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Abstract

This paper presents reservoirpy, a Python library for Reservoir Computing (RC) models
design and training, with a particular focus on Echo State Networks (ESNs). The library
contains basic building blocks for a large variety of recurrent neural networks defined within
the field of RC, along with both offline and online learning rules. Advanced features of the
library enable compositions of RC building blocks to create complex “deep” models, delayed
connections between these blocks to convey feedback signals, and empower users to create
their own recurrent operators or neuronal connections topology. This tool is solely based
on Python standard scientific packages such as numpy and scipy. It improves RC time
efficiency with parallelism using joblib package, making it accessible to a large academic
or industrial audience even with a low computational budget. Source code, tutorials and
examples from the RC literature can be found at https://github.com/reservoirpy/

reservoirpy while documentation can be found at https://reservoirpy.readthedocs.
io/en/latest/?badge=latest
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1. Introduction

Reservoir Computing (RC) is a Machine Learning (ML) paradigm to train Recurrent Neural
Networks (RNNs) while keeping the recurrent layer untrained. Training RNNs often reveals
itself difficult and costly due to the challenge of keeping track of long range time dependen-
cies using backpropagation through time (BPTT) algorithm. Solutions such as Long Short
Term Memory (LSTM) cells (Hochreiter and Schmidhuber, 1997) use a gating mechanism
to filter past information. They are an attempt to tackle vanishing or exploding gradient
problem arising with long timeseries when training RNNs with BPTT. Nevertheless, this
method comes at a high computational cost.

RC networks use a random recurrent layer of neurons, it is called a reservoir because
it is literally a reservoir of computations based on non-linear combinations of inputs. As
firstly formulated by Jaeger (2001) and Maass et al. (2002) within the ML community
and Dominey (1995), Buonomano and Merzenich (1995) in the Neuroscience field, a single
layer of neurons—the readout—is in charge with decoding the dynamics of the reservoir
internal states. Only the connections between the reservoir and the readout are trained,
using any offline learning rules, such as linear regression, or online learning rules, such as

1

https://github.com/reservoirpy/reservoirpy
https://github.com/reservoirpy/reservoirpy
https://reservoirpy.readthedocs.io/en/latest/?badge=latest
https://reservoirpy.readthedocs.io/en/latest/?badge=latest


Trouvain, Hinaut

Recursive Least Squares (Sussillo and Abbott, 2009) or reward-modulated Hebbian learning
rules (Hoerzer et al., 2014). These methods display good performances on a great variety
of tasks, and compete with state of the art RNN methods like LSTMs on several tasks
Trouvain and Hinaut (2021).

While most RNN techniques can be easily replicated using popular Deep Learning frame-
works, RC models are often implemented from scratch because there is no common library
wells spread within the RC community. They also do not really benefit from the automatic
differenciation features and training strategies of theses Deep Learning tools, as BPTT is
not needed. On the other hand, libraries like scikit-learn (Buitinck et al., 2013) offer a
very simple API to apply ML techniques, but lack of flexibility and are not meant to create
complex neural networks operating on timeseries, with feedback loops and online learning
rules.

In this paper, we present reservoirpy, a library written in Python 3, tailored for RC
networks design. The library is in particular focused toward Echo State Networks (ESNs)
(Jaeger, 2001), the most popular flavor of RC, which consists of a RNN of recurrently con-
nected neurons that enables to project input data into a high-dimensional non-linear space,
which is then decoded – read-out – by a single layer of neurons with trained connections.
reservoirpy relies only on numpy and scipy, the Python standard scientific libraries, but
its API is heavily inspired from scikit-learn, making it accessible to a large audience
of researchers, students or any ML professionals. This library allows to design complex
neural networks equipped with online or offline learning rules, add feedback connections,
accelerate computations through parallelism, and quickly extend it with a mixed object-
oriented/functional interface.

2. Library Overview

2.1 Architecture and API

x[t] x[t+1] ... x[t+n]

f fff

s[t+1] s[t+2] ...

...

s[t+n+1]

Node

Figure 1: A node is a recurrent operator with an internal state s, represented by a colored
circle. This state xt, st 7→ st+1, where x is an input timeseries. By default, a
node outputs its internal state.

reservoirpy is centered around the Node base class. As schematised in Figure 1, a
node is a recurrent operator which maps its internal state st and some input vector xt at a
timestep t with the next state st+1. This mapping is defined by the function f , which can
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be implemented by users as a simple Python function operating on a node and an input
vector stored as a numpy array. A node can also carry parameters (e.g. a weight or bias
matrix), stored as numpy arrays or scipy sparse matrices for efficiency. These parameters
may be updated during the training phase of the node. Learning rules are also defined as
Python functions passed to the node class constructor.

Finally, nodes can be connected together inside directed acyclic graphs to represent more
complex operations. This mechanism allows to chain node functions. A graph of nodes is
represented by the Model class, which is a subclass of the abstract Node class, and therefore
share the same API as nodes. This allows to chain models together, or train them as a
whole.

Connections between nodes may also be delayed. These type of connections are called
feedback connections. Some node operators may therefore be of the form f : st,xt,yt−1 7→
st+1, where y is an external signal, generally coming from other nodes in a model. st
represents to internal state of the reservoir and xt represent some input value. These type
of delayed signal can also be used as target values in online learning, or as reward signals
for reinforcement learning-like rules (Hoerzer et al., 2014).

A RC model can therefore be constructed with nodes within the library or by creation
of new ones. This only requires to define the f operator, its parameters and a learning
function, if needed. Nodes can be used as functions or as objects, and can also be created
by subclassing the Node base class. Morevoer, one can also create a node by simply passing
the functions and parameters as argument to this Node class constructor. This mechanism
offers flexibility: one can switch between the high-level object-oriented API for end-to-end
training, similar to what can be found in scikit-learn, or one can use nodes as functions
and define their own training/inference policies from scratch.

2.2 Reservoir Computing Tools

reservoirpy already contains various implementations of RC tools, defined as Node sub-
classes, in the reservoirpy.nodes module. Some notable examples are:

• Reservoir, a recurrent pool of leaky neurons, to perform high dimensional embedding
of timeseries;

• Ridge, a readout layer of neurons which connections are learnt through Tikhonov
linear regression;

• LMS, a readout layer of neurons which connections are learnt using Least Mean Square,
allowing online learning, as used in Hoerzer et al. (2014).

• RLS, a readout layer of neurons which connections are learnt using Recursive Least
Square, allowing online learning, as used in Sussillo and Abbott (2009).

The library also provides nodes implementing the Intrinsinc Plasticity mechanism for
reservoirs Steil (2007) Schrauwen et al. (2008) or recent reservoir reformulations like the
Non-Linear Vector Autoregressive machine from Gauthier et al. (2021). New implementa-
tions are regularly proposed and added to the library GitHub repository, and we strongly
encourage potential users to propose their own.
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In addition to the main reservoirpy.nodesmodule, the library contains various chaotic
timeseries generators for benchmarking (reservoirpy.datasets), hyperoptimization wrap-
pers for hyperopt optimization tool (Bergstra et al., 2013) (reservoirpy.hyper), and some
other utilities like weight matrix initialization functions (reservoirpy.mat gen), activation
functions (reservoirpy.activationsfunc) or simple metrics (reservoirpy.observables).

2.3 Comparison to Related Softwares

Table 1 summarizes the comparison between the presented library and some other open
source software. We compared PyRCN (Steiner et al., 2021), EchoTorch (Schaetti, 2018),
ReservoirComputing.jl (Martinuzzi et al., 2022), Pytorch-esn 1, DeepESN (Gallicchio et al.,
2018), RCNet 2, LSM (Kaiser et al., 2017) and the historical package Oger (Verstraeten
et al., 2012), no longer maintained.

reservoirpy is the only recent package able to handle delayed connections and providing
a complete online learning API. Many other RC key features are spread across different
implementations. EchoTorch allows users to manipulate conceptors, a mechanism enabling
to control the dynamics of resevoirs proposed by Jaeger (2014). PyRCN defines a complete
interface to train Extreme Learning Machine (ELM) (Huang et al., 2011), a network similar
to ESN where recurrence has been removed. While LSM specializes in handling spiking
neural networks. We make constant effort in gathering new features, and believe our flexible
API will ease this process for outside contributors.

1. https://github.com/stefanonardo/pytorch-esn
2. https://github.com/okozelsk/NET
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3. Experiment with reservoirpy

In this section, we present a minimal example on how to use reservoirpy for chaotic
timeseries–namely the Mackey-Glass timeseries–10 timesteps ahead forecasting with an
ESN. Training results are displayed in Figure 2.

import reservoirpy as rpy

from reservoirpy.datasets import mackey_glass

from reservoirpy.observables import rmse

from reservoirpy.nodes import Reservoir, Ridge

rpy.set_seed(0) # fix random state for reproducibility

X = mackey_glass(2500)

# split dataset for training

X_train, Y_train = X[:2000], X[10:2010]

X_test, Y_test = X[2000:-10], X[2010:]

# Reservoir node (100 neurons, with custom leak rate and

# recurrent matrix spectral radius)

reservoir = Reservoir(100, lr=0.3, sr=0.9)

# Readout node (ridge linear regression)

readout = Ridge(ridge=1e-6)

# ESN creation (reservoir is connected to readout)

esn = reservoir >> readout

# Train and run

Y_pred = esn.fit(X_train, Y_train).run(X_test)

print("Root Mean Squared Error:", rmse(Y_test, Y_pred))

'>>> Root Mean Squared Error: 0.00866911443388836'

0 100 200 300 400
timestep

0.50

0.75

1.00

1.25

Mackey-Glass = 17

Ground truth
Prediction

Figure 2: 10 timesteps ahead prediction of Mackey-Glass timeseries using an Echo State
Network. The code above describe the training process of this ESN using
reservoirpy.

4. Conclusion

reservoirpy is a complete toolbox to apply different Reservoir Computing techniques on
any data where time carries information. The library offers both a high-level API similar to
scikit-learn interface and a low-level API to create custom models using Python standard
scientific stack. It contains several architectures of reservoirs and readouts, with online and
offline learning rules, along with datasets, tutorials and documentation. The whole project
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is delivered under the open source MIT licence, and is open to contribution from any RC
enthusiast.

reservoirpy is still under development because we plan to integrate many features
in the upcoming months/years. These features include the improvement of the computa-
tional capabilities of the tool by implementing an interface with other scientific backends
such as TensorFlow or PyTorch and enabling computations over specific hardware like
GPUs. Future features will also include a better interface with scikit-learn, embedding
for instance scikit-learn tools within reservoirpy in a transparent way, spiking neural
network support to implement Liquid State Machines (LSMs) (Maass et al., 2002), and the
implementation of more tools and paper replication from the literature.

Acknowledgments

References

James Bergstra, Dan Yamins, and David D Cox. Hyperopt: A python library for optimizing
the hyperparameters of machine learning algorithms. In Proceedings of the 12th Python
in Science Conference, pages 13–20, 2013.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert
Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for
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