
HAL Id: hal-03759733
https://inria.hal.science/hal-03759733

Submitted on 24 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Statistical Array Allocation and Partitioning for
Compute In-Memory Fabrics

Brian Crafton, Samuel Spetalnick, Gauthaman Murali, Tushar Krishna,
Sung-Kyu Lim, Arijit Raychowdhury

To cite this version:
Brian Crafton, Samuel Spetalnick, Gauthaman Murali, Tushar Krishna, Sung-Kyu Lim, et al.. Sta-
tistical Array Allocation and Partitioning for Compute In-Memory Fabrics. 28th IFIP/IEEE Inter-
national Conference on Very Large Scale Integration - System on a Chip (VLSI-SoC), Oct 2020, Salt
Lake City, UT, United States. pp.323-341, �10.1007/978-3-030-81641-4_15�. �hal-03759733�

https://inria.hal.science/hal-03759733
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or
minor corrections made by the author(s) during final proofreading of the publication
manuscript.

Statistical Array Allocation and Partitioning for
Compute In-Memory Fabrics

Brian Crafton, Samuel Spetalnick, Gauthaman Murali,
Tushar Krishna, Sung-Kyu Lim, and Arijit Raychowdhury

Georgia Institute of Technology, Atlanta GA 30332, USA,
arijit.raychowdhury@ece.gatech.edu

Abstract. Compute in-memory (CIM) is a promising technique that
minimizes data transport, the primary performance bottleneck and en-
ergy cost of most data intensive applications. This has found wide-spread
adoption in accelerating neural networks for machine learning applica-
tions. Utilizing a crossbar architecture with emerging non-volatile mem-
ories (eNVM) such as dense resistive random access memory (RRAM) or
phase change random access memory (PCRAM), various forms of neu-
ral networks can be implemented to greatly reduce power and increase
on chip memory capacity. However, compute in-memory faces its own
limitations at both the circuit and the device levels. Although compute
in-memory using the crossbar architecture can greatly reduce data trans-
port, the rigid nature of these large fixed weight matrices forfeits the flex-
ibility of traditional CMOS and SRAM based designs. In this work, we
explore the different synchronization barriers that occur from the CIM
constraints. Furthermore, we propose a new allocation algorithm and
data flow based on input data distributions to maximize utilization and
performance for compute-in memory based designs. We demonstrate a
7.47× performance improvement over a naive allocation method for CIM
accelerators on ResNet18.

Keywords: Compute In-Memory, RRAM, PCRAM

1 Introduction

Modern computing systems are heavily dependent on the capacity and access
time of expensive memory banks due to the ever increasing performance gap
between main memory and logic. Furthermore, the cost of moving data has be-
come more expensive than operating on it [1], and thus not only has the memory
become the fundamental bottleneck of computing, but both reading and trans-
porting the data has become more expensive than the operation we seek to
perform. Popularization of data intensive applications like machine learning and
artificial intelligence have further exacerbated this problem. To address these
issues, new architectures based on traditional CMOS attempt to minimize the
transport of data by optimizing for data reuse [1] and adopting constraints in-
spired by the brain [2]. While these techniques yield strong results, they still face
the fundamental technological limitations of CMOS.

2 Crafton et al.

Fortunately a new class of embedded non-volatile memory (eNVM) is po-
sitioned to minimize data transport by performing compute in-memory. In-
memory computing seeks to perform matrix multiplication (~y = W~x) in a cross-
bar structure using Ohm’s law and the non-volatile conductance state provided
by the non-volatile memory. Using this technique, each weight of the matrix
(Wij) is programmed as a conductance to a cell and each value of the vector
(~xi) is converted to voltage and applied to the rows of the memory crossbar. By
Ohm’s law, the current through each cell is proportional to the product of the
programmed conductance (Wij) and applied voltage (~xi). By Kirchhoff’s current
law (KCL), the resulting currents summed along the columns of the crossbar are
proportional to the product of the matrix and vector, (~y). Under this procedure,
the only data transport required for matrix multiplication is the feature vector
(~x) from memory and result (~y) to memory. Therefore, in-memory computing
eliminates the majority of data transfer and thus energy cost of data intensive
operations.

Although compute in-memory using the crossbar architecture can greatly re-
duce data transport, the rigid nature of these large fixed weight matrices forfeits
the flexibility of traditional CMOS and SRAM based designs. Given that eNVM
has high density and unfortunately high write energy compared to traditional
SRAM, CIM-based inference-only designs avoid writing to the eNVM cells once
programmed. While this is advantageous for data transport and energy efficiency,
it means each CIM processing element (PE) can only perform operations it has
the weights for. This implies that if there is an unbalanced workload where some
PEs operations take longer than others, we cannot simply re-allocate these op-
erations to other PEs. Therefore, we must use synchronization barriers for all
PEs so distributed matrix multiplication completes before another is started. In
contrast, every CMOS and SRAM based PE are computationally identical and
can perform any operation in the DNN graph.

Therefore a fundamental problem in CIM based designs is array utilization,
the percent of time an array is in use. Recent large scale CIM designs [3], use
weight duplication and layer pipelining techniques to maximize performance. We
describe these techniques in detail in Section 2. While impressive performance is
achieved, these techniques only perform well when the workloads are determinis-
tic. Circuit level techniques like zero-skipping greatly increase performance, but
create non-deterministic workloads that compromise array utilization. In this
work [4] we identify and profile these new challenges using a simple simulator
framework. We then propose a novel algorithm, which makes use of input statis-
tics to find optimal array allocation policies to maximize utilization and break
synchronization barriers. Furthermore, we introduce a new data flow that gen-
eralizes CIM arrays to maximize their utilization. We run our experiments on
ImageNet [5] using ResNet18 [6] and CIFAR10 [7] using VGG11 [8]. Although
we apply our techniques to deep learning, we claim that the techniques we pro-
pose can be extended to any compute in-memory application. We note that a
combination of these strategies yield 7.47× improvement in performance over a
baseline naive array allocation.

Array Allocation and Partitioning 3

2 Background and Motivation

Compute in-memory systems use binary or multi-level cells as weights to per-
form matrix multiplication in memory. In this work we will focus our attention
to binary cells given the current state of the art in eNVM [9–11] already strug-
gles with variance thus making multi-level cells even more difficult to utilize.
However, the same techniques demonstrated in this work can easily be applied
to multi-level cells as well. Given binary cells, we must use 8 adjacent cells to
form a single 8-bit weight, like those shown in the columns of Figure 1. The
8-bit vector inputs to this array are shifted in 1 bit at a time, and the resulting
binary product collected at the ADCs is shifted left by the same amount the in-
puts are shifted right. In this way, each array is able to perform an 8-bit matrix
multiplication.

Fig. 1. Typical compute in-memory PE (processing engine) and sub-array (SA) archi-
tecture. (A) NxN sub-array PE with L1 cache and psum buffer. In this work N is 8.
(B) Typical sub-array design with dual word line drivers, ADCs, shift and add units,
and an adder tree.

2.1 Array Operation

In Figure 2, we illustrate this process using a 4-bit, 2×2 matrix multiplication.
In the top inset of the figure, we provide the example problem and solution of the
matrix multiplication, along with how it is mapped to the crossbar array. The
values of the matrix are mapped to the memory cells (RRAM) of the crossbar,
and the input vectors are encoded as binary values to be shifted in one bit at a
time. In the second inset of Figure 2 we walk through the four cycles associated
with the 4-bit matrix multiplication. In cycle 1 the select the first bit in each of
the input values, and read the corresponding rows of RRAM cells, performing
binary matrix multiplication. We continue this procedure through cycles 2 to 4,
collecting all partial sums. In the third and final inset we perform post processing
to combine the binary matrix multiplications into a 4-bit matrix multiplication
using shift and add operations in CMOS. In 2F, we observe how shift is per-
formed for each cycle. We multiply (shift) each output value by the cumulative

4 Crafton et al.

Fig. 2. Example compute in-memory procedure for a 4-bit, 2×2 matrix multiplication.

magnitude of the corresponding input (X) and weight (W) bits. Lastly, in Fig-
ure 2G, we sum all results together to get our solution vector. Although, in this
example we performed 4-bit matrix multiplication, this technique generalizes to
all input and weight precisions by combining matrix multiplication using shift
and add post processing.

There are two constraints we face at the array level that limit performance:
the number of columns that share an ADC and the precision of the ADC. The
number of columns that share an ADC is a function of the area of the ADC and
the distance between bitlines. For every column that shares a single ADC, the
number of cycles to perform a dot product multiplies. The precision of an ADC
determines how many rows we can turn on at once, for if we read more rows
than states we can successfully read, we overflow the column ADCs and incur
errors.

There are two common techniques for performing compute in memory. The
first technique, we call baseline, is simply reading as many rows as the ADC

Array Allocation and Partitioning 5

precision allows (e.g. for a 3-bit ADC, we read 8 rows simultaneously). The
next technique is commonly called zero skipping [12], where only rows with ‘1’s
are read. This technique exploits sparsity in the input features or activations
(for neural networks). Zero skipping performs faster than the baseline technique
because for most cases it will process more total rows per cycle. In Figure 3,
we provide an example case for zero-skipping where 8 total rows are read using
a 2-bit ADC. Baseline (3A) requires 2 cycles since it targets four consecutive
rows at a time. Zero-skipping (3B) is able to finish all 8 rows in a single cycle
because we only consider the ‘1’s in the input vector. There are few reasons not
to perform zero skipping, unless there is limited input data bandwidth or the
eNVM has high variance and accumulated too many errors.

Fig. 3. Simplified breakdown of ADC reads in baseline and zero-skipping with 2-bit
ADC precision. (A) Baseline targets four consecutive rows at a time since the 2-bit
ADCs are capable of distinguishing 4 states. (B) Zero skipping targets the next 4 rows
where the word line is enabled. This way we can read more rows and not overflow our
ADC.

2.2 Array Allocation

By encapsulating the array, ADCs, and shift and add logic, a matrix multiplica-
tion engine can be created. Using these arrays as building blocks, prior work has
implemented CNNs (Convolutional Neural Networks) where a group of arrays
implement a larger matrix multiplication. Despite performing more complex op-
erations, the core operations of CNNs are converted into matrix multiplication.
In Figure 1 we illustrate this idea, showing how a group of arrays is tiled together
to form a PE. In Figure 5 we further depict how these arrays can be pieced to-
gether to form a larger matrix. In this example, both input feature maps and
filters are vectorized with the filters forming the columns of a matrix. The vec-

6 Crafton et al.

torized feature maps are input to the crossbar to perform matrix multiplication,
where the results are output feature maps for this layer in a CNN.

Given the high density of these PEs, hundreds or thousands of them can be
tiled in the same area used by modern ICs. Although similar in concept, CIM-
based DNN accelerators have numerous differences from traditional CMOS based
designs that introduce challenges in maximizing performance. First off, a CIM-
based PE has fixed weights that cannot be reprogrammed due to the high energy
cost of writing eNVM. Traditional CMOS based PEs are generalized compute
units that can operate on any input data, since they do not contain fixed weights.
Thus, while flexible CMOS PEs are challenged by data movement, the challenge
with CIM-based PEs is weight allocation and placement.

Device SRAM DRAM RRAM PCRAM

Write Energy 1 fJ 10 fJ 10 pJ 10 pJ

Write Latency 1 ns 10 ns 10 ns 50 ns

Table 1. Energy and latency comparison for CMOS memories and eNVM [13].

In Figure 4, we illustrate the process of allocating and mapping a matrix
to a distributed group of memory arrays. In this example, we map a 256×128
8-bit matrix multiplication to a group of 16 arrays. Each array is a 128×128
RRAM array, where each cell is 1-bit. Since we require 8 adjacent cells to form a
single weight, each 128×128 RRAM array can function as a 128×16 8-bit matrix
multiplication engine. Next, we divide up the 256×128 matrix into an 8×2 grid
of 128×16 arrays. From here the mapping process is simple, where we assign
each point in the grid to a corresponding array in our design.

Fig. 4. Example weight allocation procedure for a 256×128 matrix multiplication.

2.3 Maximizing Utilization

So far we have discussed how CIM-based PEs contain fixed weights due to energy
constraints, and thus weights must remain fixed. While this greatly simplifies
both our dataflow and reduces traffic and thus power, it means compute units

Array Allocation and Partitioning 7

can only perform a subset of the matrix multiplications in the network. This
implies that if a PE finishes its workload before another, we cannot simply re-
distribute the workload to keep both PEs utilized. Thus a fundamental issue in
CIM-based accelerators is array utilization. Several works have addressed this
issue introducing ideas such as weight duplication and layer pipelining.

Weight duplication [3] is used to maximize throughput in large scale CIM ac-
celerators where the amount of on-chip memory exceeds the number of weights
in the model. In [14], 24,960 arrays are used for a total on-chip memory capacity
of nearly 104 MB (2b cells), while only using an area of 250mm2. Using this
enormous on-chip memory capacity, they not only fit ResNet [6] but duplicate
shallow layers up to 32×. When weights are duplicated, the input data is di-
vided equally amongst each duplicate array so they can process in parallel. We
illustrate this idea for a convolutional layer in Figure 5. The input patches from
the input feature maps (IFMs) are divided into groups based on the number of
duplicates, and then mapped to each duplicate.

Layer pipelining [3] is used to maximize throughput in eNVM CIM accel-
erator, where arrays are not re-programmed due to large amounts of on-chip
memory and high write energy. At the same time, most modern neural networks
contain 20 or more layers that must be processed sequentially. Given that most
designs use 128 × 128 arrays, it becomes infeasible to partition arrays such that
they can be used for each layer without being re-programmed. This implies that
the majority of PEs would sit idle waiting for their layer to be processed. To
solve this problem, images are pipelined through the network to keep all arrays
utilized. Although this compromises single example latency, it maintains max-
imum throughput. We provide visualization in Figure 6, where 3 feature maps
from 3 different input examples are processed together.

Fig. 5. Convolutional layer mapped to a CIM array. Both input features maps (IFM)
and filters are vectorized with the filters forming the columns of a matrix. The vector-
ized feature maps applied to the crossbar to perform matrix multiplication, where the
results are output feature maps (OFMs).

8 Crafton et al.

Fig. 6. Layer pipelining

3 Block-wise Array Allocation

In the previous section, we discussed several techniques that are used in CIM ac-
celerators to increase throughput, but each introduces it’s own synchronization
barrier that limits array level utilization. In this work, we identify two of these
barriers and propose our solution to mitigate this problem. The two techniques
that create these barriers are weight duplication and layer pipelining. In previous
work these barriers were not a problem because array performance was deter-
ministic. When zero-skipping is introduced, it instigates these barriers because it
introduces non-deterministic computation time for each array. Zero skipping will
only improve the performance of a CIM accelerator because it simply means each
array will perform equal to or faster than the baseline algorithm. However, since
the number of ones in the input vector of the CIM operation follows a random
distribution, the amount of time to finish a dot product is non-deterministic.
This means that several arrays performing a part of a larger matrix multipli-
cation need to be synchronized to the slowest preforming array. As the size of
the operation (and number of arrays) increases, the more stalls occur. In the fol-
lowing section, we explore the implications of zero skipping at the architectural
level.

3.1 Identifying Synchronization Barriers

The non-determinism introduced by zero-skipping induces the need for synchro-
nization barriers. A synchronization barrier is required when a group arrays are
processing a distributed workload and finish at different times, but must be syn-
chronized before starting another task. The first barrier occurs at the layer level
and is a result of using layer pipelining. When the arrays are distributed to each
layer, we attempt to divide them evenly so that all layers finish at the same
time. If any layer is consistently performing faster than other layers, it will have
to stall because layers downstream will not be able to buffer its outputs. Previ-
ous work [14] have allocated arrays to layers based on the number of duplicates

Array Allocation and Partitioning 9

required such that all layers in the pipeline complete their workload at the same
time, and thus sustain full utilization. This allocation policy can be written as:

Minimize: max
∀L∈N

MACL

ArrayL

This allocation method works under the assumption that all arrays perform
at the same rate and we can choose the number of arrays on chip. However,
as [12] points out neither of these assumptions will hold in a realistic design.
Prior works [3,14] assume 128 cells can be read at once using 5 and 8 bit ADCs.
Although feasible in theory, we note that such a design will yield very high error
given that the state of the art devices have 5% device-to-device variance [9,15],
and thus at most 8 rows (3-bit) can be read at once. Such a design also yields
very poor memory density since large (5-8 bit) ADCs occupy over 10× the area
of eNVM. Instead columns must be processed in batches using zero-skipping,
where current summation is used for 8 rows and then intermediate results are
stored and accumulated using existing digital logic in the array.

When zero skipping is used, each array performs at a non-deterministic speed
that follows the distribution of input data it receives. In Figure 7, we plot the
average time for an array to perform a 128×16 matrix multiplication versus the
percentage of ‘1’s in all the 8-bit input features for the 20 convolutional layers
in ResNet18. To compute the percentage of ‘1’s for a layer, we average the 8 bits
in all 8-bit input features together. For example, a 1000-entry 8-bit input vector
contains 8000 bits and to determine the percentage of ’1’s, we average over 8000
bits to compute this percentage. From Figure 7, we infer a linear relationship
between the percentage of ‘1’s in the input features to a layer, and the expected
number of cycles to perform the matrix multiplication.

Fig. 7. Cycles per array versus the percentage of ‘1’s in all 8-bit input features. Each
point represents the average percentage for one of the 20 layers in ResNet18.

10 Crafton et al.

Naturally, we can use this information to better allocate duplicates to each
layer in our design. We approach this problem by quantifying the total number
of multiply-and-accumulate (MAC) operations in each layer, and the average
number of MAC operations per cycle an array can perform. This new allocation
policy can be written as:

Minimize: max
∀L∈N

MACL

ArrayL · PerfL

where PerfL is added in the denominator to take into account the performance
of each array in the layer. In prior works, performance per array is constant
since each array takes the same number of cycles to perform a matrix multi-
plication. Therefore, arrays are allocated to each layer based only on the total
MACs per layer. When zero-skipping is introduced and performance per array
is not constant, this allocation method fails to allocate evenly. To achieve equal
utilization, we can instead allocate arrays to each layer based on the expected
number of cycles it will take to finish without any duplicate arrays. We can
compute the expected number of cycles it will take a layer to finish by dividing
the total MACs in a layer by the average performance of each array in the layer.
We call this allocation method performance-based allocation, whereas allocation
that assumes all arrays perform evenly is weight-based allocation.

Fig. 8. The 3 × 3 × 128 × 128 filter used in layer 10 from ResNet18 converted into a
matrix with annotated blocks. This filter requires 72 128×128 arrays to store in a 9×8
grid.

While this technique ensures that all our layers will be equally utilized, it does
not ensure that the arrays inside each layer will be equally utilized. Each layer in
our DNN (convolution or fully connected) is implemented as a matrix consisting
of eNVM arrays. We visualize this idea in Figure 8, where a 3 × 3 × 128 × 128
filter is mapped to 72 arrays arranged in a 9 × 8 grid. In each of the 9 rows, all
8 arrays share the same input data and, consequently, the same word lines. This
implies that all 8 arrays will operate at the same speed and form our minimal
deterministic compute unit that we call a block. Because the 9 different rows do
not share the same input vectors, they will operate at different speeds. If some
arrays receive fewer ‘1’s than other arrays, they will sit idle waiting for arrays
that receive more ‘1’s to finish. In Figure 9, we plot the average cycle time of

Array Allocation and Partitioning 11

the arrays in each block of layers 10 and 15 (ResNet18) versus the percent of
‘1’s they receive. Layer 10 is a 3× 3× 128× 128 filter (Figure 8) that contains 9
different blocks, and Layer 15 is a 3×3×256×256 filter that contains 18 different
blocks. Just as before, we observe a linear relationship between cycle time and
the percentage of ‘1’s. Since layer 15 contains more blocks, it is more susceptible
to longer delays because the expected slowest block’s cycle time increases with
the number of arrays. In this figure, we observe a 12% and 27% difference in
cycle time for layers 10 and 15, which motivates a better allocation technique to
prevent significant idle time.

Fig. 9. Cycles per array versus the percentage of ‘1’s in all 8-bit input features. The
blue crosses represent the average percentage for 1 of the 18 blocks in layer 15 of
ResNet18. The black ×s represent 1 of the 9 blocks in layer 10.

3.2 Optimizing Array Allocation

Finding the optimal allocation policy for blocks is more difficult. We cannot add
redundant blocks to the same layer, because each layer only uses each weight
once per operation. Instead, we adopt a new grouping strategy for arrays: rather
than duplicating layers of arrays, we duplicate blocks of arrays. To find the
optimal array allocation policy, we propose a linear time (O(N) complexity)
solution discussed below. This is especially important for larger networks like
ResNet18, where there are 247 blocks and finding an optimal solution could be
quite difficult.

With this new grouping strategy, we can allocate using the same technique as
before. First we gather an approximation of the average MAC per cycle for each
block of arrays. We can do this two ways. The first option, is running a cycle
accurate simulator on some example data to get a very accurate approximation.
The second option is to profile the distribution of ‘1’s in the activations gathered
from a large set of examples run on a GPU. Once we have an approximation

12 Crafton et al.

for the MAC per cycle of each block, we can compute the expected number of
cycles each block will take to perform it’s partial dot product. Once we have
cycle approximations for each block, we begin allocating arrays to each block.
While we have free (not allocated) arrays, we loop through and allocate arrays
to the block with the highest expected latency. We provide pseudo-code for this
technique in Algorithm 1. Once we run out of arrays or the number of arrays left
over is not enough to allocate to the slowest block we have found the optimal
allocation. We call this allocation method block-wise, whereas allocation based
on the layer is layer-wise.

Algorithm 1 Array Allocation

1: procedure Array Allocation(Arrays : integer, Size : Array, Perf : Array)
2: Allocation = [0, 0, ... 0]
3: min = Argmin(Allocation � Perf)
4: while Arrays > Cost[min] do
5: Arrays = Arrays - Size[min]
6: Allocation[min] = Allocation[min] + 1
7: min = Argmin(Allocation � Perf)

8: return Allocation

3.3 Block-wise Data Flow

To make use of our new allocation policy, a new data flow strategy is required.
Since arrays from the same layer are not grouped together, we treat these blocks
as generalized compute units rather than being bound to a specific duplicate.
Therefore, we no longer stall for the slowest block in a layer, but rather just send
work to the next available block. This means that the same blocks will no longer
be working together on the same input data, and thus will not be part of the same
gather and accumulate procedure. As a result, a new routing and scheduling
policy is required because blocks will not always send their partial sums to
the same accumulator for every input feature map. To implement this idea, we
include output feature destination addresses in the packet containing data when
sending input features to each block. Upon completing a partial dot product,
a block sends their computed partial sums to the designated accumulator and
requests additional work from the memory controller.

4 CIM-based Architecture

Although our allocation policy will work for any general CIM based accelerator,
we adopted a similar architecture to previous work [3,14]. Our basic processing
element (PE) contains 64 128×128 arrays. We choose 64 arrays because it pro-
vides each block with sufficient network bandwidth and SRAM capacity, while

Array Allocation and Partitioning 13

maintaining good SRAM density and low interconnect overhead. Our input data,
weights, and activations are all 8 bits. Each array has 1 3-bit ADC for every 8
columns where a single column is pitch-matched with a comparator. We choose
3-bit because state of the art devices [9] have 5% variance and 3-bits is the max-
imum precision that can be read with no error. We shift one bit from each of
the 128 inputs in one at a time which takes 8 cycles. In the best case scenario,
we perform all 128 rows at the same time. In the worst case scenario, it takes
16 cycles since we enable every single row. Therefore, each array takes anywhere
from 64 to 1024 cycles and performs a 128×16 dot product. In all designs we
consider, we use use the same 64 array PE and simply increase the count per
design.

Fig. 10. Block-wise network architecture with 1 router (R) per PE. All input features
are routed from the global buffer to PEs. All partial sums are routed from PE to vector
unit (V), and vector unit to output feature buffer.

The activation inputs to the RRAM sub-arrays are stored in on-chip SRAM,
while the input images are read in from external DRAM. Matrix multiplication
is performed by the PEs, while custom vector units are used to perform vector-
wise accumulation, bias addition, quantization, and relu. We use a N ×N mesh
network for communication between PEs, memory, and vector units shown in
Figure 10. Since blocks vary in size and no block contains 64 sub-arrays, we have
to partition the PE to contain several blocks. This configuration implies that the
different blocks share the same virtualized input and output ports. As discussed
in Section 3, input and output vectors are packetized to include destination
information. Each block in the PE is given an id that is used to route packets
to and from. Upon completing a partial dot product, a block sends its partial
sum to vector units where they are accumulated and activation functions and
quantization is applied.

14 Crafton et al.

5 Results

To benchmark block-wise allocation, we compare with several other techniques:
weight-based allocation, performance-based layer-wise allocation, and the base-
line algorithm which does not use zero-skipping. We empirically evaluate perfor-
mance and array utilization for the three techniques on ImageNet using ResNet18
and CIFAR10 using VGG11. We run these techniques in a custom simulation
framework designed to evaluate performance and power of compute in-memory
using standard CMOS and RRAM models from [16].

Fig. 11. Inference performance for ResNet18 and VGG11 by algorithm and design size
assuming 100MHz clock. For ResNet18, block-wise allocation sustains a 8.83×, 7.47×,
and 1.29× speedup over baseline (no zero-skipping), weight-based, and performance-
based layer-wise allocation. For VGG11, block-wise allocation sustains a 7.04×, 3.50×,
and 1.19× speedup.

Our simulator performs cycle-accurate implementations of convolutional and
fully connected layers. It is based in Python, but runs array level operations
in C for faster evaluation. We model components in the design in object ori-
ented fashion, iterating through all components in all PEs each cycle. We embed
performance counters in our ADC and sub-array objects to track metrics like
stalls so we can calculate utilization. As input, the simulator takes the network
weights, input images, PE level configuration, and chip-level configuration. The
PE-level configuration includes details like the precision of each ADC and size
of the sub-array. The chip-level configuration contains the number of PEs and
details about array allocation and mapping. As output, the simulator produces a

Array Allocation and Partitioning 15

table with all desired performance counters and all intermediate layer activations
that are verified against a TensorFlow [17] implementation for correctness.

To show how our algorithm scales by the size of the design, we have evaluated
the different allocation algorithms on several different designs with increasing
numbers of PEs. In Figure 11, we plot performance versus the number of PEs
in the design for both ResNet18 and VGG11. For ResNet18, we begin at 86
PEs since this contains the minimum number of arrays (5472) required to store
ResNet18. At 86 PEs, all algorithms yield the same result since no duplication
can be done and weights are simply allocated to store ResNet18. From there, we
begin increasing the design size by 1

2 powers of 2. Block-wise allocation performs
the best achieving 29% improvement over layerwise-allocation and 7.47× im-
provement over both weight-based and baseline (not zero-skipping) algorithms.
We follow the same procedure for VGG11, however we observe that block-wise
allocation yields less performance advantage. This is because VGG11 has roughly
half the layers that ResNet18 has. It is more difficult to allocate evenly amongst
a deeper network and therefore, block-wise allocation yields better results on
deeper networks.

To better understand why we get these large performance improvements, it
is useful to analyze array utilization. We define array utilization as the average
utilization of all the arrays in the design, where utilization for a single array can
be defined as:

Utilization = CycleActive/(CycleActive + CycleStall)

In Figure 13, we visualize layer-wise utilization of the 20 convolutional layers
from ResNet18 using the different techniques. It is clear that block-wise allo-
cation sustains the highest array utilization across nearly all layers in the net-
work, easily outperforming the other techniques. Weight-based allocation per-
forms very poorly because of the very different speeds of each layer and block
we showed in Figures 7 and 9. It should be noted that we do not plot the base-
line algorithm because it has different array level performance given that zero
skipping is not used.

Fig. 12. Array utilization by layer for VGG11 on CIFAR10. Baseline not shown because
zero skipping is not used.

In Figure 13, we visualize layer-wise utilization of the 10 convolutional layers
from VGG11 using the different techniques. We observe a similar pattern to

16 Crafton et al.

ResNet18, with a couple differences. First, the disparity in utilization between
the methods is not as significant since there is not as many layers, and thus the
pipeline is easier to balance. Second, the first layer’s utilization is higher for the
layer-wise methods. This indicates it is a significant bottleneck in the pipeline
and that it is severely under-allocated.

Fig. 13. Array utilization by layer for ResNet18 on ImageNet. Baseline not shown
because zero skipping is not used.

5.1 Power Evaluation

In this work we focus on performance evaluations, however higher array utiliza-
tion results in less leakage power and improved energy efficiency. To compare
the power consumption of the various allocation methods and dataflows, we use
Neurosim [16] which has been developed to evaluate the performance of DNN
accelerators using eNVM technology. Like prior work for CMOS based mem-
ory [18] and non-volatile memory [19], Neurosim models power throughout the
system using a hierarchical model computing CV 2 for each component. Using
the models for these components, we can approximate the system level power for
a large scale CIM accelerator. In Figure 14, we provide select parameters used
by our tool to approximate total power.

Fig. 14. Simulation parameters used for hardware components at both the sub-array
and processing element level.

Array Allocation and Partitioning 17

Given that the computation being done by each method is identical, the dif-
ferences in power occur from leakage current in the ADCs, SRAM, and logic as
well as interconnect utilization. In Figure 15, we plot TOP/W for the various
allocation methods for both ResNet18 and VGG11. Power efficiency changes
negligibly versus design size, and thus we only show results for the 256 PE
design (16384 arrays). Overall, VGG11 has higher efficiency because it the fea-
ture maps (activations) are more sparse. For ResNet18, block-wise allocation
yields the highest efficiency, achieving 1.07×, 1.75×, and 4.01× improvement
over layer-wise, weight-based, and baseline, respectively. For VGG11, we see a
similar result, where block-wise achieves 1.03×, 1.31×, and 4.48× improvement
over layer-wise, weight-based, and baseline, respectively. The efficiency advan-
tage for block-wise versus layer-wise and weight-based can be attributed to the
lower latency, and thus less total leakage power. However, the massive improve-
ment over baseline is due to zero-skipping.

Fig. 15. Inference efficiency (TOP/W) for ResNet18 and VGG11 by algorithm.

6 Conclusion

In this paper we demonstrate the efficacy of a new technique and data flow
to improve array utilization in CIM accelerators. Given that the write energy
of eNVM is high, CIM arrays contain fixed weights unlike CMOS PEs which
can perform any operation in a DNN. Thus array utilization becomes a key
challenge since only some arrays can perform particular operations. By profiling
input statistics and relaxing our data flow, we can allocate arrays to maximize
utilization and as a result, performance. The proposed allocation algorithm and
data flow performs 7.47× better than naive allocation and a layer-wise dataflow.

7 Acknowledgement

This work was funded by the U.S. Department of Defense’s Multidisciplinary
University Research Initiatives (MURI) Program under grant number FOA:

18 Crafton et al.

N00014-16-R-FO05 and the Semiconductor Research Corporation under the
Center for Brain Inspired Computing (C-BRIC) and Qualcomm.

References

1. Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” IEEE Journal
of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

2. M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,
P. Joshi, N. Imam, S. Jain, et al., “Loihi: A neuromorphic manycore processor with
on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

3. A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, “Isaac: A convolutional neural network accel-
erator with in-situ analog arithmetic in crossbars,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 14–26, 2016.

4. B. Crafton, S. Spetalnick, G. Murali, T. Krishna, S. K. Lim, and A. Raychowdhury,
“Breaking barriers: Maximizing array utilization for compute in-memory fabrics,”
in 2020 IFIP/IEEE 28th International Conference on Very Large Scale Integration
(VLSI-SoC), IEEE, 2020.

5. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pp. 248–255, Ieee, 2009.

6. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

7. A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” 2009.

8. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

9. J. Wu, Y. Chen, W. Khwa, S. Yu, T. Wang, J. Tseng, Y. Chih, and C. H. Diaz,
“A 40nm low-power logic compatible phase change memory technology,” in 2018
IEEE International Electron Devices Meeting (IEDM), pp. 27–6, IEEE, 2018.

10. J.-H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and A. Raychowd-
hury, “Ternary-weight compute-in-memory rram macro with voltage-sensing read
and write verification for reliable multi-bit rram operation,” in 2021 IEEE Custom
Integrated Circuits Conference (CICC), pp. 1–4, IEEE, 2021.

11. J.-H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and A. Ray-
chowdhury, “29.1 a 40nm 64kb 56.67 tops/w read-disturb-tolerant compute-in-
memory/digital rram macro with active-feedback-based read and in-situ write ver-
ification,” in 2021 IEEE International Solid-State Circuits Conference (ISSCC),
vol. 64, pp. 404–406, IEEE, 2021.

12. T.-H. Yang, H.-Y. Cheng, C.-L. Yang, I.-C. Tseng, H.-W. Hu, H.-S. Chang, and H.-
P. Li, “Sparse reram engine: joint exploration of activation and weight sparsity in
compressed neural networks,” in Proceedings of the 46th International Symposium
on Computer Architecture, pp. 236–249, 2019.

13. S. Yu and P.-Y. Chen, “Emerging memory technologies: Recent trends and
prospects,” IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp. 43–56, 2016.

14. X. Peng, R. Liu, and S. Yu, “Optimizing weight mapping and data flow for convolu-
tional neural networks on processing-in-memory architectures,” IEEE Transactions
on Circuits and Systems I: Regular Papers, 2019.

Array Allocation and Partitioning 19

15. B. Crafton, S. Spetalnick, and A. Raychowdhury, “Counting cards: Exploiting
weight and variance distributions for robust compute in-memory,” arXiv preprint
arXiv:2006.03117, 2020.

16. P.-Y. Chen, X. Peng, and S. Yu, “Neurosim: A circuit-level macro model for
benchmarking neuro-inspired architectures in online learning,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 12,
pp. 3067–3080, 2018.

17. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine
learning,” in 12th {USENIX} symposium on operating systems design and imple-
mentation ({OSDI} 16), pp. 265–283, 2016.

18. S. J. Wilton and N. P. Jouppi, “Cacti: An enhanced cache access and cycle time
model,” IEEE Journal of Solid-State Circuits, vol. 31, no. 5, pp. 677–688, 1996.

19. X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 7, pp. 994–
1007, 2012.

