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Abstract. With the proliferation of intelligent networks in industrial 
environments, manufacturing SME’s have been in a continuous search for 
integrating and retrofitting existing assets with modern technologies that could 
provide low-cost solutions for optimizations in their production processes. Their 
willingness to support a technological evolution is firmly based on the 
perception that, in the future, better tools will guarantee process control, 
surveillance and maintenance. For this to happen, the digitalization of valuable 
and extractable information must be held in a cost-effective manner, through 
contemporary approaches such as IoT, creating the required fluidity between 
hardware and software, for implementing Cyber-Physical modules in the 
manufacturing process. The goal of this work is to develop an architecture that 
will support companies to digitize their machines and processes through an 
MDA approach, by modeling their production processes and physical resources, 
and transforming into an implementation model, using contemporary CPS and 
IoT concepts, to be continuously improved using forecasting/predictive 
algorithms and analytics. 

Keywords: Cyber-Physical Systems, Internet of Things, Model Driven 
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1   Introduction 

The term cyber-physical systems (CPS) refers to intelligent systems with integrated 
computational, networking and physical capabilities [1]. In industrial production, the 
advantage of applying this paradigm to existing systems is to fill the gap between the 
cyber world, where data is exchanged and transformed, and the physical world in 
which we live [2]. By creating means to utilize data from pre-existing physical 
machinery and devices, every extractable information becomes a mean of observing 
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the current processes, feeding different improvement possibilities and production 
mechanisms such as energy efficiency, waste management, resource planning, 
scheduling and process monitoring. These mechanisms have a meaningful impact to 
achieve financial, social and environmental benefits, especially in thriving SME’s that 
wish to compete for larger economy markets while keeping a sustainable 
production [3]. 

Contemporarily, the CPS represent many opportunities and research challenges 
that include the design and development of next-generation airplanes and space 
vehicles, high-end factories of the future, fully autonomous urban driving and 
prostheses that allow brain signals to control physical objects [4]. The focus of the 
concept is to expand the capabilities of the physical world through computation, 
communication and control, as key enablers for future technological developments. 

In the physical world, unlike most of the software processes which are procedural, 
many things happen at once and are compositions of many parallel processes. In CPS, 
measuring and controlling the dynamics of such processes and using them in feedback 
loops that affect the computations is very important to orchestrate beneficial actions 
that influence their effectiveness. Consequently, concurrency is intrinsic in CPS. 
Many of the technical challenges in designing and analyzing embedded software stem 
from the need to bridge an inherently sequential semantics with an intrinsically 
concurrent physical world [5]. 

Considering that, this work tries to correspond to the following question: how can 
cyber-physical systems be improved using a model driven architecture such it is able 
to provide modular solutions/suggestions based on real-time data from the production 
processes? 

In this work, the aim is to develop a simplified model driven architecture that 
allows the integration of modular optimization tools, that support the overall 
efficiency in the implementation of sustainable CPS in the manufacturing industry. 
The idea is to support existing SME’s with a cheap but scalable solution for 
technological improvement. For this to be sustainable, the whole process must be 
analyzed, from the input of raw materials to the output of finished products.  

With business notation (e.g. Business Process Model Notation (BPMN)) and the 
creation of data-driven models that represent the current production processes, a 
digital twin of the factory can be created and fed using real-time data. This data can be 
acquired using current cost-effective methodologies such as presented in [6] to retrofit 
any machinery and devices. The use of wearables on factory workers can also be 
regarded in a way that supports security and safety methodologies (e.g. insoles that 
measure weight and textiles to measure posture). The conception of such models 
allows for the creation of a decision support system that considers existing KPIs (Key 
Performance Indicators) to suggest possible improvements. These suggestions are 
based on AI (Artificial Intelligence) and machine-learning techniques, with 
forecasting/predictive analytics that dynamically adapt to the real-time acquired data 
(big data algorithms and complex event processing (CEP) methodologies will be 
used). 

Thus, this work proposes an architecture that is able to consider the manufacturing 
ecosystem and create a decision support system that not only displays valuable 
information to management personnel but also actively thrives to propose 
improvements that, ideally, were proven to be successful in other implementations, or 
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during validation. The idea is for the architecture to be translated into a secure 
platform, where the main blocks are the manufacturing resources and their 
specifications (machinery, materials, devices and people), the process models (it also 
includes the devices configurations), the enterprise system (factory production orders, 
the legacy ERP and other existing software that outputs valuable information), the 
data management system (real-time data acquisition and handling, CEP, DB’s for 
resources, production orders and process models), the decision support block (with 
KPI’s, AI, validated optimization tools and other testing community tools) and the 
process orchestrator (with a process engine, a process interface for monitorization and 
for the user to handle the production decision points and an optimization interface to 
manage the implemented optimization tools). These blocks must be fully 
interoperable to allow the introduction of any information source to be valuable to this 
architecture. In this way, any information source is also modular, not strictly 
necessary, but valuable for the performance, even if they are redundant (in case of 
malfunctioning, see [7]). The implementation of information sources and their 
location/specifications (what types of sensors, where they are placed considering the 
type of industry, etc.) is also something that could be suggested by the decision 
support system when it may result in optimization. 

From the factory’s management perspective, the modus operandi is the initial 
specification of the production processes and resources in the platform, to enable the 
creation of a digital model. After that, the data management block is populated with 
information, that can be complemented with the connection of the enterprise system 
block (to use legacy software and existing production orders), and the process 
orchestrator is able to provide a monitorization and data visualization, regarding the 
actual production processes. With this, the main blocks of the architecture are in place 
and the tools for process improvement are ready to be of value. By matching KPI’s 
and AI technology, the decision support block is able to suggest and pre-configure 
tools based on real-time data from the processes. The tools can be modular and added 
during time, considering cost and other constraints.  

The direction of this work is to have a simplified solution for companies to digitize 
their assets, build an implementation model, have production process monitorization 
and quickly act on acquired information, resulting in performance improvements. 

2   Relationship to Tech Innovation for Life Improvement 

Digital innovation is a requisition for industrial improvement but to be sustainable, on 
a business but also on an environmental level, solutions must be planned and 
considered within a scalable and responsible paradigm. Considering the contemporary 
industry and the respective environmental impacts, it is very important to define 
sustainable mechanisms along with the optimization of manufacturing processes. 
Usually, the implementation of such mechanisms can disrupt the existing functioning 
of factories, which imposes the necessity of not repeatedly trying to implement new 
solutions. Considering that, an architecture that dynamically envisions environmental 
sustainability, from the start, as a mean to pursuit economic growth by reducing costs, 
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can be very appealing and beneficial by not defining specific procedures that may 
need to be replaced in the future. This impacts the environmental footprint but also 
the stability of companies, specially SME’s which then are more at easy to provide 
better working conditions and stable jobs for their workers. Also, people are regarded 
in this architecture from the start, which enables the application of security and safety 
methodologies (e.g. acquiring wearables) as optimization tools. 

3   Background 

To specify and better understand the methodology proposed in this paper, some key 
concepts will be mentioned and explained. The objective is to provide a brief insight 
on the concepts that generate the modules proposed in the next section. 

 
IoT and Data Acquisition. The Internet of Things (IoT) is an emerging topic that 
aims to combine consumer products, sensors and industrial components and other 
everyday objects with Internet connectivity and powerful data analytic capabilities 
that have the ability to transform the way we work and live [8]. With this, objects can 
become optimized, as every extractable information becomes a mean of analyzing and 
computing the functioning processes. The results of such analysis are oriented to 
provide better performance, enhanced context functioning and new purposes that 
come into play when connecting objects to an intelligent network [7]. 

For the purpose of this work, IoT represents the ideal conception of data 
acquisition within the SME’s industrial environment, where data sources tend to 
provide heterogenous data, if there are any in place. It can be a cost-effective solution 
of implementing intelligent network nodes that pre-filter data, considering context, 
and pass on valuable information for decision-making processes on higher levels of 
the architecture [9]. Depending on how this concept is envisioned, the data acquisition 
process can also consider existing knowledge bases, data/event handlers and other 
mechanisms that contribute to a better understanding of data and how it can be 
handled, considering objectives, context, incorrect input and fault detection. 
 
Cyber-Physical Systems. This concept was briefly defined in the introduction section 
of this work as a mean to connect the digital world to the physical world. Its 
importance stems from the necessity to have a digital form of acquirable physical 
information that can be quickly displayed and analyzed, i.e. a digital twin [10]. 

This methodology allows to monitor production as a whole and to plan and model 
optimization based on the acquired information. In other words, by designing models 
that represent the manufacturing process and connect them to the acquisition modules, 
there is space for designing a runtime solution that implements mechanisms such as 
scheduling, waste and energy consumption/efficiency, that result in direct 
optimization of processes and also contribute for more complex decision-making 
processes that need a global overview of data and resources in order to be effective. 

In this work, CPS conceptually represents the environment for the purposed 
architecture, since the idea is to have real-time information, fed by gradually 
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implementable information sources, to develop sustainable optimization mechanisms 
and contribute to an intelligent and dynamic decision-making system. 
 
Process Modelling and Model-Driven Architectures. The process modelling 
process can be described as a design procedure to reinforce or create methodologies 
for enabling mechanisms such as simulation and production monitorization, and in 
this case the implementation or improvement of a CPS and production processes, by 
creating a digital twin [11]. This is where the user’s knowledge gains shape to result 
in a representation of the factories resources and production processes. 

A Model-Driven Architecture puts the process models in the center of the software 
development process and it is driven by the activity of these models [12]. The models 
typically derive from requirements, which are subject to analysis, followed by low-
level design, the design itself, testing and deployment. 

The proposed architecture of this work is heavily model-driven and for making 
sense of the proposed modules, the specification of the assets is crucial to have a real 
understanding of the optimization possibilities. The flow of the production is as 
essential too, because it delineates how the process occurs, which steps can provide 
feedback, when do materials are needed and transformed, when mechanisms of 
maintenance, scheduling and other strategic planning situations may occur, etc. 

4   Production Process Modelling Architecture 

In this section, an overview of the general architecture for this work is proposed. It is 
important to mention that this architecture is currently based on a process modelling 
architecture that envisions the application of possible complex technological 
processes (AI, machine-learning, big data, etc.) that may induce alterations along its 
design and the continuity of this work. Also, guidelines from area standard 
architectures/models/ontologies/frameworks such as ARROWHEAD, IoT-A, W3C 
SSN Ontology and IoT Lite, were considered to develop this work, with the objective 
of developing a real-world integrable and interoperable solution. 

This work also considers previous work and early results obtain, within the scope 
of IoT and CPS, by the authors of this paper in ongoing and finished European 
research projects, for the purpose of designing this architecture’s modules and how 
they are envisioned to be interoperable. 

4.1   Architecture’s Overview 

A high-level view of the architecture proposed in this work is presented in Fig.1. 
The main idea for this architecture, in addition to each module functionalities, is 

the interoperability that is aimed to be achieved during the runtime phase by 
combining the functionalities of a process orchestrator engine with incoming real-time 
data to provide production monitorization, decision points, user input and data 
visualization, and the decision support system which is fed with the information 
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handled in the process orchestrator and compares it with previously obtained 
knowledge (from assets, models, type of industry and materials, and other 
implementations) stored in specific databases to suggest valuable improvements that 
can be the implementation of optimizing modules (e.g. capacity planner, scheduler 
engine, process simulation), alterations in specific points of the production process, 
addition of sensors or data sources, re-configuration of resources, analyzing the cost-
benefit ratio for upgrading machinery or suggesting to hire more workers, etc. 

 

 
Fig. 1. General overview of the proposed architecture with examples of an implementation of 

some optimization modules. 

4.2   Architecture’s Blocks 

In this sub-section, a brief description of the main blocks of this architecture is given, 
to explain the main functionalities and support their interaction and interoperability. 

Resources and Process Models. For enabling the architecture with real-time data, the 
production assets must be specified. This specification is very important not only to 
establish data sources, through IoT nodes and hubs, but also to empower the decision 
support system with possibilities regarding the characteristics of machinery, sensors, 
actuators, and other production assets.  

After the assets are digitalized, the overall production flow is created and 
connected to the data sources, so it can enable the monitorization of the production 
processes in real-time with live input of collected data. 

For this to be optimized, the methodologies implied by following an MDA 
approach are applied to implement the designing of models (e.g. using BPMN) based 
on the process requirements and subsequent analysis. For this, a low-code 
programming tool, such as Node-RED, can be used wire together the IoT 
implementation. Within the models, the sensors and their characteristics are very 
important because it allows to combine them with the mentioned requirements to 
transformed them in actual code to be used in the devices. With this, the IoT nodes 
and hubs implementation is faster and it can always be re-configured by higher-level 
blocks, since these models and configurations are stored in the data management 
block, that is accessible by the process orchestrator. 

Once these processes are finished, the data management and decision support 
blocks are engaged, and the user interacts with an interface. Further inclusion of 
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additional data sources can or not require the adaptation of the process models, 
depending on how it can change the production flow (e.g. if creates a decision point). 

 

Enterprise System. Already implemented mechanisms for the factory functioning 
must be used to not totally disrupt operations. Production orders and the output from 
the ERP (Enterprise Resource Planning) and other existing software are fed into the 
data management block to be stored and used by the process orchestrator.  

 

Data Management. Acquired information, from the various data sources defined in 
the production resources, moves from phase to phase and needs to be managed in 
order to provide important contextual value. This includes mechanisms such as data 
filtering, fault detection, event processing and other data management processes, that 
ensure the real-time monitorization carried out by the process orchestrator. 

Within properly structed databases, information about the production models, 
resources and the production orders are kept during reasonable durations of time. 

 

Decision Support System. This block considers the company’s existing knowledge 
bases (for the assets, type of industry, etc.), correlates them with the production assets 
and process models using forecasting/predictive analytics and algorithms, to create 
suggestions for improving the current production processes. These improvements may 
be based on the data source configuration, implementation of modules such as a raw 
material planner, creation/deletion of decision points in the production flow, etc. 

The idea that motivates this system is to provide a dynamic approach for 
improvement and adaptation of production processes, creating an additional layer 
within the conventional CPS architectures.  
 

Process Orchestrator. The purpose of this block is to provide an interface for the 
monitorization of the production processes and to enable a platform for decision-
making. Here, is where the user gets process improvement suggestions (originated by 
the decision support block) through an optimization interface. 

The Process Orchestrator runs on process engine and enables the inclusion of 
already developed and pre-configured modular tools such as scheduling, resource 
planning, device configuration generator. These modules, once activated, can be fine-
tuned with more advanced configurations, and run inside the process orchestrator, 
serving specific functions and providing feedback for the user. 

5   Conclusions and Future Work 

This work provides an architecture for enhancing CPS with process modelling that 
considers all the production processes that transform the raw materials into the final 
products. Architectural structures to support optimizations were defined, on the data 
acquisition (combining them with models), data management,  process monitorization 
and decision-making, to create an environment that allows step by step optimization, 
that will use predictive and forecasting algorithms that suggest the suitability for each 
production case. This approach follows current tendencies for technological 
development, using potentially complex concepts such as AI to dynamically adapt to 
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real-time data and allocate the data analysis to processors and away from the user, 
which interacts with graphical interfaces that allow the drag-and-drop of features.  

In the future, the proposed architecture is going to be validated using real-time data 
from industry to determine how the decision support block reacts and improves during 
time. The inherent technological concepts to achieve this are going to be included step 
by step, to ensure functionality and proper validation of their usefulness. Other 
industry standard methodologies and frameworks will serve as guidelines to ensure 
proper real-world integration and interoperability. 

The specifications of production resources and the resulting process models are 
major tasks for ensuring the functionalities of this architecture which the degree of 
specification is something that is being currently validated, so it can reach a 
sustainable ratio of effort-benefit to the user.  

The process orchestrator validation relies on previous work from this paper authors 
that pursued the implementation of an orchestrator based on BPMN process modeling 
and engine. Future work on this will be to develop this orchestrator as a cloud-enabled 
solution to include modular optimization tools. An interface for the user for decision-
making, a graphical visualization of data and process monitorization, are also 
important achievements to validate this architecture for future use-case scenarios. 
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