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Abstract—Data stream processing and analytics (DSPA) engines are
used to extract in (near) real-time valuable information from multiple
IoT data streams. Deploying DSPA applications at the IoT network edge
through Edge/Fog architectures is currently one of the core challenges for
reducing both network delays and network bandwidth usage to reach the
Cloud. In this paper, we address the problem of scheduling continuous
DSPA operators to Fog-Cloud nodes featuring both computational and
network resources. We are paying particular attention to the dynamic
workload of these nodes due to variability of IoT data stream rates
and the sharing of nodes’ resources by multiple DSPA applications.
In this respect, we propose TSOO, a resource-aware and time-efficient
heuristic algorithm that takes into account the limited Fog computational
resources, the real-time response constraints of DSPA applications, as well
as, congestion and delay issues on Fog-to-Cloud network resources. Via
extensive simulation experiments, we show that TSOO approximates an
optimal operators’ placement with a low execution cost.

Index Terms—IoT (Edge), data stream, Fog, Cloud, continuous oper-
ator, scheduling, real time, queuing model

I. INTRODUCTION

The Internet of things (IoT) delivers at real-time massive amounts
of data. To support (near) real-time control and automation applica-
tions such as smart transportation [1] or security [2], distributed IoT
data streams need to be processed and analysed on the fly. Thus, data
stream processing and analytics (DSPA) engines are used to extract
in real-time valuable information from unbounded data streams via a
series of continuous operators (i.e. aggregation, filter, join, etc.) [3].

Figure 1 highlights a DSPA application for country-wide traffic
monitoring, as well as, city-wide traffic regulation. The latter enables
control of traffic lights [1] e.g., to give priority to jammed traffic
flows over non-jammed ones. We need to specify DSPA operators
that analyse the data streams produced by the moving vehicles (e.g.,
vehicle identifier, GPS-location, driving speed). These operators are
usually deployed at the Cloud where IoT data streams are transmitted
e.g., by 5G based street antennas via several hops of the wide area
network (WAN) [4]. At high data stream rates, the WAN bandwidth
to reach the Cloud can become a bottleneck as it may incur high
network delays that may impair on the real-time constraint of DSPA
applications. Furthermore, the WAN bandwidth is inherently dynamic
due to the varying internet traffic conditions [5]. When the sum rate
of transmissions of traffic data from vehicles are overwhelming the
bandwidth capacity agreed between the Cloud provider and ISPs, the
monetary cost charged for the WAN bandwidth usage can be much
larger than the cost for computational resource usage [6].

Deploying DSPA operators closer to where IoT data streams are
produced through Edge/Fog computing is currently one of the core
challenges for reducing both network delays and bandwidth compared
to DSPA applications deployed exclusively on the Cloud [7]. The
Edge/Fog computing introduces intermediate layers of computing,
(storage), and networking between the IoT devices and the Cloud. The
two terms are often used interchangeably. However, according to [8],
we consider them as different layers: Edge computing is the network

layer encompassing the IoT devices and their users, to provide,
for example, local computing capability on a sensor (e.g. smart
phone, Raspberry Pi, connected vehicle, drone, etc.). Fog computing
residing between IoT devices network (Edge) and central Cloud,
consists of Fog nodes which are either physical or virtual components
(e.g. routers, small server, cloudlet, etc.). However, Edge/Fog nodes
come with limited resources both in terms of computational power
(e.g., CPU/GPU, RAM, etc.) and power supply (e.g., batteries, etc.).
Thus, we need to schedule DSPA operators across Edge-Fog-Cloud
resources by controlling both the processing latency and the network
delays while keeping minimal the cost of using these resources [9].

Fig. 1: Traffic management application adapted from [1]

For instance, in our motivating application, traffic data rates may
significantly vary per geographic area due to the high variability
of the traffic density, as well as, of the mobility patterns. Clearly,
workload picks require a higher usage of computational resources,
energy and bandwidth and may incur higher network delays and
processing latency [9]. Therefore, a dynamic scheduling at run time
is needed in order to decide how/when to schedule DSPA operators
w.r.t. the evolution of the workload [10]. In our previous work [11],
we introduced a cost model of both network (bandwidth, delay) and
computational resources (CPU/RAM) of network nodes. Using this
model, we formulated the problem of scheduling DSPA operators
between the Fog and the Cloud nodes to process data streams
produced by mobile IoT devices at the Edge as a single objective
optimization (SOO) problem of the combined resource cost subject to
the constraints of the computational resource usage, cloud bandwidth
usage and operator replicability constraint. As SOO is a NP-hard
problem, we introduced a greedy algorithm that approximates an
initial optimal placement of operators to replicate from the Cloud
to the Fog. However, SOO did not address dynamic re-scheduling of
continuous operators that also satisfies real-time response constraints.

In this paper, we extend SOO with real-time response constraints,
that we formulate as a Time based Single Objective Optimization
(TSOO) problem. We show that this problem is NP-hard and hence,
the contributions of this paper are the following:

• we define the response time of a DSPA application by abstract-
ing each operator by a queuing model [12];



• we formalize TSOO to dynamically allocate both computational
(i.e., CPU/RAM) and network resources (i.e., network delays
and bandwidth);

• we introduce a framework for monitoring the resource usage of
network nodes as well as the workload of a DSPA application in
order to trigger dynamic operator scheduling in the Edge-Fog-
Cloud continuum;

• we propose a heuristic algorithm called TSOO to approximate
the best feasible scheduling of operators at run-time.

We experimentally evaluate TSOO by using the simulation tool
iFogSim [13] while considering heterogeneous computational and
network resources across Edge-Fog-Cloud architecture and IoT data
streams with varying rates. As baseline we consider TRCS [14] that
improves a pure cloud based processing by using as less as possible
Fog resources to ensure Cloud bandwidth usage constraint and the
real-time response constraint. We also compare TSOO with state
of the art methods based on simulated annealing (SA) (TSOO-SA)
[15]. We use SA because of its flexibility and global optimization
capabilities to approximate the global optimum of NP-hard problems.
Furthermore, we use the heuristic algorithm proposed by Rizou et
al. [16] that minimizes only the network resource usage cost while
satisfying a real-time response constraint.

Our simulation results show that TSOO approximates well (with
only 5% difference ratio) the optimal solution produced by TSOO-SA
of using computational and network resources both statically and at
run-time. However, TSOO-SA produces an operator placement which
is not likely to satisfy real-time response constraints. Unlike TSOO-
SA solutions that may end-up with 100% of constraint violations,
TSOO solutions violates only up to 6.6% the real-time response
constraint in the worst case of high rate data streams.

The remainder of this paper is organized as follows: Section II
introduces our core model of DSPA applications and formulates
the resource allocation problem. Section III extends our core model
with real-time response constraints that DSPA applications have
to satisfy. Section IV presents our heuristic algorithm TSOO for
approximating optimal placements of DSPA operators. Section V
details the experimental evaluation. Finally, Sections VI and VII
present respectively the related work and the conclusions.

II. BACKGROUND

In this section we present the core model of Edge-Fog-Cloud
architectures and DSPA applications and we formulate the resource
allocation problem (for more details, readers are referred to [11]).

A. Edge-Fog-Cloud Architecture

We abstract an Edge-Fog-Cloud architecture as a hierarchical WAN
of resources defined by the set H={E,F,C} [17]. The Edge (E)
layer consists of M IoT devices E={E1, ..., EM} moving in N
geographic areas Aj , j={1...N}, the Fog (F) layer consist of N
Fog nodes F={F1, ..., FN} where each Fog node Fj provides nearby
computational service to the geographic area Aj . One Cloud node C
is considered at the top of the hierarchy.

Edge-Fog-Cloud nodes are characterized by the following param-
eters: (i) cmEi the available CPU/memory of an Edge node Ei and
cmFj of a Fog node Fj ; (ii) ndEiFj the network delay of an Edge
node Ei to its nearest Fog node Fj ; (iii) nbEFj the available network
bandwidth capacity of all incoming links to the fog node Fj ; (iv)
ndFjC the network delay of the link from a Fog node Fj to the
Cloud node C; (v) nbFjC the available network bandwidth capacity
on the Fog node Fj to Cloud network link. The CPU/memory of the
Cloud node C, cmC , is practically considered unlimited [17].

We additionally consider the usage of CPU/memory cmuEi ,
cmuFj and cmuC respectively on a Edge node Ei, a Fog node Fj

and the Cloud node C, as well as the usage of the network bandwidth
nbuEiFj and nbuF jC on links respectively from an Edge node Ei to
a Fog node Fj and from a Fog node Fj to the Cloud node C. Finally,
let Sj be the sum of data streams arriving to a Fog nodes Fj and
produced by mj(t) IoT devices moving at a time t in a geographic
area Aj . Hence, M =

∑N
j=1 mj(t).

B. DSPA application model

We model a DSPA application as a directed acyclic graph (DAG) of
operators, denoted by G , where the vertices represent the operators
and the edges the data stream flowing between two operators [3].
G topology further includes the sources that produce the raw data
streams Sj of rate |Sj | consumed by DSPA operators and sinks that
capture the stream of the computed results. To cope with the infinite
nature of data streams, we consider that continuous operators are
executed in time windows ωx to process a finite set of data items dx
arising within a time interval.

The operators are characterized by the following parameters: i)
selx: the operator selectivity defined as the ratio between the input
and output data rate of an operator Ox; ii) λx,y: the edge data rate
defined as the rate of data stream flow between two operators; iii)
cx: the computational cost of an operator [18] defined in terms of
CPU (e.g., million instructions (MI) demand per byte of data) and/or
RAM (e.g., 1Mb demand per 10Mb of data) for an operator Ox to
process a unitary data dx; and iv) Dx: the operator data load defined
as the aggregation of the input data items dx per time window ωx:
Dx=

∑I
i=1 ωx · λi,x. Where I is the maximum number of upstream

operators Ox producing data stream at rate λi,x towards the operator
Ox. Finally, we denote by reqx = Dx·cx the computational resources
CPU/memory required by an operator Ox given its data load Dx at
a time t and its cost cx.

To replicate and migrate a part of G in different computational
nodes ni = Ei|Fj |C of an Edge-Fog-Cloud architecture, we need to
partition G in disjoint subgraphs,Gmigi, according to some workload
criteria. The resulting graph to deploy is defined as follows:

Gdep =
⋃

∀ni∈H

Gmigi (1)

To specify a replication and migration point in G, we rely on the
edge-cut algorithm which partitions G in two disjoint subgraphs [14].
An edge-cut ecj contains the set of edges having one endpoint in
each subgraph of the partition. Let |ecj | be the rate of an edge-cut
ecj defined as the sum of edge data rates crossing this edge-cut.

C. Resource allocation problem

To capture the fact that computational resources allocated to a
DSPA application at different layers of an Edge-Fog-Cloud archi-
tecture are limited, we weight the computational resource usage of
different operators sharing a node by the inverse of the available
computational resources at this node. Our model relies on the follow-
ing intuitive assumptions [11], [17]: (i) the computational resources
are practically unlimited in the Cloud, cmC → ∞, thanks to the
on-demand resource scaling, and hence the weight in the cloud is
practically zero, 1

cmC
→ 0; (ii) the computational resources of Fog

and Edge nodes are limited as they can not be scaled on demand, and
thus the weight in a Fog (or Edge) node is non-zero, 1

cmFj
∈]0, 1]

(or, 1
cmEi

∈]0, 1]). To simplify our model, we consider that mobile
IoT devices at the Edge layer are not used for processing data streams



[17]. This will be address in the future work. Then, the focus of our
work is to optimize the Fog computational resource usage cost:

cru =

N∑
j=1

cmuFj · 1

cmFj

(2)

cmuFj is the sum of the RAM (or CPU/GPU) usage required
(reqx) by each operator of a subgraph Gmigj , to replicate on Fj .

By abstracting the Edge-Fog-Cloud architecture as a hierarchical
WAN of resources, two conflicting factors are involved [7]: (i) the
network bandwidth is increasing in the hierarchy as we go from the
Edge to the Cloud and (ii) the network delay that also increases up
as the Cloud is in two hops from the Edge and the Fog at one hop.

Unlike [11], we consider the fact that the network delays and net-
work bandwidths of each individual WAN links can be dynamic with
regard to the network conditions [5]. Thus, we need to differentiate
network links not only according to their delay [19] but also by their
available bandwidth [11]. In this respect, the bandwidth usage of a
network link is weighted by the inverse of its available bandwidth
multiplied by the ratio between its network delay and the maximum
network delay (ndmax) among all links in the hierarchical WAN of
resources: ndmax = max

i,j
{ndEiFj , ndFjC}.

As the Edge nodes are not used for processing data streams, each
entire raw data stream Sj produced by an IoT area Aj at the Edge
reaches the Fog anyway. Thus, the cost part concerning the Edge
to Fog network links is fixed (set as c constant), we then focus on
minimizing the Fog to Cloud network resource usage cost:

nru = c+

N∑
j=1

nbuF jC · 1

nbFjC
·
ndFjC

ndmax
(3)

The network bandwidth effectively used on all the Fog-to-Cloud
network links is defined as follows: B =

∑N
j=1 nbuFjC

III. RESPONSE TIME AWARE RESOURCE ALLOCATION PROBLEM

In the core model of section II, we assumed that the operators of
G can be deployed only between the Fog and Cloud. According to
the criteria of minimizing cru and nru, the resulting Gdep defined
in Formula (1) becomes the disjoint partition in subgraphs Gmigj to
deploy on the Fog nodes Fj and GmigC to deploy on the Cloud
node C. In this respect, each Gmigj is delimited with GmigC
by a replication and migration point, an edge-cut ecj . However,
Gdep should also take into account any real-time response constraints
imposed to a DSPA application. Thus, prior to introduce the problem
statement, we formalize the response time of DSPA application.

A. Response time model

We define the response time T as the worst end-to-end latency Lπij

among all operator paths πij in Gdep [19], each data stream Sj is
processed by nπ > 0 operator paths πij ∈ Gdep with i={1 . . . nπ}:

T = max
πij∈Gdep

(Lπij) (4)

To calculate the end-to-end latency Lπij of an operator path πij , we
consider the network delays of each network link traversed by this
operator path along with the latency of each operator Ox ∈ πij for
processing its data load Dx:

Lπij = max
∀Ei∈mj(t)

(ndEiFj) +
∑

exy∈πij

ndM(Ox),M(Oy) +
∑

Ox∈πij

lx

(5)

1) Network link delays: Given that data streams are exclusively
processed between the Fog and Cloud layers, Formula (5) includes
only the worst network delay ndEiFj among all Edge to Fog network
links. Then, M is the mapping function, that gives the resource node
nj=Fj |C on which an operator Ox is (or can be) mapped to, and
ndM(Ox),M(Oy) is the network delay for transmitting data between
two resource nodes on which the operators Ox and Oy are mapped
to. ndM(Ox),M(Oy) is negligible if the operators Ox and Oy are
placed on the same resource node.

In general, the network delay includes the propagation delay of
the network link that depends on the distance between the connected
nodes, the processing and queuing delays of a packet at the intermedi-
ate routers and the transmission delay which depends on the available
bandwidth on the network link [20]. By assuming that the processing
delay is a small constant as the router need to analyse only the data
packet header to get its destination and send it to its destination, the
network delay can be formulated as the sum of the propagation delay
and the transmission delay [21]: ndnjnk = pdnjnk + tdnjnk .

a) Propagation delay (pdnjnk ): is the time it takes to transmit
bits of data between two connected nodes and it is independent on
the data size [16]. However, it depends on the type of the network
link medium, the distance between the connected endpoints and is
limited by the speed of the light. To approximate the propagation
delay between two nodes, we can use the Vivaldi algorithm [22].

b) Transmission delay (tdnjnk ): is the time for sending data on
a network link from node nj to node nk. It depends on the size of
data to transmit and the available network bandwidth. The latter is
impacted by several factors including the number of active sessions,
the transmission capacity of the link (nominal network bandwidth
capacity), the medium access control, etc. Several techniques have
been proposed to estimate the available network bandwidth of a
network link [21]. In our work, to estimate the transmission delay of
any data dxy of size |dxy| from the operator Ox mapped on the node
nj to the operator Oy mapped on the node nk, we first evaluate the
transmission delay td′njnk

of a data d of considerable size |d| from
node nj to node nk, the actual transmission delay of data d is td′njnk

= td′njnk
- pd′njnk

. Then, the transmission delay of any data dxy is
calculated as follows [16]: tdnjnk= td′njnk

· |dxy|
|d|

2) Operator latency: The latency of an operator Ox depends on its
current data load Dx, the type of operation it performs (e.g., filtering,
projection, aggregation, etc.) and the available computational resource
in terms of CPU (cpuj) of the hosting node nj = Fj |C. Thus, let
µx be the rate at which an operator Ox can process its data load Dx

on a node nj [23]: µx = cpuj/reqx.
We assume that the resource nodes use a time sharing

overbooking strategies to enable CPU allocation even if the
CPU demand is greater than the total CPU capacity. Thus, if
MIPSj is the total CPU capacity of a resource node nj , then
cpuj=min(MIPSj , (MIPSj/(q + qj))). Where, q and qj are re-
spetively the number of current running processes and the operators
to replicate on the node nj [16].

Given the infinite nature of data stream, let wtx be the waiting
time of data elements in an operator queue. The service rate µx, the
waiting time wtx and the number of data elements in an operator
queue are random variables over a continuous time parameter. It is
not so easy to calculate the operator latency lx. Thus, we model
each operator as a queuing system with one server and following
the first in first out policy [24]. Then, the operator latency lx is
approximated as follows: E(lx) = E(wtx) +

1
µx

. To approximate
wtx, we need to consider the characteristic of each operator Ox in G,
in particular, whether it relies on count based or time based windows.



Determining the characteristic of each operator enables to describe
each operator queuing model with the Kendall’s notation in the form
of X/Y/1 where X is the data arrival rate distribution, Y the service
rate distribution and 1 server [24]. Consequently, to formulate the
associated waiting time E(wtx).

In this paper, we assume that the operators implement time based
sliding window. This window consider the invariable temporal extend
of the window called window time ωx, the progression temporal step,
called sliding time βx where ωx > βx [25]. The window contains the
set of data that arrives within the last ωx time units, so that window
data are processed every βx time units. The size of each window
Dx is dynamic and dependents on the actual IoT data stream rate.
The data arrival rate λx to an operator Ox may follow an exponential
distribution [25]. As the service rate depends on the size of the data to
process, it also follows an exponential distribution. Hence, we model
a time based sliding window operator as a M/M/1 queuing system
where the approximated wtx is: E(wtx) = λx

µx·(µx−λx)
.

B. Optimization Problem

Given the overall (Fog) computational resources usage cost, i.e.,
cru and the overall (Fog-to-Cloud) network resource usage cost,
i.e., nru, the optimal placement M of Gdep, between the Fog and
Cloud layers should minimize both cru and nru while satisfying
the resource usage and the real-time constraints. As simultaneously
minimizing nru and cru is conflicting, we consider a single objective
optimization of the overall resource usage cost RU defined as the
weighted sum of the normalized forms of cru and nru, respectively
to CRU and to NRU by applying the min-max scaling technique:

minimize RU = wc · CRU + wn ·NRU (6)

subject to cmuFj ≤ cmFj j = {1, . . . , N}, (7)

B ≤ Bmax (8)

T ≤ Tmax. (9)

Where wc ≥ 0 and wn ≥ 0 are respectively the weights for
computational and network resource usage cost, which enable to
specify a usage preference between the two types of resources.

Formula (8) constrains the Fog to Cloud bandwidth usage by an
upper threshold Bmax. Due to the limited computational resources in
Fog, Formula (7) constrains the usage of these resources to guarantees
that the CPU/memory usage of each Fog node Fj does not exceed the
available CPU/memory. To ensure the real time constraint, Formula
(9) imposes that the response time of a specific DSPA application
should not exceed a threshold Tmax

For processing a data stream, each operator Ox ∈ G requires
computational and network resources to process and transmit data
stream with a certain latency (lx). We can show that the edges
in G represent the precedence constraint between operators as we
model G as a DAG of operators. Furthermore, by defining T as the
maximum end-to-end latency Lπij among all the individual operator
paths πij , we can show that the critical operator path is the path with
the maximum end-to-end latency Lπij , with Lπij > Tmax. Hence,
we need to deploy G (as Gdep) between the nodes ni = Fj |C to
minimize the end-to-end latency of the critical operator path πij while
ensuring fairness in resource usage [26]. The latter is defined in terms
of: (i) optimal trade-off between CRU and NRU , (ii) resource usage
constraints (i.e. Formulas (7) and (8)) and (iii) operator replicability
constraint. This problem is an instance of the job shop scheduling
(JSS) problem known to be NP-hard [26]. Its complexity increases
as we increase the number of resource nodes or the size of G.

Given that computational and network resources of H can be shared
by several DSPA applications, the available resources may vary in
time as long these applications can be deployed and removed on
the fly. Moreover, the number and the rate of IoT data streams Sj

may also vary according to the mobility patterns of IoT devices [10].
Under these conditions, an optimal placement M statically defined
may not anymore be a feasible solution to our TSOO problem. For
this reason, we need to dynamically reschedule an already deployed
application graph Gdep at run-time by identifying a new operator
placement M that optimizes RU and satisfies the constraints.

IV. TIME BASED SINGLE OBJECTIVE OPTIMIZATION (TSOO)

To solve our TSOO problem, we need to search in G the edge-cut
ecj of each data stream Sj , in order to build the graph Gdep that
includes each individual subgraph Gmigj to deploy on the Fog node
Fj and GmigC to deploy on the Cloud node C. Each Gmigj should
satisfy the constraint cmuFj ≤ cmFj and the operator replicability
constraint. Moreover, the processed data streams Sj that will be
transmitted on the Fog to Cloud network links should jointly satisfy
the constraint B ≤ Bmax. Finally, the DSPA application response
time T should satisfy the constraint T ≤ Tmax.

We observe that when selecting an edge-cut ecj as the replication
and migration point of a data stream Sj , we can individually
calculate the effect of this selection on RU . Thus, we assume
that the computational and network resource usage costs can be
split for each individual stream Sj : RU =

∑N
j=1 RUj , where

RUj=CRUj+NRUj and RUj , CRUj and NRUj are respectively
the contributions to RU , CRU , and NRU for processing Sj .

Our solution, called TSOO Algorithm, extends the SOO algorithm
[11]; we recall below the main functions that we use: (i) RUminCut()
minimizes directly RU . To do so, it first considers Grep as the
subgraph of G containing the set of operators that can be replicated
on the Fog, so as to ensure the operator replicability constraint. Then
for each data stream Sj , it identifies the subgraph Gmigj ∈ Grep
delimited by the edge-cut ecj ∈ Grep that produces the minimum
RUj while Gmigj satisfies the constraint cmuFj ≤ cmFj . (ii)
DataMinCut() minimizes NRU . It processes like RUminCut().
However, it identifies the subgraph Gmigj ∈ Grep based on the
edge-cut ecj ∈ Grep that produces the minimum NRUj .

A. Algorithm description

TSOO algorithm (cfr. Algorithm 1) starts by applying
RUminCut() to generate a solution that attempts to minimize
directly RU . If the output solution of RUminCut() satisfies the
constraints B ≤ Bmax and T ≤ Tmax, then the achieved RU is
optimal (line 6). Otherwise the problem may not have a solution or,
if a solution exists, finding the optimal solution is NP-hard.

As a next step, TSOO algorithm applies a greedy search that
produces local optimal solutions to approximate the global optimal
solution in a reasonable amount of time. In this respect, we apply
the function dataMinCut() to identify the solution that minimizes
NRU and consequently B (lines 7-8). If the output solution of
dataMinCut() does not satisfy the constraint B ≤ Bmax, the
TSOO problem has no solution satisfying this constraint, unless we
relax Bmax in order to accept this solution as the least bad one. If
the constraint B ≤ Bmax is satisfied, TSOO further checks whether
the constraint T ≤ Tmax is satisfied or not: (i) if the constraint
T ≤ Tmax is satisfied, this means that dataMinCut() produces
a good solution satisfying all the problem constraints; (ii) if the
constraint T ≤ Tmax is not satisfied, starting from the solution of
dataMinCut(), we search in the subgraphs Gmigj and GmigC the



operators to move from the Fog to the Cloud (or the inverse) in order
to reduce T until we satisfy the constraint (lines 10-13). This greedy
search is performed with the functions operatorMoveback() and
operatorMoveDown(), described in Section IV-B. If the greedy
search produces a solution where the constraint is still not satisfied,
the TSOO problem has no solution satisfying this constraint, unless
we relax Tmax to accept this last solution as the least bad one.

If both constraints B ≤ Bmax and T ≤ Tmax are finally
satisfied, TSOO applies a greedy search to minimize RU while
keeping satisfied the problem constraints (lines 14-31).

Algorithm 1: TSOO
Input: G, application graph
Input: Grep, subgraph of replicable operators of G
Input: Bmax, upper threshold for bandwidth usage
Input: Tmax, upper threshold for response time
Input: Sraw, set of raw data streams Sj

1 X ← ∅, set of Sj on which ∆RU is applied Sj

2 M ← ∅, set of Gmigj , replicable subgraph per Sj

3 RM ← ∅ set of edge-cuts ecj ∈ Grep per Sj

4 RU ← 0, overall resource usage cost
5 B ← 0, Fog-to-Cloud network bandwidth usage
6 M ← RUminCut()
7 if B > Bmax then
8 M,RM,Gdep ← dataMinCut(G)

9 if T > Tmax ∧B ≤ Bmax then
10 Set maxπ, sorted set of paths πij where Lπij > Tmax

11 operatorMoveBack(M,RM,Gdep,maxπ)

12 if T > Tmax then
13 operatorMoveDown(M,RM,Gdep,maxπ)

14 if B ≤ Bmax ∧ T ≤ Tmax then
15 ∆RUset ← edgeCutMove(G,RM,M)

16 Sort ∆RUset in increasing order
17 Pull ∆RU on top of ∆RUset
18 while ∆RU < 0 do
19 Get Sj , ejk , Gmigjk corresponding to ∆RU

20 ecj ← RM [j]
21 Calculate T when considering ecj
22 B

′ ← B − |ecj |+ |ecjk |
23 if B

′ ≤ Bmax ∧T ≤ Tmax ∧X.has(Sj) = False then
24 RM [j]← ejp
25 M [j]← Gmigjk
26 B ← B − |ecj |+ |ecjk |
27 RU ← RU +∆RU

28 X.add(Sj)

29 Pull ∆RU on top of ∆RUset

30 Rewrite Gdep to include all Gmignj (or Gmigjp ) ∈ M
31 Send each Gmignj ∈M to corresponding resource node nj

B. Satisfy the Response time constraint

When moving an operator from the Cloud to the Fog, the operator
latency will probably increase, assuming that the computational
resources of a Fog node are smaller than the ones of the Cloud.
At the same time, if other operators of the same operator path are
already hosted on this Fog node, the latency of these operators will
also increase, as the node resources will now be shared among more
processes. Regarding the operators of the same path that remain in the
Cloud after this move, we assume that the effect on their latency is
negligible. On the other hand, the effect of this move on the network
link delay between the Fog node and the Cloud depends on the size of
the data produced by the moved operator in comparison to the size
of the data that were transmitted from the Fog node to the Cloud

before. In the opposite case, when moving an operator from the Fog
to the Cloud, the operators latency on the same path will probably
decrease, while the network link delay may increase or decrease.

In this respect, to satisfy the response time constraint we first apply
the function operatorMoveback(), as it is more likely to reduce the
response time T on an operator path. More specifically, we iteratively
select the operator paths πij , where Lπij > Tmax, in decreasing
order of their end-to-end latencies Lπij . For each selected πij , we
start from the edge-cut ecj that delimits the two subgraphs Gmigj
and GmigC , through which this operator path πij traverses, and we
select the upstream replicated operator of ecj to be removed from
the Fog node Fj . If this action improves the resulting end-to-end
latency, we continue to remove the next upstream replicated operator,
as long as the constraint B ≤ Bmax is satisfied. We stop applying
operatorMoveback() if the constraint T ≤ Tmax is satisfied.
However, if the constraint is finally not satisfied or if removing a
replicated operator does not improve the resulting end-to-end latency,
we next apply the function operatorMoveDown().

The operatorMoveDown() processes similarly. Rather than re-
moving the replicated operators from the Fog, it replicates the not
yet replicated operators on the Fog. Then, it stops if the constraint
T ≤ Tmax is satisfied. Otherwise, the TSOO problem does not
have a solution that satisfies the real-time response constraint. Due
to space limitations, we omit the pseudo code of the two functions.

C. Run-time monitoring for rescheduling operator placement

DSPA engines such as Apache Flink [27] run several DSPA
applications. It consists of Job Manager (JM) and multiple Task
Managers (TMs) distributed across the nodes. By assuming that data
streams are processed on Fog and Cloud nodes, the JM can be
deployed on Cloud as it provides practically unlimited resources and
a TM can be deployed on each Fog and Cloud nodes [5]. The JM
is responsible for planning the execution of operators by the mean
of a scheduler and to assign them to the TMs. Each TM execute
the assigned operators and it uses a local monitor to continuously
monitors the operator metrics i.e. data arrival rate (λx) and service
rate (µx), the computational resource usage (cmuni ) and the data
stream size (nbuFjC ) to sent to the Cloud. Then it reports periodically
these average monitored values to the JM for diagnosis. JM uses a
global monitor to aggregate the reported values and to calculate: RU ,
B and T . and it decides whether M is still an acceptable solution
under the following conditions:

RU ≤ RUmax, (10)
kmax∑
k=1

γk = 0 (11)

Where RUmax is an upper threshold of RU defined by the applica-
tion owner and γk a term that penalizes the violation of any constraint
k of the TSOO problem under the following conditions:

γk = max(0,
valk −maxk

maxk
) (12)

For each constraint k, valk can be the value of cmuFj , B or T and
maxk can be the value of cmFj , Bmax or Tmax.

If at least one of the conditions (10) and (11) is not satisfied, JM
triggers the TSOO algorithm for rescheduling the operator placement.
The current monitoring mechanism may incur overhead due to
operator migration. Thus, existing mechanism for autonomous system
such as Monitor, Analyze, Plan and Execute (MAPE) loop pattern can
be used for this purpose [28].



V. PERFORMANCE EVALUATION

We use iFogSim to simulate an Edge-Fog-Cloud architecture as
well as several DSPA applications. Besides the TSOO algorithm, our
experimental framework also implements 3 competitor methods.

TSOO-SA: uses the simulated annealing (SA) meta-heuristic [15]
to solve our TSOO problem. Given that SA solves unconstrained
optimization problems, we use a constraint relaxation method [15]:
we add to the cost function to minimize (i.e., RU ) a penalty ζk for
the violation of each individual constraint k of the TSOO problem:

f = wc · CRU + wn ·NRU +

kmax∑
k=1

ζk (13)

We set ζk = 1 if γk > 0 (see Formula (12)), otherwise ζk = 0.
SA starts from an initial solution or current solution fi and, based

on an adequate perturbation method, generates a neighbour solution
fj of the current one. SA accepts a neighbour solution to be the new
current one on the basis of a probability controlled by a parameter
called temperature τ . SA considers also: (i) the cooling rate α, which
determines how quickly the temperature decreases; (ii) I , number of
transitions for each value of τ , which determines after how many
neighbour solutions generated, SA will decrease the temperature; and
(iii) τfinal, which determines the temperature at which SA will end.
To set these parameters for TSOO-SA, we use the values proposed
in [15]: τ=300, τfinal=10, α=0.9 and I=100 per each value of τ .

To generate a neighbour solution, we use the mutation technique
Shift Move (SM) [29]. In the current solution, we first represent as
a key value table the mapping of each stream Sj and its replication
and migration point ecj . Then, from this table, we randomly select a
data stream Sj and we replace its current replication and migration
point ecj by ec′j . ec′j is the next edge-cut of ecj in the source-to-sink
direction of G. If ecj includes a sink of G, ec′j will take the value
of the first edge-cut in G (source-to-sink direction). Then, we move
to right for all the streams Sk ̸= Sj , the replication and migration
points from one position.

TRCS (Time and Resource Constraint Satisfaction): extends
the baseline approach RCS [14]. TRCS enhances pure IoT Cloud
analytics by dynamically placing the operators between the Fog and
the Cloud in synergy with the evolution of the IoT data stream rates.
More specifically, assuming an initial deployment of all the operators
in the Cloud, TRCS minimally uses the Fog computational resources
to satisfy the constraints T ≤ Tmax, B ≤ Bmax and B ≥ Bmin,
where Bmin is a lower threshold of B used to avoid the oscillation
of operator placement between the Fog and the Cloud.

Rizou et al [16]: propose an algorithm to distribute operators on
a peer resource network. In this respect, the algorithm considers a
latency (i.e., network delay) space where each host has a virtual
position. It determines for each operator its optimal hosting node that
minimises its network resource usage in the latency space, depending
on the data stream rates of its neighbour operators. Starting from this
solution, if the response time constraint is not satisfied, the algorithm
moves each operator to the candidate host that increases the network
usage as little as possible until satisfying the response time constraint.

A. Environment and system setup

1) Dynamic IoT data streams: We statically simulate the vari-
ability of the data stream rates arriving to the Fog nodes by selecting
randomly (uniform distribution) 10 values of M IoT devices in the
interval [5000, 50000], where each IoT device produces data at a rate
of 4KB/s [30]. Then, for each value of M, we set an interval [0,M ]

in which we uniformly set mj(t) IoT devices per geographical area
Aj , so that the sum of mj(t) be equal to M. In this respect, each
Fog node Fj receives data stream Sj at rate |Sj | = mj(t)×4KB/s.
We wish to have 15 results of T, B, RU, and CRU for each value of
M and to plot the average of these results per value of M. Hence,
we repeat the splitting of each value of M per geographical area 15
times. In this respect, the total data rate reaching the Fog follows a
sequence of 10 uniformly distributed values of M ×4KB/s repeated
15 times. We feed this sequence to TSOO and the baselines.

2) Fixed Edge-Fog-Cloud architecture: The topology of the
hierarchical Edge-Fog-Cloud architecture [11] includes 1 Cloud node
at the top of the hierarchy, 10 Fog nodes in the middle layer, and
up to 50000 IoT devices at the Edge at the bottom. We use the tool
Ether [22] to generate plausible network configurations of the Edge-
Fog-Cloud architecture. The distribution of the resulting network
configurations follows the one used in [5]. The propagation delay and
network bandwidth for each Edge to Fog network links are respec-
tively in the interval pdEiFj ∈ [10, 100] ms and nbEFj ∈ [10, 50]
Mbps and for each Fog to Cloud network links they are respectively
in the interval pdFjC ∈ [100, 300] ms and nbFjC ∈ [100, 250] Mbps.
For the computational resources, we simulate the Cloud node as an
Amazon VM instance of type m6g.xlarge with 12GB of memory
and 35900 MIPS of CPU [6]. At the Fog, we simulate ESXi virtual
machines where the CPU capacities are set between 2400 and 8150
MIPS and the memory capacities are set between 1 and 4 GB [31].
The MIPS evaluation comes from [32].

3) DSPA application: We consider a model of the TLC applica-
tion (New York City Taxi and Limousine Commission rides) [33].
The TLC application finds the busiest driver every two hours, where
each vehicle emits at the end of a ride a data record containing driver
identification, pick-up and drop-off times and locations. It comprises
5 operators and 1 sink (see Figure 2), where each operator uses a
time based window and is modeled as a M/M/1 queue.

Fig. 2: DSPA application used in the evaluation

4) Setting parameters: We set Bmax=125MB/s to avoid overload-
ing the Fog to Cloud bandwidth usage, as in [11] and for TRCS we
set Bmin=30MB/s. Setting RUmax too high leads to high resource
usage, which may lead to the system becoming unstable, while setting
RUmax too low leads to inconsistent optimization of RU . Thus,
we set RUmax = 0.9. Given that the maximum propagation delay
among all the network links is 300ms, we set Tmax=500ms.

Fig. 3: Overall resource usage cost

B. Evaluation results

1) Resource usage cost: Figure 3 shows that TSOO approximates
the optimal RU with an approximation error of up to 5.34%, when
comparing to TSOO-SA. Furthermore, TSOO outperforms Rizou et
al. and TRCS, whatever the number of IoT devices (and the produced
data stream rates), with a difference ratio respectively up to 11.32%



(a) Fog computational resource usage cost (b) Violation rate of bandwidth constraint (c) Violation rate of response time constraint
Fig. 4: Computational resource usage cost and constraint violation rates

and 23.23%. Figure 4a shows that TSOO has the lowest CRU when
comparing to TSOO-SA and Rizou et al. Moreover it increases with
a practically constant value to offset the increasing of the data stream
rate at each M value. Even though that TRCS has the lowest CRU
for certain value of M, as it is expected to use less Fog computational
resources. However it does not optimize CRU.

2) Constraint satisfaction: As we need absolutely to have a
solution to deploy for each value of M, we consider constraint
relaxation when an algorithm does not find a solution that satisfies
all the constraints. Therefore, we analyze whether an achieved RU
satisfies or not our problem constraints. To do so, we divide by 15
the number of times, the value of B (or T ) fails to satisfy the related
constraint. This gives the constraint violation rates, and shows how
likely an algorithm can satisfy the constraints per each value of M.

Cloud bandwidth usage constraint (B ≤ Bmax). As depicted
in Figure 4b, TSOO satisfies this constraint whatever the data stream
rates for up to M=40000. However, TSOO does not satisfy this
constraint at higher data stream rates (M ≥ 45000); it results
in 100% of constraint violations. TSOO-SA fails to satisfy this
constraint only for the highest data stream rate (M=50000 IoT
devices), also with 100% of constraint violations. As for TRCS
and Rizou et al., they do not satisfy this constraint starting from
M ≥ 40000, with less than 100% of constraint violations.

Response time constraint (T ≤ Tmax). Figure 4c shows that
TSOO satisfies this constraint whatever the data stream rates, except
for the highest data rate (M = 50000), where it may fail to fulfill
this constraint with 6.6% of constraint violations. TSOO-SA satisfies
this constraint only at lower data stream rates (M ≤ 25000). Upon
moderate or higher data stream rates, it may not satisfy this constraint
with an increasing percentage of constraint violations (i.e. 6.67%
to 100%) as the data stream rates increase. TRCS is likely to fail
to satisfy this constraint with up to 93.3% of constraint violations
upon M > 5000. This is due to the fact that TRCS prioritizes the
satisfaction of the constraint Bmin ≤ B ≤ Bmax.

Finally, Rizou et al. has 0% of constraint violations for M <
40000, while it starts failing to satisfy this constraint for M ≥ 40000.
However, the constraint violation rate is between 26.67% and 53.3%.
This is attributed to the priority of the algorithm in satisfying the
constraint T ≤ Tmax after identifying the minimum NRU .

3) Scalability analysis: We assess the scalability of TSOO against
TSOO-SA and Rizou et al. in terms of execution cost, i.e., the time
it takes for each algorithm to find the best operator placement, to
rewrite the application graph based on this placement, and to deploy
the resulting application graph. In this respect, we consider 5 different
DSPA applications built based on the TLC application. Thus, App-1
has 5 operators (cf. Figure 2), App-2 has 6 operators, ..., and App-5
has 9 operators. We keep the same configuration of the Edge-Fog-
Cloud architecture as presented in Section V-A2 and V-A4. We plot
only the results for M=35000 IoT devices.

Figure 5 (A) shows that RU is practically constant for each one
of the algorithms when identifying the operator placement of App-1,

App-2 and App-3 with respectively 5, 6 and 7 operators. TSOO-
SA produces the lowest RU among the three algorithms, and TSOO
outperforms Rizou et al. As a matter of fact, the operator placement
that each algorithm identifies for App-1 is the same for App-2 and
App-3, at least regarding the resources that are taken into account
in RU . On the other hand, TSOO-SA does not produce the lowest
RU for the operator placement of App-4 and App-5, which have
higher numbers of operators (8 and 9). This is due to the fact that
the current operator placement, which is considered at run-time as the
initial solution of TSOO-SA, may not be close to the optimal solution
(as it is required [15]). Thus, during the iterations for improving this
solution, TSOO-SA fails to converge towards the optimal solution.

Fig. 5: Resource usage cost (A) and Execution cost (B).
In Figure 5(B), the execution cost is increasing with the number of

operators per DSPA application. TSOO-SA has the highest execution
cost, with a difference ratio of up to 729% when comparing to TSOO.
TSOO’s execution cost is very close to the one of Rizou et al. with a
difference ratio of up to 0.12% (TSOO being slightly more costly).

VI. RELATED WORK

Dynamic scheduling of DSPA applications is largely discussed
in the context of resource rich execution environments(i.e. Cloud,
cluster, etc.) than in the context of Edge/Fog computing due to the
lack of solid established edge-oriented DSPA engines [34], that why
we use simulation tool to evaluate our proposed scheduling solution.
In the context of resource-rich execution environments, Lohrmann
et al. [20] distribute DPSA application in cluster nodes with the
objective to minimize resource usage cost and keep the response time
under a certain threshold. Arkian et al [35] propose a MAPE loop
pattern for dynamic scheduling operators only at the Fog layer which
providing high computational resources aiming to maximize the
throughput. Heinze et al. [36] focus on dynamic scheduling of DSPA
applications in distributed homogeneous hosts. Then, their objective
is to maximize the resource usage while keeping the response time
under a certain threshold by using an operator migration technique.
In our work, we are interested in continuously scheduling DSPA
computations between heterogeneous Fog and Cloud nodes where the
Fog nodes come with limited computational resources. Our objective
is to satisfy both the response time and bandwidth usage constraints.
In this respect, we are searching for an optimal trade-off between the
Fog computational resource usage cost and the Fog to Cloud network
resource usage cost.

Nowadays, machine learning (ML) techniques are used to rec-
ognize patterns from measured or profiled data to dynamically



schedule operators in the Edge-Fog-Cloud continuum. For instance,
reinforcement learning (RL) is used in [37] for dynamic scheduling
that minimizes the DSPA application response time. The problem
is modeled as a Markov Decision process (MDP) that explores two
RL techniques (Q-learn and Monte-Carlo-Search-Tree). Furthermore,
[38] studies dynamic operator scheduling on heterogeneous infras-
tructure with the goal of minimizing the response time, resource
usage cost and reconfiguration overhead. MDP model suffers from
the dimensionality of the problem to model and hence the state space
increases as the problem size increases that may bear high execution
cost when comparing to a heuristic approach.

Meta-heuristic are largely used as ways of obtaining better so-
lutions for NP-hard problems. For instance, SA is used in [39] to
minimize the response time and energy consumption when placing
application modules between the Cloud and the Edge. Particle swarm
optimization is used by [40] to efficiently place application modules
in the Edge-Fog-cloud continuum by minimizing energy consumption
and response time while respecting the constraints of resource node
capacities and module placement. The challenge in this context is
to identify good setting parameters and a best scheme to generate
neighboring solutions that may converge to an optimal solution. These
approaches come with a high execution cost to be used for a dynamic
operator placement.

VII. CONCLUSION

In this paper, we addressed the problem of dynamically scheduling
operators between Fog and Cloud nodes, in response to the dynamic
data stream rates produced at the Edge. We proposed TSOO, a
resource-aware and time-efficient algorithm that takes into account
the limited Fog computational resources, the real-time response
constraints, and congestion and delay issues on Fog-to-Cloud network
resources. Experimental results showed that TSOO is scalable and
time efficient. It approximates the optimal solution by managing the
trade-off between the usage costs of Fog computational resources
and the Fog-to-Cloud network resources and satisfies the real-time
constraint. As future work, we plan to extend TSOO to take as
input the current operator placement from which a minimum set
of changes will be applied in case of rescheduling rather than to
run from scratch the whole algorithm. Furthermore, we plan to also
include computational resources of the Edge layer.

REFERENCES

[1] A. Tiwari, B. Ramprasad, Mortazavi et al., “Reconfigurable streaming for
the mobile edge,” in Proceedings of the 20th HotMobile, 2019.

[2] P. Dangal and G. Bloom, “Towards industrial security through real-time
analytics,” in ISORC. IEEE, 2020.
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