

M, 1, 3) 1= max [A(F(2) + ) — fw,,1)] = %)\2 SR () — % 5(6) — h(@)]?. (8)

weR

Clearly, the notion of solution of (7) should be specified and, for the sake of completeness we recall the
classical definition of a viscosity solution in R.

Definition 2.1. Let U € CO(R" x (0,7);R). We say that U is a viscosity subsolution of (7) provided
that for all ¢ € CHR™ x (0,T);R), if U — ¢ attains a local maximum at (x,t) then

Ord(x,t) + H(x,t, 0pp(x,t)) <O0. (9)

We say that U is a viscosity supersolution of (7) provided that for all $ € CLH(R™ x (0,T);R), if U — ¢
attains a local minimum at (x,t), then

Ord(x,t) + H(x,t, 0pp(x,t)) = 0. (10)

If U is both a viscosity subsolution and supersolution, we say that U is a viscosity solution of (7).

We then have the following theorem.
Theorem 2.2. The cost-to-come (x,t) — V*(x,t) defined above is a viscosity solution of (7).

In the context of the initial nonsmooth dynamics, we would like to understand the initially defined cost-
to-come V as a solution in the viscosity sense of a HIB equation. However, we see that (7) gives little
intuition of the potential HJB solution candidate when x — co.



2.3 The cost-to-come with penalized dynamics seen as the limit of a stochas-
tic filtering problem

In the context of smooth problems such as our penalized dynamics, bridges between the deterministic
problem introduced by Mortensen and the more general stochastic filtering framework, were introduced
in [18, 19] and further developed in [20]. In the context of small noise in the stochastic setting, this
allows us to understand the solution of the HJB equation (7) as a vanishing viscosity limit of a value
function formed from the conditional measure of the state knowing the observation up to the current
time. We assume that we can exploit such equivalence bridges to propose a candidate dynamics for our
originally defined cost-to-come V in the case of nonsmooth dynamics.

Let us then introduce a small noise amplitude € > 0, together with the nonlinear filtering problem in R

AX[F = fA(X[0)dt + EdBY,
dY/F = h(XF9)dt + y2dB2, (11)
with the initial condition (X;*°, Yy"¢) = (&,0).

for independent brownian motions (B});>0 and (B?)i>¢. To give a rigorous meaning to this, consider
Q := Cy([0,0); R?) the set of continuous functions vanishing at 0, endowed with the topology of uniform
convergence on compact sets. Let F denote the Borel o-field on . For each ¢t > 0 and w € €, define
Bi(w) := w(t) and set F; := o{Bs, 0 < s < t} (the o algebra generated by B up to time t). In this way,
forall 0 < s <t, Fs € F; and F = 0 (UroF,). We complete the triple (Q, F, {F;}) with the Wiener
measure P. We recall that the Wiener measure (see Karatzas & Shreve 1991) is the unique probability
measure on (Q, F) satisfying for all 0 < s < t and I' € B(R?),

1 v — Bs?
P(BielF) = 50— L exp (_2(15—8)) w

Here V¢ = ((1,¢2) € R?, ||[¢|? := ¢} + (3. Note that since {By = 0} = ), we have P(By = 0) = 1.
Consider now ¢ > 0, a state £ > 0 and a continuous bounded function h : R — R, which admits a
continuous bounded derivative. To assign a meaning to (11), consider the mapping w(.) — (z*(.),y"(.))
from Co ([0, T]; R?) to C([0,T]; R?) where for every t > 0,

ﬂﬂﬂ:§+Lf%ﬂf@ms+ww%m

fﬂﬂ:LMﬁﬂm®+w%%)

-1
is well-defined and continuous. If we denote this continuous map by ¢;° then P ((bg’s) , the push

forward measure of IP by ¢*%, is the pathwise law associated with (X", Y"¢) solving (11). The filtering

problem now aims to compute the measure-valued process (m; %), , defined as

20
JR pdmi”® = E[p(X{%)|o (V) ococt] »

for any bounded continuous ¢ : R — R, o (Y*¢), <s< being the o-algebra generated by the observation
Y€ up to time t. This estimate of ¢(X;°) is optimal in the least-square sense, given the knowledge
of Y/ up to time ¢t. An evolution non-linear equation called be the Kushner-Stratonovich equation
can be derived for 7§ using a sophisticated representation formula involving the innovation process, see
for instance [1]. Let’s focus on a rather simple approach which relies on the unnormalized conditional
measure [1]

a (V)

1 [t 1 [t
dpf® :=E — | w(X®HYAYE — — | R2(X5)d X
JRLP Pt [exp [\/5_[0 ( s ) s 2€L ( s ) S:|(p( t ) ogsgt]7

which can be linked to 7;*¢ by the Kallianpur-Striebel formula: for any continuous bounded function ¢

f @dp;*
_ JR

J pdr " = =S——.
R J dpf’a
R



This formula in this case is an analogous of Bayes’ formula, see [22, 33, 1]. The density ¢"¢(x,t) of p;°
with respect to the Lebesgue measure solves the linear stochastic partial differential equation (SPDE)

{dq”"f(ﬂc,t) =A% q"(x,t) + Lh(z)q™ (x,t)dY,™", (x,t) e R x RT (12)

¢ (z,0) = qp° (), x e R.

This is the Zakai equation, to which a rigours meaning is given in [38, 30, 1]. The operator A} _ is the
formal L? adjoint of

€
—02, + O,
2 rxr f
The asymptotic behavior of ¢"¢(z,t) is studied in [20] as ¢ — 0. Instead of directly dealing with the
Zakai equation, they performed the transform [13, 36]

Am,a =

PG, t) = exp (= Zy(Oh(x)) g (e, 1), (13)

for a given realisation (y(t))o<i<7 of (V")

[9, 11, 2J:

o<t<7> Which leads to the robust form of Zakai equation

1
Orp™e (z,t) — %aﬁxpms(z, t) + g% (z,t)0:p™ (x, t) + gP“’E(x,t)p”*E(z,t) =0, (z,t)eRxR*, (14)
p*e(z,0) = q5° (), relR,

where g"(x,t) = f*(x) — y(t)h' (z) and
P (et) = Th3(a) + Y1) An oh(x) — Sy O @)+ 20(F (@) — y(OH'(2)).

Detailed computations can be found in appendix 5.1. By the logarithmic transformation — also known
as Hopf-Cole transform —

5% (w,t) = —elog p™*(z,1), (15)

the robust form of Zakai equation can be converted into a HJB equation on §™¢(z,t)

atS"’E(CC,ﬂ n H”’E@;‘,t, awsn,s) _ 20'332”8;@,67 ($7t) eReR™, (16)
8% (2,0) = S5(x), rek

where 1
HY (2,8, A) = Ag™(x,t) + 5)\2 — P*e(x, t).

The £ — 0 limit of ¢"<(x,t) is then obtained by studying that of $*(x,t). The limit function S*(z,t)
formally satisfies the HJB equation

S (x,t) + H" (2,t,0,8") =0, (x,t) e Rx RT, a7
§*(2,0) = S§(2), reR,
where

H(x,t, \) = A\g™ (z,t) + %)\2 — P (z, 1),

1 1
PP (a,t) = 3h3(@) + y(O (@) f(2) = SyP O (@)
In [20], the authors then establish a link between stochastic and deterministic estimation by proving that
Vi(x,t) = S"(x,t) — y(t)h(),

using a uniqueness result for the vanishing viscosity solutions of (17). As a by-product, they obtained
the following asymptotic approximation

g™ (z,t) ~ exp [—iV“(w,t)] , as €0, (18)



understood — after taking the logarithm and multiplying by & — as pathwise uniform convergence over
compact sets. At this point, we recall that the observation g(.) was produced — up to measurement
errors — from a target system & governed by a variational inequality. Consequently, the density ¢"¢(z,t)
generated from g(.) contains a model error due to the finiteness of . It sounds reasonable to expect (18)
to be true as kK — 400, when replacing ¢"° by the density obtained in the nonsmooth setting, and V*
by the cost-to-come V in (3). However, the lost equivalence, shown in the next sections, suggests that
(18) is no more true in the nonsmooth setting,.

3 Vanishing viscosity limit of the stochastic filtering problem re-
lated to the constrained dynamics

3.1 The stochastic filtering problem for the constrained dynamics

The stochastic filtering framework provides a way to extend the previous results to the limit case kK — o0
where the dynamics is constrained. This provides a candidate HJB equation that can be explored to
define a Mortenten estimator for variational inequality dynamics. Since the full probabilistic framework
is much more complicated, we only outline the main ingredients presented in [34] and we set f = 0 for
the sake of conciseness. The resulting HJB is then rigorously analyzed as such in the next section.
Following [34], let us consider the stochastic variational inequality in R,

Y progressively measurable process Z, V0 < s <
(2, — X2) (vedBE — dXE) + (L Za, (X2)dr <
dYf = h(X;)dt + /edBZ,

with the initial condition (Xo,Yp) = (¢, 0),

2

t

with Zg, denoting the convex characteristic function of Ry (equal to 0 within Ry and +c0 outside).
Following [34, page 239], we say that a triple (X¢,Y®, K¢), an R3-valued stochastic process, is a solution
of (19), if the following conditions are satisfied P almost surely (a.s.)

1. X¢,Y¢, K¢ are progressively measurable with continuous path and Ky = 0,
2.Vt=>0,X7 >0,

3. VT = 0,||K¢|r < o0,

4.Vt =0, X§ + Kf = ( ++/eB}, and YE—SO (X2)ds + /B2,

5. Y0 < s <t Vze[0,00), §i(z — X5)dK: <0

Since the diffusion coefficients in front of B; and B, are constant, we may fix an arbitrary w € ) and
regard (19) as a deterministic problem with forcing {(B} (w), BZ(w)), t = 0}.

Still following [34], we say that a triple (a¢,y, k®) is a solution of the generalized Skorokhod problem
GS°, if the following conditions hold:

1. z¢,y°, k° are continuous, 2°(0) = ¢ and k°(0) = 0,

2.Vt > 0,25(t) >0,

3. k% € BVne([0,0): R),

4.Vt =0, 2°(t) + k°(t) = € + /ew'(t), and y°( So s))ds + y/ew?(t),
5. Y0 < s <t ¥z € [0,00), §L(2 — 2°(r))dke(r) < 0.

Theorem 3.1. [34, Theorem 4.17 page 252] Assume h to be sufficiently smooth, xg € [0,00) and m(.)
is a continuous function with m(0) = 0. Then the GS®(xg, m) has a unique solution.

Theorem 3.2. [34, Theorem /.16 page 247] The mapping (xg, m) — (2°,y°) = G5 (xg, m) is continuous
from [0,0) x C([0,T];R) — C([0, T]; R?).



Theorem 3.3. [34, Theorem 4.18 page 257] The stochastic variational inequality (19) has a unique
solution (X¢,Y¢, K¢) progressively measurable with continuous path in the sense of the definition above.

Remark 3.4. When f = 0, finding a solution to the VI (1) with the disturbance function w(.) as an
input and  as initial condition at time 0 is equivalent to finding a solution to the deterministic Skorokhod
problem with ¢ and the integral of w as inputs. However, the stochastic Skorokhod problem in (19) is
solved with ¢ and w as inputs. This allows to define a continuous mapping as shown in [34, Theorem 4.16
page 247]. With this mapping, a push forward of the Wiener measure is used to establish the solution to
the stochastic Skorokhod problem with ( and two Wiener processes with variance € as inputs.

The stochastic filtering problem of reflected diffusions has been tackled in [29, 32, 27, 26, 2]. As in section
2.3, the unnormalized conditional density ¢°(z,t) can be defined for the stochastic filtering problem of
the constrained dynamics, and it solves the Zakai equation with boundary condition

€
t
d¢é(z,t) = %(ﬁmqf(x,t) + 7 (Z’ )de, (z,t) e RT x R
¢ (0,z) = g§(x) reRT, (20)
0:q°(t,0) =0, teRT,

for which a rigorous meaning is given in [29, 30, 31]. Given a realisation (y(t))o<t<r Of (Yi)o<i<rp, the

change of variable
1
P (1) = exp( = Zy(Oh(@) )¢ (1), (21)

now leads to the robust Zakai equation with boundary condition

orp (z,t) — y(O)W (2)0p® (z,t) + 1’Pe(ac,t)ps( t) = 6mp (z,t), (z,t) e Rt x R*
y()H (x) , (22)
%aﬂ:pe(t70) + 7p6(07t) :Ov tER+,

where

Pe(a,0) = 5h%(@) — SyOR" () — SO @) (23)

Details on this derivation are given in appendix 5.1. By the Hopf-Cole transform

S¢(x,t) = —elogp®(z,1t), (24)

the robust Zakai equation can be converted into the following HJB equation with boundary condition

S (z,t) + HS (2,1, 0,5%(x,t)) = fﬁnga(x,t), (r,t) e RT x RT,
536(0, £) — y(£)h(0) = 0, te R (25)
§%(x,0) = —elogp*(z,0),

the Hamiltonian 1% being defined in (26) as
R+ X R+ X R - R
Hs : { 26
: (@02 > 5 = Ml () — P, ) 20

3.2 Viscous Hamilton-Jacobi equation on &°

For the sake of generality, we assume in this section that f # 0, with only f(0) = 0 to avoid additional
technical problems at the boundary — see Remark 3.5 for comments on the completely general case.We
assume that f and y are bounded C! functions with bounded first derivatives, and h is a bounded C?
function with bounded derivatives up to order 2 .

Starting from the stochastic filtering problem of the constrained dynamics and inspired by [20], we
introduce the Hamilton-Jacobi equation (27) formally satisfied by the Hopf-Cole transform of the solution
of the robust Zakai equation as done in the previous section, see (25). We prove a stability result that



allows us to recover, in the vanishing viscosity limit, what we will interpret in section 4.1 as a deterministic
limit of the stochastic filtering problem. Consider

0,5°(2,1) + H5 (@, b, 0,8 (x, 1)) = 363185(33, 1), reRY, >0,
~0,8(0,1) = —y ()1 (0), z=0, t>0, (27)
SE(LU,O) :SO(‘T)? reRy, t=0,

for some initial condition: Sy € BUC(R;R) (Bounded Uniformly Continuous), the Hamiltonian Hg
being defined for € > 0 as

Ry xRy xR - R

M () = o+ das(ont) = |55 0Lk - S @) + <drgs(on)]
29
where by analogy with [20], we set
as(,t) = 1(2) — (O (), )

L. := gaiz + f(x)ax

Contrary to James and Baras [20] who started from the stochastic setting, this deterministic equation
will be our starting point, not requiring any previous result on the robust Zakai equation with boundary
conditions, and defining S¢ as solution of (27) rather than as the value function resulting from a dynamic
programming approach.

Remark 3.5. If f(0) # 0, the second line of equation (27) reads instead
—0,8°(0,t) = —y ()W (0) — 2£(0), x=0, t>0.

We may add an appropriate smooth, bounded perturbation of bounded derivatives to S¢, defining for
imstance:

Se(x,t) 1= S (x,t) — 2z f(0)e ™,

s0 that —0,S%(x,t) = —0,8%(x,t) +2f(0). We thus recover a function satisfying a closely related viscous
Hamilton-Jacobi equation whose Hamiltonian can be easily computed. That new Hamiltonian satisfies
the same sufficient properties for the rest of the section, and the boundary condition of the new equation
does not involve f. Hence, similar results will hold, so to avoid unnecessary technicalities, we choose to

take f(0) = 0 hereafter.
3.3 The Vanishing Viscosity Limit Procedure
We denote the formal limit of HS as e — 0 by

R, xR, xR — R
H5~{ + X By X (30)

2 T 2
(,t,0) = A+ Ags(a,t) — PG —y(t) f(a) (2) + Syt (2)]%
The main theorem of the section is the following stability result.

Theorem 3.6. Assume that f,y € C}(R1;R) and h € C}(R4;R) are bounded with first (and second for
h) bounded derivatives, and So € BUC(R4;R). Then:

(7) for all € > 0 the second order evolution Hamilton-Jacobi equation (27) admits a unique smooth
solution S¢.

(¢1) The Hamiltonian H% defined in (28) converges locally uniformly as e — 0 to the limiting Hamiltonian
Hs of equation (30),

10



(ii1) S° converges locally uniformly as e — 0 to a continuous function we denote by S,

(iv) S is the unique viscosity solution of the limiting Hamilton-Jacobi equation below, in the sense of
Definition 3.1.

0:S(x,t) + Hs(x, t,0.S(x,t)) =0, reRY, t>0,
—0:8(0,t) = —y(t)h'(0), x=0,t>0, (31)
S(z,0) = Sp(z), zeR,, t=0.

Let us recall from e.g. [25, 3] an appropriate notion of solution for the above Hamilton-Jacobi equations
with Neumann boundary condition. Consider the first order Hamilton-Jacobi equation on R

dwu(z, t) + H(z,t,u(z,t), 0pu(z,t)) =0, zeRY,t>0,
B(0,t,u(0,t),,u(0,t)) =0 x=0,t>0, (32)

u(m,t) UO(‘T>7 $€R+,t=0,

for locally Lipschitz H and B, the latter being strictly increasing with respect to its last variable in
the outward normal direction at x: for all R > 0, there exists vg > 0 such that for all (z,t,u,\) €
{0} x Ry x [-R, R] x R,

B(z,t,u, A + an(z)) — B(z,t,u, \) > vga, (33)

where n(z) is the unit outward normal to 0R; at z —so, —1. Note that the satisfaction of this condition
is the reason for the — sign preceding ¢, S(0,¢) in (31), in which:

B(z,t,u,\) = =X + y(t)h'(0).

Definition 3.1. A continuous function u is said to be a viscosity subsolution of equation (32) if it
satisfies that for all p € C* (R, x Ry ;R), at each mazimum point (zo,t0) € Ry x Ry of u — ¢, we have:

If (z0,t0) € RY x RY, (0t + H(-,u, 0,0))(xo,t0) <0,

If (xo,t0) € {0} x RY, min {B(-,u, 0,0)(0,t0) , (04 + H(-,u,0:0))(0,t)} <0,

If (z0,t0) € R x {0}, min {u(xg,0) — up(xo) , (Cedd + H(-,u,0r9))(x0,0)} <0,
If (x0,t0) = (0,0), min {u(0,0) — uo(0) , B(-,u,0:¢)(0,t0) , (¢ + H(-,u,0:¢))(0,0)} <O0.

A continuous function u is said to be a viscosity supersolution of equation (32) if it satisfies that for all
pe C*(Ry x R.;R), at each minimum point (zo,to) € Ry x Ry) of u — ¢, we have:

If (xo,t9) € RY x RY, (0rp + H(-,u, 0x0))(wo,t0) = 0,
If (w0, t0) € {0} x RY,  max{B(,,u,0:9)(0,t0) , (0:¢ + H(-,u,0:0))(0,t0)} =0,
If (xz0,t0) € RY x {0}, max {u(zg,0) — uo(xo) , (O + H(-,u, 0z))(x0,0)} = 0,
If (0, t0) = (0,0), max {u(0,0) — uo(0) , B(,u,0:0)(0,t0) , (0:d + H(-,u,0:))(0,0)} = 0.

A continuous function u is said to be a viscosity solution of equation (32) if it is both a viscosity subso-
lution and supersolution.

Theorem 3.7 (Uniqueness and conditional existence of BUC solutions — Theorem 2.1 in [3]). Assume
the initial condition ug to be bounded and uniformly continuous. Assume H and B to be locally Lipschitz
continuous, and that H is locally uniformly Lipschitz continuous, convex and coercive in its last variable.
Then, if u and v are respectively a bounded upper semi-continuous (u.s.c.) viscosity subsolution and a
bounded lower semi-continuous (l.s.c.) viscosity supersolution of (32), then

u<wv on Qx[0,7T].

Moreover, if such u,v erist and u = v = ug on Q x {0}, then equation (32) admits a continuous unique
viscosity solution.
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Remark 3.8. There are crucial hypotheses of Barles’ theorem above that become immediate in our
one spatial dimension, first order Hamiltonian setting. First, the open set R¥% trivially satisfies that
OR* = {0} € W3®. Second, the structure hypotheses labeled (H1), (H2), and (H3) in [3] are clearly
satisfied by a first order Hamiltonian H and by our boudary condition, and boil down to classical Lipschitz
continuity, converity and coercivity hypotheses.

To consider homogeneous Neumann conditions, let’s work on w®(z,t) := S¢(x,t) — y(t)h(x), instead of
directly S°. w® is given as the solution of

owt(x,t) + HE (z,t, Opw® (z,t)) = gaiwwa(x,t), reRY, t>0,
—0,w* (0, ) = 0, r=0, t>0, (34)
we(xao):wo(x)’ {EERJr, t=0,

provided with some locally bounded, Lipschitz initial condition wg. Local existence and uniqueness is
shown in Section 3.4 and global existence and uniqueness in Section 3.5, Corollary 3.13. The Hamiltonian
He is defined over (z,t,\) e Ry x Ry x R as

HE(2,1,3) 1= 502 + (@) = 5 (h())? = 2f' (&) + Sy (@) + H(Oh(). (35)

Note that this Hamiltonian, its € — 0 limit and all the Hamiltonians considered in this paper satisfy the
hypotheses of Theorem 3.7.

Remark 3.9. With this point of view, it is possible to directly define w® as the solution of equation (34)
after proving that it is well-posed, and to introduce 8¢ as a modification of w®. This allows to consider
S¢ without starting from the general Zakai equation.

Proposition 3.10 (Local uniform convergence of the viscous Hamiltonian). H® converges uniformly
to H in CO(R, x Ry x R, R), where:

H(z, t,\) = %)\2 + Af(x) — %(h(ac))2 + y(t)h(z).

In an analogous way, MG defined in equation (28) converges locally uniformly to Hs defined in equa-
tion (30).

Formally, equation (34) tends to the following:

orw(x,t) + H(z, t, dpw(z,t)) =0, zeR¥, t>0,
—0,w(0,t) =0, =0, t>0, (36)
U)(l‘,O) =w0(9c), zeRy, =0,

where the boundary condition must be understood in the sense of viscosity solutions, as in Definition 3.1.

Remark 3.11. If w is a viscosity solution of (36), the remark in Section 2 of [3] still holds: using well-
chosen test functions, it is possible to prove that the initial condition is satisfied in the classical sense
provided wq is smooth, as in the present case here. For an extension to nonsmooth initial conditions, we
refer to the corresponding chapter of [4].

3.4 Local existence and uniqueness for the solution of (34)

We wish to extend equation (34) to x € R in a way that guarantees that the restriction to x € R of the
solution of the extended equation w satisfies the Neumann boundary condition. Hence, it is sufficient
to construct an extention @ that is even, so d,w is odd. Let us proceed by analogy with a reflection
method presented in [35, Ch. 3| for the heat equation with Neumann boundary condition:

dru(z, t) — ko2, u(z, t) = F(x,t), x>0, t>0,
0,u(0,t) =0, =0, t>0,
u(z,0) = ug(x) x>0, t=0.

12



Let G be the Green heat kernel, defined over (x,t) € R x R, as:

1 z?
Gk(l‘,t) = mexp <_4kt> .

The function .

u(x,t) :=[Gr(- 1) = uo(] - [)](2) +f [Gr(st = s)« F(] - ],5)](x) ds

0
is the Duhamel formulation corresponding to the symetrised equation

Osi(x,t) — ko2 iz, t) = F(|z|,t), x€eR, ¢t >0,
iVL(‘/EﬂO) =’LLO(|!E|), ‘TGR7 t=0,
and its restriction to x € R, satisfies the initial Heat equation with Neumann boundary condition.

In an analogous way, we define the symmetrised Hamiltonian H, taking into account that the variable A
will be expected to be an odd function of x:

~ | RxRy xR —R .
" { (@.6,0) M2l tsn(@)A) = 12 + Ag(x) - Ve(a,1), (87)
with
9(z) = sgn(z) (|2]).
(35)

Vi, 1) = 5 (]))? — (0)h(lal) + < () — Sy (lal).

Note that g for @ corresponds to gs for S, defined in (29). The ‘symmetrised’ version of equation (34)
reads

0u° (2, 1) + HE (2, t, 00 (2, 1)) = gagzws(x, £), zeR, t>0, 59)
’lDE(x,O) :'UNJ(](f), zeR, t=0,

where we use W : © € R — wp(|x|). Note that there is no more Neumann boundary condition.
Let us establish the well-posedness of the equation above.

Theorem 3.12 (Local existence and uniqueness of a solution of (39)). Let € > 0. Let o € L™ n Lip,
and H® € Lip,, w.r.t. A\. Then there exists T > 0 such that there exists a unique smooth solution W° of
equation (39) defined on R x [0,T].

The proof of Theorem 3.12 is a technical, but relatively standard fixed-point method, so for the sake of
conciseness, we will only sketch it.

Proof. We fix e, and assume, in a first step, that H¢ is globally Lipschitz in A\. We prove that for
(z,t) € R x [0, T] with T small enough, the mapping of a Picard iterate to the next is a contraction in
the norm |ul| := ||Ju| = + |0zu|L=. We then extend the result to H® locally Lipschitz in A by applying a
security cylinder method used in [12, Ch.V]. Smoothness follows from that of the Green kernel. O

3.5 Uniform in € bounds on w¢

The main result of this section is the global existence, uniqueness and uniform-in-¢ boundedness of w*®
stated in Corollary 3.13. For the sake of simplicity, we first prove Theorem 3.14: uniform in e estimates
on the even extension w° to R x Ry of w® defined in equation (39).

Our proof strategy in this section is that of James and Baras [20], with the exceptions that we apply it
to w® rather than the extension of &%, that we only have local existence of the solution at fixed e for
now, and that we need to glean a sharper L estimate. The global existence of the solution for each ¢

is a consequence of the uniform bounds (Corollary 3.15), and the exact same proof can then be applied
over [0,T1].

Corollary 3.13. Equation (34) admits a unique solution w® defined globally in time, and w® is locally
bounded in WhH*(R,; C’tl’l) with analogous bounds to those from Theorem 3.1j.
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Theorem 3.14. Assume H satisfies the assumptions of Theorem 3.7, and let T > 0 such that equa-
tion (39) admits a unique smooth solution W over R x [0,T]. Then for every compact subset Q <
R x [0,T] there exists eg > 0 and K > 0 such that for all 0 < ¢ < min(eg, 1), for all (x,t),(x,s) € Q, w°
satisfies:

(i) |0 (2, 1)] < K,
(i) |Op ™ (2, 8)] < K, (40)
(i) [0, 6) = 0 ()| < K (o= s+ [0 = 8] )

Moreover, (i) can be refined into a sharper estimate (iv), where the bound itself does not depend on R.

Namely, for all R > max(8,16g| 1= (w)) there exists g 1= 3501 such that for all0 < e < &g,

(iv) 19| oo (@) < ol Loy + [8(1 + IgllL=®)) + IVE | o @xiory + 1] T + 1. (41)

Corollary 3.15. Equation (39) admits a unique solution w® defined globally in time. Moreover, W* is
locally bounded in the norm of Theorem 5.1/.

Proof. Proof of Corollary 3.15 assuming Theorem 3.14

Consider the maximal interval of existence in time of the local solution w®. The local uniform bound-
edness of w° allows to prove that interval is [0, o), which implies the existence of a unique solution w®
defined globally in time. This in turn allows to apply Theorem 3.14 globally in time, recovering the same
bounds over every compact. Uniqueness follows from Theorem 3.12. O

Proof of Corollary 3.13.

Assume Theorem 3.14 and Corollary 3.15 hold. Then the restriction (z,t) € Ry x Ry — @(z,t) is
well defined globally, bounded locally, and satisfies the equation (34). Here too, uniqueness follows from
Theorem 3.12. O

To prove Theorem 3.14, we use the exact same comparison theorem as in [20], relying on the maximum
principle for linear parabolic PDE. We denote by Br — R the closed ball centred at 0 with radius R > 0,
and by I'r := Bg x {0} U dBg x [0,T] the parabolic boundary of Qg := Bg x [0,T], whose interior we
denote by Qg.

Lemma 3.16 (Maximum Principle, Friedman [17]). Define

L= 0yp — (9m<p + Op b,

2
where b° is smooth. If Lp <0 (respectively, = 0) in Qr, then for all (x,t) € Qr,

p(z,t) < sup  @(z,s)
(z,8)eTRr

<Tespectively, ( 1r)1fF w(z,8) < w(x,t)) .
z,8)El' R

Lemma 3.17 (Comparison theorem, James and Baras [20] Lemma 4.2).
Let € > 0. Let w® be a solution of (34) over R x [0,T] and define

Z:veC (Qp:R) — oo — iﬁmv + goyv + % |0z 0]

g(w) = sgn(z) f(|z]) and VE being defined in (38). Let ve CY(Qr;R). If jvoz 0 (respectively, Lv <0)
in Qr and if W < v (resp. v < W°) on T'g, then W < v (resp. v < W) in Qg.

Same proof as in [20]: If Zv = 0, then subtract Zw® = 0 and let @ =v—w° to get

9 ~e2
=
SR+ 00sp + 5 (100l — [0,0% ) 2 0

Now |0,0|2 — [0,0° | = 00 - (Opv + 02107) . Set

ﬁtcp —

b* =g+ % (Opv + 0p0%) .

Then Z¢ > 0 and on I'g, ¢(z,s) = 0. Hence p(z,t) = 0 for all (z,t) € Qr by Lemma 3.16. O
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Proof of Theorem 3.14. The proof is very close to that given by James and Baras in [20], 1nsp1red in [15].
It relies on the construction of a function v independent of & such that Zv>0in Q r and W < v on 'y,
independent of (sufficiently small) e > 0, which is achieved by making v tend to oo close to the boundary.

Proof of (iv). Let R >4max(1,2|g|) and € < g := 557. Define
(z,t) ! +pt + M
v(z,t) = ————
’ R2 _ |l’|2 lu
where the constants p > 0, M > 0 will be adequately chosen later. Then

> € 2 8|x|? 2z 2|x|? -
"%U:M_ﬁ 2 22t e 23 | T e 2 9t i Ve
(B2 —[?)” (B2 = [«]?) (R? — [«]?) (B2 — |z|?)

a? — ¢ (R? — 2?) (42% + (R* — 2?))] + 6r(z) + Yr(x) — Vi(a,t),

~ 2xg(x) 2|z gll oo (r)
Er(z) = ———— > —&r(z)=——"7"7"7"--,
W)= W) =~
2
x
Yr(z) = —— = 0.
R( ) (R2 _ x2)4
Hence,
1 .
Lvzp+ W [22 — e (R* + 2R%*2® — 32")| — &r(2) + Yr(z) — V(2,1
—x
1 4R* -
=+ m [.’Ez — 53:| — éaR(ZIJ) + gR(iC) — Vi(ib,t),
the term 2£- belng the maximum over X := 22 € R of the second order polynomial in X right above it.

4R

For € < ep: elther || = 1 and it follows that z* — 2

> 0; or |z| <1 and

Hence,

Claim: For all (z,t) € Qg,
—&r(x) + Yr(x) = —8max(1, HQHQLOO(]R))'

Proof of the Claim. We will prove the Claim for x € [0, R) now. Mutatis mutandis, the proof for x < 0

follows with no notable difference. Let C' = 4 max (1, HgH), and n = %ﬁ‘

e lfz<R—m:

1
-1 _C?lgl  R-Gum

Er(x) < Er(R—n) = 2|y 3 i T
(R2=(R-n)") 2 R-gugt oo

02
< % < 8max(1, [g|).

And since ¥g(z) = 0, the claimed inequality is satisfied.

15



e Otherwise, R—n <z < R:

(R-n)° _C*R -2+ p

R? — 2*)*9 > (R?> - (R—1n)*)*%(R—1n) = R

To bound below the last fraction on the right-hand side, observe that since C > 1 and R > 4, we

have % < R;; and since
RVR >8R > 8max(4,8|g|) > C = 4max(1,~/]g]),
we have:
0_02_0[1_0]>0
VR 4R? VR ARVR] ™~
We obtain: R
(R% — 2*)°YR(z) = g
Therefore,
2 212 2 o2 [CPR
Gr(2) — 6r(z) = (R" - 2%)" [Fr(z) - 2z|g]] > (R" - 2%)" | == = 2R]g| | >0,
because C? > 16|g].
This concludes the proof of the Claim. O

From the Claim and equation (42), it is clear that Lv > 0 over Qg, provided p is chosen sufficiently
large. Specifically,

= (R21—1)4 + 8(L+ gl o (r)) + Vil oz xgo,7) (43)
suffices. Choose now M = |wo| r»r): large enough that
wo(x) < M for all x € Bg.
Since v(z,t) — o as |z| — R uniformly in ¢ € [0,T], it follows from the maximum principle that
°<v in Qg
Similarly, by considering —v instead of v, Welcan find a similar upper bound for w®.

Since v is continuous in @ and max

——— = ——, the following bound follows.
e (RQ—xZ)Q Yok e following bound over Q g/, follows

- 4
[ @ue) < 5 + ol + 4T, (44)
with p defined in (43). Hence,

- . 1 4
[0 @ < Vol + 80+ loliogey) + 1Vl ootory + cregye | T+ g (49

The desired estimate follows, concluding the proof of (iv).

Proof of (i). (iv) = (4).
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Proof of (ii). The estimate of the partial derivative in = closely follows [20], using a variant of the
techniques in [15]. Tt consists of the following steps.

e Define Q cc Q' cc R x (0,T), where @, Q" are open and “cc" means “compactly contained in".
e Choose a smooth function ¢ such that ( =1 on Q and ¢ = 0 near 0Q’, and define
2= (P|af|? — Aa°,
where A > 0 will be chosen later.

e Apply the maximum principle to z: z reaches its maximum in Q’. Assume it’s reached at (zq,to) €
Q’. Then, since z is smooth,
Ozz =0,

€
0< 0z — 569262

e Writing the previous inequality explicitly in terms of ¢ and w® and using the Hamilton-Jacobi
equation satisfied by @ yields, for e sufficiently small, at (zo,to):

A
0 < =050 0 (%1057 |*) = g+ 0 (CP1020°[7) + 5 |00t0%[* + CC| 00" P + C1000° " + AC| 020 + AT,
where we recall that C' is a generic constant name. Using now 0,z = 0 at (zo, tg), we have

%wzm? < CCl0,0° P + C|0,0°|* + AC|0,0°| + AC.

e Choosing A = u[(max ()|d,w®| + 1], with x4 > 1 to be chosen yields:
%IaszIQ < Clo, |2 + CAp.
Hence for p large enough, at (zo, to),
|0, 2 < O

Hence:
z<CX\in Q' .

e If the max is reached at the boundary, the equation above holds since w?® is bounded. From it,
James and Baras recover:
max (?]0,4°|> < maxz + C\ < C\

and by definition of A,
max ¢2|0,1°|* < Cu[max ¢|0,0°| + 1],

which implies

(|| < C in @,

S0
concluding the proof.

Proof of (iii). Since H is locally bounded, the conditions of [10, Lemma 5.2] are met (with §
here, instead of €), which allows to conclude to the e-dependent Holder estimate:

V(at), (z,8) € Q,  |0°(x,t) — it (z,8)| < K (\@u — Y2t — s|) .

Since € € (0, 1), taking € = 1 in the right-hand side concludes the proof.
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3.6 Viscosity solution limit — Proof of Theorem 3.6.

Theorem 3.18. Assume wqg is bounded and Lipschitz continuous, and H satisfies the assumptions of
Theorem 3.7. Then there exists a unique viscosity solution of the limiting equation (36), defined over
(z,t) e Ry x Ry, and that solution can be obtained by the vanishing viscosity method.

Proof. The bounds (i), (i3), and (iii) of Corollary 3.13 and the Arzela-Ascoli theorem (see e.g. [25,
Theorem 1]) imply that there exists a decreasing subsequence (ej)reny that tends to 0 such that wer
converges uniformly over compact sets to a continuous function w. From bound (iv), it follows that w is
bounded over R, x [0,77]. Since H* also converges uniformly over compact sets to H, Proposition 3.10,
we may apply the stability result in [3]. Uniqueness results from Theorem 3.7. O

We may now consider, for 0 < & < 1 and for all (x,t) e Ry x [0,T7]:
S (z,t) = w(x, 1) + y()h(z).

By construction, §¢ is smooth and satisfies the second order evolution Hamilton-Jacobi equation (27).
The uniqueness of the solution to that equation — point (¢) of Theorem 3.6 — is a direct consequence of
Corollary 3.13. The local uniform convergence of the Hamiltonian HS to Hs, point (%), results from
Proposition 3.10. Since y and h are bounded and have bounded derivatives, appropriate bounds can be
obtained on S¢ of the type of those in Corollary 3.13. So (ii), the convergence of ¢ to S, follows from
that of w® to w in the proof of Theorem 3.18.

As for point (iv), the well-posedness of the limit equation follows from that of equation (36): Theo-
rem 3.18. Since y and h are smooth enough, yh may be added or subtracted to any test function,
guaranteeing that definition 3.1 applies for w in equation (36) if and only if it applies for S in equa-
tion (31). The vanishing viscosity limit procedure also works in a similar way, concluding the proof of
Theorem 3.6.

4 Dynamic programming principle for the HJB limit

At this point, the vanishing viscosity procedure has provided a functional that one could expect to be the
cost-to-come associated to the Mortensen estimation of the Skorohod problem. Unfortunately, despite its
stochastic interpretation, this function cannot be linked as in [20] to the cost-to-come of the deterministic
problem.

4.1 A control problem interpretation of the limit solution

The limit w(z,t) = S(z,t) — y(t)h(x) can be characterised as the unique viscosity solution of the HJB
equation (36). Following the method of [20], a backward control process is now built whose cost function
W will be identified to w. Consider the control process associated to the R -valued backward trajectories
(25%(5))g<s<; defined by

Va.e. s€[0,t], Vg =0, (22(s) —w(s))(qg — 2%%(s)) <0 (46)
28t (t) = x,

w

Assume this system is partially known through the perturbed observation function y(t) given by

§(s) = h(z5"(s)) +n(s),

the control parameters 1 and w being square-integrable R-valued functions of time. To each such w can
be associated a backward trajectory z%*!. The control problem then consists in minimizing a functional
¥ (2%4(0)) of the arrival point at time 0, together with the L? weights of control functions w and 1. The
cost rate is thus

~ 1 1.
g(wwzvs) = 5&)2 + §|y(8) - h(2)|27

so that the cost to go (backward in time) from z at time ¢ to time 0 reads
¢

it GO + |

weL2(0,t) o
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developing the square |7(s) — h(z(s))|?, the term |5(s)|?> doesn’t affect the minimization problem, and

the cost rate can be chosen to be
e(9), 2(5),5) 1= 5*(5) + FH(=(5)) — (5)h((5)),

as required to take the limit in the probabilistic setting. This leads to the functional

t

Tl t) = 0 O) + | £(0(6),221(0),5) ds,

0
and the cost function W(x,t) := inf,, J(w, z,t) will appear to be the desired target function. Note the
initial value condition W(z,0) = ¢ (x).
Lemma 4.1 (Principle of Optimality). Consider a terminal point (x,t). Then for every 0 <1 <t

t

W(z,t) =  inf [W (D't —71),t—7T) + f 0 (w(s), 25" (s),s) ds

weL?(t—r,t) T

Proof. Given another control (w'(s))y<,<;_,, define the square-integrable control

- W'(s) f0<s<t—m,
w(s) = :
w(s) ift—7<s<t.

For s <t — 7 note that 22"(s) = 2% (s), so that by definition of W

t

14 (w'(s), ZZ;Yt(t_T)’t_T(sL s) ds + f 0 (w(s), 25" (s),s) ds,
t

—T

t—7

W(z,t) < (Zii;’“(t—r),t—r(o)) +f
0

and taking the infimum over w’ and w concludes. Equality is achieved by considering a sequence of
controls whose costs converge towards the infimum. O

Lemma 4.2 (Uniform terminal continuity). Consider a terminal point (z,t) and M > 0; then s — 2%(s)
is continuous at the terminal point s = t uniformly in w such that J(z,w,t) < M.

Proof. Consider € > 0 and a control w. If z > 0, the continuity of 2% at ¢ guarantees that
Twi=sup{7 >0, 25t —7)>0and |z5'(t—7) —z| < e} > 0.

Considering 0 < 7 < min(7,, 1) to make sure that z%*(s) > 0, one has 2%'(s) = w(s) for t —7 < s <t

thanks to 46. Thus

t t

(s = | wls

t—1

i () :f

t—T

Using Cauchy-Schwarz inequality

|z — 22t —7)| < /27T (w,z,t) < V2T M,

min(e, |z|)

2
and this proves the bound 7, > (W) , the right-hand side being independent of w.

In the case x = 0, consider

TB :=sup{7'>O,Vt—T<s<t, szt(s):()},

=sup {7 > 710, 25t —7)>0and 25t — 1) < ¢e}.

1
Tw w

T @t 0 1. 0 / 1
The continuity of z7* indeed guarantees 7, < 7; since for 7, <7 <7’ <7,

t—1 t—1
25t — 1) = 25t — 7)) = f 5t(s)ds = J w(s)ds,
t

-7/ t—T1’

the same reasoning as above gives a positive lower bound for 7.} —70 which is independent of w, completing
the proof. O
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The function W can now be identified to the previous limit using the HIB equation (36). Note that the
Hamiltonian H can equivalently be defined as

H(z, t,\) = max ' — (2,0 t) . (47)
w'e

Proposition 4.3 (Sub-solution). The function W is a viscosity sub-solution of (36).

Proof. For x > 0 and t > 0, consider a C! test function ¢ such that W — ¢ has a local maximum at
point (x,t). For any control w and every T > 0 small enough, this leads to

w (Zfzyt(t - T)at - T) - ¢ (Zi’t(t - T)vt - T) < W(l?,t) - ¢(x7t)a

because of z%!(t) = x and the continuity of 2% at (z,t). Therefore, we have

t
Pz, t) — ¢ (25t —7),t —7) <K Wz, t) =W (25t —7),t—7) < J- C(w(s), 25" (s), s) ds,
t—1
using the principle of optimality of Lemma 4.1. Dividing by 7 and taking the 7 — 0% limit gives
4
ds s=t

so that
Orp(x,t) + 251 ()0 (, 1) — £ (w(t), z,t) < 0.

Then, we have
Ord(,t) + w(t)0pd(z, ) — £ (w(t),x,t) < Oup(x, t) [w(t) — 250 (1)] .

If > 0 then 2%7'(¢t) = w(t) according to (46); else x = 0 so that w(t) — 25" (t) = 0, and one can assume
0-¢(0,t) < 0 following the definition (3.1). In every case

0sp(z,t) [w(t) — 250(t)] < 0.
Since this is true for every w, taking the maximum over w(t) allows to recover (47) and
Orp(x,t) + H (z,t, 0pp(x,t)) <0,
as desired. O

Proposition 4.4 (Super-solution). The function W is a viscosity super-solution of (36).

Proof. For x > 0 and t > 0, consider a C! test function ¢ such that W — ¢ has a local minimum at point
(x,t). Positive numbers §,0" > 0 exist such that

[t—t|<dand |z —2'|<h= W, t)— o, 2') =W (x,t) — ¢ (x,t). (48)
Fix now £ > 0 and M > W(z,t). By lemma 4.2 ¢’ > 0 exists such that for every w with J(z,w,t) < M
0<7<d =22 t—71)—2|<h

Consider a sequence (7, )n>0 which converges to 0 with 0 < 7,, < min(, ¢’). In the principle of optimality
4.1 which characterises W(x,t), it is sufficient to minimize over w with J(w,z,t) < M, because M >
W(z,t). Then by definition of the infimum, w,, with J(z,w,,t) < M exists for every n, satisfying

t

W(x,t) + ety =W (255t — 70),t — ) + J (wn(s), 255 (s), s) ds.
t

Using 48, it follows
o (x,t)— ¢ (z(fnt(t —Tn),t — Tn) =W (z,t) - W (zf)rf(t — Tn),t— Tn)

t

> —eT, + f 0 (wn(s), 25 (s), s) ds.
t

—Tn
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The functions ¢ and 2%’ being differentiable, taking the s-derivative in ¢ (z%7(s), s) leads

t

o (z,t) — ¢ (zfjnt(t —Tp), t — Tn) = L 11%0) (,zf)j(s)7 s) + Z$f(s)§x¢ (zf)nt(s), s) ds.

—Tn

Therefore, we have

t
J O (zf}f(s), s) + ,éf,;f(s)&ng (zf,f(s), s) —/ (wn(s), zjﬁj(s), s) ds = —em,,.
t

—Tn

Adding SI_TH 0x® (251(s), s) wn(s)ds to each side,
t
J 15280, (zjﬁnt(s)7 s) + 0z¢ (zﬁj(s), s) wr(s) — 4 (wn(s), zﬁf(s), s) ds
t—7n

> —eTy + L 0x9 (255(s), 8) [wn(s) — 25°(s)] ds.

—Tn

Note now that
H (zfj;lt(s), 8,0, (zf;;f(s), s)) = max 0, ¢ (zf);f(s), s) w =4 (w’, Zznt(s), 5)

w’eR

N e0) (zfj:(s), 3) wn(s) — 4L (wn(s), zjﬁnt(s), s) )

Moreover if > 0, the uniform convergence of lemma 4.2 allows to take n large enough so that zfjt(s) >0

for t — 7, <s <t and thus 25'(s) = wy(s). If z = 0 one can assume 0,¢ (0,t) > 0, and use the fact that

wn(s) — 254 (s) = 0 by 46, with equality when z%?(s) > 0. In every case

WV

Li O0r @ (zﬁyf(s), s) [wn(s) - zif(s)] ds >0,

for n large enough. Thus
t
f 15/%0) (zlfyf(s), s) +H (sz,j(s), S, 0z (zint(s), s)) ds = —er,.
t—Tn

Lemma 4.2 guarantees the continuity of s — 2%(s) at s = t uniformly in w, such that W, (t,s) < M,
so that dividing by 7,, and taking the n — 400 limit gives

0rd (t,x) + H(x,8,0.0(x,t))) = —e.
Since this hold for every € > 0, this concludes the proof. O

Theorem 4.5 (Identification). Using the uniqueness result from Theorem 3.12, it is now possible to
identify the solution w of (36) to W, provided that the initial condition is () = wo(z).

This establishes the desired link between the stochastic filtering problem (19) and the control problem
(46). In particular, the limit doesn’t allow to compute a recursive estimator, because it stems from a con-
trol problem and not a filtering one. The estimation has thus to be done by keeping some approximating
noise with (small) amplitude € > 0, or using the penalized dynamics.

4.2 Lost equivalence with Mortensen’s approach

Let’s go back to the estimation problem of the constrained dynamics (1) with f = 0, namely the
Skorokhod problem:

{v ae.tel0,T], ¥z =0, (w(t) — 2())(z — () <0 (19)

z(0) = .
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As in Section 2.2, it could be tempting to use a direct deterministic filtering approach base on the cost
to come

(w,{)eAs ¢

where we omit y to simplify the notation and the pre-image set can be also defined by

Ay = {(w,¢) e L*(0,t) x RT : z, ¢ follows (49) with @, ¢(0) = {, 2, ¢(t) = 2} .

V(z,t):=  inf [%b(C)+£€(W(8)7$|w,<(8)78)d8]7

This admissible set is never empty, because it is always possible to reach every x > 0 at time ¢ starting
from any positive ¢ > 0 by considering a (slow enough) straight line without reflection. However, the
dynamics (1) is now well-posed in forward time only: given a value x at time ¢ > 0 and a control w, there’s
no more well-posedness for the backward in time problem starting from x at time ¢. This feature is due
to the non-reversibility introduced by the reflection and complicates the situation a lot. Furthermore
V(z,t) can no more be easily characterized as the solution of the expected HIB equation (36). Indeed,
let’s try to show — as done for W in Proposition 4.3 — that V is a viscosity sub-solution of equation (36).
First of all, one could prove the analogous of Theorem 2.1, which would read here:

t

V(z,t) = inf) € Ayt [V (T et —7),t —7) + J

w,C t—r

£ (91 (5)5) ds . (50)

Let’s now mimic the proof of Proposition 4.3: for > 0 and ¢ > 0, consider a C" test function ¢ such
that V — ¢ has a local maximum at point (x,t). For any control w, any initial condition ¢ and every
7 > 0 small enough, this leads to

V(@ et —7)t=7) = ¢ (2t —7),t = 7) < V(z,t) — ¢(x,1),
because of x|, ¢(t) = x and the continuity of x|, ¢ at (z,%). We have

d(z,t) — ¢ (x|w)<(t —7),t— 7') < V(z,t) =V (x|wy<(t —7),t— 7') < J / (w(s)7 x|w7<(s), s) ds,

t—71
using the principle of optimality given by (50). Dividing by 7 and taking the 7 — 0% limit gives

% G (Tpwc(8),8) < L(w(t), zpc(t),t)

s=t
so that
Oep(x,t) + @)y ¢ (1) 0 p(2, 1) — £ (w(t), z,t) < 0.
Then
Ord(x,t) + w(t)0pd(z, ) — L (w(t), . 1) < 02(, t) [w(t) — F)0 e (£)] - (51)
If x > 0, then @), ¢(t) = w(t) according to (49). Hence

Orp(x,t) + H(z,t,0x¢(x,1)) =0 <0,

as desired. However if z = 0 then w(t) — @,,,¢(t) < 0 by definition of the sub-differential dynamics (49).
Considering ¢ such that 0,¢(0,t) < 0, we get

6z¢(x,t) [w(t) — (,.E|w,<(t)] = 0,

which, when combined to (51) does not allow to constrain dip(z,t) + w(t)dzd(x,t) — £ (w(t),z,t) to be
non-positive. The boundary condition appears to be

min {+0,¢(0,t0) , (e + H(-,u, 0.¢))(0,t0)} <O. (52)

A similar situation would arise if one tried to prove the super-solution property for V (the analog of
Proposition 4.4). We therefore believe that the connection between the viscosity limit of stochastic fil-
tering and deterministic filtering for dynamics nonreversible in time is broken, and V cannot be computed
from a forward dynamics that appears — from (52) — to be an ill-posed HJIB dynamics.

As a result, a recursive estimator of (49) — and similarly for (1) — cannot be the Mortensen estimator
computed from V which does not appear to follow a well-posed HJB equation. As a consequence, to
obtain a computable sequential estimator, one must choose between two alternatives:
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- approximate the dynamics (1) with the penalized dynamics (5), resulting in an approximate
Moretensen estimator;

- define the stochastic filtering problem in terms of (19) and use the tools of stochastic filtering and
particle filtering [8] for a small but nonzero value of .

5 Appendix

5.1 Derivation of the robust Zakai equation

Lemma 5.1 (Robust Zakai equation). The random function p° satisfies the robust Zakai equation, adding
some Robin boundary conditions:

O (1) — YW (2)ap (2, 1) + TP, O (0,1) = 532,07 (s0), (1) € R x BT

Yih

/(x) N (53)
Tps(oat):ov teR )

0.7 (0,1) +
2
where
h?(z)
2
This recovers a result in [11] for robust filtering of reflected diffusion.

1

PE(a,t) = - thh”(x) - YW @),

Proof. Thanks to Girsanov change of measure (see e.g. [38, 1]), it is sufficient to treat the case where

(%) is a standard brownian motion. Then, using Ito’s rule for stochastic differential calculus
t>0

@ﬂaw—wpkngﬂywww+¢mmepP“§@]wﬂpryfmyf@»}7
t
the quadratic cross-variation being given by
Y. € 2 Y,
oo [ 9] - T o N
t

Moreover, by Ito’s rule

dexp [_Yth(w)] _ _h(gff) exp [_Y%f;(:v)] 1, + h22(:) exp [_Yth(w)] dt,

€

using (20)

dgS(z, t) = géimqe(x,t)dt + @dyb
this gives
d e _ € Yrth(x) 2 e hz(‘r) 5
R B e L]
noticing that
Y Y.h'
|- 0 wnt) = et + o),
it is straightforward to obtain that
Y: 2Y;h'
02,p°(x,t) = exp [— t};(x)] 02.q%(x,t) — %(x)ps(x,t)
/ 2 "

Gathering everything

d (z,t) = Y;h'(2) 0,0 (z,t) +

at? '\ €

() [ hA(x)  (Vil'(2)’
<_ 5 " 2

+ oYl (@) | + S0 (),
2 2
which is the desired equation. The boundary conditions are directly obtained from the ones in (20). O
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In equation (53), note that the random variable Y; just behaves as a parameter, which only appears inside
the coefficients. This parameter Y; being defined as the function w € Q — Y (¢,w), this can be seen as a
family of deterministic PDEs indexed by a parameter w. At this point, it is only necessary to consider
given realisations of the trajectory, i.e. continuous deterministic functions (y(s))o<s<¢- The remaining
question will then be the measurability of the solution in w, in order to recover a stochastic process
pf(w,z,t) from solving a deterministic PDE for each (y(s))o<s<:. This question is positively answered
by the prominent works [13], [36] which even prove that considering C* trajectories y(t) is sufficient. As
in the whole paper, this allows to consider p®(z,t) as a deterministic function which depends on a given
C! trajectory (y(s))o<s<t- The function p®(x,t) is thus the solution of a linear parabolic PDE, for which
strong C? regularity can be shown using the classical theory.

Acknowledgements

The authors would like to thank Kai Shao for his illustrations of the Skorokhod dynamics. Philippe
Moireau would like to sincerely thank Hasnaa Zidani for her guidance at the beginning of this work.
References

[1] Alan Bain and Dan Crisan. Fundamentals of stochastic filtering, volume 60. Springer Science &
Business Media, 2008.

[2] Tadeusz Banek. Filtering of absorbing and reflecting brownian motions. Systems & control letters,
8(2):153-159, 1986.

[3] G. Barles. Fully non-linear neumann type boundary conditions for second-order elliptic and parabolic
equations. Journal of Differential Equations, 106(1):90-106, 1993.

[4] Guy Barles. Solutions de viscosité des équations de Hamilton-Jacobi, volume 17 of Mathématiques
& Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Paris, 1994.

[5] Jérome Bastien, Frédéric Bernardin, and Claude-Henri Lamarque. Non-smooth deterministic or
stochastic discrete dynamical systems. Mechanical Engineering and Solid Mechanics Series. ISTE,
London; John Wiley & Sons, Inc., Hoboken, NJ, 2013. Applications to models with friction or
impact.

[6] Jérome Bastien, Michelle Schatzman, and Claude-Henri Lamarque. Study of some rheological models
with a finite number of degrees of freedom. Eur. J. Mech. A Solids, 19(2):277-307, 2000.

[7] H. Brezis. Opejrateurs maximaux monotones et semi-groupes de contractions dans les espaces de
Hilbert. ISSN. Elsevier Science, 1973.

[8] Zhe Chen. Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics, 182(1):1
69, 2003. -

[9] JMC Clark and D Crisan. On a robust version of the integral representation formula of nonlinear
filtering. Probability theory and related fields, 133(1):43-56, 2005.

[10] M. G. Crandall and P. L. Lions. Two approximations of solutions of hamilton-jacobi equations.
Mathematics of Computation, 43(167):1-19, 1984.

[11] Mark HA Davis. On a multiplicative functional transformation arising in nonlinear filtering theory.
Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte Gebiete, 54(2):125-139, 1980.

[12] Jean-Pierre Demailly. Analyse numeérique et équations différentielles. Grenoble Sciences. EDP
Sciences, Les Ulis, fourth edition, 2016.

[13] Halim Doss. Liens entre équations différentielles stochastiques et ordinaires. In Annales de I'THP
Probabilités et statistiques, volume 13, pages 99-125, 1977.

24



[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

G. Duvaut and J.-L. Lions. Inequalities in mechanics and physics, volume 219 of Grundlehren der
Mathematischen Wissenschaften. Springer-Verlag, Berlin-New York, 1976. Translated from the

French by C. W. John.

L. C. Evans and H. Ishii. A PDE approach to some asymptotic problems concerning random
differential equations with small noise intensities. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2(1):1-
20, 1985.

Wendell H Fleming. Deterministic nonlinear filtering. Annali della Scuola Normale Superiore di
Pisa. Classe di Scienze. Serie IV, 25(3-4):435 — 454 (1998), 1997.

Avner Friedman. Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1964.

O. Hijab. Minimum Energy Estimation. PhD thesis, University of California, Berkeley, 1980.

O. Hijab. Asymptotic nonlinear filtering and large deviations. Advances in Filtering and Optimal
Stochastic Control, pages 170-176, 1982.

Matthew R James and John S Baras. Nonlinear filtering and large deviations: A PDE-control
theoretic approach. Stochastics: An International Journal of Probability and Stochastic Processes,
23(3):391-412, 1988.

A. H. Jazwinsky. Stochastic processes and filtering theory. Academic Press, 1970.

G Kallianpur and Charlotte Striebel. Estimation of stochastic systems: Arbitrary system process
with additive white noise observation errors. The Annals of Mathematical Statistics, 39(3):785-801,
1968.

A. J. Krener. Minimum energy estimation and moving horizon estimation. In 54th IEEE Conference
on Decision and 2015, 2015.

Arthur J Krener. A Lyapunov theory of nonlinear observers. In G G Yin and Qing Zhang, editors,
Stochastic analysis, control, optimization and applications, pages 409-420. Springer, 1998.

Pierre-Louis Lions. Neumann type boundary conditions for Hamilton-Jacobi equations. Duke
Mathematical Journal, 52(3), 1985.

PL Lions. Optimal stochastic control with state constraints. In Stochastic Differential Systems
Filtering and Control, pages 286—-295. Springer, 1985.

Jose Luis Menaldi. Stochastic control problem for reflected diffusions in a convex bounded domain.
In Advances in Filtering and Optimal Stochastic Control, pages 246-255. Springer, 1982.

R E Mortensen. Maximum-likelihood recursive nonlinear filtering. J. Optim. Theory Appl., 2(6):386
— 394, 1968.

E Pardoux. Stochastic partial differential equation for the density of the conditional law of a diffusion
process with boundary. In Stochastic analysis (Proceeings of International Conference, Northwestern
University, Evanston, Ill., 1978), pages 239-269, 1978.

E. Pardoux. Stochastic partial differential equations and filtering of diffusion processes. 1980.

E Pardoux. Equations du filtrage non linéaire de la prédiction et du lissage. Stochastics, 6(3-4):193—
231, 1982.

Etienne Pardoux. Filtrage de diffusions avec conditions frontieres: caracterisation de la densite
conditionnelle. In Journées de Statistique des Processus Stochastiques, pages 163—188. Springer,
1978.

Etienne Pardoux. Filtrage non lineaire et equations aux derivees partielles stochastiques associees.
In Paul-Louis Hennequin, editor, Ecole d’Eté de Probabilités de Saint-Flour XIX — 1989, pages
68-163, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

25



[34] Etienne Pardoux and Aurel Rigcanu. Sdes with multivalued drift. In Stochastic Differential
Equations, Backward SDEs, Partial Differential Equations, pages 229-351. Springer, 2014.

[35] Walter A. Strauss. Partial differential equations. John Wiley & Sons, Ltd., Chichester, second
edition, 2008. An introduction.

[36] Heéctor J Sussmann. On the gap between deterministic and stochastic ordinary differential equations.
The Annals of Probability, pages 19-41, 1978.

[37] J. Xiong. An introduction to stochastic filtering theory, volume 18. OUP Oxford, 2008.

[38] Moshe Zakai. On the optimal filtering of diffusion processes. Zeitschrift  fiir
Wahrscheinlichkeitstheorie und verwandte Gebiete, 11(3):230-243, 1969.

26



	Problem setting
	The penalized case
	An approximate Mortensen estimator from nonsmooth dynamics penalization
	The HJB equation for the cost-to-come with penalized dynamics
	The cost-to-come with penalized dynamics seen as the limit of a stochastic filtering problem

	blue!60!blackVanishing viscosity limit of the stochastic filtering problem related to the constrained dynamics
	The stochastic filtering problem for the constrained dynamics
	blue!60!blackViscous Hamilton-Jacobi equation on S
	blue!60!blackThe Vanishing Viscosity Limit Procedure
	Local existence and uniqueness for the solution of (34)
	Uniform in  bounds on w
	Viscosity solution limit – Proof of Theorem 3.6.

	Dynamic programming principle for the HJB limit
	A control problem interpretation of the limit solution
	Lost equivalence with blue!60!blackMortensen's approach

	Appendix
	Derivation of the robust Zakai equation


