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Abstract
Accesses to shared resources in multi-core systems raise predictability issues. The delay in accessing
a resource for a task executing on a core depends on concurrent resource sharing from tasks executing
on the other cores. In this paper, we present StAMP, a compiler technique that splits the code
of tasks into a sequence of code intervals intervals, each with a distinct worst-case memory access
profile. The intervals identified by StAMP can serve as inputs to scheduling techniques for a tight
calculation of worst-case delays of memory accesses. The provided information can also ease the
design of mechanisms that avoid and/or control interference between tasks at run-time. An important
feature of StAMP compared to related work lies in its ability to link back time intervals to unique
locations in the code of tasks, allowing easy implementation of elaborate run-time decisions related
to interference management.
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1 Introduction

In order to guarantee timing constraints of real-time software, an upper bound of the
Worst-Case Execution Time (WCET) of its sequential tasks is needed [17]. Static WCET
estimation techniques provide such upper bounds (WCET estimates) and are well understood
for single-core processors. However, multi-core architectures are now commonplace as they
offer unprecedented processing power and low power consumption. Applying static WCET
analysis to multi-core systems is more difficult than single-core ones since a task running on
a core may suffer from interference delays caused by resource sharing with software executing
on the other cores. Shared resources may be the Last-Level Cache (LLC), the memory bus
or the memory controller.

Different approaches may be used to deal with interferences (see [11] for a survey). One
class of techniques is to avoid interferences, by using, for instance, specific task models like
PREM (PRedictable Execution Model, [13]), which separates the code of each task in a
memory phase and an execution phase that does not perform any memory access. Specific
scheduling techniques can then be designed to avoid the co-scheduling of phases that interfere
with each other [14,18]. Another class of approaches allows interferences to occur at run-time,
and leverages knowledge of the usage of shared resources to compute the resulting worst-case
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interference delays [7,9]. This latter class of approaches relies on knowledge of shared resource
usage of tasks executing concurrently, but surprisingly few methods provide such information
at a granularity smaller than the entire task.

In this paper, we propose StAMP, a static analysis technique that divides the code of
a compiled program into a linear sequence of non-overlapping code intervals, each with a
distinct worst-case memory access profile. State-of-the-art methods for the static analysis of
memory accesses [2, 12] all rely on time-based approaches: they divide the execution timeline
into time segments for which they compute a worst-case number of memory accesses. In
these approaches, there is no direct way to link segments back to concrete code sections.
Therefore, run-time decisions to avoid or control interference have to rely on time only
and are agnostic to the code location where the decision is taken. As compared with these
time-based techniques, StAMP can link back its output time segments to concrete code
intervals. This allows run-time decisions to be based not only on time but also on the code
interval under execution. Such run-time decisions may, for instance, re-calculate interference
based on the current progress of tasks or introduce synchronizations to avoid or minimize
interference between intervals [15,16].

Dividing the binary code of tasks into a linear sequence of code intervals is based in StAMP
on a compiler technique that operates at the binary level. StAMP first divides the binary
code into a tree of “well-formed” regions, called Single Entry point Single Exit point (SESE)
regions [8]. The advantage of using such regions is that the entry and the exit of each region
are natural frontiers for intervals, and as such natural points for introducing interference-
related scheduling decisions. StAMP generates different sizes of intervals depending on the
depth at which the SESE region tree is explored (deeper exploration induces finer-grain
intervals). It is then possible to apply worst-case memory access analysis to each interval
individually.

Traditional extraction of SESE regions is edge-centric [8], creating sections with a single
entry edge and a single exit edge. We show in this paper that when using node-centric SESE
regions (regions with a single entry node and a single exit node), the number of regions
is more important than when using edge-centric regions. This provides fine-grain regions
to scheduling strategies, in particular on code with many branches, which we believe will
improve the quality of scheduling strategies.

The contributions of this paper are the following:
We propose StAMP, a compiler technique that splits the binary code of a task into
consecutive code intervals. Similarly to state-of-the-art techniques [2,12], StAMP generates
worst-case memory access profiles for intervals with known WCETs. However, in contrast
to [12] and [2], StAMP links back intervals to locations in the code of tasks. Moreover, the
algorithmic complexity of StAMP is much lower than the one of the algorithms from [2].
We provide an extensive experimental evaluation of StAMP, showing in particular that:

Interval extraction using node-centric SESE regions results in finer-grain regions than
traditional edge-centric regions.
Controlling the depth at which the SESE region tree is explored allows us to control
the size of the produced intervals.

The memory access profiles generated by StAMP can be used by off-line scheduling
strategies to minimize interference overhead. Moreover, the fact that StAMP links back
intervals to locations in the code of tasks provide useful information to take elaborate run-time
decisions such as dynamic reconfiguration of schedules and re-calculation of interference
delays [15, 16]. This paper focuses on calculation of memory access profiles, their use for
off-line or on-line scheduling strategies is considered outside the scope of the paper.
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The rest of this paper is organized as follows. The method implemented in StAMP is
described in detail in Section 2. Experimental results are given in Section 3. Section 4
compares our approach to related techniques. We finally discuss the results achieved and
present our future work in Section 5.

2 Estimation of memory access profiles with StAMP

After presenting the system model StAMP relies on (Section 2.1, the properties of code
intervals as computed by StAMP are detailed in 2.2. SESE regions, the blocks from which
code intervals are constructed, are defined in 2.3. Sections 2.4 and 2.5 then respectively
present the construction of code intervals and the calculation of their worst-case number of
memory accesses.

2.1 System model and problem statement
StAMP operates of the binary code of an individual task, from static analysis of its Control
Flow Graph (CFG). The target architecture may have a complex memory hierarchy (instruc-
tion and data caches). We assume that there exists a way (for instance static cache analysis
as in our experimental evaluation in Section 3) to figure out if an access to a given address
may result in a memory access.

The problem addressed by StAMP is the following. Given the code of a task, StAMP
splits its code in consecutive code intervals (formally defined in 2.2) and for each of them
calculates the worst-case number of memory accesses that may occur when executing the
interval (memory access profile).

2.2 Code intervals
The analysis in StAMP first divides a given control-flow graph into consecutive code intervals,
each linked to a code section, for which we individually compute the number of worst-case
memory accesses. Then, WCET analysis is performed to convert the code-based segmentation
into a time-based segmentation, allowing a straightforward bidirectional mapping between
the two.

Picking the right abstraction to represent code intervals is critical for the correctness
and effectiveness of the method. In this work, a code interval is a single-entry, single-exit
sub-graph of the control-flow graph. Code intervals cover the entirety of the control-flow
graph and are chained as a sequence. Figure 1 represents an example control-flow graph
along with an example code interval cover for it.

Figure 1 Example control-flow graph in black with an example code interval cover of length 3 in
pink. Notice how all exit edges of a given code interval point to the entry point of the next code
interval.

More formally, code intervals are defined as follows (Definition 3), based on the concepts
of Control Flow Graph (Definition 1) and Code Interval Cover (Definition 2).

WCET 2022
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▶ Definition 1 (Control Flow Graph (CFG)). A CFG is a directed connected graph C = (V, E),
with V the vertices of the CFG (basic blocks, straight-line sequences of instructions with no
branch no out except at the exit) and E the edges (pair of nodes, subset of V × V ), that
represent the possible control flows between basic blocks. A CFG can contain special vertices
(call nodes) representing calls to another CFG. A CFG has a single entry node and a single
exit node.

▶ Definition 2 (Code interval cover). Let n ∈ N. A code interval cover of length n is a
partition (Ik)k∈{1,...,n} of a CFG C such that for all k ∈ {1, . . . , n}, the following properties
hold:

If there exists m ∈ {1, . . . , n} different from k such that there exists (v1, v2) ∈ E with
v1 ∈ Ik and v2 ∈ Im, then m and v2 are unique.
No such m exists if and only if Ik contains the exit node of the CFG.

▶ Definition 3 (Code interval). A code interval is an element of a code interval cover.

A direct consequence of Definition 2 is that a code interval cover always covers the entirety
of the CFG, as it is a partition. A node of the CFG is thus always part of exactly one code
interval. Another consequence is that the exit edges of a given code interval always enter the
same code interval, as m in the definition is unique, and only the interval containing the
exit node does not have exiting edges. A code interval cover is thus always a chain of code
intervals. Note that a code interval cover always exists for a given control-flow graph, as the
single-element partition of the control-flow graph itself is a valid code interval cover.

2.3 SESE regions
The single-entry and single-exit nature of code intervals invites us to formally introduce and
use the notion of Single Entry Single Exit (SESE) regions. SESE regions may be edge-centric
as originally introduced in [8] or node-centric.

▶ Definition 4 (Edge-centric SESE region). An edge-centric SESE region of a CFG C = (V, E)
is a subset R ⊆ V for which there exists ein ∈ E and eout ∈ E such that:

For all (v1, v2) ∈ E, if v2 ∈ R then either v1 ∈ R or (v1, v2) = ein.
For all (v1, v2) ∈ E, if v1 ∈ R then either v2 ∈ R or (v1, v2) = eout.

Previous work has shown that it is possible to generate edge-centric SESE regions in a
tree arrangement in linear time [8]. A parent-child relationship in the tree indicates that
the child region is completely nested in its parent, and detected regions never partially
overlap. An example of edge-centric tree-arranged SESE regions (from the CFG of Figure 1)
is represented in Figure 2.

Figure 2 Control-flow graph from Figure 1 with stacked non-overlapping edge-centric SESE
regions in blue (darker is deeper in the SESE region tree).

As a side-product of our approach, we propose another way to define SESE regions.
Instead of defining frontiers of regions as entry and exit edges, we focus on entry and exit
nodes. Similarly to edge-centric regions, node-centric regions can be arranged in an inclusion
tree. An example of node-centric tree-arranged SESE regions (from the CFG of Figure 1) is
represented in Figure 3.
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Figure 3 Control-flow graph from Figure 1 with stacked non-overlapping node-centric SESE
regions in orange (darker is deeper in the SESE region tree).

▶ Definition 5 (Node-centric SESE region). A node-centric SESE region of a CFG C = (V, E)
is a subset R ⊆ V for which there exists vin ∈ V and vout ∈ V such that:

For all (v1, v2) ∈ E, if v2 ∈ R then either v1 ∈ R or v1 = vin.
For all (v1, v2) ∈ E, if v1 ∈ R then either v2 ∈ R or v2 = vout.

Node-centric regions are extracted from the CFG of a program using Algorithm 1.
A node-centric SESE region is canonically represented by its pair (vin, vout).

Algorithm 1 Algorithm to compute node-centric SESE regions from a control-flow graph C.
Returns a set of regions that are represented as their pair (vin, vout). This algorithm has a worst-case
time complexity of O(n3) where n is the number of CFG nodes in a function.
1: function ComputeNodeSESE(C)
2: compute dominators and post-dominators of C

3: regions := {} ▷ Generate all regions (including overlap).
4: for each node start ∈ V do ▷ C = (V, E)
5: for each dominator end of start do
6: if start is a post-dominator of end then
7: inside := nodes in region (start, end) ignoring back edges
8: if all back edges in region (start, end) link two nodes of inside then
9: regions.push((start, end))

10: end if
11: end if
12: end for
13: end for
14: overlapping_regions := {} ▷ Remove overlapping regions.
15: for each r1 in regions do
16: for each r2 in regions do
17: if r1 ∩ r2 ̸= ∅ and r1 ̸⊆ r2 and r2 ̸⊆ r1 then
18: overlapping_regions.insert(r1)
19: overlapping_regions.insert(r2)
20: end if
21: end for
22: end for
23: return regions ∖ overlapping_regions
24: end function

Algorithm 1 is based on the well-know concepts of dominators and post dominators used in
compilers1. It is divided in two loops: one generating all node-centric SESE regions, that could
possibly overlap, and one filtering out overlapping regions to enforce the inclusion property
among regions. The second loop operates as follows. Consider two regions r1 = (n1, m1) and
r2 = (n2, m2) that overlap without inclusion. We can consider without loss of generality that

1 A node d dominates a node n if every path from the entry node of the CFG to n must go through d.
A node d post-dominates a node n if every path from n to the exit node of the CFG must go through d

WCET 2022
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n2 is also a node of r1. Therefore, r1 and r2 contain three node-centric SESE regions that
do not overlap: (n1, n2), (n2, m1) and (m1, m2). As these three regions cover the exact same
nodes as r1 and r2, r1 and r2 can be filtered out.

2.4 Computing code interval covers
Code interval covers can be computed through a depth-first traversal over the SESE tree.
The concept of SESE tree is defined in Definition 6. Whether the kind of regions used is
edge-centric or node-centric does not influence the definition.

▶ Definition 6 (SESE tree). A SESE tree has two constructors:
BasicBlock(n) containing a control-flow graph with node n alone.
Region(r, children) containing a SESE region r and a non-empty set of SESE tree
children. The two following properties must also hold:

Any CFG node covered by an element of children must be covered by r.
Any CFG node in r must be covered by exactly one element of children.

From this tree definition, we derive Algorithm 2 to generate a code interval cover.

Algorithm 2 Computes a control-flow ordered code interval cover, taking as parameters a SESE
tree and a fuel amount. The code interval cover is represented as a sequence of SESE trees exactly
covering the nodes of the code interval. The fuel parameter controls the exploration depth: the
higher the fuel, the more fine-grain the cover.
1: function CodeIntervalCover(tree, fuel)
2: if tree is a BasicBlock(n) then
3: if n is a call node to callee then
4: return [tree] + CodeIntervalCover(callee, fuel)
5: else if n has up to one control-flow successor then
6: return [tree]
7: else
8: return Unchainable
9: end if

10: else if tree is a Region(r, children) then
11: if fuel = 0 then
12: return [tree]
13: else ▷ Build CFG ordering of SESE children of tree, if possible.
14: result_intervals := [ ]
15: child := control-flow entry of children

16: while child ̸= null do
17: child_result := CodeIntervalCover(child, fuel − 1)
18: if child_result = Unchainable then
19: return [tree]
20: end if
21: result_intervals := result_intervals + child_result

22: child := any control-flow successor of child in children

23: end while
24: return result_intervals

25: end if
26: end if
27: end function

This algorithm takes as parameters a SESE tree tree and an amount of fuel modeling the
maximum depth of the recursive exploration of tree (each recursive call consumes one unit of
fuel), and returns a sequence of SESE trees that will each represent a code interval. The
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depth-first traversal matches on the two constructors of SESE trees recursively, reducing fuel
on each recursive call. In the BasicBlock case, we either forward the construction to a
called CFG if there is one by unfolding the CFG of the callee, or check whether the node
can be part of a chain (returning Unchainable if not). In the Region case, we either end
the exploration if there is no fuel left, or recursively call the construction function on the
SESE children of the region, in control-flow order. Note that if one of the children cannot
be chained, we abort breaking the region in parts and simply return the region itself, as
we could not output a more precise code interval. The worst-case time complexity of the
algorithm is linear with respect to the number of SESE tree nodes, which in the general case
is equivalent to quadratic with respect to the number of CFG nodes in a function.

2.5 Computing memory access profiles
Once the control-flow graph is divided into code intervals, we compute the worst-case number
of memory accesses (WCMA) for each interval by largely relying on standard Implicit Path
Enumeration Technique (IPET) analysis [10], both for estimating: (i) the (partial) WCET of
code intervals; (ii) their worst-case number of memory accesses (WCMA).

To compute the WCET of each code interval, we constrain to zero the WCET value of
each basic block outside the code interval under analysis and outside any of the functions
it could call (recursively). The WCMA of each code interval is estimated in a similar way,
by setting to zero the WCMA of each basic block outside the interval under analysis. This
partial WCET/WCMA calculation is straightforward due to the single-entry single-exit
feature of code intervals.

Detecting if a load/store instruction may result in memory access depends on the presence
of instruction/data caches in the architecture under analysis. The experimental evaluation
of StAMP uses an architecture with instruction and data caches, thus not all load/store
instructions result in memory accesses, as explained in Section 3.1.

Then, the only step left is to create a memory access profile out of the code intervals.

▶ Definition 7 (Memory access profile). A memory access profile is a sequence of pairs
(wcet, wcma) representing a time-sequence of code intervals of maximum duration wcet in
which at worst wcma memory accesses can happen.
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Figure 4 Example memory access profile (minver, node-centric SESE regions, non-limiting large
value of fuel parameter.

As code intervals are chained in a sequence, it is possible to create a memory access
profile by mapping code intervals in the produced sequence of code intervals to their pair
(wcet, wcma). An example of a memory access profile is given in Figure 4. The x-axis
represents the code intervals with their WCET in cycles, while the y-axis represents the
corresponding WCMA.

WCET 2022
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3 Experimental evaluation

In this section, we present the details of our implementation and discuss the benefits and
limitations of StAMP through experiments.

3.1 Implementation of StAMP and experimental setup
StAMP was implemented within the Heptane WCET analysis platform [6]. In order to
evaluate the quality of the generated memory access profiles, we ran StAMP on the bench-
marks provided by Heptane (C code of the Mälardalen benchmarks [5] with loop bounds
annotated using the Heptane format). The target architecture used is based on MIPS with a
single layer of data cache and instruction cache. Both caches are 2-associative LRU caches
with 32-bytes cache lines and 32 sets. Heptane provides a built-in instruction cache, data
cache and address analysis. Every access not classified as always-hit by the cache analysis
of Heptane is assumed to perform a memory access. This allows obtaining the Worst-Case
number of Memory Access (WCMA) of each basic block. Heptane additionally provides
IPET analysis for WCET computation, that was modified to compute the worst-case number
of memory accesses of intervals. As such, most of the implementation work was to compute
the code interval covers.

3.2 Memory access profile results
We ran StAMP on all benchmarks with a very large value for the fuel parameter (simply
termed unlimited fuel hereafter). All the produced profiles are provided as supplementary
material that can be downloaded from [4]. An example generated profile is given in Figure 4.
Note that some intervals are only a couple of cycles long and are thus not visible on the
graphical representation. While this graphical representation of memory access profiles
is useful to compare StAMP with state-of-the-art methods, it does not translate all the
capabilities of StAMP. Indeed, each block in the memory profile corresponds to a code
interval. This allows mapping back each block’s WCET and WCMA information (in the
time domain) to a code interval (in the code domain). This is especially useful for schedulers
which operate at run-time when the current position in the code is also known.

3.3 Granularity using edge-centric versus node-centric SESE regions
StAMP is generic over the flavor of SESE regions (edge-centric vs. node-centric) used to
compute code intervals. Table 1 compares the length of code interval covers with edge-centric
and node-centric regions.

With unlimited fuel, node-centric SESE regions systematically outperform edge-centric
SESE regions in terms of length of the generated cover (the larger the number of intervals, the
more precise the information provided to the scheduler). This can be explained by noticing
that any edge-centric SESE region with ein = (s, t) and eout = (s′, t′) induces a node-centric
SESE region with vin = t and vout = t′. As such, there are always more node-centric SESE
regions than edge-centric SESE regions.

One of the most interesting results is observed on benchmark nsichneu, that features
many if statements. In this benchmark, edge-centric SESE regions generate only a single
code interval, while node-centric SESE regions generate 127 code intervals. The node flavor
of StAMP results in particularly fine-grain intervals, as shown in Figure 5. In this example,
the large number of intervals may increase the complexity of off-line scheduling strategies.
However, merging intervals is straightforward, because they form a sequence that covers all
the code.
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Table 1 Length (number of intervals) of code interval covers (CIC) (node vs edge-centric regions,
unlimited fuel).

CIC length
Benchmark Edge Node

ud 11 12
insertsort 3 3

sqrt 3 4
matmult 17 17

fibcall 3 5
fft 7 9

cover 13 13
expint 3 4
jfdctint 9 9

statemate 9 17
lcdnum 3 3

CIC length
Benchmark Edge Node

select 5 5
ns 3 5

minver 17 17
crc 5 15

minmax 1 3
simple 1 4
ludcmp 5 6

qurt 7 10
bs 5 5

bsort100 7 9
nsichneu 1 127
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Figure 5 Memory access profile for benchmark nsichneu (node-centric regions, unlimited fuel).

3.4 Controlling the granularity of memory access profiles
The longer the generated code interval sequence length, the more accurate the interference
calculation, but the more complex the scheduling, which motivates the need to control the
length of the generated sequences. This control is provided in StAMP by the fuel parameter,
which commands how deeply the SESE tree is traversed. Figure 6 illustrates the effect of
varying the amount of fuel on the sequence length for node-centric regions. Evolution of
nsichneu is not drawn for clarity as the curve goes very high. Its behavior is however similar
to other benchmarks: after a few levels of recursion, it remains stable.

Augmenting the amount of fuel increases the generated code interval cover length. However,
this control is limited, as SESE trees in practice are not very deep in our benchmarks. As seen
in Figure 6, none of our benchmarks benefit from a value of fuel higher than five. Instead,
granularity can be reduced by merging consecutive code intervals as their union forms a new
code interval. This alternative method further allows control over the size of code intervals.

3.5 Limitation of code interval cover computation
The analysis in StAMP in some benchmarks does not go deep in the SESE tree no matter
the amount of fuel, and the number of intervals detected is rather small. This phenomenon
illustrates a limitation of the code interval model, occurring when control-flow bypasses a
large section. As an example, Figure 7 shows a situation in which fine-grained intervals could
not be generated because a bypass edge blocks the traversal of successors in Algorithm 2.

WCET 2022
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Figure 6 Influence of the amount of fuel on the code interval cover length (node-centric regions).
nsichneu omitted for readability.

Some of our benchmarks (such as for example expint or select) resulted in a memory
access profile containing a single dominant block (surrounded by negligibly short blocks).
This is generally caused by if statements or loops enclosing most of the code as illustrated
in Figure 7.

Figure 7 The same CFG as in Figure 1 is no longer dividable in a code interval cover longer than
2 if we add a bypass edge from the leftmost to the rightmost block. In red is the longest possible
code interval cover.

4 Related work

The authors of [2] present TIPs, a technique to extract memory access profiles from code
using trace enumeration. Similarly, Oehlert et al. present in [12] a technique to extract event
arrival functions using IPET, with memory accesses as a particular case of intervals. These
two papers generate memory access profiles per interval, with an interval defined as a time
interval in task execution. StAMP, in contrast, first generates a profile in the code domain
and then converts its results to the time domain. This allows introducing specific code (i.e.
synchronization) for tighter identification of interference cost [15,16].

The time-domain output of the TIPs method differs significantly from StAMP and the
method presented by Oehlert et al. While the latter provides an upper bound of the number
of memory accesses left to do after a certain point in time, TIPs provides more precise data
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that describe the worst-case number of memory accesses during the ongoing time interval.
However, this is achieved via exponential time algorithms over the length of the program,
while StAMP is in polynomial time over the length of the program.

The PREM (PRedictable Execution Model, [13]) allows to separate phases that use
shared resources from those that do not and allows a scheduling technique that avoids the
co-scheduling of phases that interfere with each other [14,18]. Similarly to PREM, StAMP
identifies code intervals with different memory access patterns to shared resources but offers
more flexibility in the identified access patterns.

The MRSS task model introduced in [3] characterizes how much stress each task places on
resources and how sensitive it is to such resource stress and presents schedulability tests using
this model. Memory access profiles such as those produced by StAMP produce information
at a finer granularity than in [3] (interval level instead of task level) and could be used to
improve the schedulability tests of [3].

Code interval covers are similar to super blocks as defined in [1] in the sense that when
an interval in the cover is executed, all other intervals will be executed exactly the same
number of times, and as such enforce full coverage of the CFG. In contrast to the concept of
super block as defined in [1] intervals in our sequences are made of sub-graphs of the CFG
and not basic blocks.

5 Conclusion

We have presented StAMP, a technique that generates worst-case memory access profiles
from compiled code. StAMP links bidirectionally time-domain and code-domain information.
The technique generates a segmentation of a compiled program as a code interval cover in
polynomial time and generates a time-domain representation of the worst-case number of
memory accesses in this cover.

Future work should first experimentally evaluate the differences between the memory
access profiles generated by StAMP and the ones obtained by time-based technique of [2],
and most importantly their respective impact on scheduling strategies. Other directions
for future work are to improve the expressiveness of the method by improving the code
interval model (i.e., move from sequences of intervals to directed graphs), and to enhance
memory access profiles to detail when memory accesses occur within code intervals, similarly
to [12]. We also believe improvements to the worst-case complexity of the generation of
non-overlapping node-centric SESE regions are possible.
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