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Abstract. Petri nets play a central role in the formal modelling of a
wide range of complex systems and scenarios. Their ability to handle
with both concurrency and resource awareness justifies their spread in
the current formal development practices. On the logic side, Dynamic
Logics are widely accepted as the de facto formalisms to reason about
computational systems. However, as usual, the application to new situ-
ations raises new challenges and issues.
The ubiquity of failures in the execution of current systems, interpreted
in these models as triggered events that are not followed by the corre-
sponding transition, entails not only the adjustment of these structures
to deal with this reality, but also the introduction of new logics adequate
to this emerging phenomenon.
This paper contributes to this challenge by exploring a combination of
two previous works of the authors, namely the Propositional Dynamic
Logic for Petri Nets [1] and a parametric construction of multi-valued
dynamic logics presented in [13]. This exercise results in a new family of
Dynamic Logics for Petri Nets suitable to deal with firing failures.

1 Introduction

Petri nets are semantic structures widely used in computer science. Their ade-
quacy to model, specify and analyze complex systems dealing with concurrency
and resource awareness is well known. At the core of this success is their rich
and intuitive graphical syntax. Nevertheless, for property oriented specification
and verification purposes, it is useful to consider logic systems having this struc-
ture as a semantics. The first attempt in such direction was done by the linear
logic community (e.g. [6]). A number of other logics were then proposed in the
literature for standard and timed versions of Petri nets eg. [3].

Propositional dynamic logic (PDL) [8], a very versatile logic for verification
of computational systems, was also explored in this context. Particularly, Petri-
PDL [12] was introduced as an extention of PDL to give logical semantics to Petri
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nets. In such variant, the programs are marked Petri nets expressed by a textual
syntax (with a choice and a composition operators). Another approach was taken
in [5], where the well established theory of modal semirings was used to develop
a generic modal algebra for reasoning about reachability properties in Petri nets.
The BI resource based semantics presented in [16] introduces another proposal to
allow comparison of “amounts of information” modelled by the possible worlds
of the model. In this work, Petri nets are presented as concrete instances of
this semantics. Later, the work of [12] was extended [1] to include the iteration
operator. This logic is expressive enough to describe properties of systems like
the one shown in the example below:

Example 1. Let us present the following situation, based on the example pre-
sented in [1], which illustrates the behaviour of a chocolate vending machine.
The system works as follows: we turn the machine on (l) and put one coin (m)
and then it releases the chocolate (c).

Its behaviour can be specified by the Petri net of Figure 1. The upper left
place (`) is the power button of a vending machine; the bottom left is the coin
inserted (m) and the bottom right is the chocolate output (c); if the vending
machine is powered on, always when a coin is inserted you will have a chocolate
released. We can express that once we turn the machine on and put one coin we
can obtain a chocolate by the formula 〈(`,m), (`mt2x�xt3yc)〉>, meaning that,
if we are in a state were states ` and m are marked, after executing the Petri
net program `mt2x� xt3yc, we reach a state were > is satisfied.

`

m

x

y

c

t2 t3

t1 −→
`

m

x

y

c

t2 t3

t1

Fig. 1. Execution of the program `mt2x� xt3yc in the chocolate machine

The above formula can be proved using the proof system presented in [1].

The complexity of modern systems, namely the heterogeneity of the envi-
ronments where they live, entails a more demanding approach in their design
and building processes. The inevitability that human beings eventually make
mistakes in such processes extols the advantage of adopting formalisms which
deal with the possibility of failures at the outset.

Recalling again the previous example, we would bet that the reader already
experienced undesirable situations like after putting a coin in a vending machine,
the desired chocolate gets stuck behind of the glass. The analysis of such kinds
of failures would require a formalism able to express statements like once we
turn the machine on and put one coin we have an assurance α that we will
obtain a chocolate. A possible model for handling theses scenarios would be



a variation of the classical definition of Petri nets, where the triggering of a
transition happens with some reliability degree. The resulting assurance would
depend on two aspects: on one side, the reliability degree associated to the
execution of a program; on the other, an appropriate evaluation of a formula
in a many-valued truth space. Despite their adequacy in the reasoning about
several properties of Petri nets, none of the approaches presented in [11], [5] or
[16] aim to formalise the attribution of such degrees.

In order to achieve a Dynamic Logic analogous to [1], but suitable to this
scenario, we base this work on the construction of multi-valued dynamic logics
introduced in [14, 13]. First, we introduce a new variant of the Petri Nets, the
Petri nets with A-failures, which explicitly assumes that the modelled system
may eventually fail, supporting a claim of reliability to each firing of a transition.
In the case where a failure occurs, the firing event is consumed without the
occurrence of the expected transition. Depending on the system modelled, it
would make sense to measure these reliability degrees in a discrete scale, in a
continuous interval, or simply in an universe only with the values true and false.
Hence, instead of fixing the domain of the assurances degrees as the usual real
interval [0, 1], we will be more generic: the proposed models are parametric to the
nature of the reliability degrees that are most suitable for each concrete situation.
This flexibility is realised by assuming, as parameter, an (action) lattice A. Some
additional considerations on this parameter are in order.

As in standard PDL, the interpretation of programs in Petri-PDL [11] relies
on the Kleene algebra of relations (as we will see in the next section, firing
functions are interpreted as binary relations). However, firing functions in Petri
nets with A-failures are based on reliability degrees given by elements of an
action lattice, and not on the interpretation of classic binary relations.

To give meaning to Petri net programs in this new formalism, this paper
adopts a class of Kleene algebras, parameterised by an action lattice A. These
algebraic structures base the interpretation of (composed) programs in Petri nets
with A-failures, by reflecting how failures in transitions are propagated into the
whole execution of a program. This is also reflected in the kind of assertions we
can express in the logic, as well as in the outcome we expect for the validity of
a Dynamic Logic formula in a Petri net with A-failures. For that purpose, we
follow a strategy similar to that used in [14, 13], where an action lattice will follow
a similar role in our method, namely as a computational model (by representing
weighted fails) and as a truth universe (by giving a (possible) many-valued truth
space to the addressed logics). The proposed method for constructing graded
dynamic logics is parametric on whatever truth/computational domain is the
most suitable to the system under consideration.

Outline. The remaining of this paper is organized as follows. Section 2 presents
all the background needed about the Petri-PDL? formalism and the concept of
action lattice. Section 3 is devoted to Petri Net with A-failures, as well as, to
suitable Kleene Algebras to interpret programs in these structures. In Section 4,
we introduce a parametric construction of dynamic logics for Petri nets with A-



failures, and proper illustrations for such a method. Finally, Section 5 concludes
the paper with some final remarks on future work.

2 Background

In this section, we present a brief overview of two topics on which the later de-
velopment is based. First, we review the syntax and semantics of Petri-PDL? [1].
Second, we recall the main notions behind the method introduced in [13], for
the generation of many-valued dynamic logics parametrized by an action lattice.
This parameter supports both the (possible non-bivalent) truth spaces and the
base computational model.

2.1 Propositional Dynamic Logic for Petri nets with Iteration

This subsection recalls the syntax and semantics of Petri-PDL?, as presented in
[1]. The language of Petri-PDL? consists of

Propositional symbols: Prop = {p, q, . . .}
Place names: a, b, c, d, . . .
Transition types: T1 : xt1y, T2 : xyt2z and T3 : xt3yz
Petri net Composition symbol: �
PDL operator: ? (iteration)
Markings: S = {ε, s1, s2, . . .}, where ε is the empty sequence. The notation

a ∈ s is used to denote that the place name a occurs in s.The expression
#(s, a) is the number of occurrences of place name a in s. It is said that a
sequence r is a subsequence of s, denoted r � s, if for any place name a, if
a ∈ r implies a ∈ s.

Definition 1. Petri-PDL? Programs for a set of places P

Basic programs: set Π0(P ) defined by the grammar

π ::= at1b | abt2c | at3bc

where ti is of type Ti, i = 1, 2, 3 and a, b, c ∈ P .
Petri net Programs: set Π(P ) defined by the grammar

η ::= π | π � η | η?

for π ∈ Π0(P )

Definition 2. Let Prop be a set of propositions. The set of Petri-PDL? formulas
for Prop, denoted by FmPetri−PDL?(A), is defined by the grammar

ρ ::= p | > | ¬ρ | ρ ∧ ρ | 〈s, η〉ρ

where p ∈ Prop.



We use the standard abbreviations ⊥ ≡ ¬>, ρ ∨ ρ ≡ ¬(¬ρ ∧ ¬ρ), ρ → ρ ≡
¬(ρ ∧ ¬ρ) and [s, η]ρ ≡ ¬〈s, η〉¬ρ.
The definition below introduces the firing function. It defines how the marking
of a basic Petri net changes after a firing.

Definition 3. For a set of markings S, we define the firing function f : S ×
Π0 → S as follows

– f(s, at1b) =

{
s1bs2, if s = s1as2

ε, if a /∈ s

}
– f(s, abt2c) =

{
s1cs2s3, if s = s1as2bs3

ε, if a /∈ s or b /∈ s

}
– f(s, at3bc) =

{
s1s2bc, if s = s1as2

ε, if a /∈ s

}
The definitions of frame, model and satisfaction, that we recall below, are adapted
from PDL to deal with the firing of basic Petri nets.

Definition 4. A frame for Petri-PDL? is a triple 〈W,Rπ,M〉, where

– W is a non-empty set of states;
– M : W → S;
– Rπ is a binary relation over W , for each basic program π, satisfying the

following condition: let s = M(w)
• if f(s, π) 6= ε, if wRπv then f(s, π) �M(v)
• if f(s, π) = ε, (w, v) 6∈ Rπ

– we inductively define a binary relation Rη, for each Petri net program η, as
follows:
• Rη∗ = R∗η, where R∗η denotes the reflexive transitive closure of Rη.
• η = η1 � η2 � · · · � ηn
Rη = {(w, v)| for some ηi,∃u such that si ∈M(u) and wRηiu and uRηiv}

where s = M(w), ηi are Petri net programs and si = f(s, ηi), for all 1 ≤ i ≤
n.

Definition 5. A model for Petri-PDL? is a pair M = 〈F ,V〉, where F is a
Petri-PDL frame and V is a valuation function from a set of propositions Prop,
V : Prop→ 2W .

The semantical notion of satisfaction for Petri-PDL? is defined below.

Definition 6. Let M = (F ,V) be a model. The notion of satisfaction of a
formula ρ in a model M at a state w, notation M, w |= ρ, can be inductively
defined as follows:

– M, w |= p iff w ∈ V(p);
– M, w |= > always;
– M, w |= ¬ρ iff M, w 6|= ρ;
– M, w |= ρ ∧ ρ′ iff M, w |= ρ and M, w |= ρ′;
– M, w |= 〈s, η〉ρ if there exists w′ ∈W , wRηw

′, s ⊆M(w) and M, w′ |= ρ.

If M, v |= A for every state v, we say that A is valid in the model M, notation
M |= A. And if A is valid in all M we say that A is valid , notation |= A.



2.2 Kleene algebras and Action Lattice

We review in this section the notion of Action Lattice [10] as it was used in [13].

Definition 7 (Kleene Algebra and Action lattice). An action lattice is a
tuple A = (A,+, ; , 0, 1, ∗,→, ·), where A is a set, 0 and 1 are constants, ∗ is
an unary operation in A and +, ; ,→ and · are binary operations in A satisfying
the axioms enumerated in Figure 2, where the relation ≤ is induced by +: a ≤ b
iff a + b = b. An integral action lattice consists of an action lattice satisfying
a ≤ 1, for all a ∈ A. A Kleene Algebra is a structure (A,+, ; , 0, 1, ∗) satisfying
(1)-(13).

a+ (b+ c) = (a+ b) + c (1)

a+ b = b+ a (2)

a+ a = a (3)

a+ 0 = 0 + a = a (4)

a; (b; c) = (a; b); c (5)

a; 1 = 1; a = a (6)

a; (b+ c) = (a; b) + (a; c) (7)

(a+ b); c = (a; c) + (b; c) (8)

a; 0 = 0; a = 0 (9)

1 + (a; a∗) = a∗ (10)

1 + (a∗; a) = a∗ (11)

a;x ≤ x ⇒ a∗;x ≤ x (12)

x; a ≤ x ⇒ x; a∗ ≤ x (13)

a;x ≤ b ⇔ x ≤ a→ b (14)

a · (b · c) = (a · b) · c (15)

a · b = b · a (16)

a · a = a (17)

a+ (a · b) = a (18)

a · (a+ b) = a (19)

Fig. 2. Axiomatisation of action lattices (from [10])

As stated in the introduction, the structure of an action lattice is explored
in this paper along a double dimension: as a computational model and as a
truth space. The intuitions for some of its operations shall be taken from both
of these perspectives. Such is the case of operation +, which plays the role
of non-deterministic choice, in the interpretation of programs, and of logical
disjunction, in the interpretation of sentences. However, there are operations
whose intuition is borrowed from just in one of these domains. For instance, while
operations ∗ and ; are taken as iterative execution and sequential composition of
actions, operations → and · play the role of logical implication and conjunction,
respectively.

The following structures are examples of action lattices:

Example 2 (2 - linear two-values lattice.). As a first action lattice example, we
consider the two valued boolean lattice 2 = ({>,⊥},∨,∧,⊥,>, ∗,→,∧) with the
standard boolean connectives defined as follows:

∨ ⊥ >
⊥ ⊥ >
> > >

∧ ⊥ >
⊥ ⊥ ⊥
> ⊥ >

→ ⊥ >
⊥ > >
> ⊥ >

∗
⊥ >
> >



Example 3 (Wk finite Wajsberg hoops). We consider now an action lattice en-
dowing the finite Wajsberg hoops [2] with a suitable star operation. Hence,
for a fix natural k > 0 and a generator a, we define the structure Wk =
(Wk,+ , ; , 0, 1, ∗,→, ·), where Wk = {a0, a1, · · · , ak}, 1 = a0 and 0 = ak, and
for any m,n ≤ k: am + an = amin{m,n}, am; an = amin{m+n,k}, (am)∗ = a0,
am → an = amax{n−m,0} and am · an = amax{m,n}.

Example 4 ( L - the  Lukasiewicz arithmetic lattice). The  Lukasiewicz
arithmetic lattice is the structure  L = ([0, 1],max,�, 0, 1, ∗, → , min), where
x→ y = min(1, 1− x+ y), x� y = max(0, y + x− 1) and x∗ = 1.

More examples and properties of action lattices can be found in [13].

3 Petri nets with failures

This section introduces the notion of Petri net with A-failures, as well as suitable
Kleene algebras to interpret (composed) programs. As referred in the introduc-
tion, the use of an action lattice A as parameter is due to the necessity of
supporting a double dimension: (i) attribute a reliability degree to the firing of
a transition, referring to the interpretation of Petri net programs; (ii) state a
degree for a specific property of a Petri net, on the logical side.

As stated, this work is concerned with Petri nets where transitions between
markings may fail. This assumption entails adjusting the system dynamics of
classical Petri nets: while, in such case, we argue that a system evolves to another
markings if a transition is enabled, in our approach, a transition to a new marking
occurs with a reliability degree α, where α is an element of the lattice A. In cases
where the Petri net does not transit to another marking, the transition is still
consumed. Formally:

Definition 8. Given an action lattice A = (A,+, ; , 0, 1, ∗,→, ·), a set S of
markings (over a set of place names P ) and a basic Petri net program π ∈ Π0,
an α-firing function, for α ∈ A, is a function fαπ : S × S → A defined as

– for any a t1 b ∈ Π1, fαat1b(s, s
′) =

 α, if a ∈ s and b ∈ s′
α→ 0, if a ∈ s and a ∈ s′

0 if a /∈ s


– for any ab t2 c ∈ Π2, fαabt2c(s, s

′) =

 α, if a, b ∈ s and c ∈ s′
α→ 0, if a, b ∈ s and a, b ∈ s′

0 if a, b /∈ s


– for any a t3 bc ∈ Π3, fαat3bc(s, s

′) =

 α, if a ∈ s and b, c ∈ s′
α→ 0, if a ∈ s and a ∈ s′

0 if a /∈ s


where Πi(P ) are the following partitions of the atomic programs: Π(P ), Π1(P ) =
{x t1 y | x, y ∈ P}, Π2(P ) = {xy t2 z | x, y, z ∈ P} and Π3(P ) = {x t3 yz |
x, y, z ∈ P}.



Note that, in this work, we do not take into consideration the order of the tokens
in the markings. Hence, those are represented as multisets, instead of sequences
as done for Petri-PDL? [1].

Now, we have conditions to introduce the intended model.

Definition 9 (Petri net with A-failures). Let A = (A,+, ; , 0, 1, ∗,→, ·) be
an action lattice. A Petri net with A-failures consists of a tuple P =

(
P, S,Π0, I,M0

)
where P is a set of places; S ⊆ P ∗ is the set of (admissible) markings; Π0 ⊆
Π(P ) is the set of atomic programs; I : Π0 → A is the atomic programs relia-
bility degree and M0 ∈ S is the initial marking. The interpretation of an atomic

program π ∈ Π0 is given by the firing function f
I(π)
π .

In this work, as in [13], the underlying Kleene algebra of A (c.f. Defn 7)
provides a generic computational model for interpreting programs. However, dif-
ferently form such work, we interpret computations as α-firing functions of Def-
inition 8, which carry the information about their effect when executed. Hence,
we define the following algebra:

Definition 10. Let A = (A,+, ; , 0, 1, ∗,→, ·) be an action lattice and S be a
finite set. The algebra of A-firing functions is the structure F = (F,∪, ◦,∅, χ, ∗)
where:

– F is the universe of all the α-firing functions, for all α ∈ A
– (fα1

π1
∪ fα2

π2
)(s, s′) = fα1

π1
(s, s′) + fα2

π2
(s, s′)

– (fα1
π1
◦ fα2

π2
)(s, s′) =

∑
s′′∈S

fα1
π1

(s, s′′); fα2
π2

(s′′, s′)

– ∅(s, s′) = 0

– χ(s, s′) =

{
1, if s = s′

0, otherwise

– (fαπ )∗(s, s′) =
∨
i≥0

(fαπ )i(s, s′) = (fαπ )0(s, s′) + (fαπ )1(s, s′) + (fαπ )2(s, s′) + . . .

The next theorem states that F represents an adequate structure to interpret
Petri net programs for Petri nets with A-failures 4.

Theorem 1. F is a Kleene Algebra

Proof. This proof is analogous to the proof of the classical result [4], stating that
the algebra of n× n matrices over a Kleene algebra is a Kleene algebra.

With this Kleene algebra, we are able to interpret regular programs in Petri nets
with A-failures, i.e. regular expressions of atomic transitions in A:

Definition 11 (A-interpretations of programs).
Let A = (A,+, ; , 0, 1, ∗,→, ·) be an action lattice and

(
P, S,Π0, I,M0

)
a Petri

net with A-failures. The interpretation of a Petri net program η is a firing func-
tion recursively defined as follows:

4 A more generic algebraic structure, suitable to deal with generic weighted computa-
tions was recently introduced by the authors in [7].



– for any atomic program π ∈ Π0, JπK(s, s′) = f
F (π)
π (s, s′)

– Jπ1;π2K(s, s′) = (Jπ1K ◦ Jπ2K)(s, s′),
– Jη∗K(s, s′) = JηK∗(s, s′), for JηK∗(s, s′) =

∑
i≥0JηK

i(s, s′) where JηK0(s, s′) =

χ(s, s′) and for any i ≥ 0, JηKi+1(s, s′) =
(
JηKi ◦ JηK

)
(s, s′)

– Jη + η′K(s, s′) = JηK(s, s′) + Jη′K(s, s′), for η, η′ Petri net programs.

The interpretation of Petri Net composed programs, as presented in Defini-
tion 1, where the global composition � is considered rather than the sequential
composition ;, can be handled in our logic indirectly by defining � as

η � η′ ≡ η; (η + η′)∗ + η′; (η + η′)∗ (20)

where η and η′ are Petri net programs.

4 Parametric construction of dynamic logics for Petri
nets with failures

This section introduces a parametric method to build Petri-PDL to reason about
Petri nets with A-failures, inspired by the construction proposed in [13]. The
semantic and satisfaction of these logics are built on top of an arbitrary action
lattice A = (A,+, ; , 0, 1, ∗,→, ·) (c.f. Definition 7). Hence, the resulting logics
will be denoted by GP(A). Petri-PDL?, as introduced in [12], is captured as an
instance of this construction (by using, as parameter, the lattice 2 of Example 2).
Beyond the reliability degrees for transitions, the action lattice also supports the
truth space for the (possible multi-valued) outcomes of the logic.

The language for GP(A) is the same of Petri-PDL?, except for formulae,
that we define below.

Definition 12. Let Prop be a set of propositions. The set of GP(A) formulas
for the set of propositions Prop and for the set of place names P , denoted by
FmGP(A)(Prop, P ), is defined by the grammar

ρ ::= p | > | ⊥ | ρ ∧ ρ | ρ ∨ ρ | ρ→ ρ | 〈ξ〉ρ | [ξ]ρ

where p ∈ Prop, ξ ::= π | π; ξ | ξ? | ξ + ξ for π ::= at1b | abt2c | at3bc, and
a, b, c ∈ P .

Observe that we denoted the regular programs (with the sequential compo-
sition ;) by letter ξ instead of η used for the Petri-net programs (with global
composition �). However, in the sequel, we will relax this convention by using
η for both cases. The symbol � will also be used as meta-syntax of our logic, to
be interpreted according to (20). For instance, the expression 〈η � η′〉ϕ is just
notation for the formula 〈η; (η + η′)∗ + η′; (η + η′)∗〉ϕ.

Note that, differently from previous work [1], we do not include the negation
as a primitive operator, and use, instead, the defined negation ¬x ≡ x → ⊥.
Actually, as stated, we intend to deal with generic truth spaces for possible non
bivalent interpretation of assertions (e.g. we are not requiring negative involu-
tion).



Definition 13. A model for GP(A) is a pair M = 〈P,V〉, where P is a Petri
net with A-failures and V is a valuation function over a set of propositions Prop,
defined as V : Prop× S → A.

Now, we define the semantic notion of satisfaction for GP(A).

Definition 14. Let A = (A,+, ; , 0, 1, ∗,→, ·) be an action lattice. The (graded)

satisfaction |= : (M×S)×FmGP(A)(Prop)→ A for GP(A) is recursively defined

for each model M, any marking s ∈ S and for any formula ρ ∈ FmGP(A)(Prop)
as follows:

– (M, s |= p) = V(p, s);
– (M, s |= >) = >;
– (M, s |= ⊥) = ⊥;
– (M, s |= ρ ∧ ρ′) = (M, s |= ρ) · (M, s |= ρ′);
– (M, s |= ρ ∨ ρ′) = (M, s |= ρ) + (M, s |= ρ′);
– (M, s |= ρ→ ρ′) = (M, s |= ρ)→ (M, s |= ρ′);

– (M, s |= 〈η〉ρ) =
∑

s′∈S

(
JηK(s, s′); (M, s′ |= ρ)

)
;

– (M, s |= [η]ρ) =
∧

s′∈S

(
JηK(s, s′)→ (M, s′ |= ρ)

)
Example 5. Let us start by revisiting Example 1, by using GP(2) (see Exam-
ple 2). For that, we denote f>`mt2x(`m, x) by a and f>xt3yc(x, yc) by b and, in this
situation a = b = >. So, we can write the sentence of Example 1 as once we

`

m

x

y

c

t2 t3

t1 a−→
`

m

x

y

c

t2 t3

t1 b−→
`

m

x

y

c

t2 t3

t1

Fig. 3. A Petri net for a (possibly) defective chocolate vending machine

turn the machine on and put one coin we have the (total) reliability that we will
obtain a chocolate. This expression can, then, be represented in GP(2) by the
formula (M, `m |= 〈`mt2x� xt3yc〉>) = >. Hence:

M, `m |= 〈`mt2x;xt3yc〉>

=
∑
s∈S

(
J`mt2x;xt3ycK(`m, s); (M, s |= >)

)
=
∑
s∈S

(
(Jlmt2xK ◦ Jxt3ycK)(`m, s); (M, s |= >)

)
=
∑
s∈S

(( ∑
s′∈S

(J`mt2xK(`m, s′); Jxt3ycK(s′, s))
)
; (M, s |= >)

)
=
∑
s∈S

((
J`mt2xK(`m, x); Jxt3ycK(x, s) + J`mt2xK(`m, `m); Jxt3ycK(`m, s)

)
; (M, s |= >)

)



=
(
J`mt2xK(`m, x); Jxt3ycK(x, yc) + J`mt2xK(`m, `m); Jxt3ycK(`m, yc)

)
; (M,yc |= >)

+
(
J`mt2xK(`m, `m); Jxt3ycK(`m, `m)

)
; (M, `m |= >)

+
(
J`mt2xK(`m, x); Jxt3ycK(x, x) + J`mt2xK(`m, `m); Jxt3ycK(`m, x)

)
; (M,x |= >) = >

Assume now that this machine has a technical problem and it can not assure
with total reliability the release of a chocolate every time a coin is inserted.
Suppose also that we can express such reliability degrees in a 1 . . . 10 discrete
scale. Hence, using GP(W10) (see Ex.3), we can express that the machine transits
from marking lm to x with a reliability 8 and from x to yc with 9, i.e. a = 8
and b = 9. Now, the verification of the property once we turn the machine on
and put one coin we have a reliability 7 out of 10 that we will obtain a chocolate,
from the marking `m, can be computed by
M, `m |= 〈`mt2x;xt3yc〉> =

(
8; 9 + (8→ 0); 0

)
; 10 +

(
(8→ 0); 0

)
; 10 +

(
8; (9→

0) + (8→ 0); 0
)
; 10 = 7.

Nevertheless, for some situations, it could be more appropriate to use a con-
tinuous scale. Suppose, for instance, that we want to be more precise, by stating
that the reliability degree of the machine to evolve from marking lm to x is 0.78
and from x to yc is 0.93, which corresponds to a = 0.78 and b = 0.93. This can
be expressed using GP( L) (see Ex. 4). In this case we have:
M, `m |= 〈`mt2x;xt3yc〉> = max{max{0.78�0.93, (0.78→ 0)�0}�1, ((0.78→
0)� 0)� 1,max{0.78� (0.93→ 0), (0.78→ 0)� 0} � 1} = 0.71.

Let us now use the global composition operator �, in place of the simple
sequential composition ;. Given the Petri net program η = `mt2x � xt3yc, we
compute the reliability degree of the formula 〈`mt2x � xt3yc〉>, using GP(2),
as follows:

M, `m |= 〈`mt2x� xt3yc〉>

=
∑
s∈S

(
J`mt2x� xt3ycK(`m, s); (M, s |= >)

)
=
∑
s∈S

(
J`mt2x; η

∗
+ xt3yc; η

∗K(`m, s); (M, s |= >)
)

=
∑
s∈S

(
(J`mt2x; η

∗K(`m, s) + Jxt3yc; η
∗K(`m, s)); (M, s |= >)

)
=
∑
s∈S

((
(J`mt2xK ◦ Jη∗K)(`m, s) + (Jxt3ycK ◦ Jη∗K)(`m, s)

)
; (M, s |= >)

)
=
∑
s∈S

(( ∑
s′∈S

(J`mt2xK(`m, s′); Jη∗K(s′, s)) +
∑
s′∈S

(Jxt3ycK(`m, s
′
); Jη∗K(s′, s))

)
; (M, s |= >)

)
=
∑
s∈S

((
J`mt2xK(`m, x); Jη∗K(x, s) + J`mt2xK(`m, `m); Jη∗K(`m, s) + Jxt2ycK(`m, x); Jη

∗K(x, s)

+ Jxt3ycK(`m, `m); Jη∗K(`m, s)
)
; (M, s |= >)

)
=
(
(> ∧ >) ∨ (⊥ ∧ >) ∨ (⊥ ∧ >) ∨ (⊥ ∧ >)

)
∧ > ∨

(
⊥ ∧ >

)
∧ > ∨

(
(> ∧ >) ∨ (⊥ ∧ >)

)
∧ > = >



5 Conclusions and further work

In this work, we contributed with the generalisation of the logic presented in [1],
by considering that the firing of a Petri net may fail. The approach taken in
order to handle this variation was based on previous work done in [13], where
an action lattice is considered to model both the notion of reliability degree of
transitions in models and to support the (possible) multi-valued truth degree of
a formula. This goal was accomplished by introducing: (i) a new definition of
Petri net, where transitions between markings may fail; (ii) an underlying class
of Kleene algebras (parametric on an action lattice), suitable for interpreting
(composed) Petri net programs; (iii) a parametric method to build Dynamic
logics with these semantics.

The extension of this work can be done in several directions. First, the neces-
sity to have supporting computational tools for these logics suggests the develop-
ment of a proof calculi and model checking algorithms, with their computational
complexity. In this line, we expect to obtain characterizations, parametric to the
base action lattice adopted in each situation. Moreover, comparing these logics
with the literature is also in our agenda, namely to establish a formal relation
between the models of GP( L) and the Fuzzy Petri nets [17].

The behaviour of Petri nets is concurrent by nature, being defined by the
simultaneous firing of sets of transitions. However, in the method introduced,
global composition is presented as a derived operator from the base (sequential
composition, choice and reflexive transitive closure) Kleene operations. Hence,
in future, we intend to adapt the presented construction to another parameter
supporting a concurrent computational model like, for instance, a Concurrent
Kleene Algebra [9]. An approach in this direction was already addressed in [5],
which is based on the well known work on modal semirings [15]. Note however
that, although such approach is capable of handling concurrency, it lacks the
expressiveness for generating a logic able to reason in a multi-valued truth space.
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A dynamic logic for every season. In Christiano Braga and Narciso Mart́ı-Oliet,
editors, SBMF 2014, volume 8941 of LNCS, pages 130–145. Springer, 2014.
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