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Abstract

Audio inpainting, i.e., the task of restoring missing or occluded audio signal samples, usually relies
on sparse representations or autoregressive modeling. In this paper, we propose to structure the
spectrogram with nonnegative matrix factorization (NMF) in a probabilistic framework. First, we
treat the missing samples as latent variables, and derive two expectation—maximization algorithms
for estimating the parameters of the model, depending on whether we formulate the problem in the
time- or time-frequency domain. Then, we treat the missing samples as parameters, and we address
this novel problem by deriving an alternating minimization scheme. We assess the potential of these
algorithms for the task of restoring short- to middle-length gaps in music signals. Experiments reveal
great convergence properties of the proposed methods, as well as competitive performance when
compared to state-of-the-art audio inpainting techniques.

Keywords: alternating minimization, audio inpainting, expectation-maximization, nonnegative
matrix factorization

1. Introduction

Audio inpainting [1] is an inverse problem aiming at restoring audio signals degraded by sample
loss. Such a problem typically occurs as a result of packet loss during transmission (packet loss
concealment [2, 3]) or in digitization of physically degraded media. Inpainting can also be used to
restore signal samples subject to a degradation so heavy that the information about the samples
can be considered lost. Formally, let y € C denote the original time-domain signal prior to the
degradation (we consider complex-valued signals for the sake of generality). The goal of inpainting
is to estimate y € CF, given an incomplete observation of y. This problem is ill-posed because of

*The work was supported by the Czech Science Foundation (GACR) Project No. 20-29009S, the French ANITI
Project No. ANR-19-PI3A-0004 and the European Research Council (ERC) Project FACTORY No. 6681839. Part of
the work was realized during the stay of O. Mokry at IRIT, co-financed from the Erasmus+ mobility program. The
authors would like to thank Pavel Rajmic and Pierre-Hugo Vial for their inputs concerning both the development of
the methods and the preparation of the manuscript.

*Corresponding author

Email addresses: ondrej.mokry@vut.cz (Ondfej Mokry), paul .magron@inria.fr (Paul Magron),
thomas.oberlin@isae-supaero.fr (Thomas Oberlin), cedric.fevotte@irit.fr (Cédric Févotte)

Preprint submitted to Signal Processing June 28, 2022



the missing samples, and even the observed samples are prone to some measurement error or noise.
Restoring the signal thus requires some structure assumptions about the original signal, in order
to guide the estimation towards the most desirable solution.

One of the earliest, yet most successful approaches to audio inpainting is to assume the underly-
ing autoregressive (AR) nature of clean audio signals: Janssen’s iterative method [4] is still among
state-of-the-art methods to date. Great performance is also achieved by Etter’s extrapolation-based
technique [5], however, it is limited by the need for a sufficiently long clean context to reconstruct
each individual gap. Recently, the class of sparsity-based methods methods has emerged [1, 6, 7, 8].
Generally speaking, these methods solve a regularized inverse problem, where the solution is as-
sumed to have a sparse time-frequency (TF) spectrum, while fitting the observed temporal samples.

A disadvantage of most methods is the local nature of the regularizers. For example, sparsity-
based methods are effective for inpainting of short- to medium-length gaps, typically up to 50 ms,
or for restoring randomly subsampled signals [9, 10]. Even for gaps of length of tens of milliseconds,
there is a need for strong regularization that not only exploits the local TF sparsity but also the
global structure of audio signals. A step towards using global properties of audio signals is the
so-called social sparsity [11, 12, 13, 14], where the significant TF coefficients are expected to occur
in particular transient or temporal patterns, or recent approaches based on generative deep neural
networks [15, 16].

In the present paper, we focus on audio inpainting methods that leverage the low-rank struc-
ture of audio signals in the TF domain. Among low-rank models, nonnegative matrix factoriza-
tion (NMF) has been intensively used for analysis and decomposition, both in machine learning and
signal processing [17, 18, 19]. Concerning audio, NMF can be used to decompose the signal’s power
or magnitude spectrogram as the product of nonnegative matrices WH, where W is a dictionary of
spectral patterns, and H contains the temporal activations of these patterns. Such a decomposition
provides a semantically reasonable generative model for audio signals, which is one of the reasons
why NMF is among the classical approaches to source separation [20, 21]. It also benefits from
being an unsupervised and interpretable method while being computationally cheap. NMF has also
been used as a prior for the restoration of degraded signals [22, 23], thus being successfully applied
to audio declipping [22, 24].

The main idea of NMF-based signal reconstruction can be summarized as building an estimation
problem where the NMF is used as a prior, which requires to estimate parameters given the incom-
plete data, usually via the expectation—maximization (EM) algorithm [25]. Formally, the structure
of the spectrogram is introduced via the probabilistic Gaussian composite model [26], which results
in applying NMF with the Itakura—Saito divergence. However, the estimation of the parameters
— the matrices W and H — is a non-trivial problem which can be approached in different ways.
One possibility is to derive a generalized EM algorithm to estimate the factorization of the power
spectrogram of the clean signal in the maximum likelihood (ML) sense. This has been previously
presented by Bilen, Ozerov and Pérez [22, 23] with application to audio declipping, where it reaches
state-of-the-art performance. However, the method is known to be computationally very demand-
ing [24, Sec. V.D], and it represents only one of several possible approaches to treating the missing
samples (specifically, they are treated as latent variables). Furthermore, it has not been compared
to the state-of-the-art methods in the audio inpainting setting.

Drawing on the work of Bilen et al., we provide a novel generalization of their EM-based ap-
proach, where the missing samples are formally treated as latent variables. We formulate the esti-
mation problem in both time and TF domains and therefore derive two algorithms, among which
one is novel. As a novel approach, we also propose to treat the missing samples as parameters.



This leads to a new estimation problem, for which we derive an alternating minimization (AM)
scheme. Even though we built upon the application in audio inpainting, the core of the work is the
conceptual development of novel approaches to the NMF-based modeling in signal restoration. We
conduct experiments on the task of restoring short- to middle-length gaps in music signals. These
reveal great convergence properties of the proposed methods, as well as competitive performance
when compared to state-of-the-art audio inpainting techniques.

The rest of the paper is organized as follows. We formulate audio inpainting with NMF as an
estimation problem in Section 2. In Section 3 we review and extend the approach by Bilen et al.
[22]. In Section 4 we consider the missing samples as parameters, for which we derive a novel AM
estimation approach. Section 5 is devoted to experiments and evaluation of the proposed methods.
Finally, Section 6 concludes the paper.

2. Problem formulation

For the whole derivation of the methods, it is convenient to divide the signal into windowed
temporal frames x,, € CM n =1,..., N, potentially arranged in a matrix X = [xy,...,xy]. In the
case of inpainting, we observe the samples x°” = M, x,, in each frame n and we aim at obtaining
an estimate X,, of the whole frame given these observed samples. The matrix M,, is constructed
from the identity matrix by omitting the rows corresponding to the missing samples, thus the
multiplication with M,, shortens the vector, selecting only the observed samples. Note that in
the present work, the indices of the missing samples are assumed to be known, thus the matrices
M,,n=1,...,N are known. The whole signal estimate ¥ € C” is then obtained by folding all %,,
together by the overlap-add procedure.

To propose a probabilistic formulation of the inpainting problem, it is necessary to postulate a
statistical model for the data at hand. Since we aim at promoting the low-rank structure of the
TF coefficients S = [s1,...,sn] = [sfn] € CF*¥ of the audio signal, we first define the following
synthesis model:

X, =Ts,, n=1,...,N, (1)

or, in matrix form, X = TS, where T € CM*¥ is a linear reconstruction operator. The matrix
T typically represents the inverse discrete Fourier transform (DFT). If the temporal frames are
weighted by a windowing function, S represents the short-time Fourier transform (STFT) coeffi-
cients of the whole signal y. We will discuss the effect of particular choices of T later in 3.3.

The low-rank structure of the TF coefficients can be formalized within the following assumptions.

Assumption 1 (Gaussian coefficients). The time-frequency coefficients are treated as condition-
ally mutually independent,' and each coefficient follows a complex circular zero-mean Gaussian
distribution:

Sfn NN(O,Ufn). (2)

Due to the assumed independence of the individual TF coefficients, we can rewrite the distri-
bution of the spectrum of the n-th frame as:

Sp ~ N(O7Dn)7 D, = diag ([Ufn]le,...,F) y (3)

INote that temporal Markov NMF models such as in [27] could readily be considered but we use independence
as a working assumption for ease of presentation.



where the symbol A/ from now on denotes the multivariate complex Gaussian distribution.

Remark 1. Note that Assumption 1 is stated for the case of a gemeric linear transform T inter-
connecting the TF coefficients and temporal samples. In the common case where the TF coefficients
are computed from the temporal samples by the DFT (i.e., 'T represents the inverse DFT opera-
tor), and the temporal signal is real-valued, the independence assumption needs to be relaxed: The
TF coefficients of real-valued signals are independent only in half of the frequency spectrum, the
other half being determined via the Hermitian property of the transform. However, for the sake of
generality, we will assume no particular structure of T throughout the article.

Assumption 2 (NMF structure of the variances). The variance matriz V. = [vsy,] has the low-rank
NMF structure:

K
Vfn = wakhkm (4)
k=1

where K is small and all parameters are nonnegative. This model amounts to V.= WH with W
and H being F x K and K x N nonnegative matrices, respectively [22, Sec. 2.2].

To estimate the parameters W, H of the variance matrix, given the observed samples X°P% =
{x$§bs ..., x5}, we employ maximum likelihood (ML) estimation. The audio inpainting per se, i.e.,
the computation of the missing samples, is then performed explicitly given the estimated parameters
and the reliable samples in a way similar to Wiener filtering.

However, there is not a unique way to formulate the ML problem. The following sections present
two approaches that differ in whether the missing samples are treated as latent variables (Section 3)
or explicitly treated as parameters (Section 4). Note that subsection 3.1 reformulates the method
proposed by Bilen et al. in [23], whereas the rest of Section 3 and the whole Section 4 are new
contributions.

3. ML estimation by treating the missing samples as latent variables

We first present the ML formulation, where the goal is to estimate the parameters W, H of the
distribution of the restored signal in the TF domain, by minimizing the negative log-likelihood of
the observed samples X° = {x9b5 ... xP%}, as presented by Bilen et al. in [23]. The problem can
be formalized as

W, H = arg min — log p( X°* | W, H). (5)
W,H

This expression can be broken down for a single frame n, where the probability p is given by
the distribution of s,, from Eq. (3) and by the linear observation model as
X% = M,,x,, = M, Ts,, ~ N(0,M,, TD,, T"M]), n=1,...,N, (6)
where the dependence on W, H is contained within the definition of the matrices D,,. We resort to
the EM algorithm [25], in line with Bilen et al. [23]. However, we broaden their work by considering
two different settings of the EM algorithm, depending on the domain of the complete data to be
estimated.



3.1. EM-tf
First, we briefly describe the EM algorithm for the problem (5). The setting is that the incom-

plete data corresponds to the observed reliable signal, i.e., X°P% = {X(l)bs, . 7x‘j\}’s} in the framed
time domain. The complete data corresponds to the TF spectrum S = [sy,...,sy] € CI'*N of
the original signal (which is reflected by the abbreviation EM-#f). Finally, the parameters to be
estimated are @ = {W,H}, and 6 is the current value of the parameters.

Using this setting, the EM algorithm aims at minimizing the functional:
Q(6.6) = - [logp(S | O)p(S| X, 6)ds (7)

by iterating two steps:

1. E-step: compute Q(6,8),
2. M-step: update 6 by minimizing Q(6, 8) with respect to 6.

For the E-step, we obtain

N N
p(S [ X, 0) = [] plsn | x57%,6) = T[ N(sn | 8, ), (8)
n=1 n=1
where
$, = D, T"M] (M, TD, T"M]) ™" xob", (9a)
%, =D, - D, T"M] (M, TD, T"M]) ™' M, TD,, (9b)

and the matrices D,, are computed using the current value of the parameters 0. The formulas (9)

can be derived from the assumed distribution of s, in (3) and from the linear observation model

xoP5 = (M, T)s,, (see e.g. [28, Theorem 10.3]). Note that these formulas can be seen as Wiener

filtering given estimated posterior covariance [28, Chapter 12] to recover the missing samples.
Now, from (3) and from the independence assumption, it holds that

N
p(S|6) = HN(SH 10,D,), Dy, =diag([vpnlr=1,..F). (10)

n=1

The M-step, i.e., the minimization of (7) with respect to the parameters 8 = {W, H} is equiva-
lent to the minimization of the Itakura—Saito divergence Dis(P | WH) [22, 26], where the divergence
is defined for matrices A = [a;;], B = [b;;] as

Qj4 Q4
Dis(A |B) = § dis(ag; | bij) = E (bj —log *b,J, - > ) (11)
i,j * 4

i,J

and the matrix P = [py,] is the posterior power spectrum given by:

2 obs ~ 2 -
pyn=E (lspnl [ X WL H) = [80)] + () (12)



The M-step can thus be performed by applying (and iterating) the following multiplicative rules
[26, Alg. 1]:

((WH)Q[_Q] ® P) HT

W« Wo (WH)EIHT (13a)
w7 ((WH)®[72J ® P)
H+<HOo WTWH)EET (13b)

where & & denotes the matrix A©BO1 and the symbol @ is used to denote entry-wise multiplication
or power. Note that in the algorithm, the H update (13b) uses the already updated value of W
from (13a). In practice, the two updates are followed by a normalization step: The columns of W
are scaled to have unit norm and the rows of H are inversely scaled by the same factor, such that
the product WH does not change.

The whole EM-¢f algorithm is summarized in Alg. 1. Its output is the estimate of the complete
data, i.e., the full TF spectrum S € CF*N | together with the estimate of the parameters W and
H. Then the framed time-domain signal X is synthesized from S using the operator T. Finally,
the whole signal estimate y is obtained from X using the overlap-add procedure.

3.2. EM-t

As an alternative to EM-tf, we build an EM algorithm that uses a complete dataset in the time
domain (hence the abbreviation EM-¢). As a result, we directly get the posterior distribution of
the missing data as a side-product of the algorithm.

This novel algorithm addresses the original problem (5) by minimizing the functional:

Q0.6) = — / log p(X | B)p(X™* | X%, §) dX™mis, (14)

where X™miss = {xiss xS} represents the missing samples. These are identified as
xMiss — M, x,,, where M, is the complementary selection matrix to M, i.e., M,, selects the unre-
aliable (missing) samples of frame n.

It is clear that in some cases, this approach will be equivalent to EM-tf, such as in the case
of one-to-one correspondence between the temporal frame samples and their frequency coefficients.
However, this part discusses a general situation with no other assumptions on the transforms
involved, and particular cases will be examined later in Section 3.3.

To derive the steps of the EM algorithm, observe that the relation x,, = Ts,, together with

Assumption 1 (Gaussian coeflicients), directly leads to
N
p(X16)= ][N (xx |0, TD, T"). (15)
n=1
In a similar manner to the E-step of EM-tf, we can derive the following
. N
p(Xmiss Xobe 0 Hp miss zbs’e) — H N(Xgﬂss | MnTéna MnTEnTHMI), (16)
n=1

with &,,3, defined in Eq. (9).



Algorithm 1: Audio inpainting via EM-tf.

Input: reliable samples {x%”°},—1,.. n, respective selection matrices {My}n—1,. .., linear
transform T € CM*F

1 initialize W € RF*% H € RE*N non-negative
2 repeat

// E-step:
3 forn=1,...,N do

4 D,, + diag ([vfn]f=1,...,r) With [vf,]f=1,...,F being the n-th column of the matrix V.= WH
5 §, « D, T"M] (M, TD, T"M]) " x>
6 2, «D,-D,T"M] (M, TD,T"M]) "M, TD,
7 pfn<—|(§n)f|2+(ﬁln)ff, f=1..,F
8 end
// M-step:
9 repeat
((WH)G[*Q] ® P)HT .
10 W~ Wo (WH)o-THT with P = [ps]
W (WH)*PloP)
11 H+~HO W (WH)Gl ] with P = [psy]
12 normalize columns of W, scale rows of H
13 until satisfied with the factorization

14 until convergence criteria met

Output: S =[5;,...,6x], W=W H=H

The crucial part of the algorithm is the ML estimation of the parameters W, H in the M-
step, given the posterior distribution of the missing temporal samples. Even though the closed
form of Q(8, 0) is available due to the expressions in Eq. (15) and (16), it is expensive to compute
and optimize directly. Thus, we proceed to re-estimate the spectrum corresponding to the signal
estimated by Eq. (16) and update W and H as the factorization of this spectrum.

To do this, we introduce an analysis operator, represented by the matrix U € CF*M | associated
to the synthesis operator T. So far, the only assumption about the analysis operator is linearity —
more details are given below. Using U, it is straightforward to derive the posterior distribution of
the TF coefficients S?!* = UX associated to the posterior time-domain samples:

N N
p(S™ | X, 0) = [ p(sit [x5,0) = [T Vit |83 25 (17)
n=1 n=1



Algorithm 2: Audio inpainting via EM-¢.

1
2

10

11

12

13
14

Input: reliable samples {x%”},—1,.. n, respective selection matrices {My}n—1,. ., linear
transforms T € CM*F U e cF'*M

initialize W € RF*X H e R¥*Y non-negative
repeat

// E-step:

forn=1,...,N do
D,, + diag ([vfn]f=1,...,r) With [vf,]f=1,...,F being the n-th column of the matrix V.= WH
§ « UTD, T"M] (M, TD, THM]) " x9"
3"« UT (D, - D, T"M] (M, TD, T*M]) "M, TD, ) T*U"
pon = [@)s ]+ (Bys, f =1 T

end

// M-step:

repeat

((WH)QFQ] o) P)HT
(WH)C-1THT

W+ Wo with P = [psn]

wWT(WH)°-2 o P)

H+«HO W WH)o T

with P = [pfn]

normalize columns of W, scale rows of H

until satisfied with the factorization

until convergence criteria met

Output: Salt = [é’i‘lt, e ,é‘}*\}t] L W=WH=H

with

st —UTs,, U =uTs,THUM (18)
Finally, the M-step is equivalent to the M-step defined by the updates in Eq. (13), with the

alternative posterior power spectrum (computed from §2!* and 2%“). The whole algorithm is sum-
marized in Alg. 2.

8.8. On the relations between EM-tf and EM-t

As previously mentioned, there are some natural choices of the pair {T, U} which result in the

equivalence of the algorithms EM-tf and EM-¢. Several alternatives are discussed in what follows.

1. T is invertible, U = T~1.
It follows from (18) that §, = &2t and 3, = 33!t therefore EM-#f and EM-t are identical
algorithms. One noticeable special case is when T is unitary, i.e., U =T~! = TH. A popular
example is the case of a properly scaled DFT realized formally by multiplication with the
unitary matrix U € CM*M,



2. T is the synthesis operator of a tight frame [29, Ch.1], F > M, U = T", TU = I, where I
denotes the identity matrix of appropriate size.
The two algorithms are no longer equivalent, since UT represents the projection operator on
the range space of U, which is in general different from identity. For instance, this is the case
of a redundant DFT, e.g., with F' = 2M (twice more frequency bins than the frame length).?
3. T is the analysis operator of a tight frame, F < M, U =TH ie., UT =1L
In this case, we do not have enough frequency coefficients to reconstruct any signal in the
framed time domain. This means that the time-domain solution (in each frame) is restricted
to the range space of T. However, the estimation EM-tf and EM-¢ are once again equivalent
in this case.
4. T is arbitrary, U = T™.
In this case, the matrix UT = TTT used in (18) represents the orthogonal projection onto
the range space of T (which equals the orthogonal complement of the kernel of T'). This is in
general different from identity, unless the range space of TH is the whole coefficient space C*".
5. U is arbitrary, T = U™T.
Similarly to the previous option, UT = UU™ represents the orthogonal projection onto the
range space of U (which equals the orthogonal complement of the kernel of UH). This is in
general different from identity, unless the range space of U is the whole coefficient space C*".

Even though the list is far from being exhaustive, it illustrates that there are commonly used
settings (e.g., the redundant DFT used in some sparsity-based reconstruction algorithms [30, 7, 8])
where EM-¢f and EM-¢ are not just conceptually but also practically different. This will be further
detailed in the experiments in Section 5.

4. ML estimation by treating the missing samples as parameters: the AM algorithm

As a novel approach, we propose to treat the missing samples as parameters and include them
explicitly into the estimation problem, which results in:

W, H, X" = argmin — log_p(XObSJ("liSS | W, H) (19)
WTHYXmiss

Note that the objective of this novel estimator is a function different from the likelihood in (5), since
the parameter space is extended by the inclusion of the missing samples in the problem. We propose
to approach it via AM. This approach consists of two steps — minimization of (19) with respect to
the missing samples (signal update) and minimization with respect to the NMF parameters (model
update).

4.1. Signal update

Performing the signal update means minimizing the objective in (19) with respect to xmiss
while the current estimates of W, H are fixed. This is equivalent to finding the mode of the
conditional distribution of x5 given x°P%, W, H, which, due to the Gaussian assumption, equals
its expectation:

U = E (x| x5, W, H) . (20)

2In practice, this can be implemented by zero-padding the signal to twice its length and then computing the DFT.
The backward transform is the inverse DFT, followed by cropping the result to the original length.



Using Eq. (16) and Eq. (9a), we can compute this expectation, which yields:

%miss — M, TD, T'M] (M, TD, T"M]) ™" x>, (21)

n

The whole signal frame, including both the estimated missing samples x™* and the observed
samples x°P| can be merged together as:

%, = TD, THM] (M, TD, T"M]) " xo". (22)

4.2. NMF parameters update

For the NMF model update, we aim at deriving the computation directly from the optimization
problem (19). Since not only the observed samples but also the (estimated) missing ones are fixed
in this step, this is equivalent to minimizing

—logp (x, | W,H) = logdet (<TD,, ") + x|, (TD, T") ' x,, (23)

with respect to W, H. To simplify the development of the method, let us pose the following
assumption.

Assumption 3 (invertibility of the synthesis). The synthesis operator T is invertible and the
analysis operator is U = T~L. In particular, this means that T is square, i.e., F = M.

Under assumption 3, we see that det(7TD,T") =« det (T)? det (D,,) and
(TD,, TH)~! = (T~1)HD;!T~!. The optimization problem then reduces to:
argmin logdet (D,,) + (T_lxn)H D, ' (T 'x,). (24)
W.H

Now recall that D,, = diag ([vf,]f=1,... r), thus we can rewrite the objective function as:

(25)

logvan+Z T X”fv (T~ xn Zlogvfn+z
f=

It is now straightforward to show that the minimization of (25) is equivalent to the minimization
of the Itakura—Saito divergence:

r 2
argminZdIS <‘(T_1xn)f‘ | vfn> . Upp = wakh;m. (26)
Y =1 k

Taking into account all the frames finally leads to the desired result that W, H are obtained by
minimizing Dig(P | WH) where py,, = |(T*1§<n)f|2 and X,, is the signal estimate from Eq. (22).
The procedure is summarized in Alg. 3.

Remark 2. A simple heuristic possibility for the case of non-invertible T is to compute the spectrum
of Xy, defined in Eq.(22), as

$, = Uk, = UTD, T"M (M, TD, T"M]) " x°" (27)

n

10



Algorithm 3: Audio inpainting via AM.

Input: reliable samples {x%”},—1, ., respective selection matrices {My, }n=1,. ., invertible
linear transform T € CM*F

1 initialize W € RF*% H € RE*Y non-negative
2 repeat

// Signal update:
3 forn=1,...,N do

4 D,, + diag ([vfn]f=1,...,r) With [vf,]f=1,...,F being the n-th column of the matrix V.= WH
5 §, « D, T"M] (M, TD, T"M]) " x>

6 %, T8,

7 P B, f=1,..., F

8 end

// Model update:

9 repeat
((WH)G[*Q] ® P)HT .
10 W~ Wo (WH)o-THT with P = [ps]
W (WH)*PloP)
11 H+~HO W (WH)Gl ] with P = [psy]
12 normalize columns of W, scale rows of H
13 until satisfied with the factorization

14 until convergence criteria met

Output: X = [%;,...,%ny], W=W H=H

and the power spectrogram pf, = |(§n)f\2 Then, we apply the multiplicative rules to minimize
Dis(P | WH). However, this approach is not justified by the minimization of (25) with respect to
W, H. The problem is that if we cannot compute the inversion (TD, TH)~! as AD;'B for some
matrices A, B, we cannot separate the individual diagonal entries of D,, to fit it to the IS-NMF
problem.

Remark 3. Note that in the setting imposed in Assumption 3 (invertibility of the synthesis), EM-tf
is equivalent to EM-t, but the alternating minimization produces a different algorithm, because we
do not include any covariance matriz in the power spectra. Thus, AM might provide a different
inpainting solution, as demonstrated by the numerical experiments in Section 5.

Remark 4 (computational complexity). It is intricate to express the computational complexity of
the algorithms EM-tf, EM-t and AM. However, several claims are evident:

1. In EM-tf on line 6 of Alg. 1, we do not in fact need to compute the whole matriz 3., but
solely its diagonal entries. Thus, if the complicated term D, THM] (M,LTD7,,THM;E)71 is

11



computed and saved on line 5 (e.g., using Matlab’s mrdivide without the need to perform the
matriz inversion), then no more matriz multiplications are needed on line 6 since the diagonal
entries can be extracted by computing only F' scalar products.

2. In AM, the matrix DnTHMZ (M,LTDHTHMI)_1 does not need to be calculated at all — we
can first compute (MnTDnTHMI)_1 x°Ps efficiently and then multiply the resulting vector

n
with the matriz D, TYMT. The difference to EM-tf is that the inversion operates with a
vector, not a matriz, which makes AM less computationally demanding per iteration than
EM-tf.
3. Although a similar strategy as in EM-tf can be applied to EM-t, computing even the diagonal
entries of ﬁ]%lt as derived in Eq. (18) is more complicated due to the multiplication with UT.
As a result, EM-t has computationally the most expensive iteration from the three algorithms,

even in settings when the operations can be implemented efficiently using FFT.

5. Experiments

In this section, we evaluate the performance of the proposed estimators for the task of inpainting
noise-less musical recordings. The implementation is done in Matlab with the use of the LTFAT
toolbox [31]. For the sake of reproducibility, the source code is published online.?

5.1. Protocol

The experiments focus on audio inpainting of compact gaps, which is a challenging setup. How-
ever, we start with a preliminary experiment dedicated to the restoration of missing samples at
random location, which is mainly motivated by the high computational cost of the algorithms (see
Section 5.2.1).

For the gap-filling experiment, we use the set of 10 musical recordings from the EBU SQAM
dataset [32, 33|, sampled at 44.1 kHz and shortened to 7 seconds, as used commonly in recent related
publications [6, 8]. The proposed estimators are first evaluated against each other (Section 5.2.2),
and then compared to state-of-the-art baselines (Section 5.3).

As a measure of audio quality, we consider the commonly used signal-to-noise ratio (SNR)
defined as: Iy

N y

SNR(y7y) 101OglO Hy_y”Qa
and expressed in dB, as well as the perceptually motivated objective measures PEMO-Q [34] and
PEAQ [35, 36], since no other standard for perceptual similarity is established for the evaluation
of audio inpainting. All the metrics measure the similarity of the ground truth signal y and its
estimate y; SNR represents the sample-wise similarity of the waveforms, whereas PEMO-Q and
PEAQ estimate the perceived difference (objective difference grade, ODG) on a scale ranging from
—4 (very annoying) to 0 (imperceptible). Note that since we consider a noise-less scenario and all
the methods considered fit the reliable samples perfectly, we measure the SNR only on the inpainted
segments.

The relative solution change, used as a measure of convergence, is computed as
[50H+D — 5@ /Iy @]|, where §( is the estimate at the i-th iteration folded together from

(28)

Shttps://github.com/ondrejmokry/InpaintingNMF
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TS = T[S1,...,8n] = [X1,...,%Xn], where S is the output of the proposed algorithms. Simi-
larly, we compute the relative objective change, where the objective is the negative log-likelihood
of Eq. (5) for EM-tf and EM-¢ and of Eq. (19) for AM, evaluated using the current iterates of W,
H and the corresponding solution.

5.2. Comparison of the proposed estimators

We start the experiments with the comparison of the behavior of the three estimators, EM-
tf, EM-t and AM. In 5.2.1, we perform a preliminary comparison including the very demanding
calculation of the objective function. Then, we validate the results in 5.2.2 for the gap-filling task.

5.2.1. Preliminary comparison with random missing samples

First, we illustrate the capabilities of the three estimators EM-tf, EM-t and AM on a demonstra-
tive example of an inpainting problem. The original signal is an excerpt of the first 12 seconds of
the song Mamavatu by Susheela Raman, containing acoustic guitar and drums, sampled at 16 kHz.
We discard 60 % of the signal samples (chosen randomly) and perform inpainting using EM-tf,
EM-t and AM. The temporal frames are extracted using sine window of length M = 1024 samples
(64 ms), the hop length is 512 samples and we use K = 10 components of the NMF. To distinguish
between the individual algorithms, the number of frequency channels F' in this experiment varies
between M and 2M, which corresponds to examples 1. and 2. of subsection 3.3, respectively.

The comparison is visualized in Fig. 1 by means of several quantities: the negative log-likelihood
(i.e., the objective function of the estimation problem (5) or (19)), SNR, relative objective change
and relative solution change. Our key finding is the difference in the observed convergence speed
with respect to iteration count. It is visible in all the plots of Fig. 1 that AM approaches its solution
faster than EM-¢f, which is even more pronounced with respect to CPU time according to remark
4 (computational complexity). However, the quality of the solution may decrease after the peak is
reached. A similar behavior is observed for the case of redundant transform T. This redundancy
causes that:

1. the convergence of EM-tf for F' = 2M is slower than with F' = M while reaching similar
reconstruction quality,

2. the convergence of EM-¢ for F' = 2M is faster than both cases of EM-tf, but as in the case of
AM, it reaches worse reconstruction quality.

Based on these first observations, a natural question arises: Can we combine the convergence
properties of AM with the performance of EM-tf? To answer it, we consider a combined algorithm
AM-to-EM-tf, which consists in initializing EM-tf with 5 iterations of AM. As observed in Fig. 1,
the initialization with AM does improve the algorithmic behavior in the first few iterations and at
the same time, the resulting restoration quality is the same as with EM-tf. However, the number
of iterations needed to reach the peak performance is not reduced by the switching strategy.

5.2.2. Missing gaps

To validate the preliminary results concerning EM-tf and AM, we perform a larger experiment
with a set of signals and for the more demanding problem of inpainting short to middle-length gaps
(instead of random subsampling). In each of the 10 signals from the EBU SQAM dataset, 10 gaps
of given length are artificially introduced, with the gap length ranging from 20 to 80 ms. We do not
track the objective function in this case, because its computation is computationally demanding.
We also focus on the practical case of F' = M and invertible transform T representing the DFT
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Figure 1: Comparison of the performance and convergence properties of EM-tf, EM-t and AM, including the switching
variant AM-to-EM-tf. The legend in the middle plot is common for the whole figure. Note that the first column thus
shows three different quantities, since the objective depends on the choice of F' and also on the algorithm. Especially,
the formula for log likelihood switches after the initializing iterations of AM-to-EM-tf, which is however disregard on
purpose in the plot.

in each temporal frame, thus EM-¢ is omitted. The frame length is M = 4096 samples (approx.
92ms), and the temporal frames are extracted using sine window with 50% overlap.

As in the previous experiment, we observe that the performance difference between AM and
EM-tf is not significant, but AM reaches its peak faster, as shown in the plots for SNR in Fig. 2.
The relative solution change supports this observation, as it has been demonstrated above (see
Fig. 1) that this measure mostly corresponds to the convergence of the algorithm with respect to
its objective value. A new observation is that this phenomenon depends on the gap length — the
longer the gap, the slower the convergence of EM-tf is, compared to AM.

5.83. Comparison with the state of the art
Finally, we compare our NMF-based methods to the following state-of-the-art techniques for
the task of inpainting middle-length audio gaps:

e Janssen’s AR approach [4] (denoted Janssen): This iterative algorithm builds upon a frame-
wise AR nature of the clean signal. At each iteration, it estimates the AR coefficients of
the signal estimate (starting from the observed signal with the missing samples initialized as
zeros), and then recompute the missing samples using the reliable samples and the current
model parameters’ estimates.

e Modified variant of Janssen’s algorithm (Janssenmod): This method is similar to the AR
approach, but instead of processing the signal in overlapping segments, it treats each gap with
its context individually.

e Cross-faded extrapolation based on AR modeling [5] (LR): This is an efficient method for
inpainting of compact gaps with sufficiently long reliable contexts. Per each gap it consists
of estimating two AR models for the left and right contexts, extrapolating the contexts into
the gap using the fitted model and cross-fading the two candidate solutions.
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Figure 2: Comparison of the performance of EM-¢f, AM, and the switching variant AM-to-EM-tf (switching after
5 iterations). The left column shows the evolution of the SNR over iterations, the right column shows the relative
solution change. Both the metrics are averaged over the dataset and plotted together with 95% confidence interval
represented by the light colored areas (note that for the relative solution change plot, this confidence interval is
computed from the decimal logarithm of the data).
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Figure 3: Comparison with the state-of-the-art algorithms for inpainting short to middle-length gaps. The legend is
common for all the plots.

¢ SPAINIlearned [§8], a variant of the sparsity-based non-convex approach SPAIN (7], which
treats individual gaps and their contexts (instead of overlapping frames as in SPAIN). The
performance is further enhanced by a dictionary learning step to deform the STFT based on
the particular signal such that it allows for a sparser representation than using the STFT.

e A convex alternative is the (weighted) ¢; minimization as a relaxation of the non-convex
sparsity [6] (reweighted).

For all methods which use STFT or segmentation (Janssen, SPAINlearned, reweighted,
and the NMF-based methods), the window is a sine window of length 4096 samples (approx. 92 ms)
with 50% overlap. The NMF-based methods are applied with M = F, thus EM-¢ is equivalent to
EM-tf and is omitted for brevity. The AR-based methods use a model of order 512. The context
of Janssenmod and LR is set to 4096 samples, while SPAINlearned use a longer context (8192
samples) for the sake of the dictionary learning. These values are chosen based on the corresponding
studies, where they have shown good performance. For particular choices of all the parameters of
the individual methods, please refer to the published source code.

The performance results averaged over the 10 test signals are shown in Fig. 3. We observe that in
terms of SNR the proposed NMF-based methods outperform the state-of-the-art for short gaps (up
to 35ms) while their performance drops for longer gaps. The perceptually-motivated comparison
includes PEMO-Q and PEAQ ODG. However, based on the range of the PEAQ ODG values, we
do not find these results very informative, and rather include them for the sake of completeness.
On the other hand, we observe from the PEMO-Q ODG values that EM-tf and AM are among the
top three methods for short- to middle-length gaps.
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6. Conclusion

In this paper, we derived new estimators for NMF-based audio inpainting. We formulated
inpainting as an optimization problem where the goal is to estimate the signal’s power spectrum,
which is structured using NMF. To that end, we have derived three algorithms, among which
two are new, which encompasses and extends previous related works [22, 23]. Even though the
proposed estimators build upon the same low-rank assumption about the signal’s TF spectrum, we
have shown that there are both theoretical and practical differences between them. In particular,
they all exhibit a different behavior and lead to different solutions to the audio inpainting problem.
Importantly, the novel approaches (EM-tf and AM) improve the convergence rate compared to EM-
tf, while reaching similar reconstruction quality. They have also been demonstrated competitive
with state-of-the-art audio inpainting methods.

Throughout the derivation, we assumed independence of the temporal frames. A natural ex-
tension of the model would be to employ temporal Markov NMF models, as presented e.g., in [27].
Future research will also study the possibility to leverage psychoacoustics in audio inpainting, e.g.,
by using perceptually-motivated TF representations [9, 37].
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