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Abstract—In this paper we are interested in the fine-
grained complexity of determining whether there is an
homomorphism from an input graph G to a fixed graph
H (the H-coloring problem). The starting point is that
these problems can be viewed as constraint satisfaction
problems (CSPs), and that (partial) polymorphisms of
binary relations are of paramount importance in the
study of complexity classes of such CSPs.
Thus, we first investigate the expressivity of binary

symmetric relations EH and their corresponding (par-
tial) polymorphisms pPol(EH). For irreflexive graphs
we observe that there is no pair of graphs H and H ′

such that pPol(EH) ⊆ pPol(EH′ ), unless EH′ = ∅ or H
=H ′. More generally we show the existence of an n-
ary relation R whose partial polymorphisms strictly
subsume those of H and such that CSP(R) is NP-
complete if and only if H contains an odd cycle of length
at most n. Motivated by this we also describe the sets
of total polymorphisms of every nontrivial clique, every
odd cycle, as well as certain cores. We finish the paper
with some noteworthy questions for future research.

I. Introduction
This paper aims to improve our understanding of fine-

grained complexity of constraint satisfaction problems
(CSPs) [9]. In a constraint satisfaction problem (CSP),
given a set of variables X and a set of constraints of the
form R(x) for x ∈ Xk and some k-ary relation R, the
objective is to assign values from X to a domain V such
that every constraint in C is satisfied. This problem is
usually denoted by CSP(Γ), with the additional stipulation
that every relation occurring in a constraint comes from
the set of relations Γ, and it is typically phrased as the
decision problem of verifying whether a solution exists.
Specifically, we are interested in the so-called H-

COLORING problem [7]1. Recall that a function f :VG →
VH is said to be a homomorphism between the two graphs
G and H if it “preserves” the edge relation, that is, if for
every edge (u, v) ∈ EG, we have (f(u), f(v)) ∈ EH . In that
case, we use the notation f : G→ H. For each graphH, the
homomorphy notion naturally entails the following decision
problem, which is equivalent to the problem CSP({EH})
(henceforth written CSP(EH)).

1Thoughout this paper, we assume that all graphs are finite, simple
(no loops) and undirected. Every graph H is defined by its set VH of
vertices and its set EH of edges.

H-COLORING PROBLEM. Given a graph G, decide
whether there is a homomorphism f : G→ H.

Clearly, the H-COLORING problem subsumes the well-
known k-COLORING problem, k ≥ 1, that asks for
a coloring of the vertices of a graph using at most k
colors such that each pair of adjacent vertices are assigned
different colors. Indeed, it corresponds to the case where
H = Kk, the complete graph (clique) of size k.
Hell and Nešetřil [7] showed that the H-COLORING

problem is in P (the class of problems decidable in polyno-
mial time) whenever H is bipartite, and it is NP-complete
otherwise. Our goal is to bring some light into the actual
exponential-complexity of the H-COLORING problem
whenH is non-bipartite. On the one hand, there are already
some strong upper-bounds results on the fine-grained
complexity of k-COLORING for k ≥ 3. Björklund et al.
[1] proved that k-COLORING is solvable in time O∗(2n)
(i.e.. O(2n × nO(1))) where n is the number of vertices of
the input graph. Fomin et al. [5] also prove that C2k+1-
COLORING is solvable in time O∗(

`

n
n/k

˘

) = O∗((αk)n),
with αk −→

k→∞
1, and improved algorithms are also known

when H has bounded tree-width or clique-width [5], [15].
On the other hand, lower bounds by Fomin et al. [4] rule
out the existence of a uniform 2O(n) time algorithm under
the exponential-time hypothesis (i.e., that 3-SAT can not
be solved in subexponential time).
We notice, however, that there is a lack of general

tools for describing fine-grained properties of CSPs, and
in particular we lack techniques for comparing NP-hard
H-COLORING problems with each other, e.g., via size-
preserving reductions. We explore these ideas through an
algebraic approach, by investigating algebraic invariants
of graphs. For this purpose, viewing H-COLORING as
CSP(EH) is quite useful as it allows us to use the widely
studied theory of the complexity of CSP(Γ), since the
former is just the special case when Γ = {R} is a singleton
containing a binary, symmetric relation. In particular, it
was shown that the fine-grained complexity of CSP(R) only
depends on the so-called partial polymorphisms of R [9], [3].
Briefly, a polymorphism is a higher-arity homomorphism
from the relation to the relation itself. Additionally, a
polymorphism that is not necessarily everywhere defined



is known as a partial polymorphism, and we write Pol(R)
(respectively, pPol(R)) for the set of all (partial) poly-
morphisms of a releation R. If H is a graph, then by
pPol(H), we simply mean the set of partial polymorphisms
of the edge relation EH . It is then known that partial
polymorphisms correlate to fine-grained complexity in the
sense that if pPol(R) ⊆ pPol(R′) and if CSP(R) is solvable
in O∗(cn) time for some c > 1 then CSP(R′) is also solvable
in O∗(cn) time [9].

Thus, describing the inclusion structure between sets
of the form pPol(H) would allow us to relate the fine-
grained complexity of H-COLORING problems with each
other, but, curiously, we manage to prove that no non-
trivial inclusions of this form exist, suggesting that partial
polymorphisms of graphs are not easy to relate via set
inclusion. As a follow-up question we also study inclusions
of the form pPol(H) ⊆ pPol(R) when R is an arbitrary
relation, and manage to give a non-trivial condition based
on the length of the shortest odd cycle of H. Concretely,
we prove that it is possible to find an n-ary relation R with
pPol(EH) Ĺ pPol(R) where CSP(R) is NP-complete, if
and only if H contains an odd-cycle of length at most n.
This result suggests that the size of the smallest odd-cycle is
an interesting parameter when regarding the complexity of
H-COLORING. As observed above, the smaller pPol(EH)
is, the harder CSP(EH) (and thus H-COLORING) is. In
other words, the greater the smallest odd-cycle of H is, the
easier the H-COLORING problem is. This fact supports
the already known algorithms presented in [5].

Despite this trivial inclusion structure, it could still
be of great interest to provide a succinct description of
pPol(H) for some noteworthy choices of non-bipartite, core
H. As a first step in this project we concentrate on the
total polymorphisms of H, and conclude that projective
graphs [11] appear to be a reasonable class to target since
the total polymorphisms of projective cores are essentially
at most unary. While we do not manage to give a complete
description of projective graphs (which would resolve an
open conjecture by Okrasa and Rza̧żewski [13]) we manage
to prove that several well-known families of graphs, e.g.,
cliques, odd-cycles, and other core graphs, are projective.
Importantly, our proofs use the algebraic approach and
are significantly simpler than existing proofs, and suggest
that the algebraic approach might be a cornerstone in
completely describing projective graphs.

This paper is organized as follows. In Section II, we recall
the basic notions and preliminary results needed through-
out the paper. We investigate the order structure of classes
of graph (partial) polymorphisms in Section III where we
show the aforementioned main results. In Section IV we
focus on projective and core graphs and present several
representation results. We conclude with a discussion on
the ongoing research and observe a few consequences of
our results in the form of open conjectures.

II. Preliminaries
Throughout the paper we use the following notation.
For any n ∈ N, [n] denotes the set {1, . . . , n}. For every

set V , n ≥ 1 and t = (t1, . . . , tn) ∈ V n, t[i] denotes ti,
and given a relation R ⊆ [k]n for some k ≥ 1, we write
ar(R) for its arity n. For all m ≥ 1 and i ∈ [m], we write
πm

i : V m → V for the projection on the i-th coordinate
(the set V will always be implicit in the context).

For H a graph and V ⊆ VH , we denote by H[V ] the
graph induced by V on H. We use the symbol ] to express
the disjoint union of sets, and + to express the disjoint
union of graphs.

For a unary function f : V → V , and an m-ary function
g : V m → V we write f ◦ g for their composition that is
defined by (f ◦ g)(x1, . . . , xm) = f(g((x1, . . . , xm))), for
every (x1, . . . , xm) ∈ V m.

Also, for k ≥ 3, Kk and Ck denote respectively a k-clique
and a k-cycle.

A. Graph homomorphisms and cores
For two graphs G and H a function f :VG → VH is a

homomorphism from G to H if ∀(u, v) ∈ EG, (f(u), f(v)) ∈
EH . In this case, f is also called an H-coloring of G, and
we denote this fact by f :G→ H. The graph G is said to
be H-colorable, which we denote by G→ H, if there exists
f :G → H. For a graph H, the H-COLORING problem
thus asks whether a given graph G is H-colorable.

Theorem 1 ([7]). H-COLORING is in P whenever H is
bipartite, and it is NP-complete, otherwise.

A key notion in the proof of Theorem 1 is the notion of
a graph core: let core(H) be the smallest induced subgraph
H ′ of H such that H → H ′. The graph H is said to be
a core if H = core(H). Note that the core of a graph
H is unique up to isomorphism and that the problems
H-COLORING and core(H)-COLORING are equivalent.
Thus, for both classical and fine-grained complexity, it is
sufficient to consider core(H)-COLORING. Moreover, it
is not difficult to verify that cliques and odd-cycles are
cores. Notice that a graph H is a core if and only if every
H-coloring of H is bijective.
For two graphs G and H, we define their cross product

G×H as the graph with VG×H = VG × VH and

EG×H = {((u1, v1), (u2, v2)) | (u1, u2),∈ EG, (v1, v2) ∈ EH}.

Clearly, for graphs A,B and C, we have that (VA × VB)×
VC and VA × (VB × VC) are in bijection and thus, up to
isomorphism, the cross product is associative. Hence, for
each m ≥ 1, we can define Hm = H × . . .×H

loooooomoooooon

m times

.

B. Polymorphisms, pp/qfpp-definitions
Even though the previous definitions apply only to

graphs, i.e., binary symmetric and irreflexive relations,
we will need to introduce the following notions for relations
R of arbitrary arity.



Definition 2. Let V be a finite set, n,m ≥ 1 be integers,
and let R ⊆ V n be an n-ary relation on V . A partial
function f : dom(f) → V , with dom(f) ⊆ V m, is said to
be a partial polymorphism of R if for every n×m matrix
A = (Ai,j) ∈ V n×m such that for every j ∈ [m], the j-
th column A∗,j ∈ R and for every i ∈ [n], the i-th row
Ai,∗ ∈ dom(f), the column (f(A1,∗), . . . , f(An,∗))> ∈ R.
In the case when dom(f) = V m, f is a said to be a total
polymorphism (or just a polymorphism) of R. We denote
the sets of total and partial polymorphisms of R by Pol(R)
and pPol(R), respectively.

Every (partial) function over a set V is a (partial)
polymorphism of both the empty relation (denoted by ∅)
and the equality relation EQV = {(x, x) | x ∈ V } over V
(or simply EQ when the domain is clear from the context).

For a graph H, we sometimes use pPol(H) and Pol(H)
instead of pPol(EH) and Pol(EH), where EH is viewed as
a binary relation over the domain VH . Note that Pol(H) is
exactly the set of H-colorings of Hm for m ≥ 1, and that
pPol(H) is exactly the set of H-colorings of the induced
subgraphs of Hm for m ∈ N.

Definition 3. Let R be a relation over a finite domain V .
An n-ary relation R′ over V is said to have a primitive
positive-definition (pp-definition) w.r.t. R if there exists
m,m′, n′ ∈ N such that

R′(x1, . . . , xn) ≡ ∃xn+1, . . . , xn+n′ :
R(x1) ∧ . . . ∧R(xm) ∧ EQ(y1) ∧ . . . ∧ EQ(ym′) (1)

where each xi is an ar(R)-ary tuple and each yi is an binary
tuple of variables from x1, . . . , xn, xn+1, . . . , xn+n′ . Each
term of the form R(xi) or EQ(yj) is called an atom or a
constraint of the pp-definition (1).

In addition, if n′ = 0, then in (1) is called a quantifier-
free primitive positive-definition (qfpp-definition) of R′.
Let 〈R〉

�∃ and 〈R〉 be the sets of qfpp-definable and of
pp-definable, respectively, relations over R.

Theorem 4 ([14]). Let R and R′ be two relations over
the same finite domain. Then (1) R′ ∈ 〈R〉

�∃ if and only
if pPol(R) ⊆ pPol(R′) and (2) R′ ∈ 〈R〉 if and only if
Pol(R) ⊆ Pol(R′).
C. CSPs and polymorphisms
We now recall the link between the complexity of

CSPs and the algebraic tools described in the previous
section (recall that the H-COLORING problem is the
same problem as CSP(EH)).

Theorem 5 ([8]). Let R and R′ be two relations over the
same finite domain where Pol(R) ⊆ Pol(R′). Then CSP(R′)
is polynomial-time many-one reducible to CSP(R).

Let R be a relation over a finite domain V . Define:
T(R) = inf{c > 1 : CSP(R) is solvable in time O∗(cn)},
where n is the number of variables in CSP(R), (with the
notation O∗(vn) = O(vn × nO(1)) for all (vn)n∈N ∈ RN).

Theorem 6 ([9]). Let R and R′ be relations over a finite
domain V . If pPol(R) ⊆ pPol(R′), then T(R′) ≤ T(R).

These two theorems motivate our study of polymor-
phisms of graphs: since CSP(EH) is the same problem as
H-COLORING, key information about the fine-grained
complexity of H-COLORING is contained in the set
pPol(EH).

III. The inclusion structure of partial
polymorphisms of graphs

In this section we study the inclusion structure of sets
of the form pPol(H) when H is a graph with VH = V for
a fixed, finite set V . In other words, we are interested in
describing the set

H = {pPol(H) | H is a graph over V }

partially ordered by set inclusion. Here, one may observe
that the requirement that VH = VH′ = V is not an actual
restriction. Indeed, if VH′ Ĺ V , then we can easily obtain
a graph over V simply by adding isolated vertices, with no
impact on the set of partial polymorphisms.
A. Trivial inclusion structure
Our starting point is to establish pPol(H) ⊆ pPol(H ′)

when H,H ′ are non-bipartite graphs, since it implies that
(1) H-COLORING and H ′-COLORING are both NP-
complete, and (2) T(H ′) ≤ T(H), i.e., thatH ′-COLORING
is not strictly harder than H-COLORING.
Inclusions of this kind e.g. raise the question whether

there exist, for every fixed finite domain V , an NP-hard
H-coloring problem which is (1) maximally easy, or (2)
maximally hard2.
As we will soon prove, the set H does not admit

any non-trivial inclusions, in the sense that pPol(H) ⊆
pPol(H ′) implies that either H = H ′ or EH′ = ∅, for all
pPol(H),pPol(H ′) ∈ H.

Theorem 7. Let H and H ′ be two graphs with the same
finite domain VH = VH′ = V . Then pPol(H) ⊆ pPol(H ′)
if and only if H = H ′ or EH′ = ∅.

Proof. To prove sufficiency, assume that H = H ′ or that
H ′ has no edges. Then pPol(H) = pPol(H ′) or pPol(H) ⊆
pPol(H ′) since in the latter case pPol(H ′) contains every
partial function.
To prove necessity, assume that pPol(H) ⊆ pPol(H ′).

Then, by Theorem 4, EH qfpp-defines EH′ . However, the
only possible atoms using EH and two variables x and y
are: (1) EH(x, x) and EH(y, y), which cannot appear by
irreflexivity, unless EH′ = ∅ and (2) EH(x, y) and EH(y, x),
which are equivalent by symmetry. Also, if the qfpp-
definition would contain an equality constraint EQ(x, y),
then EH′ would not be irreflexive, unless EH′ = ∅. Hence,
any qfpp-definition of EH′ either (1) contains EH(x, x),
EH(y, y) or EQ(x, y), meaning that EH′ = ∅, or (2) only
contains EH(x, y) or EH(y, x), meaning that H = H ′.

2Here, “maximally” refers to the function T.



B. Higher-arity inclusions
As proven in Theorem 7, the expressivity of binary

irreflexive symmetric relations is rather limited, in the sense
that H does not admit any non-trivial inclusions. It is thus
natural to ask whether anything at all can be said concern-
ing inclusions of the form pPol(H) ⊆ pPol(R) when R is
an arbitrary relation. In particular, under which conditions
does there exist an n-ary R such that pPol(H) Ĺ pPol(R),
given that H-COLORING and CSP(R) are both NP-
complete? We give a remarkably sharp classification and,
assuming that P 6=NP , we prove that an n-ary relation R
with the stated properties exists if and only if H contains
an odd-cycle of length ≤ n.
The following definition and lemma are particularly

usefull when establishing our classification.

Definition 8. Let n,m ≥ 1 be integers, H be a graph, R
be a relation of arity n over VH , and let M = (Mi,j) be
a n ×m matrix of elements of VH . We say that M is an
R-wall for H if:
1) ∀j ∈ [m], (M1,j , ...,Mn,j)> ∈ R, and
2) ∀(i, i′) ∈ [n]2, ∃j ∈ [m], (Mi,j ,Mi′,j)> /∈ EH .

In the following lemma, we say that, for a relation R, that
CSP(R) is trivial if every instance of CSP(R) is satisfiable.
Clearly, if CSP(R) is trivial, it is not NP-complete.

Lemma 9. Let H a graph and let R be an n-ary relation
over VH . Suppose that pPol(H) ⊆ pPol(R) and that there
exists an R-wall M for H. Then, CSP(R) is trivial.

Proof. Using property 2) of Definition 8, it is easy to check
that any partial function f whose domain is the set of rows
of M is in pPol(H). In particular, f can be chosen to be of
constant value a ∈ VH . Then, from pPol(H) ⊆ pPol(R) it
follows that f ∈ pPol(R). Combining this with property 1)
of Definition 8, we conclude that (a, . . . , a)> ∈ R. Since the
valuation sending all variables to a satisfies any instance
of CSP(R), the proof is now complete.

We now propose a construction of an R-wall for a graph
H without odd-cycles of length at most n := ar(R), and
such that pPol(H) Ĺ pPol(R).

Lemma 10. Let H be a graph without odd-cycles of length
≤ n, and let R 6= ∅ be an n-ary relation such that pPol(H) ⊆
pPol(R). If ∀(x1, . . . , xn) ∈ (VH)n, R(x1, . . . , xn) =⇒
EH(x1, x2), then R qfpp-defines EH .

Proof. Suppose that R(x1, . . . , xn) =⇒ EH(x1, x2), and let
(a1, . . . , an) ∈ R 6= ∅. Since H has no odd-cycle of size ≤ n,
{a1, . . . an} induces a bipartite graph in H: there exists a
partition A ]B of {a1, . . . , an} such that EH[{a1,...,an}] ⊆
(A×B)](B×A). For (x, y) ∈ EH , define f : {a1, . . . , an} →
VH by f(ai) = x, if ai ∈ A, and f(ai) = y, if ai ∈ B.
Since (x, y) ∈ EH , we have that f ∈ pPol(H), and since
pPol(H) ⊆ pPol(R), we also have that f ∈ pPol(R). As
(a1, . . . , an) ∈ R, it follows (f(ai))1≤i≤n ∈ R.

This proves that EH(x, y) =⇒ R(xA,B(x, y)), where
xA,B(x, y)[i] = x if ai ∈ A and xA,B(x, y)[i] = y if
ai ∈ B. Reversely, R(x1, . . . , xn) =⇒ EH(x1, x2) and
(a1, a2) ∈ EH causes R(xA,B(x, y)) =⇒ EH(x, y). Hence,
EH(x, y) ≡ R(xA,B(x, y)), and R qfpp-defines EH .

Lemma 11. Let n ≥ 1, H be a graph without odd-cycles
of length ≤ n, and let R 6= ∅ be an n-ary relation such that
pPol(H) Ĺ pPol(R). Then, for all (i, i′) ∈ [n]2 with i < i′,
there is (x(i,i′)

1 , . . . , x
(i,i′)
n )> ∈ R with (x(i,i′)

i , x
(i,i′)
i′ )> /∈

EH .

Proof. We show only the existence for i = 1 and i′ = 2; the
other cases can be proven similarly. For the sake of a contra-
diction, suppose that ∀(x1, . . . , xn) ∈ (VH)n, (x1, . . . , xn) ∈
R =⇒ (x1, x2) ∈ EH . By Lemma 10 we have EH ∈ 〈R〉

�∃
,

and by Theorem 4, pPol(R) ⊆ pPol(EH). This contradicts
our hypothesis that pPol(H) Ĺ pPol(R).

This leads to the following corollary whose proof provides
a simple construction of an R-wall for graph H in the
conditions of Lemma 11.

Corollary 12. Let n ≥ 1, H be a graph without an odd-
cycle of length ≤ n, and let R 6= ∅ be an n-ary relation such
that pPol(H) Ĺ pPol(R). Then there is an R-wall for H.

Proof. Using the notation of Lemma 11, we can take
the n× n(n−1)

2 matrix M , whose n(n−1)
2 columns are the

(x(i,i′)
1 , . . . , x

(i,i′)
n )>, for each (i, i′) ∈ [n]2 with i < i′.

In the following theorem we need to assume that P 6=
NP simply because if P = NP, then the relation R =
∅ trivially satisfies the stated conditions since CSP(R)
would be NP-complete. Furthermore, we only consider
non-bipartite graphs since otherwise H-COLORING is in
P.

Theorem 13. Assume P 6=NP. Let H be a non-bipartite
graph, and k be the length of the smallest odd-cycle of
H. Then there exists an n-ary relation R with pPol(H) Ĺ

pPol(R) and for which CSP(R) is NP-complete if and only
if k ≤ n.

Proof. We sketch the most important ideas.
Suppose first that k > n. In this case, H does not

have an odd-cycle of length ≤ n. Again for the sake of
a contradiction, suppose that such a relation R exists.
Note that R 6= ∅ since CSP(R) is NP-complete. Using
Corollary 12, there exists an R-wall for H. Then, by
Lemma 9, CSP(R) is trivial. This contradicts the fact
that CSP(R) is NP-complete, and thus such a relation R
does not exist.
Suppose now that k ≤ n. Define R(x1, . . . , xn) ≡

EH(x1, x2)∧EH(x2, x3)∧ . . .∧EH(xk−1, xk)∧EH(xk, x1).
Since k is the length of the smallest odd-cycle of H, it fol-
lows that R = {(x1, . . . , xn) | (x1, . . . , xk) forms a k-cycle}
(the variables xk+1, . . . , xn are inessential). Note that this
is not true when k is even.



We then proceed as follows. Since EH qfpp-defines R,
we have that pPol(H) ⊆ pPol(R), by Theorem 4. Also,
the inclusion is strict since, for any edge (x, y) of H, the
function f : {x, y} → VH that maps both x and y to any
a ∈ VH , belongs to pPol(R)\pPol(H). Indeed, f ∈ pPol(R)
because {x, y}n ∩R = ∅, since it is impossible to form an
odd-cycle with only x and y.

To prove that CSP(R) is NP-complete, consider Ck(H),
the subgraph of H, with VCk(H) = VH , and where each edge
of H that does not belong to a cycle of length k has been
removed. Note that as H contains a k-cycle, Ck(H) also
contains a k-cycle. Hence, CSP(ECk(H)), which is the same
problem as the Ck(H)-COLORING problem, is NP-hard
since Ck(H) is not bipartite (by Theorem 1).
It is easy to see that R pp-defines ECk(H)(x1, x2) ≡

∃x3, . . . , xn, R(x1, x2, x3 . . . , xn). From Theorem 4 and 5,
it then follows that CSP(R) is NP-hard. In addition, it is
in NP, thus showing its NP-completeness.

IV. Projective and core graphs
In this section we study the inclusion structure of sets

of total polymorphisms. We are particularly interrested
in graphs H with small sets of polymorphisms since,
intuitively, they correspond to the hardest H-COLORING
problems. This motivates the following definitions.
An m-ary function f is said to be essentially at most

unary if it is of the form f = f ′ ◦ πm
i for some i ∈ [m] and

some unary function f ′. Larose [10] says that a graph
H is projective if every idempotent polymorphism (i.e.,
f(x, . . . , x) = x for every x ∈ VH) is a projection. Okrasa
and Rza̧żewski [13] showed that the polymorphisms of a
core graph H are all essentially at most unary if and only
if H is projective. Since it is sufficient to study cores in
the context of H-COLORING, determining whether H is
projective is particularly interesting.

In this section we use the algebraic approach for proving
that a given graph is a projective core, that is, both
projective and a core. As we will see, this enables simpler
proofs than those of [10], and suggests the possibility of
completely characterizing projective cores.
Using the following theorem, our proofs of projectivity

can be seen as reductions from cliques.

Theorem 14 ([2],[12]). For k ≥ 3, Kk is projective.

Let Sk be the set of permutations over [k]. It then
follows that Pol(Kk) = {σ ◦ πm

i | σ ∈ Sk,m ≥ 1, i ∈ [m]}.
Corollary 15 below implies that the graphs we will consider
in this subsection are projective cores.

Corollary 15. Let H be a graph on [k] with k ≥ 3. Then
EH pp-defines the relation NEQk = {(x, x′) ∈ VH | x 6=
x′} if and only if H is a projective core.

Proof. First observe that NEQk = EKk
. From Theorem 4

and using the definitions of cores and of projective graphs,
we thus have that the following assertions are equivalent:
1) NEQk ∈ 〈EH〉;

Figure 1. The Grötzsch graph (left) and the Petersen graph (right)

2) Pol(H) ⊆ Pol(Kk);
3) all polymorphisms of H are essentially at most unary,

and all unary polymorphisms of H are bijective;
4) H is a projective core.

Following exact steps in the proof of Corollary 15, we
can obtain the following result.

Corollary 16. Let G and H be two graphs on the same
set of vertices, with G projective (respectively, a core), and
such that EH that pp-defines EG. Then H is also projective
(respectively, a core).

Pp-definitions thus explains the property of being pro-
jective (respectively, a core). We hope that this viewpoint
helps to discover new classes of projective graphs. For
example, Corollary 15 enables a much simpler proof of the
following theorem by Larose [10].

Theorem 17 ([10],[11]). Let k ≥ 3 be an odd integer. The
k-cycle Ck is a projective core.

Proof. We claim that

NEQk(x, x′) ≡ ∃x2, . . . , xk−2:ECk
(x, x2) ∧ ECk

(x2, x3)
∧ . . . ∧ ECk

(xk−3, xk−2) ∧ ECk
(xk−2, x

′).

To see this, note that for any two vertices x and x′ in Ck,
x 6= x′ if and only if there exists an odd-path from x to x′
of size < k (since k is odd). In other words, x 6= x′ if and
only if there exists a (k − 2)-path from x to x′ (by going
through the same edge as many times as necessary, k − 2
being odd). By Corollary 15, it then follows that Ck is a
projective core.

There are also other examples of cores that are projective,
other than k-cliques for k ≥ 3 and k-cycles. For instance,
Okrasa and Rza̧żewski [13] proved that the so-called
Grötzsch graph (see Figure 1) is a projective core.

Theorem 18. The Grötzsch graph is a projective core.3

Proof. We provide an alternative proof using our algebraic
framework. Let EG be the set of edges of the Grötzsch
graph. Note that the Grötzsch graph has 11 vertices. We
can see that EG pp-defines NEQ11:

NEQ11(x, x′) ≡ ∃x2, x3:EG(x, x2)∧EG(x2, x3)∧EG(x3, x
′).

3We acknowledge Mario Valencia-Pabon for pointing out that the
same result and proof applies to the Petersen graph.



From Corollary 15 it follows that the Grötzsch graph is a
projective core.

Complements Ck of odd-cycles of length k ≥ 5 are also
projective cores. Since C5 = C5 has already been studied,
we take a look at C2p+1, for p ≥ 3. The following result
is an immediate corollary of Larose [10], but we give a
algebraic proof using Corollary 15.

Theorem 19. C2p+1 is a projective core for p ≥ 3.

Proof. It is not difficult to see that NEQ2p+1(x1, x4) ≡
∃x2, x3, w1, . . . , wp−2 : R1 ∧R2 ∧R3, where
1) R1 =

∧
i∈[3]

EC2p+1
(xi, xi+1),

2) R2 =
∧

i∈[4],j∈[p−2]
EC2p+1

(xi, wj), and

3) R3 =
∧

(j,j′)∈[p−2]2,j<j′
EC2p+1

(wj , wj′).

The result then follows from Corollary 15.

V. Conclusion and Future Research
A. Concluding remarks

In this paper, we have investigated the inclusion structure
of the sets of partial polymorphisms of graphs, and proved
that for all pairs of graphs H,H ′ on the same set of vertices,
pPol(H) ⊆ pPol(H ′) implies that H = H ′ or EH′ = ∅.
Since this inclusion structure is trivial, it is natural to
generalize the question and investigate inclusions of the
form pPol(H) Ĺ pPol(R), where H is a graph, but where
R is an arbitrary relation. We deemed the case when
CSP(R) was NP-complete to be of particular interest
since the problem CSP(R) then bounds the complexity
of H-COLORING from below, in a non-trivial way. We
then identified a condition depending on the length of the
shortest odd cycle in H, and proved that there exists a such
an n-ary relation R if and only if H does not have an odd
cycle of length ≤ n. In an attempt to better understand
the algebraic invariants of graphs, we then proceeded by
studying total polymorphisms of graphs, with a particular
focus on projective graphs, where we used the algebraic
approach to obtain simplified and uniform proofs.

B. Future research
Okrasa and Rza̧żewski [13] observed that a graph H

that can be expressed as a disjoint union of two non-empty
graphs H1 and H2 is not projective, since it admits the bi-
nary polymorphism f defined by f |VH1×VH

= (π2
1)|VH1×VH

and f |VH2×VH
= (π2

2)|VH2×VH
. The same holds for the cross-

product of non-trivial graphs H = H1 × H2 (in which
case the graph is said to be decomposable), with the
binary polymorphism f((x, y), (x′, y′)) 7→ (x, y′). Okrasa
and Rza̧żewski also noticed the existence of disconnected
cores, such as G + K3 (indecomposable cores are much
more difficult to study), where G is the Grötzsch graph
from Figure 1. These observations resulted in the following
conjecture.

Conjecture 1 ([13]). Let H be a connected non-trivial
core on at least 3 vertices. Then H is projective if and only
if it is indecomposable.

It would be interesting to see if our algebraic approach
can settle this conjecture. In fact, by Corollary 15, Conjec-
ture 1 is equivalent to:

Conjecture 2. Let H be a connected core on k ≥ 3 verices.
Then, H is indecomposable if and only if NEQk ∈ 〈EH〉.

To advance our understanding of the fine-grained com-
plexity of H-COLORING, it would also be interesting to
settle the following question.

Question 20. Let H be a projective core. Describe
pPol(H).

For instance, is it possible to relate pPol(H) with the
treewidth of H? More generally, are there structural prop-
erties of classes of (partial) polymorphisms that translate
into bounded width classes of graphs [6]? These questions
constitute topics that we are currently investigating.
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