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Abstract. Great efforts have been made on meta-genomics in the field
of new species exploration in the past decades. With the development
of next-generation sequencing technology, meta-genomics datasets have
been produced as large as dozens of hundreds of gigabytes or even sev-
eral terabytes, which brings a severe challenge to data analysis. Besides,
conventional meta-genomics comparing algorithms may not take full ad-
vantage of powerful computing capacity from parallel computing tech-
niques due to lack of parallelism. In this paper, we propose DDP-B, a dis-
tributed dynamic parallel framework for meta-genomics binary similarity
analysis, to overcome these limitations. In this framework, we introduce
a binary distance algorithm for meta-genomics similarity measurement
and develop different levels of parallel granularity of the algorithm uti-
lizing MPI, OpenMP, and SIMD techniques. Moreover, we establish a
dynamic scheduling method to deliver asynchronous parallel computing
tasks and design a distributed cluster to deploy the dynamic parallel sys-
tem, which completes 2.97K pairs of meta-genomics vectors comparison
per second and achieves an 134.79x speedup versus the baseline in the
optimal condition. Our framework shows stable scalability when assigned
larger workloads.

Keywords: Meta-genomics · Big Data · Parallel Computing · Binary
Distance · Dynamic Scheduling · Distributed scalability

1 Introduction

Great efforts have been made on exploring new species in the last several decades
since the Woese significant work [23]. Meta-genomics [25], which involves the to-
tal DNA sequences extracted directly from the natural environment (e.g. ocean,
soil, and the human body) samples, occasionally preserves the molecular signa-
tures of potential unexplored or undiscovered microorganisms [24]. Many novel
techniques such as cultivation-independent shotgun genomics and next-generation
sequencing [16] have been widely applied in this domain and dramatically ag-
grandized the scale of sequencing data as well as the speed of genome sequencing.
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As a result, meta-genomics datasets could be as large as dozens of hundreds of
gigabytes or even several terabytes, which makes it a typical big data problem.

On the other hand, the rise of large scale computing clusters brings huge
opportunities for meta-genomics research [2]. High-performance clusters sup-
port parallel computing and scalable architectures at multiple levels, which de-
livers extraordinary powerful performance theoretically. However, most of the
conventional meta-genomics similarity algorithms barely take the most of high-
performance parallel computing because there is a lack of excavation and utiliza-
tion of their parallelism and scalability, which turns out the major limitations
to deploy the algorithms on high-performance clusters. Moreover, the vast data
scale brings a severe challenge to data storage and transmission in the field of
high-performance computing.

Recently, binary distance measurements have been comprehensively applied
in the field of biology [11], ethnology [6], and taxonomy [21]. Furthermore,
genome sequence compressing methods (such as Hash map [18]) have contributed
significantly to reducing the scale of meta-genomics datasets and enabling effi-
cient search of massive sequences collections. Genome sequence data could be
converted from character strings into binary vectors by the Hash map. As a re-
sult, we can measure the genome similarity through binary distance methods[5].

In this paper, we introduce a binary distance coefficient based comparing
algorithm to measure meta-genomics similarity. The binary vectors generated
from meta-genomics sequences is still too long (even more than 108 bits) to cal-
culate the binary distance coefficient straightforward. To develop the algorithm
efficiently, we divide a whole binary vector into 64-bit sub-sequences and process
the calculation with Intel intrinsic instructions [15], which is easy to be paralleled
as an atomic operation. Besides, we develop the binary similarity algorithm with
hierarchical parallelism taking advantage of multiple parallel techniques such as
SIMD [13], OpenMP [3], and MPI [10]. The hybrid parallel optimization delivers
an 87.9x speedup compared with the original baseline.

Moreover, the data loading procedure is difficult to accelerate because of
the memory read/write speed limitation, which constrains further optimization
of the algorithm. And with the growth of data size, how to balance the work-
loads among large scale distributed clusters becomes a huge challenge [20]. To
overcome these challenges, we design a dynamic scheduling system based on
a master-slave structure and deploy it on a 9-node cluster. The scheduler dis-
tributes parallel computing tasks to the unoccupied worker nodes dynamically
so that the communication and computation are decoupled and the data loading
time is overlapped with computing time. As a result, we achieve a 7.5x speedup
with 8 worker nodes under basic workload, which is close to linear accelera-
tion. Meanwhile, we design a grouping strategy to organize worker nodes into
extensive worker groups based on the workloads. Every worker group will be
reorganized automatically if the workload exceeds its capacity. We achieve an
extra speedup benefit under 4 times of basic workload (15.55x versus 9.27x),
which exhibits our framework having stable scalability under larger workloads.
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With all the above contributions, we propose DDP-B, a distributed dynamic
framework taking advantage of multiple parallel levels for a binary similarity
algorithm. We deliver 2.97K pairs of meta-genomics similarity comparison per
second and achieve an 134.8x speedup overall in the optimal condition using this
framework.

The rest of the paper is organized as follows. Section 2 introduces related work
as well as the background of our research. Section 3 explains our methodologies in
detail. Section 4 presents the implementation and experimental results. Section
5 delivers a conclusion of whole work and discusses future research.

2 Background

In this section, we introduce some related techniques concerning genome com-
paring algorithms.

2.1 Genome sequences alignment

The next-generation sequencing techniques usually gather massively short genome
reads and then align them into longer reads. Experimental evidence shows that
a whole chromosome sequence usually covers millions to billions of base pairs
[7, 22]. Though it is difficult to compare the chromosomes from end to end be-
cause we can hardly find the exact beginning of them, there is a requirement
to investigate the similarity between whole long genome reads. The main reason
is that quite a few similar basic genome functional units may be carried by the
chromosomes of many different organisms. So it is not easy to figure out whether
the short reads belong to different species.

Fig. 1. Meta-genomics compares the new collected query genome list with the reference
datasets, and extracts the genome sequences with low similarity to investigate whether
there is a possibility of unknown species existing.

As meta-genomics sequences are captured from the environment randomly, it
is almost impossible to extract every single microorganism’s information through
biological techniques. However, computer-aided analysis technology provides a
feasible method for the study of meta-genomics. Taking advantage of the redun-
dant and overlapping information generated by genome sequencing techniques,
genome fragments (also mentioned as reads by biologists) can be assembled into
longer reads (also called contigs) and finally spliced into a chromosome sequence
[14]. Consequently, meta-genomics research would be transformed into sequence
alignment tasks [19]. We can speculate on the possibility of the existence of
unknown organisms based on the results of sequence alignment. Potential undis-
covered species information will be dug out through genome sequence compare
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processing if there exists a quite different sequence compared with every known
reference sequence. Figure. 1 shows the meta-genomics comparing processing.

2.2 K-mer, Hash map, and Binary distance

The conventional comparing algorithms designed to quantitatively evaluate the
similarity among meta-genomics based on computing system usually regard
genome sequences as character strings (i.e. representing DNA’s four bases with
’A’, ’G’, ’C’, and ’T’ and assembling them into strings in order.) and compare
these strings to measure the similarities among genomes. Therefore, numerous
algorithms of string similarity comparison have been applied on meta-genomics,
which can be roughly divided into two categories: exact matching (such as Boyer
Moore Algorithm and Shift Or Algorithm [4]) and approximate matching (such
as Edit Distance and Haiming Distance [17]).

Except for the naive sequence comparing algorithm, there are also many other
distinguished methods obtaining remarkable achievements [4, 17]. Among them,
K-mer similarity [1] is widely applied in bioinformatics which generates k-length
sub-sequences of a long read step by step, therefore, we could just compare the
much shorter K-mers. Although an L-length read still produces L−k+1 K-mers,
we could focus on the distinct K-mers, so that the scale of the datasets will be
reduced appreciably.

Besides, K-mers of a whole genome sequence can be mapped into a binary
vector using Hash map algorithms. Figure. 2 shows the detail of K-mers Hashing
conversion. The vector’s i-th position will be set to 1 only if the Hash value of
the K-mer equals to i, which is expressed as

V ec[i] =

{
1, Hash(K-mer) = i

0, others
(1)

Fig. 2. Convert K-mers into binary vector. The vector’s i-th position will be set to 1
only if the Hash value of the K-mer equals to i.

Therefore, the meta-genomics similarity problem is transformed into a binary
distance problem. Choosing the appropriate Hash function is not within the
scope of this paper. We focus the research on how to take advantage of the
parallelism and the scalability of the binary distance algorithm.

3 Methodologies

3.1 Binary distance coefficient

The binary distance method can be regarded as an approximate matching algo-
rithm and applied on the domain of meta-genomics with two major advantages:
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1) the inaccuracy results are almost surely generated during the genome sequenc-
ing procedure limited by the transcription properties of genetic information, so
that the approximate methods can provide sufficient effectiveness; 2) data size
and computational complexity are likely to be obviously reduced so that the
approximate algorithms usually perform more efficiently. In the field of binary
distance research, the Jaccard coefficient [12] is one of the most famous mea-
surements and the Forbes coefficient [8] is proposed for clustering ecologically
related species especially, so that the Forbes coefficient could reveal the genome
similarity quantitatively. In this paper, we define a modified Forbes-II coefficient
to measure the similarity score between the genome binary vectors.

SM−FII
=

na− (a + b)(a + c)

(a + b)2 + (a + c)2 − (a + b)(a + c)
(2)

where the definitions of n, a, b, c, and d are referred to Table. 1. The coefficient
SM−FII

is only related to the parameters n, a, (a + b), (a + c). In other words,
the binary distance between two genome vectors depends on the length of two
vectors, the number of bit set to 1 (abbreviated as bit-1) inside the bit-wise
logic AND result from two vectors, and the number of bit-1 inside each vector
respectively.

Table 1. Vec 1, 2 are two n-length binary vectors, a is the number of attributes where
the values of Vec 1 and Vec 2 are both 1, b is the number of attributes where the value
of Vec 1 and Vec 2 is (0,1), c is the number of attributes where the value of Vec 1 and
Vec 2 is (1,0), and d is the number of attributes where both Vec 1 and Vec 2 have 0.

&
Vec 1

1 0 Sum

Vec 2
1 a b a+b
0 c d c+d

Sum a+c b+d n=a+b+c+d

3.2 Parallel hierarchy design

Therefore, how to count the number of bit-1 inside a binary vector becomes the
first challenge. Here we evaluate three counting methods: left shift, look-up table,
and popcnt. The left shift method shifts the vector to the left continuously and
counts the number of bit-1 according to the sign bit. The look-up table means
preparing a table consisting of the number of bit-1 in advance and looking for
the exact number based on the binary vector’s decimal form. Both of them are
inefficient because they are both at a computation complexity of O(n) for an
n-bit vector. Besides, the look-up table method requires an extra O(2n) memory
consumption.

Intrinsic instruction optimization Fortunately, Intel intrinsic instruc-
tions provides an operator to count the number of bit-1 inside a 64-bit unsigned
integer (named popcnt) bound with an assembly instruction. So that the the-
oretical computation complexity of this operation is O(1) for a 64-bit vector.
We have measured all the above methods and find that the performance of the
popcnt is at least 2x faster than the other two methods. Moreover, popcnt is easy
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Algorithm 1 Binary Coefficient Calculating Parallel Hierarchy

Phase 0:
Receive Query[pi:pj ][0 : n], Allocate QueryBit[pi:pj ] ← {0}
#pragma omp parallel
for m in [pi : pj ] do

#pragma simd
QueryBit[m] += popcnt(Query[m][0 : n])

end for
Phase 1: Send Ready Signal
Phase 2:
Receive RefV ec[qi][0 : n], Allocate RefBit[qi] ← 0, AndBit[qi][pi : pj ]← {0}
Allocate SM−FII [qi][pi:pj ]

← {0}
#pragma simd
RefBit[qi] += popcnt(RefV ec[qi][0 : n])
#pragma omp parallel
for m in [pi : pj ] do

#pragma simd
AndBit[qi][m] += popcnt(Query[m][0 : n] & RefV ec[qi][0 : n])

end for
Calculate SM−FII [qi][pi:pj ]

Phase 3: Send SM−FII [qi][pi:pj ]
, Ready Signal

to parallelize as an atomic operation. Therefore, we use the popcnt operator to
calculate the number of bit-1 inside vectors.

Data-level parallel Since the length of binary genome vectors usually ex-
ceeds the capacity of the popcnt operator (64-bit), we need to separate a whole
vector into several 64-bit sub-vectors. Here we utilize the SIMD (Single Instruc-
tion Multiple Data) vectoring techniques to deal with two 64-bit binary sub-
vectors simultaneously as the Intel AVX (Advanced Vector Extensions) supplies
128-bit registers. This method could deliver a 2x speedup theoretically.

Thread-level parallel When comparing long-winded binary vectors, we al-
locate the popcnt and bit-wise AND operations to multiple threads uniformly
as the two operations are both regular and aligned. Here we apply compiler di-
rectives of OpenMP (Open Multi-processing) to provide multi-threading parallel
with a portable, scalable model. Meanwhile, we fork and synchronize the threads
dynamically to balance the workloads among threads.

Overall, we accumulate each parameter and organize the binary distance co-
efficient computation through different levels of parallel granularity. Algorithm. 1
shows the detail of the parallel hierarchy to calculate the distance coefficient.

3.3 Distributed Dynamic schedule design

We construct the dynamic scheduling system based on two major components
in this system: Master Node and Slave Nodes. The communication interface
between the master node and the slave nodes is established by MPI (Message
Passing Interface). Figure. 3 shows the distributed scalable dynamic program-
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Fig. 3. Distributed Scalable Dynamic Programming. The left part shows the data flow
path of dynamic scheduling. The right part shows the worker group structure and FIFO
ready queue.

ming architecture and exhibits the detail of control flow. And we will describe
the behavior of the master node detailedly in the following content.

Master Node It is the core module of our distributed dynamic system.
The master node is responsible for managing all worker groups, fetching binary
vectors from reference and query lists, broadcasting vectors to targeted worker
groups, and gather all comparing results from them. We design two kernels for
the master node: Ready Queue and Scheduler.

Ready Queue is a two-way first-in-first-out (FIFO) queue, preserving the
standby state information of worker groups. A new ready worker group will be
pushed back to the end of the ready queue, while an assigning worker group will
be popped up from the top.

Scheduler is the controller unit and decides all behaviors of the master node.
The control flow can be divided into four asynchronous phases as below. The
scheduler will scan through these phases until all the comparing tasks distributed
and all calculating results gathered.

– Phase 0: Scheduler fetches the query vectors while the query list is not empty
and then broadcasts them to all worker groups. Every worker group will keep
a complete copy of the query list.

– Phase 1: Every worker group sends a ready signal to scheduler asynchronously
after receiving all the query vectors. Scheduler pushes the worker group ID
into the end of the FIFO ready queue once receives the response signal from
the worker.

– Phase 2: Scheduler pops a worker group ID from the ready queue and dis-
tributes one reference vector to the popped worker group while the reference
list is not empty.

– Phase 3: After finishing the comparing task, the worker group sends the sim-
ilarity results as well as a ready signal back to the scheduler. The scheduler
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will save the results with a tag and push the ready worker into the queue
again.

Slave Nodes This is the workload module which undertakes all the calcu-
lating tasks. We construct slave nodes as a set of scalable worker groups. Slave
nodes have a flexible structure and can be recombined according to the real
workload in practice.

Worker Group It is assembled with one or more worker nodes to keep a
complete copy of the query list with all memory consumption. And we separate
the whole query list into k subsets if there are k worker nodes in one worker
group. Every worker group will be reorganized automatically if the scale of query
data exceeds this group’s capacity.

Worker Node We make each worker node keep a subset of the query list in
its local memory. At Phase 3, every worker node compares one piece of refer-
ence vector with all the query vectors in the subset to calculate the similarity
coefficient following Algorithm. 1.

Grouping Strategy Distributed heterogeneous clusters grouping strategy could
be regarded as a typical knapsack problem (which is an NP-complete problem),
so we will leave it for further research. For simplicity of implementation, in this
paper we adopt a naive grouping strategy to organize worker nodes, i.e. we will
add worker node one by one from scratch into a worker group until the worker
group’s capacity is enough to hold a whole copy of query list.

4 Experiment results

4.1 Implementation

In order to deploy our framework, we adopt a 9-nodes cluster to build a dynamic
system with 1 master node and 8 worker nodes. There are two CPU sockets on
each node, 8 physical cores with hyper-threading enabled in each CPU. Every
worker group has one worker node in default. The master node is connected with
every worker node by Infiniband. Other hardware and software information is
provided in Table. 2.

Table 2. Hardware and software information

Item Description

CPU Intel(R) Xeon(R) E5-2660 @ 2.2GHz * 2
Memory DDR3 1333MHz 96GB

Hard Disk SAS HDD 300GB
Network Intel Ethernet Adapter I350 with 1Gb/s

Connection Mellanox QDR Infiniband 40Gb/s
Operating System CentOS 7.2-1511 Linux 3.10.0

MPI Intel MPI 2017.0.098

The binary vectors are aligned at 3×108-bit length, which is supplied by DOE
Joint Genome Institute [9]. As mentioned in Section 3.2, we separate each vector
into 4.69M 64-bit sub-vectors. So one SM−FII

coefficient computation requires
about 4.69M bit-wise ANDs, 14.06M popcnts, and 18.75M accumulations (37.5M
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operations altogether). We set both query list and reference list to 203 vectors
so that the traverse comparison requires 1.55T operations. Every experiment
is repeated three times and adopted the average results to avoid environmental
instability. The serial computing baseline completes 22.07 coefficients calculating
per second.

Fig. 4. Single Node Performance. The bar chart uses exponential coordinates for clarity.

Fig. 5. Multi Nodes Single Thread Performance. The master node is not counted.

4.2 Performance Analysis

We summarize the runtime performance of the distributed dynamic program-
ming system in a parallel hierarchy.

Multi Threads Figure. 4 shows the multi-threading performance optimized
on a single node. We observe that the speedup curve has a sub-linear growth
trend when threads number goes from one to eight. And then, it will conver-
gence and even suffer performance damage after that. As mentioned above, every
CPU has eight physical cores. Hence CPU may be overloaded when forked into
more than eight threads which increases the overhead of thread switching. The
multithreading delivers 4.2x speedup with 16 threads compared with baseline.

Multi Nodes Moreover, we evaluate the data loading time and coefficient
computing time consumption separately. Although the data loading procedure is
not time-consuming, it is difficult to parallelize this part because of the memory
read/write speed limitation. However, we can efficiently overlap this procedure
with computing in multi-nodes architecture. Figure. 5 shows the benefits from
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Fig. 6. Hybrid Parallel Performance. The bar chart shows the speedup ratio compared
with single node single thread baseline.

multi-nodes single thread parallel. The speedup curve demonstrates a favorable
accelerating trend and this method delivers 7.5x speedup compared with baseline
as a result.

Hybrid Parallel Then we nest MPI and OpenMP programming techniques
to take the most of this distributed dynamic architecture. Figure. 6 exhibits
the comprehensive results with a various number of nodes as well as threads.
The optimized performance trends similarly with those mentioned above two
orthogonal strategies. System performance increases with the number of nodes
as well as threads but will degenerate when too many threads assigned on one
worker node. The optimal performance is achieved on 8 nodes 16 threads, which
gives an 87.9x speedup compared with the baseline.

Table 3. SIMD Performance

8 Nodes 16 Threads with/ SIMD with SIMD Speedup

Time 21.25 s 13.85 s 1.5x

Table 4. Scalability under Larger Workloads

Query Vecs Reference Vecs
1 Node 16 Threads 8 Nodes 16 Threads

Speedup
with SIMD with SIMD

203 203 128.42 s 13.85 s 9.27x
203 812 506.54 s 32.58 s 15.55x

SIMD We investigate the SIMD optimization as well as the scalability of
our system. Table. 3 shows that an extra 1.5x speedup obtained by the SIMD
on multi-nodes multi threads condition approaching the theoretical 2x peek.

Scalability Furthermore, we enlarge the reference data size to examine the
scalability of the system. As Table. 4 shows, our system achieves a 15.55x speedup
under a larger workload while the original speedup is 9.27x when we keep 16
threads on every worker node and scale the number of worker nodes from 1 to 8
which exhibits super-linear scalability.

In a summary, we accomplish 2.97K binary coefficients calculating per second
which gives an 134.8x speedup compared with baseline as well as 111.6 GOPS
(Giga Operations per Second) at the condition of 8 worker nodes, 16 threads per
worker node with SIMD applied.
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5 Conclusion

In the filed of computer-aid meta-genomics research, how to design similarity
measurement algorithms with high efficiency remains an enormous challenge. In
this paper, we propose PPD-B, a distributed dynamic parallel framework based
on a binary similarity coefficient to support the meta-genomics analysis. Our
framework modifies the Forbes coefficient to quantitatively evaluate the simi-
larity among Hashed meta-genomics binary vectors and utilizes a hierarchical
parallel architecture to optimize the computing process of coefficients computa-
tion. The experimental results show that the framework operates efficiently and
achieves an 134.8x speedup compared with the baseline. And we design a scal-
able distributed dynamic programming system scheduling the whole system to
decouple the communication and computation, which proven stable scalability
on large workloads. Our work can be a novel standard instance implicating for
designing efficient meta-genomics algorithms on distributed parallel clusters.

In the future, we plan to further research on several respects: assembling
heterogeneous machines into our dynamic architecture with balanced workloads,
which can be regarded as a typical knapsack problem; applying our system on
multi-core accelerators or processors such as GPUs and Sunway to accelerate
our algorithm; investigating more efficient binary similarity measurements and
related Hash algorithms; and comparing our framework with prospective meta-
genomics similarity analysis systems in terms of performance and effectiveness.
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