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Abstract

We address the problem of deterministic sequential estimation for a nonsmooth dynamics gov-
erned by a variational inequality. An example of such dynamics is the Skorokhod problem with
a reflective boundary condition. For smooth dynamics, Mortensen introduced in 1968 a nonlinear
estimator based on likelihood maximisation. Then, starting with Hijab in 1980, several authors
established a connection between Mortensen’s approach and the vanishing noise limit of the robust
form of the so-called Zakai equation. In this paper, we investigate to what extent these methods can
be developed for dynamics governed by a variational inequality. On the one hand, we address this
problem by relaxing the inequality constraint by penalization: this yields an approximate Mortensen
estimator relying on an approximating smooth dynamics. We verify that the equivalence between
the deterministic and stochastic approaches holds through a vanishing noise limit. On the other
hand, inspired by the smooth dynamics approach, we study the vanishing viscosity limit of the
Hamilton-Jacobi equation satisfied by the Hopf-Cole transform of the solution of the robust Zakai
equation. In contrast to the case of smooth dynamics, the zero-noise limit of the robust form of the
Zakai equation cannot be understood in our case from the Bellman equation on the value function
arising in Mortensen’s procedure. This unveils a violation of equivalence for dynamics governed by
a variational inequality between the Mortensen approach and the low noise stochastic approach for
nonsmooth dynamics.
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1 Problem setting
In this paper, we consider the problem of estimating the deterministic state resulting from a nonsmooth
dynamical system given an observation. The system state is the solution of a variational inequality,
and both the state dynamics and the observation are subjected to disturbances. We aim at finding
the “best” deterministic estimate of the state from the observation. The state estimation of various
fundamental examples motivates our problem. This includes: a) elasto-plasticity (transition from elastic
and plastic phases) [14], b) dry friction (transition from static and dynamic phases) [6] or c) impacts
(switch of velocity at the instant of contact with an obstacle) [5]. The state variable in these models is
non-differentiable at the transition from one phase to another, and variational inequalities are well-suited
to describe such situations
As a an example of simple representative nonsmooth dynamics, we study the Skorokhod problem with
a reflective boundary condition at 0. We then consider the R`-valued state variable x “ pxptqqtPr0,T s

solution of the variational inequality (VI)

@ a.e. t P r0, T s, @z ě 0, pfpxptqq ` ωptq ´ 9xptqqpz ´ xptqq ď 0, (1)

where f : R Ñ R is a Lipschitz function from R to R, and the state disturbance ω : r0, T s Ñ R is a square
integrable function. The map t ÞÑ xptq is continuous and differentiable almost everywhere. Adequate
conditions of existence and uniqueness for this classical system are stated in [7]. When f ” 0, x is
solution of the deterministic Skorokhod problem [34, p.231]. Given ζ P R`, the deterministic Skorokhod
problem is to find a pair px, kq satisfying the following four conditions: 1) x is a non negative continuous
function with given initial value ζ at t “ 0, 2) k is a continuous non increasing function vanishing at 0,
3) xptq ` kptq “ ζ `

şt

0
ωpsqds and 4) k varies only when x “ 0. For this simple constrained dynamics,

the solution is explicit:

xptq ` kptq “ ζ `

ż t

0

ωpsqds where kptq :“ min
0ďsďt

min

ˆ

0 ; ζ `

ż s

0

ωpτqdτ

˙

.

Figure 1 illustrates the above trajectory.
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Figure 1: Example of a trajectory with an oscillating
şt

0
ωpsqds. ζ `

şt

0
ωpsqds is represented in black,

k in gray and x in red. The “upward push" k ensures that the resulting state variable x stays positive.
Pushes occur only when x “ 0.

To link the dynamics (1) to the available observation, we model the measurement procedure using an
observation map h P C2pR`,Rq. The observation is related to dynamics (1) by

@t ě 0, 9yptq “ hpxptqq ` ηptq, (2)
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where ηptq P R is the observation disturbance. We follow the usual convention in stochastic filtering,
denoting the left hand side (lhs) of (2) by 9y. However, in most deterministic observation problems, the
lhs of (2) is denoted by y. The interest of the filtering convention will become clear when connecting
deterministic and stochastic settings. In the deterministic framework, we introduce the notation tx̌ptqutě0

to denote the state trajectory (intended to correspond to the actual behavior of a real system). We refer to
it as the (partially) observed trajectory, since from it, a measurement procedure produces the observation
t 9yptqutě0. From now on we consider that observations are fixed. In this setting, η : t ÞÑ 9yptq ´ hpx̌ptq, tq
is a measurement error. Both the state and observation disturbances are unknown but we will assume
that they are small in L2 norm, as detailed below.
Based on the available information t 9yptqutě0, we aim at designing a causal estimator – also called
observer – of the partially observed trajectory tx̌ptqutě0. The observer should be understood in the sense
of [24]. This observer is a causal estimator, in the sense that the estimation at time t ě 0 only depends
on the measurements t 9ypsqu0ďsďt. In other words, the observer is non-anticipative.
For smooth dynamical systems, an “optimal” deterministic approach to non-linear system filtering is
proposed by Mortensen [28]. This procedure relies on the minimisation of an energy functional. This
energy relates to the likelihood that the state variable produces a given observation – up to disturbances –
on a finite time interval, the final time value of the state being imposed. The lower the energy of a target
state, the more likely the state is. The Mortensen filter is the minimiser of this energy, also known, since
then, as the minimum energy estimator [18, 23]. Moreover, for smooth dynamical systems, Mortensen
also proposes a differential equation for the dynamics of this estimator. This equation is based on the
computation of the energy which is solution, in the viscosity sense, of a Hamilton-Jacobi-Bellman(HJB)
dynamics [20, 16]. This provides an efficient sequential strategy for estimating nonlinear dynamical
systems.
We want to investigate to what extent the Mortensen formalism can be extended to the nonsmooth case
of the Skorokhod problem with a reflective boundary condition at 0. Given pω, ζq P L2p0, tq ˆ r0,8q,
there exists a continuous function x|ω,ζ satisfying (1) with xp0q “ ζ, x|ω,ζ being differentiable almost
everywhere. We then define the finite energy

J pω, ζ, tq :“ ψpζq `

ż t

0

ℓpωpsq, x|ω,ζpsq, sqds,

where ψ : R` Ñ R` is locally Lipschitz and

ℓpω, x, sq :“
1

2
|ω|2 `

1

2
| 9ypsq ´ hpxq|2.

If pω‹, ζ‹q P L2p0, tq ˆ r0,8q is the unique (respectively one of the) minimizer(s) of J , then the (respec-
tively one of the) most likely state(s) of x̌ is x|ω‹,ζ‹ . Let us fix the terminal state x at the terminal time
t. Given the observation t 9ypsq, 0 ď s ď tu, the cost-to-come to the point x at time t is defined by

Vpx, t; 9yp.qq :“ inf
pω,ζqPAx,t

J pω, ζ, tq, (3)

where the admissible set is defined as

Ax,t :“

"

pω, ζq P L2p0, tq ˆ r0,8q, x|ω,ζptq “ x

*

.

The Mortensen estimator is then defined as

@t ě 0, x̂ptq :“ argmin
xPR

Vpx, t; 9yp.qq, when the minimizer is unique. (4)

In the smooth setting, the cost-to-come is proven to be a viscosity solution of a HJB with initial condition
ψ. This enables the sequential computation of the cost-to-come, and then of the Mortensen estimator
x̂ptq as a minimizer of x ÞÑ Vpx, tq. From the nonsmooth dynamics given by the variational inequality
(1), a Mortensen estimator t ÞÑ x̂ptq could still be defined as a minimizer of x ÞÑ Vpx, tq. However, the
HJB equation for the corresponding cost-to-come V remains unclear.
In the smooth setting, several authors established a connection between the Mortensen approach and the
vanishing noise limit of stochastic filtering methods, see e.g. [18, 20, 16]. The central tool in stochastic
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filtering is the Zakai equation, whose solution is an unnormalised version of the conditional density of
the state given the observation [38, 21, 37]. The minimum energy approach is then recovered as the
vanishing noise limit of the robust form (path-wise form) of the Zakai equation. A proof of this fact
can be found in [18], using probabilistic tools from the large deviation theory. The stochastic filtering
framework has been similarly applied to the Skorokhod problem, see e.g. [32]. Therefore, it sounds
plausible that the HJB equation on the cost-to-come (3) can be obtained as a vanishing noise limit of
the stochastic filtering procedure for the Skorokhod problem. However, we will see that the picture is
more subtle for this nonsmooth dynamics, because the zero-noise limit of the stochastic approach does
not provide the desired equation for the deterministic cost-to-come.
The paper is organized as follows. In Section 2, we propose an approximation of the Mortensen estimator
using a penalization approach. This penalization approach reviews in the same time the general results
related to the Mortensen estimator in the smooth case. In Section 3, we start from the non-smooth
stochastic filtering procedure and perform a vanishing noise limit similar to the smooth case. This limit
provides a candidate for the HJB equation that the cost-to-come (3) should solve. In Section 4, we
interpret the solution of this latter HJB equation as the value function of a control problem. We then
show that this value function cannot be identified to the cost-to-come (3) related to the nonsmooth
dynamics (1). This breaks the equivalence between small noise stochastic filtering and the Mortensen
deterministic estimation.

2 The penalized case
We begin our study by considering a smooth dynamics version of the Skorokhod problem where the
boundary constraint is penalized. This allows us to review all the basic ingredients that lead to the
Mortensen estimator, paving the way for the nonsmooth problem. In addition, the penalized dynamics
provides a way to define an approximate Mortensen estimator from measurements associated with the
nonsmooth problem, as an alternative to obtain the Mortensen estimator directly from the nonsmooth
problem.

2.1 An approximate Mortensen estimator from nonsmooth dynamics penal-
ization

We relax the boundary constraint of the underlying dynamics (1) for the energy Vpx, t; 9yp.qq. The
inequality is replaced by a nonlinear equation with a drift penalizing the solution whenever it takes
negative values. We then introduce a modified cost-to-come Vκpx, t; 9yp.qq whose definition is similar to
Vpx, t; 9yp.qq in (3), except that Ax,t is replaced by

Aκ
x,t :“

␣

pω, ζq P L2p0, tq ˆ R`, D xκ that satisfies 9xκ “ fκpxκq ` ω, a.e. with xκp0q “ ζ, xκptq “ x
(

.

Here xκ is an approximate version in R of (1) where
#

9xκptq “ fκpxκptqq ` ωptq, a.e. t ą 0,

xκp0q “ ζ,
(5)

the penalty function fκ being a C1 approximation of the Moreau-Yosida regularisation of fκ0 : x ÞÑ

κmaxp´x, 0q ` fpxq. For large enough κ ą 0, we require that fκ agrees with the Moreau-Yosida
regularisation over p´8,´κ´1q Y R`, and that the slope of fκ belong to r´2κ, 0s for x P p´κ´1, 0q.
This is possible because f is Lipschitz continuous. The additional term κmaxp´x, 0q vanishes as soon
as x ě 0, and introduces a drift of strength κ towards the non-negative half-line as soon as x ă ´κ´1.
This term is also responsible for a drift of strength between 0 and 2κ towards the non-negative half-line
when ´κ´1 ă x ă 0. As κ Ñ `8, the solution of (5) converges towards the solution x of (1) in the max
norm on any finite time interval, using techniques analogous to the Moreau-Yosida regularisation [7].
We then define a relaxed version of the Mortensen estimator as follows:

@t ě 0, x̂κptq :“ argmin
xPR

Vκpx, t; 9yp.qq, (6)
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under the condition of existence and uniqueness of such a minimizer for the function x ÞÑ Vκpx, t; 9yp.qq.
In Vκpx, t; 9yp.qq, we point out that the the given observation 9yp.q was produced – up to measurement
errors – from a target system x̌ governed by a variational inequality. In other words, the trajectory xκ,
generated from 9yp.q by the penalized dynamics, adds a model error to the already present measurement
error. For the ease of reading, we will now write Vκpx, tq “ Vκpx, t; 9yp.qq.

2.2 The HJB equation for the cost-to-come with penalized dynamics
If we consider an optimal control pair pω|r0,ts, ζq for the “cost-to-come” problem with terminal state x at
time t then for any intermediate time t ´ τ between the times 0 and t, the part of this control enclosed
by the times 0 and t´ τ , namely ω|r0,t´τs, remains optimal for the “cost-to-come” problem with terminal
state xκ

|ω,ζpt´ τq at time t´ τ . This is summarized by the following theorem proved in [20].

Theorem 2.1 (Bellman’s principle). Let 0 ď t1 ď t2 ď t, and choose pω, ζq P Aκ
x,t. Then, we have

Vκ
´

xκ|ω,ζpt2q, t2

¯

ď Vκ
´

xκ|ω,ζpt1q, t1

¯

`

ż t2

t1

ℓ
´

ωpsq, xκ|ω,ζpsq, s
¯

ds.

where 9xκ
|ω,ζ “ fκpxκ

|ω,ζq ` ω.

We here want to emphasize the importance of the reversibility in time of the penalized problem to
properly define the cost-to-come. Indeed, we can consider xκrev : τ ÞÑ xκpt ´ τq following the dynamics
´ 9xκrevpτq “ fκpxκrevpτqq ` ωpτq with xrevp0q “ x. In this way, we find that Aκ

x,t ‰ H and Aκ
x,t “

Ť

ωPL2p0,tq

tpω, xκrevptqqu. The infinitesimal version of Bellman’s principle above becomes (7).

Using the previous definition and Bellman’s principle, we obtain, as a direct adaptation of [20], that the
dynamics followed by the cost-to-come Vκ is given by the following HJB equation

#

BtVκpx, tq ` Hpx, t, BxVκpx, tqq “ 0, px, tq P R ˆ R`

Vκpx, 0q “ ψpxq, x P R
(7)

where the Hamiltonian is given by

Hpx, t, λq :“ max
ωPR

”

λpfκpxq ` ωq ´ ℓpω, x, tq
ı

“
1

2
λ2 ` λfκpxq ´

1

2
| 9yptq ´ hpxq|

2
. (8)

Clearly, the notion of solution of (7) should be specified and, for the sake of completeness we recall the
classical definition of a viscosity solution in R.

Definition 2.1. Let U P C0pRn ˆ p0, T q;Rq. We say that U is a viscosity subsolution of (7) provided
that for all ϕ P C1pRn ˆ p0, T q;Rq, if U ´ ϕ attains a local maximum at px, tq then

Btϕpx, tq ` Hpx, t, Bxϕpx, tqq ď 0. (9)

We say that U is a viscosity supersolution of (7) provided that for all ϕ P C1pRn ˆ p0, T q;Rq, if U ´ ϕ
attains a local minimum at px, tq, then

Btϕpx, tq ` Hpx, t, Bxϕpx, tqq ě 0. (10)

If U is both a viscosity subsolution and supersolution, we say that U is a viscosity solution of (7).

We then have the following theorem.

Theorem 2.2. The cost-to-come px, tq ÞÑ Vκpx, tq defined above is a viscosity solution of (7).

In the context of the initial nonsmooth dynamics, we would like to understand the initially defined cost-
to-come V as a solution in the viscosity sense of a HJB equation. However, we see that (7) gives little
intuition of the potential HJB solution candidate when κ Ñ 8.
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2.3 The cost-to-come with penalized dynamics seen as the limit of a stochas-
tic filtering problem

In the context of smooth problems such as our penalized dynamics, bridges between the deterministic
problem introduced by Mortensen and the more general stochastic filtering framework, were introduced
in [18, 19] and further developed in [20]. In the context of small noise in the stochastic setting, this
allows us to understand the solution of the HJB equation (7) as a vanishing viscosity limit of a value
function formed from the conditional measure of the state knowing the observation up to the current
time. We assume that we can exploit such equivalence bridges to propose a candidate dynamics for our
originally defined cost-to-come V in the case of nonsmooth dynamics.
Let us then introduce a small noise amplitude ε ą 0, together with the nonlinear filtering problem in R

$

’

&

’

%

dXκ,ε
t “ fκpXκ,ε

t qdt`
?
εdB1

t ,

dY κ,ε
t “ hpXκ,ε

t qdt`
?
εdB2

t ,

with the initial condition pXκ,ε
0 , Y κ,ε

0 q “ pξ, 0q.

(11)

for independent brownian motions pB1
t qtě0 and pB2

t qtě0. To give a rigorous meaning to this, consider
Ω :“ C0pr0,8q;R2q the set of continuous functions vanishing at 0, endowed with the topology of uniform
convergence on compact sets. Let F denote the Borel σ-field on Ω. For each t ě 0 and ω P Ω, define
Btpωq :“ ωptq and set Ft :“ σtBs, 0 ď s ď tu (the σ algebra generated by B up to time t). In this way,
for all 0 ď s ď t, Fs Ď Ft and F “ σ pYτě0Fτ q. We complete the triple pΩ,F , tFtuq with the Wiener
measure P. We recall that the Wiener measure (see Karatzas & Shreve 1991) is the unique probability
measure on pΩ,Fq satisfying for all 0 ď s ď t and Γ P BpR2q,

P pBt P Γ|Fsq “
1

2πps´ tq

ż

Γ

exp

ˆ

´
}y ´Bs}2

2pt´ sq

˙

dy.

Here @ζ “ pζ1, ζ2q P R2, }ζ}2 :“ ζ21 ` ζ22 . Note that since tB0 “ 0u “ Ω, we have PpB0 “ 0q “ 1.
Consider now ε ą 0, a state ξ ě 0 and a continuous bounded function h : R Ñ R, which admits a
continuous bounded derivative. To assign a meaning to (11), consider the mapping ωp.q Ñ pxκp.q, yκp.qq

from C0pr0, T s;R2q to Cpr0, T s;R2q where for every t ě 0,
$

’

’

&

’

’

%

xκ,εptq “ ξ `

ż t

0

fκpxκ,εpsqqds`
?
εω1ptq,

yκ,εptq “

ż t

0

hpxκ,εpsqqds`
?
εω2ptq

is well-defined and continuous. If we denote this continuous map by ϕκ,εξ then P
´

ϕκ,εξ

¯´1

, the push
forward measure of P by ϕκ,εξ , is the pathwise law associated with pXκ,ε, Y κ,εq solving (11). The filtering
problem now aims to compute the measure-valued process pπκ,ε

t qtě0 defined as
ż

R
φdπκ,ε

t :“ E
“

φpXκ,ε
t q|σ pY κ,ε

s q0ďsďt

‰

,

for any bounded continuous φ : R Ñ R, σ pY κ,ε
s q0ďsďt being the σ-algebra generated by the observation

Y κ,ε
s up to time t. This estimate of φpXκ,ε

t q is optimal in the least-square sense, given the knowledge
of Y κ,ε

s up to time t. An evolution non-linear equation called be the Kushner-Stratonovich equation
can be derived for πε

t using a sophisticated representation formula involving the innovation process, see
for instance [1]. Let’s focus on a rather simple approach which relies on the unnormalized conditional
measure [1]

ż

R
φdρκ,εt :“ E

„

exp

„

1
?
ε

ż t

0

hpXκ,ε
s qdY κ,ε

s ´
1

2ε

ż t

0

h2pXκ,ε
s qds

ȷ

φpXκ,ε
t q

ˇ

ˇ

ˇ

ˇ

σ pY κ,ε
s q0ďsďt

ȷ

,

which can be linked to πκ,ε
t by the Kallianpur-Striebel formula: for any continuous bounded function φ

ż

R
φdπκ,ε

t “

ż

R
φdρκ,εt

ż

R
dρκ,εt

.

6



This formula in this case is an analogous of Bayes’ formula, see [22, 33, 1]. The density qκ,εpx, tq of ρκ,εt

with respect to the Lebesgue measure solves the linear stochastic partial differential equation (SPDE)
#

dqκ,εpx, tq “ A˚
κ,εq

κ,εpx, tq ` 1
εhpxqqκ,εpx, tqdY κ,ε

t , px, tq P R ˆ R`

qκ,εpx, 0q “ qκ,ε0 pxq, x P R.
(12)

This is the Zakai equation, to which a rigours meaning is given in [38, 30, 1]. The operator A˚
κ,ε is the

formal L2 adjoint of
Aκ,ε “

ε

2
B2
xx ` fκBx.

The asymptotic behavior of qκ,εpx, tq is studied in [20] as ε Ñ 0. Instead of directly dealing with the
Zakai equation, they performed the transform [13, 36]

pκ,εpx, tq “ exp
´

´
1

ε
yptqhpxq

¯

qκ,εpx, tq, (13)

for a given realisation pyptqq0ďtďT of pY κ,ε
t q0ďtďT , which leads to the robust form of Zakai equation

[9, 11, 2]:
$

&

%

Btp
κ,εpx, tq ´

ε

2
B2
xxp

κ,εpx, tq ` gκpx, tqBxp
κ,εpx, tq `

1

ε
Pκ,εpx, tqpκ,εpx, tq “ 0, px, tq P R ˆ R`,

pκ,εpx, 0q “ qκ,ε0 pxq, x P R,
(14)

where gκpx, tq “ fκpxq ´ yptqh1pxq and

Pκ,εpx, tq “
1

2
h2pxq ` yptqAκ,εhpxq ´

1

2
y2ptq|h1pxq|2 ` εBxpfκpxq ´ yptqh1pxqq.

Detailed computations can be found in appendix 5.1. By the logarithmic transformation – also known
as Hopf-Cole transform –

Sκ,εpx, tq “ ´ε log pκ,εpx, tq, (15)

the robust form of Zakai equation can be converted into a HJB equation on Sκ,εpx, tq

#

BtSκ,εpx, tq ` Hκ,εpx, t, BxSκ,εq “
ε

2
B2
xxSκ,ε, px, tq P R P R`,

Sκ,εpx, 0q “ Sκ
0 pxq, x P R,

(16)

where
Hκ,εpx, t, λq “ λgκpx, tq `

1

2
λ2 ´ Pκ,εpx, tq.

The ε Ñ 0 limit of qκ,εpx, tq is then obtained by studying that of Sκ,εpx, tq. The limit function Sκpx, tq
formally satisfies the HJB equation

#

BtSκpx, tq ` Hκpx, t, BxSκq “ 0, px, tq P R ˆ R`,

Sκpx, 0q “ Sκ
0 pxq, x P R,

(17)

where
Hκpx, t, λq “ λgκpx, tq `

1

2
λ2 ´ Pκpx, tq,

Pκpx, tq “
1

2
h2pxq ` yptqh1pxqfκpxq ´

1

2
y2ptq|h1pxq|2.

In [20], the authors then establish a link between stochastic and deterministic estimation by proving that

Vκpx, tq “ Sκpx, tq ´ yptqhpxq,

using a uniqueness result for the vanishing viscosity solutions of (17). As a by-product, they obtained
the following asymptotic approximation

qκ,εpx, tq « exp

„

´
1

ε
Vκpx, tq

ȷ

, as ε Ó 0, (18)
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understood – after taking the logarithm and multiplying by ε – as pathwise uniform convergence over
compact sets. At this point, we recall that the observation 9yp.q was produced – up to measurement
errors – from a target system x̌ governed by a variational inequality. Consequently, the density qκ,εpx, tq
generated from 9yp.q contains a model error due to the finiteness of κ. It sounds reasonable to expect (18)
to be true as κ Ñ `8, when replacing qκ,ε by the density obtained in the nonsmooth setting, and Vκ

by the cost-to-come V in (3). However, the lost equivalence, shown in the next sections, suggests that
(18) is no more true in the nonsmooth setting.

3 Vanishing viscosity limit of the stochastic filtering problem re-
lated to the constrained dynamics

3.1 The stochastic filtering problem for the constrained dynamics
The stochastic filtering framework provides a way to extend the previous results to the limit case κ Ñ 8

where the dynamics is constrained. This provides a candidate HJB equation that can be explored to
define a Mortenten estimator for variational inequality dynamics. Since the full probabilistic framework
is much more complicated, we only outline the main ingredients presented in [34] and we set f “ 0 for
the sake of conciseness. The resulting HJB is then rigorously analyzed as such in the next section.
Following [34], let us consider the stochastic variational inequality in R`

$

’

’

’

&

’

’

’

%

@ progressively measurable process Z, @0 ď s ď t,
şt

s
pZr ´Xε

r q
`?
εdB1

r ´ dXε
r

˘

`
şt

s
IR`

pXε
r qdr ď

şt

s
IR`

pZrqdr,

dY ε
t “ hpXε

t qdt`
?
εdB2

t ,

with the initial condition pX0, Y0q “ pζ, 0q,

(19)

with IR`
denoting the convex characteristic function of R` (equal to 0 within R` and `8 outside).

Following [34, page 239], we say that a triple pXε, Y ε,Kεq, an R3-valued stochastic process, is a solution
of (19), if the following conditions are satisfied P almost surely (a.s.)

1. Xε, Y ε,Kε are progressively measurable with continuous path and K0 “ 0,

2. @t ě 0, Xε
t ě 0,

3. @T ě 0, }Kε}T ă 8,

4. @t ě 0, Xε
t `Kε

t “ ζ `
?
εB1

t , and Y ε
t “

şt

0
hpXε

s qds`
?
εB2

t ,

5. @0 ď s ď t, @z P r0,8q,
şt

s
pz ´Xε

r qdKε
r ď 0.

Since the diffusion coefficients in front of B1 and B2 are constant, we may fix an arbitrary ω P Ω and
regard (19) as a deterministic problem with forcing tpB1

t pωq, B2
t pωqq, t ě 0u.

Still following [34], we say that a triple pxε, yε, kεq is a solution of the generalized Skorokhod problem
GSε, if the following conditions hold:

1. xε, yε, kε are continuous, xεp0q “ ζ and kεp0q “ 0,

2. @t ě 0, xεptq ě 0,

3. kε P BVlocpr0,8q;Rq,

4. @t ě 0, xεptq ` kεptq “ ξ `
?
εω1ptq, and yεptq “

şt

0
hpxεpsqqds`

?
εω2ptq,

5. @0 ď s ď t, @zε P r0,8q,
şt

s
pzε ´ xεprqqdkεprq ď 0.

Theorem 3.1. [34, Theorem 4.17 page 252] Assume h to be sufficiently smooth, x0 P r0,8q and mp.q
is a continuous function with mp0q “ 0. Then the GSε

px0,mq has a unique solution.

Theorem 3.2. [34, Theorem 4.16 page 247] The mapping px0,mq ÞÑ pxε, yεq “ GSε
px0,mq is continuous

from r0,8q ˆ Cpr0, T s;Rdq Ñ Cpr0, T s;R2q.
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Theorem 3.3. [34, Theorem 4.18 page 257] The stochastic variational inequality (19) has a unique
solution pXε, Y ε,Kεq progressively measurable with continuous path in the sense of the definition above.

Remark 3.4. When f ” 0, finding a solution to the VI (1) with the disturbance function ωp.q as an
input and ζ as initial condition at time 0 is equivalent to finding a solution to the deterministic Skorokhod
problem with ζ and the integral of ω as inputs. However, the stochastic Skorokhod problem in (19) is
solved with ζ and ω as inputs.This allows to define a continuous mapping as shown in [34, Theorem 4.16
page 247]. With this mapping, a push forward of the Wiener measure is used to establish the solution to
the stochastic Skorokhod problem with ζ and two Wiener processes with variance ϵ as inputs.

The stochastic filtering problem of reflected diffusions has been tackled in [29, 32, 27, 26, 2]. As in section
2.3, the unnormalized conditional density qεpx, tq can be defined for the stochastic filtering problem of
the constrained dynamics, and it solves the Zakai equation with boundary condition

$

’

’

&

’

’

%

dqεpx, tq “ ε
2B2

xxq
εpx, tq `

qεpx, tq

ε
dY ε

t , px, tq P R` ˆ R`

qεp0, xq “ qε0pxq x P R`,

Bxq
εpt, 0q “ 0, t P R`,

(20)

for which a rigorous meaning is given in [29, 30, 31]. Given a realisation pyptqq0ďtďT of pY ε
t q0ďtďT , the

change of variable

pεpx, tq “ exp
´

´
1

ε
yptqhpxq

¯

qεpx, tq, (21)

now leads to the robust Zakai equation with boundary condition
$

’

&

’

%

Btp
εpx, tq ´ yptqh1pxqBxp

εpx, tq `
1

ε
Pεpx, tqpεpx, tq “

ε

2
B2
xxp

εpx, tq, px, tq P R` ˆ R`

ε
2Bxp

εpt, 0q `
yptqh1pxq

2
pεp0, tq “ 0, t P R`,

(22)

where
Pεpx, tq “

1

2
h2pxq ´

ε

2
yptqh2pxq ´

1

2
y2ptq|h1pxq|2. (23)

Details on this derivation are given in appendix 5.1. By the Hopf-Cole transform

Sεpx, tq “ ´ε log pεpx, tq, (24)

the robust Zakai equation can be converted into the following HJB equation with boundary condition
$

’

’

&

’

’

%

BtSεpx, tq ` Hε
S px, t, BxSεpx, tqq “

ε

2
B2
xxSεpx, tq, px, tq P R` ˆ R`,

BxSεp0, tq ´ yptqh1p0q “ 0, t P R`,

Sεpx, 0q “ ´ε log pεpx, 0q,

(25)

the Hamiltonian Hε
S being defined in (26) as

Hε
S :

"

R` ˆ R` ˆ R Ñ R
px, t, λq ÞÑ λ2

2 ´ λyptqh1pxq ´ Pεpx, tq.
(26)

3.2 Viscous Hamilton-Jacobi equation on Sε

For the sake of generality, we assume in this section that f ‰ 0, with only fp0q “ 0 to avoid additional
technical problems at the boundary – see Remark 3.5 for comments on the completely general case.We
assume that f and y are bounded C1 functions with bounded first derivatives, and h is a bounded C2

function with bounded derivatives up to order 2 .
Starting from the stochastic filtering problem of the constrained dynamics and inspired by [20], we
introduce the Hamilton-Jacobi equation (27) formally satisfied by the Hopf-Cole transform of the solution
of the robust Zakai equation as done in the previous section, see (25). We prove a stability result that
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allows us to recover, in the vanishing viscosity limit, what we will interpret in section 4.1 as a deterministic
limit of the stochastic filtering problem. Consider

$

’

’

&

’

’

%

BtSεpx, tq ` Hε
Spx, t, BxSεpx, tqq “

ε

2
B2
xxSεpx, tq, x P R˚

`, t ą 0,

´BxSεp0, tq “ ´yptqh1p0q, x “ 0, t ą 0,

Sεpx, 0q “ S0pxq, x P R`, t “ 0,

(27)

for some initial condition: S0 P BUCpR`;Rq (Bounded Uniformly Continuous), the Hamiltonian Hε
S

being defined for ε ą 0 as

Hε
S :

$

&

%

R` ˆ R` ˆ R Ñ R

px, t, λq ÞÑ
λ2

2
` λgSpx, tq ´

„

hpxq2

2
` yptqLεhpxq ´

1

2
yptq2|h1pxq|2 ` εBxgSpx, tq

ȷ

,

(28)

where by analogy with [20], we set
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

gSpx, tq :“ fpxq ´ yptqh1pxq,

Lε :“
ε

2
B2
xx ` fpxqBx.

(29)

Contrary to James and Baras [20] who started from the stochastic setting, this deterministic equation
will be our starting point, not requiring any previous result on the robust Zakai equation with boundary
conditions, and defining Sε as solution of (27) rather than as the value function resulting from a dynamic
programming approach.

Remark 3.5. If fp0q ‰ 0, the second line of equation (27) reads instead

´BxSεp0, tq “ ´yptqh1p0q ´ 2fp0q, x “ 0, t ą 0.

We may add an appropriate smooth, bounded perturbation of bounded derivatives to Sε, defining for
instance:

S̄εpx, tq :“ Sεpx, tq ´ 2xfp0qe´x2

,

so that ´BxS̄εpx, tq “ ´BxSεpx, tq `2fp0q. We thus recover a function satisfying a closely related viscous
Hamilton-Jacobi equation whose Hamiltonian can be easily computed. That new Hamiltonian satisfies
the same sufficient properties for the rest of the section, and the boundary condition of the new equation
does not involve f . Hence, similar results will hold, so to avoid unnecessary technicalities, we choose to
take fp0q “ 0 hereafter.

3.3 The Vanishing Viscosity Limit Procedure
We denote the formal limit of Hε

S as ε Ñ 0 by

HS :

#

R` ˆ R` ˆ R Ñ R
px, t, λq ÞÑ λ2

2 ` λgSpx, tq ´
phpxqq

2

2 ´ yptqfpxqh1pxq ` 1
2 pyptqq2|h1pxq|2.

(30)

The main theorem of the section is the following stability result.

Theorem 3.6. Assume that f, y P C1
b pR`;Rq and h P C2

b pR`;Rq are bounded with first (and second for
h) bounded derivatives, and S0 P BUCpR`;Rq. Then:

piq for all ε ą 0 the second order evolution Hamilton-Jacobi equation (27) admits a unique smooth
solution Sε.

piiq The Hamiltonian Hε
S defined in (28) converges locally uniformly as ε Ñ 0 to the limiting Hamiltonian

HS of equation (30),
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piiiq Sε converges locally uniformly as ε Ñ 0 to a continuous function we denote by S,

pivq S is the unique viscosity solution of the limiting Hamilton-Jacobi equation below, in the sense of
Definition 3.1.

$

’

&

’

%

BtSpx, tq ` HSpx, t, BxSpx, tqq “ 0, x P R˚
`, t ą 0,

´BxSp0, tq “ ´yptqh1p0q, x “ 0, t ą 0,

Spx, 0q “ S0pxq, x P R`, t “ 0.

(31)

Let us recall from e.g. [25, 3] an appropriate notion of solution for the above Hamilton-Jacobi equations
with Neumann boundary condition. Consider the first order Hamilton-Jacobi equation on R`

$

’

&

’

%

Btupx, tq `Hpx, t, upx, tq, Bxupx, tqq “ 0, x P R˚
`, t ą 0,

Bp0, t, up0, tq, Bxup0, tqq “ 0 x “ 0, t ą 0,

upx, tq “ u0pxq, x P R`, t “ 0,

(32)

for locally Lipschitz H and B, the latter being strictly increasing with respect to its last variable in
the outward normal direction at x: for all R ą 0, there exists νR ą 0 such that for all px, t, u, λq P

t0u ˆ R` ˆ r´R,Rs ˆ R,
Bpx, t, u, λ` αnpxqq ´Bpx, t, u, λq ě νRα, (33)

where npxq is the unit outward normal to BR` at x – so, ´1. Note that the satisfaction of this condition
is the reason for the ´ sign preceding BxSp0, tq in (31), in which:

Bpx, t, u,λq “ ´λ` yptqh1p0q.

Definition 3.1. A continuous function u is said to be a viscosity subsolution of equation (32) if it
satisfies that for all ϕ P C1pR` ˆ R`;Rq, at each maximum point px0, t0q P R` ˆ R` of u´ ϕ, we have:
$

’

’

’

&

’

’

’

%

If px0, t0q P R˚
` ˆ R˚

`, pBtϕ`Hp¨, u, Bxϕqqpx0, t0q ď 0,

If px0, t0q P t0u ˆ R˚
`, min tBp¨, u, Bxϕqp0, t0q , pBtϕ`Hp¨, u, Bxϕqqp0, t0qu ď 0,

If px0, t0q P R˚
` ˆ t0u, min tupx0, 0q ´ u0px0q , pBtϕ`Hp¨, u, Bxϕqqpx0, 0qu ď 0,

If px0, t0q “ p0, 0q, min tup0, 0q ´ u0p0q , Bp¨, u, Bxϕqp0, t0q , pBtϕ`Hp¨, u, Bxϕqqp0, 0qu ď 0.

A continuous function u is said to be a viscosity supersolution of equation (32) if it satisfies that for all
ϕ P C2pR̄` ˆ R`;Rq, at each minimum point px0, t0q P R` ˆ R`q of u´ ϕ, we have:
$

’

’

’

&

’

’

’

%

If px0, t0q P R˚
` ˆ R˚

`, pBtϕ`Hp¨, u, Bxϕqqpx0, t0q ě 0,

If px0, t0q P t0u ˆ R˚
`, max tBp¨, u, Bxϕqp0, t0q , pBtϕ`Hp¨, u, Bxϕqqp0, t0qu ě 0,

If px0, t0q P R˚
` ˆ t0u, max tupx0, 0q ´ u0px0q , pBtϕ`Hp¨, u, Bxϕqqpx0, 0qu ě 0,

If px0, t0q “ p0, 0q, max tup0, 0q ´ u0p0q , Bp¨, u, Bxϕqp0, t0q , pBtϕ`Hp¨, u, Bxϕqqp0, 0qu ě 0.

A continuous function u is said to be a viscosity solution of equation (32) if it is both a viscosity subso-
lution and supersolution.

Theorem 3.7 (Uniqueness and conditional existence of BUC solutions – Theorem 2.1 in [3]). Assume
the initial condition u0 to be bounded and uniformly continuous. Assume H and B to be locally Lipschitz
continuous, and that H is locally uniformly Lipschitz continuous, convex and coercive in its last variable.
Then, if u and v are respectively a bounded upper semi-continuous (u.s.c.) viscosity subsolution and a
bounded lower semi-continuous (l.s.c.) viscosity supersolution of (32), then

u ď v on Ω̄ ˆ r0, T s.

Moreover, if such u, v exist and u “ v “ u0 on Ω̄ ˆ t0u, then equation (32) admits a continuous unique
viscosity solution.
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Remark 3.8. There are crucial hypotheses of Barles’ theorem above that become immediate in our
one spatial dimension, first order Hamiltonian setting. First, the open set R˚

` trivially satisfies that
BR˚

` “ t0u P W 3,8. Second, the structure hypotheses labeled pH1q, pH2q, and pH3q in [3] are clearly
satisfied by a first order Hamiltonian H and by our boudary condition, and boil down to classical Lipschitz
continuity, convexity and coercivity hypotheses.

To consider homogeneous Neumann conditions, let’s work on wεpx, tq :“ Sεpx, tq ´ yptqhpxq, instead of
directly Sε. wε is given as the solution of

$

’

’

&

’

’

%

Btw
εpx, tq ` Hεpx, t, Bxw

εpx, tqq “
ε

2
B2
xxw

εpx, tq, x P R˚
`, t ą 0,

´Bxw
εp0, tq “ 0, x “ 0, t ą 0,

wεpx, 0q “ w0pxq, x P R`, t “ 0,

(34)

provided with some locally bounded, Lipschitz initial condition w0. Local existence and uniqueness is
shown in Section 3.4 and global existence and uniqueness in Section 3.5, Corollary 3.13. The Hamiltonian
Hε is defined over px, t, λq P R` ˆ R` ˆ R as

Hεpx, t, λq :“
1

2
λ2 ` λfpxq ´

1

2
phpxqq2 ´ εf 1pxq `

ε

2
yptqh2pxq ` 9yptqhpxq. (35)

Note that this Hamiltonian, its ε Ñ 0 limit and all the Hamiltonians considered in this paper satisfy the
hypotheses of Theorem 3.7.

Remark 3.9. With this point of view, it is possible to directly define wε as the solution of equation (34)
after proving that it is well-posed, and to introduce Sε as a modification of wε. This allows to consider
Sε without starting from the general Zakai equation.

Proposition 3.10 (Local uniform convergence of the viscous Hamiltonian). Hε converges uniformly
to H in C0pR` ˆ R` ˆ R,Rq, where:

Hpx, t, λq :“
1

2
λ2 ` λfpxq ´

1

2
phpxqq2 ` 9yptqhpxq.

In an analogous way, Hε
S defined in equation (28) converges locally uniformly to HS defined in equa-

tion (30).

Formally, equation (34) tends to the following:
$

’

&

’

%

Btwpx, tq ` Hpx, t, Bxwpx, tqq “ 0, x P R˚
`, t ą 0,

´Bxwp0, tq “ 0, x “ 0, t ą 0,

wpx, 0q “ w0pxq, x P R`, t “ 0,

(36)

where the boundary condition must be understood in the sense of viscosity solutions, as in Definition 3.1.

Remark 3.11. If w is a viscosity solution of (36), the remark in Section 2 of [3] still holds: using well-
chosen test functions, it is possible to prove that the initial condition is satisfied in the classical sense
provided w0 is smooth, as in the present case here. For an extension to nonsmooth initial conditions, we
refer to the corresponding chapter of [4].

3.4 Local existence and uniqueness for the solution of (34)
We wish to extend equation (34) to x P R in a way that guarantees that the restriction to x P R` of the
solution of the extended equation w̃ satisfies the Neumann boundary condition. Hence, it is sufficient
to construct an extention w̃ that is even, so Bxw̃ is odd. Let us proceed by analogy with a reflection
method presented in [35, Ch. 3] for the heat equation with Neumann boundary condition:

$

’

&

’

%

Btupx, tq ´ kB2
xxupx, tq “ F px, tq, x ą 0, t ą 0,

Bxup0, tq “ 0, x “ 0, t ą 0,

upx, 0q “ u0pxq x ě 0, t “ 0.
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Let G be the Green heat kernel, defined over px, tq P R ˆ R` as:

Gkpx, tq “
1

?
4kπt

exp

ˆ

´
x2

4kt

˙

.

The function

ũpx, tq :“ rGkp¨, tq ˚ u0p| ¨ |qspxq `

ż t

0

rGkp¨, t´ sq ˚ F p| ¨ |, sqspxqds

is the Duhamel formulation corresponding to the symetrised equation
#

Btũpx, tq ´ kB2
xxũpx, tq “ F p|x|, tq, x P R, t ą 0,

ũpx, 0q “ u0p|x|q, x P R, t “ 0,

and its restriction to x P R` satisfies the initial Heat equation with Neumann boundary condition.
In an analogous way, we define the symmetrised Hamiltonian H̃, taking into account that the variable λ
will be expected to be an odd function of x:

H̃ε :

"

R ˆ R` ˆ R Ñ R
px, t, λq ÞÑ Hp|x|, t, sgnpxqλq “ 1

2λ
2 ` λgpxq ´ Ṽ ε

wpx, tq,
(37)

with
$

&

%

gpxq :“ sgnpxqfp|x|q,

Ṽ ε
wpx, tq :“

1

2
php|x|qq2 ´ 9yptqhp|x|q ` εf 1p|x|q ´

ε

2
yptqh2p|x|q.

(38)

Note that g for w̃ε corresponds to gS for S, defined in (29). The ‘symmetrised’ version of equation (34)
reads

$

&

%

Btw̃
εpx, tq ` H̃εpx, t, Bxw̃

εpx, tqq “
ε

2
B2
xxw̃

εpx, tq, x P R, t ą 0,

w̃εpx, 0q “ w̃0pxq, x P R, t “ 0,
(39)

where we use w̃0 : x P R ÞÑ w0p|x|q. Note that there is no more Neumann boundary condition.
Let us establish the well-posedness of the equation above.

Theorem 3.12 (Local existence and uniqueness of a solution of (39)). Let ε ą 0. Let w̃0 P L8 X Lip,
and H̃ε P Liplocw.r.t. λ. Then there exists T ą 0 such that there exists a unique smooth solution w̃ε of
equation (39) defined on R ˆ r0, T s.

The proof of Theorem 3.12 is a technical, but relatively standard fixed-point method, so for the sake of
conciseness, we will only sketch it.

Proof. We fix ε, and assume, in a first step, that H̃ε is globally Lipschitz in λ. We prove that for
px, tq P R ˆ r0, T s with T small enough, the mapping of a Picard iterate to the next is a contraction in
the norm }u} :“ }u}L8 ` }Bxu}L8 . We then extend the result to H̃ε locally Lipschitz in λ by applying a
security cylinder method used in [12, Ch.V]. Smoothness follows from that of the Green kernel.

3.5 Uniform in ε bounds on wε

The main result of this section is the global existence, uniqueness and uniform-in-ε boundedness of wε

stated in Corollary 3.13. For the sake of simplicity, we first prove Theorem 3.14: uniform in ε estimates
on the even extension w̃ε to R ˆ R` of wε defined in equation (39).
Our proof strategy in this section is that of James and Baras [20], with the exceptions that we apply it
to w̃ε rather than the extension of Sε, that we only have local existence of the solution at fixed ε for
now, and that we need to glean a sharper L8

loc estimate. The global existence of the solution for each ε
is a consequence of the uniform bounds (Corollary 3.15), and the exact same proof can then be applied
over r0, T s.

Corollary 3.13. Equation (34) admits a unique solution wε defined globally in time, and wε is locally
bounded in W 1,8

x pR`;C
1,1
t q with analogous bounds to those from Theorem 3.14.
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Theorem 3.14. Assume H̃ satisfies the assumptions of Theorem 3.7, and let T ą 0 such that equa-
tion (39) admits a unique smooth solution w̃ε over R ˆ r0, T s. Then for every compact subset Q Ă

Rˆ r0, T s there exists ε0 ą 0 and K ą 0 such that for all 0 ă ε ă minpε0, 1q, for all px, tq, px, sq P Q, w̃ε

satisfies:
piq |w̃εpx, tq| ď K,

piiq |Bxw̃
εpx, tq| ď K,

piiiq |w̃εpx, tq ´ w̃εpx, sq| ď K
´

|t´ s|
1{2

` |t´ s|
¯

.

(40)

Moreover, piq can be refined into a sharper estimate pivq, where the bound itself does not depend on R.
Namely, for all R ě maxp8, 16}g}L8pRqq there exists εR :“ 1

32R4 such that for all 0 ă ε ă εR,

pivq }w̃ε}L8pQRq ď }w̃0}L8pRq `
“

8p1 ` }g}L8pRqq ` }V ε}L8pRˆr0,T sq ` 1
‰

T ` 1. (41)

Corollary 3.15. Equation (39) admits a unique solution w̃ε defined globally in time. Moreover, w̃ε is
locally bounded in the norm of Theorem 3.14.

Proof. Proof of Corollary 3.15 assuming Theorem 3.14
Consider the maximal interval of existence in time of the local solution w̃ε. The local uniform bound-
edness of w̃ε allows to prove that interval is r0,8q, which implies the existence of a unique solution w̃ε

defined globally in time. This in turn allows to apply Theorem 3.14 globally in time, recovering the same
bounds over every compact. Uniqueness follows from Theorem 3.12.

Proof of Corollary 3.13.
Assume Theorem 3.14 and Corollary 3.15 hold. Then the restriction px, tq P R` ˆ R` ÞÑ w̃εpx, tq is
well defined globally, bounded locally, and satisfies the equation (34). Here too, uniqueness follows from
Theorem 3.12.

To prove Theorem 3.14, we use the exact same comparison theorem as in [20], relying on the maximum
principle for linear parabolic PDE. We denote by B̄R Ă R the closed ball centred at 0 with radius R ą 0,
and by ΓR :“ B̄R ˆ t0u Y BB̄R ˆ r0, T s the parabolic boundary of QR :“ B̄R ˆ r0, T s, whose interior we
denote by Q̊R.

Lemma 3.16 (Maximum Principle, Friedman [17]). Define

Lφ :“ Btφ´
ε

2
B2
xxφ` Bxφb

ε,

where bε is smooth. If Lφ ď 0 (respectively, ě 0) in Q̊R, then for all px, tq P QR,

φpx, tq ď sup
pz,sqPΓR

φpz, sq

ˆ

respectively, inf
pz,sqPΓR

φpz, sq ď φpx, tq

˙

.

Lemma 3.17 (Comparison theorem, James and Baras [20] Lemma 4.2).
Let ε ą 0. Let w̃ε be a solution of (34) over R ˆ r0, T s and define

L̃ : v P C1pQ̊R;Rq ÞÑ Btv ´
ε

2
B2
xxv ` gBxv `

1

2
|Bxv|

2
´ Ṽ ε

w,

gpxq “ sgnpxqfp|x|q and Ṽ ε
w being defined in (38). Let v P C1pQ̊R;Rq. If L̃ v ě 0 (respectively, L̃ v ď 0)

in Q̊R and if w̃ε ď v (resp. v ď w̃ε) on ΓR, then w̃ε ď v (resp. v ď w̃ε) in Q̊R.

Same proof as in [20]: If L̃ v ě 0, then subtract L̃wε “ 0 and let φ “ v ´ w̃ε to get

Btφ´
ε

2
B2
xxφ` gBxφ`

1

2

´

|Bxv|2 ´ |Bxw̃
ε|

2
¯

ě 0

Now |Bxv|2 ´ |Bxw̃
ε|

2
“ Bxφ ¨ pBxv ` Bxw̃

εq . Set

bε “ g `
1

2
pBxv ` Bxw̃

εq .

Then Lφ ě 0 and on ΓR, φpz, sq ě 0. Hence φpx, tq ě 0 for all px, tq P QR by Lemma 3.16.
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Proof of Theorem 3.14. The proof is very close to that given by James and Baras in [20], inspired in [15].
It relies on the construction of a function v independent of ε such that L̃ v ě 0 in Q̊R and w̃ε ď v on ΓR,
independent of (sufficiently small) ε ą 0, which is achieved by making v tend to 8 close to the boundary.

Proof of pivq. Let R ě 4maxp1, 2}g}q and ε ď εR :“ 1
2R4 . Define

vpx, tq “
1

R2 ´ |x|2
` µt`M

where the constants µ ą 0,M ą 0 will be adequately chosen later. Then

L̃ v “µ´
ε

2

˜

2

pR2 ´ |x|2q
2 `

8|x|2

pR2 ´ |x|2q
3

¸

`
2x

pR2 ´ |x|2q
2 ¨ g `

2|x|2

pR2 ´ |x|2q
4 ´ Ṽ ε

w

“µ`
1

pR2 ´ x2q
4

“

x2 ´ ε
`

R2 ´ x2
˘ `

4x2 ` pR2 ´ x2q
˘‰

` ẼRpxq ` GRpxq ´ Ṽ ε
wpx, tq,

where we define:
$

’

’

’

&

’

’

’

%

ẼRpxq :“
2xgpxq

pR2 ´ x2q
2 ě ´ERpxq :“ ´

2|x|}g}L8pRq

pR2 ´ x2q
2 ,

GRpxq :“
x2

pR2 ´ x2q
4 ě 0.

Hence,

L̃ v ěµ`
1

pR2 ´ x2q
4

“

x2 ´ ε
`

R4 ` 2R2x2 ´ 3x4
˘‰

´ ERpxq ` GRpxq ´ Ṽ ε
wpx, tq

ěµ`
1

pR2 ´ x2q
4

„

x2 ´ ε
4R4

3

ȷ

´ ERpxq ` GRpxq ´ Ṽ ε
wpx, tq,

the term 4R4

3 being the maximum over X :“ x2 P R of the second order polynomial in X right above it.
For ε ă εR: either |x| ě 1 and it follows that x2 ´ ε 4R

4

3 ě 0; or |x| ă 1 and

1

pR2 ´ x2q
4

„

x2 ´ ε
4R4

3

ȷ

ě
´1

pR2 ´ 1q
4 .

Hence,

L̃ v ě µ´
1

pR2 ´ 1q
4 ´ ERpxq ` GRpxq ´ }Ṽ ε

w}L8pRˆr0,T sq. (42)

Claim: For all px, tq P QR,

´ERpxq ` GRpxq ě ´8maxp1, }g}2L8pRqq.

Proof of the Claim. We will prove the Claim for x P r0, Rq now. Mutatis mutandis, the proof for x ď 0

follows with no notable difference. Let C “ 4max
´

1,
a

}g}

¯

, and η “ 1
C

?
R

.

• If x ď R ´ η:

ERpxq ď ERpR ´ ηq “ 2}g}
R ´ η

´

R2 ´ pR ´ ηq
2
¯2 “

C2}g}

2

R ´ 1
C

?
R

R ´ 1
C

?
R

` 1
4C2R2

ď
C2}g}

2
ď 8maxp1, }g}2q.

And since GRpxq ě 0, the claimed inequality is satisfied.
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• Otherwise, R ´ η ă x ă R:

pR2 ´ x2q2GRpxq ě pR2 ´ pR ´ ηq2q2GRpR ´ ηq “
pR ´ ηq

2

p2ηR ´ η2q
2 “

C2

4

R2 ´ 2
?
R

C ` 1
C2R

R ´ C?
R

` C2

4R2

.

To bound below the last fraction on the right-hand side, observe that since C ą 1 and R ě 4, we
have 2R

C ă R2

2 ; and since

R
?
R ě 8R ě 8maxp4, 8}g}q ą C “ 4maxp1,

a

}g}q,

we have:
C

?
R

´
C2

4R2
“

C
?
R

„

1 ´
C

4R
?
R

ȷ

ě 0.

We obtain:

pR2 ´ x2q2GRpxq ě
C2R

8
.

Therefore,

GRpxq ´ ERpxq “ pR2 ´ x2q2 rGRpxq ´ 2x}g}s ě pR2 ´ x2q2
„

C2R

8
´ 2R}g}

ȷ

ě 0,

because C2 ě 16}g}.

This concludes the proof of the Claim.

From the Claim and equation (42), it is clear that Lv ě 0 over QR, provided µ is chosen sufficiently
large. Specifically,

µ “
1

pR2 ´ 1q
4 ` 8p1 ` }g}}L8pRqq ` }Ṽ ε

w}L8pRˆr0,T sq (43)

suffices. Choose now M “ }w0}L8pRq: large enough that

w0pxq ď M for all x P BR.

Since vpx, tq Ñ 8 as |x| Ñ R uniformly in t P r0, T s, it follows from the maximum principle that

w̃ε ď v in Q̊R.

Similarly, by considering ´v instead of v, we can find a similar upper bound for w̃ε.

Since v is continuous in Q̊R and max
|x|ďR{2

1

pR2 ´ x2q
2 “

4

3R2
, the following bound over QR{2 follows.

}w̃ε}L8pQR{2q ď
4

3R2
` }w0}L8 ` µT, (44)

with µ defined in (43). Hence,

}w̃ε}L8pQR{2q ď }w̃0}L8pRq `

„

8p1 ` }g}L8pRqq ` }V ε}L8pRˆr0,T sq `
1

pR2 ´ 1q4

ȷ

T `
4

3R2
. (45)

The desired estimate follows, concluding the proof of pivq.

Proof of piq. pivq ñ piq.
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Proof of piiq. The estimate of the partial derivative in x closely follows [20], using a variant of the
techniques in [15]. It consists of the following steps.

• Define Q ĂĂ Q1 ĂĂ R ˆ p0, T q, where Q,Q1 are open and “ĂĂ" means “compactly contained in".

• Choose a smooth function ζ such that ζ ” 1 on Q and ζ ” 0 near BQ1, and define

z :“ ζ2|w̃ε|2 ´ λw̃ε,

where λ ą 0 will be chosen later.

• Apply the maximum principle to z: z reaches its maximum in Q̄1. Assume it’s reached at px0, t0q P

Q1. Then, since z is smooth,
$

&

%

Bxz “ 0,

0 ď Btz ´
ε

2
B2
xz.

• Writing the previous inequality explicitly in terms of ζ and w̃ε and using the Hamilton-Jacobi
equation satisfied by w̃ε yields, for ε sufficiently small, at px0, t0q:

0 ď ´Bxw̃
ε ¨Bx

`

ζ2|Bxw̃
ε|2

˘

´g ¨Bx
`

ζ2|Bxw̃
ε|2

˘

`
λ

2
|Bxw̃

ε|2 `Cζ|Bxw̃
ε|3 `C|Bxw̃

ε|2 `λC|Bxw̃
ε|`λC,

where we recall that C is a generic constant name. Using now Bxz “ 0 at px0, t0q, we have

λ

2
|Bxw̃

ε|2 ď Cζ|Bxw̃
ε|3 ` C|Bxw̃

ε|2 ` λC|Bxw̃
ε| ` λC.

• Choosing λ “ µrpmax ζq|Bxw
ε| ` 1s, with µ ą 1 to be chosen yields:

µ

2
|Bxw̃

ε|2 ď C|Bxw̃
ε|2 ` Cλµ.

Hence for µ large enough, at px0, t0q,
|Bxw̃

ε|2 ď Cλ.

Hence:
z ď Cλ in Q1 .

• If the max is reached at the boundary, the equation above holds since w̃ε is bounded. From it,
James and Baras recover:

max ζ2|Bxw̃
ε|2 ď max z ` Cλ ď Cλ

and by definition of λ,
max ζ2|Bxw̃

ε|2 ď Cµrmax ζ|Bxw̃
ε| ` 1s,

which implies
ζ|Bxw̃

ε| ď C in Q1 ,

so
|Bxw̃

ε| ď C in Q̄,

concluding the proof.

Proof of piiiq. Since H is locally bounded, the conditions of [10, Lemma 5.2] are met (with ε
2

here, instead of ε), which allows to conclude to the ε-dependent Hölder estimate:

@px, tq, px, sq P Q, |w̃εpx, tq ´ w̃εpx, sq| ď K
´?

ε |t´ s|
1{2

` |t´ s|
¯

.

Since ε P p0, 1q, taking ε “ 1 in the right-hand side concludes the proof.
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3.6 Viscosity solution limit – Proof of Theorem 3.6.
Theorem 3.18. Assume w0 is bounded and Lipschitz continuous, and H satisfies the assumptions of
Theorem 3.7. Then there exists a unique viscosity solution of the limiting equation (36), defined over
px, tq P R` ˆ R`, and that solution can be obtained by the vanishing viscosity method.

Proof. The bounds piq, piiq, and piiiq of Corollary 3.13 and the Arzela-Ascoli theorem (see e.g. [25,
Theorem 1]) imply that there exists a decreasing subsequence pεkqkPN that tends to 0 such that wεk

converges uniformly over compact sets to a continuous function w. From bound pivq, it follows that w is
bounded over R` ˆ r0, T s. Since Hε also converges uniformly over compact sets to H, Proposition 3.10,
we may apply the stability result in [3]. Uniqueness results from Theorem 3.7.

We may now consider, for 0 ă ε ă 1 and for all px, tq P R` ˆ r0, T s:

Sεpx, tq “ wεpx, tq ` yptqhpxq.

By construction, Sε is smooth and satisfies the second order evolution Hamilton-Jacobi equation (27).
The uniqueness of the solution to that equation – point piq of Theorem 3.6 – is a direct consequence of
Corollary 3.13. The local uniform convergence of the Hamiltonian Hε

S to HS , point piiq, results from
Proposition 3.10. Since y and h are bounded and have bounded derivatives, appropriate bounds can be
obtained on Sε of the type of those in Corollary 3.13. So piiiq, the convergence of Sε to S, follows from
that of wε to w in the proof of Theorem 3.18.
As for point pivq, the well-posedness of the limit equation follows from that of equation (36): Theo-
rem 3.18. Since y and h are smooth enough, yh may be added or subtracted to any test function,
guaranteeing that definition 3.1 applies for w in equation (36) if and only if it applies for S in equa-
tion (31). The vanishing viscosity limit procedure also works in a similar way, concluding the proof of
Theorem 3.6.

4 Dynamic programming principle for the HJB limit
At this point, the vanishing viscosity procedure has provided a functional that one could expect to be the
cost-to-come associated to the Mortensen estimation of the Skorohod problem. Unfortunately, despite its
stochastic interpretation, this function cannot be linked as in [20] to the cost-to-come of the deterministic
problem.

4.1 A control problem interpretation of the limit solution
The limit wpx, tq “ Spx, tq ´ yptqhpxq can be characterised as the unique viscosity solution of the HJB
equation (36). Following the method of [20], a backward control process is now built whose cost function
W will be identified to w. Consider the control process associated to the R`-valued backward trajectories
pzx,tω psqq0ďsďt defined by

#

@ a.e. s P r0, ts, @q ě 0, p 9zx,tω psq ´ ωpsqqpq ´ zx,tω psqq ď 0

zx,tω ptq “ x,
(46)

Assume this system is partially known through the perturbed observation function yptq given by

9ypsq “ hpzx,tω psqq ` ηpsq,

the control parameters η and ω being square-integrable R-valued functions of time. To each such ω can
be associated a backward trajectory zx,tω . The control problem then consists in minimizing a functional
ψpzx,tω p0qq of the arrival point at time 0, together with the L2 weights of control functions ω and η. The
cost rate is thus

ℓ̃pω, z, sq :“
1

2
ω2 `

1

2
| 9ypsq ´ hpzq|2,

so that the cost to go (backward in time) from x at time t to time 0 reads

inf
ωPL2p0,tq

ψpzx,tω p0qq `

ż t

0

ℓ̃
`

ωpsq, zx,tω psq, s
˘

ds,
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developing the square | 9ypsq ´ hpzpsqq|2, the term | 9ypsq|2 doesn’t affect the minimization problem, and
the cost rate can be chosen to be

ℓpωpsq, zpsq, sq :“
1

2
ω2psq `

1

2
h2pzpsqq ´ 9ypsqhpzpsqq,

as required to take the limit in the probabilistic setting. This leads to the functional

J pω, x, tq :“ ψpzx,tω p0qq `

ż t

0

ℓ
`

ωpsq, zx,tω psq, s
˘

ds,

and the cost function Wpx, tq :“ infω J pω, x, tq will appear to be the desired target function. Note the
initial value condition Wpx, 0q “ ψpxq.

Lemma 4.1 (Principle of Optimality). Consider a terminal point px, tq. Then for every 0 ă τ ă t

Wpx, tq “ inf
ωPL2pt´τ,tq

„

W
`

zx,tω pt´ τq, t´ τ
˘

`

ż t

t´τ

ℓ
`

ωpsq, zx,tω psq, s
˘

ds
ȷ

.

Proof. Given another control pω1psqq0ďsďt´τ , define the square-integrable control

ω̃psq “

#

ω1psq if 0 ď s ă t´ τ,

ωpsq if t´ τ ď s ď t.

For s ă t´ τ note that zx,tω̃ psq “ z
zx,t
ω pt´τq,t´τ

ω1 psq, so that by definition of W

Wpx, tq ď ψ
´

z
zx,t
ω pt´τq,t´τ

ω1 p0q

¯

`

ż t´τ

0

ℓ
´

ω1psq, z
zx,t
ω pt´τq,t´τ

ω1 psq, s
¯

ds`

ż t

t´τ

ℓ
`

ωpsq, zx,tω psq, s
˘

ds,

and taking the infimum over ω1 and ω concludes. Equality is achieved by considering a sequence of
controls whose costs converge towards the infimum.

Lemma 4.2 (Uniform terminal continuity). Consider a terminal point px, tq and M ą 0; then s ÞÑ zx,tω psq
is continuous at the terminal point s “ t uniformly in ω such that J px, ω, tq ď M .

Proof. Consider ε ą 0 and a control ω. If x ą 0, the continuity of zx,tω at t guarantees that

τω :“ sup
␣

τ ą 0 , zx,tω pt´ τq ą 0 and |zx,tω pt´ τq ´ x| ď ε
(

ą 0.

Considering 0 ă τ ă minpτω, 1q to make sure that zx,tω psq ą 0, one has 9zx,tω psq “ ωpsq for t ´ τ ď s ď t
thanks to 46. Thus

x´ zx,tω pt´ τq “

ż t

t´τ

9zx,tω psqds “

ż t

t´τ

ωpsqds.

Using Cauchy-Schwarz inequality

|x´ zx,tω pt´ τq| ď
a

2τJ pω, x, tq ď
?
2τM,

and this proves the bound τω ě

´

minpε,|x|q
?
2M

¯2

, the right-hand side being independent of ω.
In the case x “ 0, consider

τ0ω :“ sup
␣

τ ą 0 , @t´ τ ď s ď t, zx,tω psq “ 0
(

,

τ1ω :“ sup
␣

τ ą τ0ω , z
x,t
ω pt´ τq ą 0 and zx,tω pt´ τq ď ε

(

.

The continuity of zx,tω indeed guarantees τ0ω ă τ1ω; since for τ0ω ă τ ă τ 1 ă τ1ω

zx,tω pt´ τq ´ zx,tω pt´ τ 1q “

ż t´τ

t´τ 1

9zx,tω psqds “

ż t´τ

t´τ 1

ωpsqds,

the same reasoning as above gives a positive lower bound for τ1ω´τ0ω which is independent of ω, completing
the proof.
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The function W can now be identified to the previous limit using the HJB equation (36). Note that the
Hamiltonian H can equivalently be defined as

Hpx, t, λq “ max
ω1PR

λω1 ´ ℓ
`

x, ω1, t
˘

. (47)

Proposition 4.3 (Sub-solution). The function W is a viscosity sub-solution of (36).

Proof. For x ě 0 and t ą 0, consider a C1 test function ϕ such that W ´ ϕ has a local maximum at
point px, tq. For any control ω and every τ ą 0 small enough, this leads to

W
`

zx,tω pt´ τq, t´ τ
˘

´ ϕ
`

zx,tω pt´ τq, t´ τ
˘

ď Wpx, tq ´ ϕpx, tq,

because of zx,tω ptq “ x and the continuity of zx,tω at px, tq. Therefore, we have

ϕpx, tq ´ ϕ
`

zx,tω pt´ τq, t´ τ
˘

ď Wpx, tq ´ W
`

zx,tω pt´ τq, t´ τ
˘

ď

ż t

t´τ

ℓ
`

ωpsq, zx,tω psq, s
˘

ds,

using the principle of optimality of Lemma 4.1. Dividing by τ and taking the τ Ñ 0` limit gives

d
ds

ˇ

ˇ

ˇ

ˇ

s“t

ϕ
`

zx,tω psq, s
˘

ď ℓ
`

ωptq, zx,tω ptq, t
˘

,

so that
Btϕpx, tq ` 9zx,tω ptqBxϕpx, tq ´ ℓ pωptq, x, tq ď 0.

Then, we have

Btϕpx, tq ` ωptqBxϕpx, tq ´ ℓ pωptq, x, tq ď Bxϕpx, tq
“

ωptq ´ 9zx,tω ptq
‰

.

If x ą 0 then 9zx,tω ptq “ ωptq according to (46); else x “ 0 so that ωptq ´ 9zx,tω ptq ě 0, and one can assume
Bxϕp0, tq ď 0 following the definition (3.1). In every case

Bxϕpx, tq
“

ωptq ´ 9zx,tω ptq
‰

ď 0.

Since this is true for every ω, taking the maximum over ωptq allows to recover (47) and

Btϕpx, tq ` H px, t, Bxϕpx, tqq ď 0,

as desired.

Proposition 4.4 (Super-solution). The function W is a viscosity super-solution of (36).

Proof. For x ě 0 and t ą 0, consider a C1 test function ϕ such that W ´ϕ has a local minimum at point
px, tq. Positive numbers δ, δ1 ą 0 exist such that

|t´ t1| ď δ and |x´ x1| ď h ñ Wpx1, t1q ´ ϕpt1, x1q ě W px, tq ´ ϕ px, tq . (48)

Fix now ε ą 0 and M ą Wpx, tq. By lemma 4.2 δ1 ą 0 exists such that for every ω with J px, ω, tq ď M

0 ď τ ď δ1 ñ |zx,tω pt´ τq ´ x| ď h.

Consider a sequence pτnqně0 which converges to 0 with 0 ă τn ď minpδ, δ1q. In the principle of optimality
4.1 which characterises Wpx, tq, it is sufficient to minimize over ω with J pω, x, tq ď M , because M ą

Wpx, tq. Then by definition of the infimum, ωn with J px, ωn, tq ď M exists for every n, satisfying

Wpx, tq ` ετn ě W
`

zx,tωn
pt´ τnq, t´ τn

˘

`

ż t

t´τn

ℓ
`

ωnpsq, zx,tωn
psq, s

˘

ds.

Using 48, it follows

ϕ px, tq ´ ϕ
`

zx,tωn
pt´ τnq, t´ τn

˘

ě W px, tq ´ W
`

zx,tωn
pt´ τnq, t´ τn

˘

ě ´ετn `

ż t

t´τn

ℓ
`

ωnpsq, zx,tωn
psq, s

˘

ds.
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The functions ϕ and zx,tωn
being differentiable, taking the s-derivative in ϕ pzx,tω psq, sq leads

ϕ px, tq ´ ϕ
`

zx,tωn
pt´ τnq, t´ τn

˘

“

ż t

t´τn

Btϕ
`

zx,tωn
psq, s

˘

` 9zx,tωn
psqBxϕ

`

zx,tωn
psq, s

˘

ds.

Therefore, we have
ż t

t´τn

Btϕ
`

zx,tωn
psq, s

˘

` 9zx,tωn
psqBxϕ

`

zx,tωn
psq, s

˘

´ ℓ
`

ωnpsq, zx,tωn
psq, s

˘

ds ě ´ετn.

Adding
şt

t´τn
Bxϕ

`

zx,tωn
psq, s

˘

ωnpsqds to each side,

ż t

t´τn

Btϕ
`

zx,tωn
psq, s

˘

` Bxϕ
`

zx,tωn
psq, s

˘

ωnpsq ´ ℓ
`

ωnpsq, zx,tωn
psq, s

˘

ds

ě ´ετn `

ż t

t´τn

Bxϕ
`

zx,tωn
psq, s

˘ “

ωnpsq ´ 9zx,tωn
psq

‰

ds.

Note now that

H
`

zx,tωn
psq, s, Bxϕ

`

zx,tωn
psq, s

˘˘

“ max
ω1PR

Bxϕ
`

zx,tωn
psq, s

˘

ω1 ´ ℓ
`

ω1, zx,tωn
psq, s

˘

ě Bxϕ
`

zx,tωn
psq, s

˘

ωnpsq ´ ℓ
`

ωnpsq, zx,tωn
psq, s

˘

.

Moreover if x ą 0, the uniform convergence of lemma 4.2 allows to take n large enough so that zx,tωn
psq ą 0

for t´ τn ď s ď t and thus 9zx,tωn
psq “ ωnpsq. If x “ 0 one can assume Bxϕ p0, tq ě 0, and use the fact that

ωnpsq ´ 9zx,tωn
psq ě 0 by 46, with equality when zx,tωn

psq ą 0. In every case

ż t

t´τn

Bxϕ
`

zx,tωn
psq, s

˘ “

ωnpsq ´ 9zx,tωn
psq

‰

ds ě 0,

for n large enough. Thus
ż t

t´τn

Btϕ
`

zx,tωn
psq, s

˘

` H
`

zx,tωn
psq, s, Bxϕ

`

zx,tωn
psq, s

˘˘

ds ě ´ετn.

Lemma 4.2 guarantees the continuity of s ÞÑ zx,tωn
psq at s “ t uniformly in ωn such that Wωnpt, sq ď M ,

so that dividing by τn and taking the n Ñ `8 limit gives

Btϕ pt, xq ` H px, s, Bxϕ px, tqqq ě ´ε.

Since this hold for every ε ą 0, this concludes the proof.

Theorem 4.5 (Identification). Using the uniqueness result from Theorem 3.12, it is now possible to
identify the solution w of (36) to W, provided that the initial condition is ψpxq “ w0pxq.

This establishes the desired link between the stochastic filtering problem (19) and the control problem
(46). In particular, the limit doesn’t allow to compute a recursive estimator, because it stems from a con-
trol problem and not a filtering one. The estimation has thus to be done by keeping some approximating
noise with (small) amplitude ε ą 0, or using the penalized dynamics.

4.2 Lost equivalence with Mortensen’s approach
Let’s go back to the estimation problem of the constrained dynamics (1) with f “ 0, namely the
Skorokhod problem:

#

@ a.e. t P r0, T s, @z ě 0, pωptq ´ 9xptqqpz ´ xptqq ď 0

xp0q “ ζ.
(49)
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As in Section 2.2, it could be tempting to use a direct deterministic filtering approach base on the cost
to come

Vpx, tq :“ inf
pω,ζqPAx,t

„

ψpζq `

ż t

0

ℓpωpsq, x|ω,ζpsq, sqds

ȷ

,

where we omit 9y to simplify the notation and the pre-image set can be also defined by

Ax,t :“
␣

pω, ζq P L2p0, tq ˆ R` : x|ω,ζ follows (49) with x|ω,ζp0q “ ζ, x|ω,ζptq “ x
(

.

This admissible set is never empty, because it is always possible to reach every x ě 0 at time t starting
from any positive ζ ě 0 by considering a (slow enough) straight line without reflection. However, the
dynamics (1) is now well-posed in forward time only: given a value x at time t ą 0 and a control ω, there’s
no more well-posedness for the backward in time problem starting from x at time t. This feature is due
to the non-reversibility introduced by the reflection and complicates the situation a lot. Furthermore
Vpx, tq can no more be easily characterized as the solution of the expected HJB equation (36). Indeed,
let’s try to show – as done for W in Proposition 4.3 – that V is a viscosity sub-solution of equation (36).
First of all, one could prove the analogous of Theorem 2.1, which would read here:

Vpx, tq “ inf
pω,ζq

P Ax,t

„

V
`

x|ω,ζpt´ τq, t´ τ
˘

`

ż t

t´τ

ℓ
`

ωpsq, x|ω,ζpsq, s
˘

ds
ȷ

, (50)

Let’s now mimic the proof of Proposition 4.3: for x ě 0 and t ą 0, consider a C1 test function ϕ such
that V ´ ϕ has a local maximum at point px, tq. For any control ω, any initial condition ζ and every
τ ą 0 small enough, this leads to

V
`

x|ω,ζpt´ τq, t´ τ
˘

´ ϕ
`

x|ω,ζpt´ τq, t´ τ
˘

ď Vpx, tq ´ ϕpx, tq,

because of x|ω,ζptq “ x and the continuity of x|ω,ζ at px, tq. We have

ϕpx, tq ´ ϕ
`

x|ω,ζpt´ τq, t´ τ
˘

ď Vpx, tq ´ V
`

x|ω,ζpt´ τq, t´ τ
˘

ď

ż t

t´τ

ℓ
`

ωpsq, x|ω,ζpsq, s
˘

ds,

using the principle of optimality given by (50). Dividing by τ and taking the τ Ñ 0` limit gives

d
ds

ˇ

ˇ

ˇ

ˇ

s“t

ϕ
`

x|ω,ζpsq, s
˘

ď ℓ
`

ωptq, x|ω,ζptq, t
˘

,

so that
Btϕpx, tq ` 9x|ω,ζptqBxϕpx, tq ´ ℓ pωptq, x, tq ď 0.

Then
Btϕpx, tq ` ωptqBxϕpx, tq ´ ℓ pωptq, x, tq ď Bxϕpx, tq

“

ωptq ´ 9x|ω,ζptq
‰

. (51)

If x ą 0, then 9x|ω,ζptq “ ωptq according to (49). Hence

Btϕpx, tq ` H px, t, Bxϕpx, tqq “ 0 ď 0,

as desired. However if x “ 0 then ωptq ´ 9xκ|ω,ζptq ď 0 by definition of the sub-differential dynamics (49).
Considering ϕ such that Bxϕp0, tq ď 0, we get

Bxϕpx, tq
“

ωptq ´ 9x|ω,ζptq
‰

ě 0,

which, when combined to (51) does not allow to constrain Btϕpx, tq ` ωptqBxϕpx, tq ´ ℓ pωptq, x, tq to be
non-positive. The boundary condition appears to be

min t`Bxϕp0, t0q , pBtϕ`Hp¨, u, Bxϕqqp0, t0qu ď 0. (52)

A similar situation would arise if one tried to prove the super-solution property for V (the analog of
Proposition 4.4). We therefore believe that the connection between the viscosity limit of stochastic fil-
tering and deterministic filtering for dynamics nonreversible in time is broken, and V cannot be computed
from a forward dynamics that appears – from (52) – to be an ill-posed HJB dynamics.
As a result, a recursive estimator of (49) – and similarly for (1) – cannot be the Mortensen estimator
computed from V which does not appear to follow a well-posed HJB equation. As a consequence, to
obtain a computable sequential estimator, one must choose between two alternatives:
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- approximate the dynamics (1) with the penalized dynamics (5), resulting in an approximate
Moretensen estimator;

- define the stochastic filtering problem in terms of (19) and use the tools of stochastic filtering and
particle filtering [8] for a small but nonzero value of ε.

5 Appendix

5.1 Derivation of the robust Zakai equation
Lemma 5.1 (Robust Zakai equation). The random function pε satisfies the robust Zakai equation, adding
some Robin boundary conditions:

$

’

&

’

%

Btp
εpx, tq ´ yptqh1pxqBxp

εpx, tq `
1

ε
Pεpx, tqpεpx, tq “

ε

2
B2
xxp

εpx, tq, px, tq P R` ˆ R`

ε

2
Bxp

εp0, tq `
Yth

1pxq

2
pεp0, tq “ 0, t P R`,

(53)

where

Pεpx, tq :“
h2pxq

2
´
ε

2
Yth

2pxq ´
1

2
Y 2
t ph1pxqq2.

This recovers a result in [11] for robust filtering of reflected diffusion.

Proof. Thanks to Girsanov change of measure (see e.g. [38, 1]), it is sufficient to treat the case where
´

Yt?
ε

¯

tě0
is a standard brownian motion. Then, using Ito’s rule for stochastic differential calculus

dpεpx, tq “ exp

„

´
Ythpxq

ε

ȷ

dqεpx, tq ` qεpx, tqd exp

„

´
Ythpxq

ε

ȷ

` d
„

exp

„

´
Y¨hpxq

ε

ȷ

, qεpx, ¨q

ȷ

t

,

the quadratic cross-variation being given by

d
„

exp

„

´
Y¨hpxq

ε

ȷ

, qεpx, ¨q

ȷ

t

“ ´
qεpx, tqh2pxq

ε
exp

„

´
Ythpxq

ε

ȷ

.

Moreover, by Ito’s rule

d exp

„

´
Ythpxq

ε

ȷ

“ ´
hpxq

ε
exp

„

´
Ythpxq

ε

ȷ

dYt `
h2pxq

2ε
exp

„

´
Ythpxq

ε

ȷ

dt,

using (20)

dqεpx, tq “
ε

2
B2
xxq

εpx, tqdt`
qεpx, tq

ε
dYt,

this gives
d
dt
pεpx, tq “

ε

2
exp

„

´
Ythpxq

ε

ȷ

B2
xxp

εpx, tq ´
h2pxq

2ε
pεpx, tq,

noticing that

exp

„

´
Ythpxq

ε

ȷ

Bxq
εpx, tq “ Bxp

εpx, tq `
Yth

1pxq

ε
pεpx, tq,

it is straightforward to obtain that

B2
xxp

εpx, tq “ exp

„

´
Ythpxq

ε

ȷ

B2
xxq

εpx, tq ´
2Yth

1pxq

ε
pεpx, tq

´ pεpx, tq

«

pYth
1pxqq

2

ε
`
Yth

2pxq

ε
.

ff

Gathering everything

d
dt
pεpx, tq “ Yth

1pxqBxp
εpx, tq `

pεpx, tq

ε

˜

´
h2pxq

2
`

pYth
1pxqq

2

2
`
ε

2
Yth

2pxq

¸

`
ε

2
B2
xxp

εpx, tq,

which is the desired equation. The boundary conditions are directly obtained from the ones in (20).
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In equation (53), note that the random variable Yt just behaves as a parameter, which only appears inside
the coefficients. This parameter Yt being defined as the function ω P Ω ÞÑ Y pt, ωq, this can be seen as a
family of deterministic PDEs indexed by a parameter ω. At this point, it is only necessary to consider
given realisations of the trajectory, i.e. continuous deterministic functions pypsqq0ďsďt. The remaining
question will then be the measurability of the solution in ω, in order to recover a stochastic process
pεpω, x, tq from solving a deterministic PDE for each pypsqq0ďsďt. This question is positively answered
by the prominent works [13], [36] which even prove that considering C1 trajectories yptq is sufficient. As
in the whole paper, this allows to consider pεpx, tq as a deterministic function which depends on a given
C1 trajectory pypsqq0ďsďt. The function pεpx, tq is thus the solution of a linear parabolic PDE, for which
strong C2 regularity can be shown using the classical theory.
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