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Abstract

Network slice management and, more generally, resource orchestration should
be fully automated in 6G networks, as envisioned by the ETSI ENI. In this con-
text, artificial intelligence (AI) and context-aware policies are certainly major
options to move in this direction and to adapt service delivery to changing user
needs, environmental conditions and business objectives. In this paper, we step
towards this objective by addressing the problem of optimal placement of dy-
namic virtual networks through a self-adaptive learning-based strategy. These
constantly evolving networks present, however, several challenges, mainly due to
their stochastic nature, and the high dimensionality of the state and the action
spaces. This curse of dimensionality requires, indeed, a broader exploration,
which is not always compatible with a real-time execution in an operational
network. Thus, we propose DQMC, a new strategy for virtual network em-
bedding in mobile networks combining a Deep Reinforcement Learning (DRL)
strategy, namely a Deep Q-Network (DQN), and Monte Carlo (MC). As learn-
ing is costly in time and computing resources, and sensitive to changes in the
network, we suggest a control-theory-based techniques to dynamically leverage
exploration in DQMC. This leads to fast, efficient, and sober learning compared
to a Monte Carlo-based strategy. This also ensures a reliable solution even in
the case of a change in the requests’ sizes or a node’s failure, showing promising
perspectives for solutions combining control-theory and machine learning.
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1. Introduction

Network slicing has been introduced by the NGMN 5G white paper [1],
where logical networks are enabled to use a common physical substrate infras-
tructure. This contributes to create a flexible stakeholder ecosystem and a pro-
grammable software-defined network environment by integrating technical and
business innovation sustained by network and cloud resources. Network slicing
is accomplished via the definition of network slice instances (NSIs), a.k.a. Vir-
tual Network Requests (VNRs), composed of Virtual Network Functions (VNF).
Different VNRs can be deployed within the same physical network to support
a wide variety of services with different requirements, such as enhanced mobile
broadband (eMBB), massive machine type communication (mMTC), or ultra-
reliable low latency communication (uRLLC).

In this paper, we consider the virtual network slice request placement prob-
lem also known in the literature as Virtual Network Embedding (VNE) or VNF
Forwarding Graph Embedding (VNF-FGE). It is generally common to model
this problem as an integer linear program, with an objective of maximizing the
revenue-to-the-cost (R2C), thus using the lowest amount of physical resources
for placing a VNR [2]. The VNE problem being NP-hard, with very long con-
vergence time, even for small network instances, several heuristics have been
proposed to solve it [3, 4, 5]. More recently, DRL techniques have emerged and
allow achieving qualitatively better results [3].

One of the main difficulties in using DRL-based strategies is the time re-
quired to learn the good neural network weights so that the strategy converges.
On the other hand, in slices’ placement problems with dynamic arrival and de-
parture of slice requests, it is mandatory to adapt to changes in the network
and to be resilient to the stochastic nature of the requests arrival.

The combined use of Deep Reinforcement Learning (DRL) and control theory
benefit from increasing interest in the last years for its perspectives of safe,
efficient, robust, scalable and explainable decision-making [6]. In this work, a
combination of a DRL strategy, namely Deep Q-Network (DQN), and control
theory is proposed by creating a feedback loop controlling the DQN’s exploration
strategy. The control-based dynamic exploration strategy, presented in this
paper, improves the exploration efficiency, while positively contributing on the
placements’ performance, by enhancing the convergence speed and increasing
fastness and accuracy of the VNR placements, as well as soberness in computing
resources. Besides the increased robustness regarding the VNR load variations,
it provides for more safety and trustability by avoiding erratic decisions for new
situations, in which the data used for learning may no longer match the current
situation.

The next sections are organized as follows: Section 2 introduces the vir-
tual network placement problem and the DQN placement solution. Section 3
introduces the state of the art. Section 4 presents the dynamic exploration
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Table 1: Summary of Notations

Notation Description
bls Available bandwidth at substrate link ls

blv Bandwidth request at VL lv

bslv Allocated bandwidth for VL lv at substrate link ls

cns Available CPU at substrate node ns

cnv CPU request at VNF nv

csnv Allocated CPU for VNF nv at substrate node ns

Gs, Gv The substrate network and VNR graphs
Ls, Lv Set of substrate links and links
N Number of MC iterations

Ns, Nv Set of substrate nodes and VNFs
R Revenue to the cost
λ VNRs arrival rate

control strategies, the main contribution of this paper. Section 5 presents the
experimental evaluation and Section 6 concludes the paper.

2. Virtual Network Embedding using Reinforcement Learning

2.1. General Description

In the following, the general problem of dynamic virtual network embedding
is considered, in which the services’ arrival follows a stochastic process (i.e., on-
line service placement). Without loss of generality, we consider the consecutive
arrival of requests for the placement of virtual services on top of an underlying
network, the substrate network ( Fig. 1).

Substrate Network. We model the substrate network as an undirected graph
Gs = (Ns,Ls), where Ns and Ls denote the substrate nodes and links respec-
tively. The CPU capacity of a substrate node is denoted by cns with ns ∈ Ns,
and the bandwidth capacity of a link by bls with ls ∈ Ls.

Virtual Network Request (VNR). Similarly, we model an arriving VNR as an
undirected graph Gv = (Nv,Lv), where Nv and Lv denote the substrate nodes
and links respectively. The CPU demand of a VNF is denoted by cnv with
nv ∈ Nv, and the bandwidth demand of a link by blv with lv ∈ Lv.

We assume that the VNRs arrive dynamically according to a Poisson process
with an arrival rate λ, each with a different CPU and bandwidth request, and
that each Virtual Network (VN) has an associated lifetime measured in time
units, following an exponential distribution.
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Figure 1: System model

2.2. VNE Problem

We assume that a VNR is successfully deployed if the Virtual Nodes Mapping
(VNM) and Virtual Links Mapping (VLM) to the substrate network meets its
CPU and bandwidth requirements.

fV NM : Nv → NS (1)

fV LM : Lv → LS (2)

We consider that the VNM function fV NM is injective, that is, two VNFs of the
same VNR can not be hosted by the same substrate node. The following equa-
tions ensure that the resource constraints are met for both CPU and bandwidth
resources, respectively:

cnv ≤ cfV NM (nv),∀nv ∈ Nv (3)

blv ≤ min
ls∈fV LM (lv)

bfV ML(lv) (4)

The management and orchestration of this placement is controlled by an
intelligent framework compatible with the lastest 5GPPP [7]. We consider that
the intelligent embedding function in Fig. 1 is guided by the ETSI-ENI Network
Function Virtualization Orchestrator (NFVO).

2.3. MDP model

Markov Decision Process (MDP) is a discrete time stochastic control process
that provides a formalism for reinforcement learning algorithms. It can be
defined as a tuple 〈S,A,P,R〉, where S, A, P and R, represent respectively the
state space, the action space, the state transition probability matrix, and the
reward function.

The MDP for the VNE problem can be described as follows:
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States. The state of the system is defined as:

S = Cs × Bs ×Ds × Cv × Bv ×Dv

where Cs is a vector representing the available CPU at each substrate node, Bs
the available bandwidth at each substrate link, Ds the vector representing the
substrate nodes’ degree in order to give information about the nodes connectiv-
ity. Similarly, Cv, Bv, and Dv, are the CPU request, bandwidth request and the
node degree of each virtual node of the VNR.

It is important to note that in MDP problems the current system’s state is
independent of previous and future states.

Actions. The output of the DQN is the probability distribution for the sub-
strate nodes’ selection. A random Gaussian noise is, then, added for a better
exploration of the action space. Subsequently, a filtering is applied to keep only
feasible nodes’ placement solution, for a faster convergence of the learning pro-
cess. Finally, the feasible node with the highest probability is chosen for the
placement of the virtual node.

Reward. The learning reward R is set to the revenue to the cost metric (R2C),
which is defined in Eq. (9). The reward Ratst at time t is obtained after selecting

the action at at state st. The discounted reward R̂t is:

R̂t = Rt+1 + γRt+2 + · · · =
∞∑
k=0

γkRt+k+1 (5)

Transition probability. The transition probability matrix P represents the dy-
namics of the system in terms of the state transition probabilities. It gives the
probability of landing in a particular state knowing that one was in state and
took a particular action. The state transition probability can be given by:

Pst+1,st = P [st+1|st, at], (6)

where st and at are the state and the action at time t. In MDP, there are
two value functions that can be used to find the best policy π: the state-value
function Vπ(s) and the action-value function qπ(s, a). The usage of value-based
algorithms becomes, unfortunately, impossible in the case of continuous state
space. Hence, a DRL-based strategy was adopted, since it allows to optimize
directly the policy, without prior knowledge of the model. Thus, the agent will
have to learn through the experiences (i.e., exploration and exploitation) to take
the right actions.

In this paper, a DQN-based strategy is considered, which is a value-based
strategy: it predicts the value Q (Q-value) of taking an action at in a particular
state st.

The Q-value update equation, which is derived from the Bellman equation,
can be given as follows:

Q(st, at)← Q(st, at) + α Loss (7)
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where α is the learning rate. With γ being the discount factor, and r(t) being
the instantaneous reward value from Eq. 9, the Loss is given by:

Loss = (r(t) + γmax
at+1

Q(st+1, at+1)−Q(st, at))
2 (8)

2.4. Embedding strategy: DQMC

In this paper, we propose the usage of the DQN strategy, which is preceded
by a features extraction layer composed of two fully connected three-layers neu-
ral networks (NN). DQN is a critic learning policy that uses a target network
and experience replay to stabilize its results. This strategy performance is im-
proved by adding a MC-based selection of a VNR placement: the best solution
obtained from N iterations is chosen, we call this strategy: DQMC [8]. The
DQMC algorithm is described in Alg. 1. The placement quality is evaluated
using the R2C metric defined as:

R =

∑
nv cnv +

∑
lv blv∑

nv

∑
ns cn

s

nv +
∑
lv
∑
ls b

ls
lv

(9)

Our aim is to maximize the R2C metric while reaching stability faster. For
this reason, Niter possible embeddings are explored using the DQN strategy,
and the R2C is evaluated for each embedding solution. However, only the set
of actions that achieves the highest R2C is stored in the replay memory. This
set of actions consists of a series of DRL steps to place all virtual nodes onto
the substrate nodes, and must offer feasible nodes and links’ mapping.

2.5. Need for a dynamic exploration

Two DRL-related problems are addressed in this section, namely the fact
that it requires expensive exploration in order to get its best performance and
that it is sensitive to changes in the environment, which makes its decisions less
safe.

Fig. 2 introduces the performance of the VNE implemented with a simple
DQN strategy, i.e. without the control of the exploration and without the
combination with Monte Carlo. DQN’s performance is compared to that of MC
strategy with a fixed number of iterations (N = 8). DQN approaches MC’s
performance with an average R2C of R = 0.64 only after a long learning phase
that takes about 300k timesteps to converge.

To tackle such a problem, we propose to augment the DRL strategy with a
control loop adapting the exploration in reaction to changes in the environment,
in order to sustain performance and safety, while reducing exploration cost. This
control loop enables the dynamic adjustment of the number of MC iterations N .
Indeed, the number of MC iterations impacts the learning speed of the DQN,
as well as the learning quality. However, in the case of DQMC, N is fixed to
a given number even after the system reaches stability. Besides, the learning
quality varies when the incoming VNRs varies (i.e., the VNRs topology, the
amount of requested resources, changes in the VNRs distribution . . . ).
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Algorithm 1: DQMC algorithm

Data: Niter, current state st, number of VNFs to place K
Result: VNR nodes’ mapping to substrate network
while n < Niter do

for k ∈ K do
Get current state;
Action:

• Calculate the nodes distribution as a function of
the current state;

• Adding a random Gaussian noise to the output;

• Select feasible substrate nodes (sufficient
resources, and a node not selected previously);

• Select substrate node with the highest probability;

end
Test virtual node mapping;
Test virtual link mapping;
Evaluate the R2C R from Eq. 9;

end
Select VNR placement with the highest R2C ;
Place the VNR;
Add state-action-state-reward to the replay memory;

We propose, in this paper, the adjustment of the number of MC iterations
based on the obtained R2C value. The objective is to guarantee a better perfor-
mance than the MC-based strategy and to improve the robustness of DQMC.
The Integral control-based DQMC solution (I-DQMC) presented in this paper,
that will be detailed in Section 4.2.2, converges faster and reaches a higher
revenue-to-the-cost level than the other approaches, see Fig. 2.

3. Related Works

3.1. Network slicing techniques

Network slicing mainly consists in placing services on a substrate network.
Since services are represented by graphs (with system and network constraints),
network slicing generalizes the “bin packing” problem, which involves placing
only monolithic items (services). This generalization implies a much higher com-
binatorial complexity, categorizing network slicing as an NP-hard problem [9].

To tackle this combinatorial problem, there are typically three categories
of approaches in the literature: exact methods [10], approximate and heuristic
methods [4] and meta-heuristics [3]. Since exact problem-solving only works
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Figure 2: Dynamic exploration motivation: R2C averaged over 100 time steps for a DQN
strategy without MC and without control; comparison with our solution I-DQMC.

for fairly small problem instances, it is often necessary to use approximations
or heuristics that allow converging very rapidly to a local minimum [4]. Meta-
heuristics allow finding qualitatively more interesting solutions, but generally
require a lot of computation to properly explore the solution space. Moreover,
when using meta-heuristics, the majority of solutions are not viable, and there-
fore require a fix mechanism in order to transform a non-viable solution into a
viable one, which increases the computational complexity even more, though it
also presents the risk of converging into a local minima [5].

More recently, the service placement problem has also been addressed us-
ing machine learning techniques, the proposed strategies typically employ rein-
forcement learning [11, 3]. Authors in [11] introduced the application of neural
networks for a dynamic allocation of physical network resources to the virtual
networks. This algorithm proposes an autonomous system that improves the
resource utilization by acting on nodes’ mapping. Authors in [12] proposed
the use of Temporal-difference to learn the embedding solution that maximizes
the long-term revenue. In reference [13], the Q-learning algorithm is used to
allocate time slot and modulation coding scheme for a data transmission with
transmitted data size being the reward function. Authors in [14] propose to use
the Policy Gradient algorithm to gradually learn the optimal mapping mecha-
nism. The algorithm applies the Policy Gradient method to the VNE domain
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and mainly to the nodes’ embedding steps. This model learns how to strike a
balance between exploring better solutions and developing existing models.

There exist also approaches that combine RL and heuristics. In [15], a Monte
Carlo Tree Search (MCTS) strategy is proposed. It allows to find a sub-optimal
solution to the placement problem, whereas the cost of a new research remains
substantial since there is no learning. In [3], the authors proposed to combine a
DRL strategy with a heuristic, to make the placement safer at the cost, however,
of effectiveness.

Slicing was also addressed in virtual radio access network. Authors in [16]
proposed a dynamic resource reservation and deep reinforcement learning-based
autonomous virtual resource slicing framework. They introduced the possibility
of optimization of resource allocation dynamically using a DQN. This work was
extended in [17], in which the authors added a mixed traffic description, the
system considers versatile users’ quality of service. The results showed a good
balance between the satisfaction and the resource utilization metrics.

The utilization of reinforcement learning techniques is very practical when
labels are not available, which is the case in service placement problems. More-
over, reinforcement learning has been shown to be more effective in solving
combinatorial problems, even when optimal labels are available [18].

When the model of the environment is known, it is possible to deduce the
optimal policy, using dynamic programming [19]. However, in the general case
it is difficult or even impossible to obtain it. This is particularly true for service
placement in 5G and post-5G networks, since the state of the network is not
known all the time and the placement impact on latency and loss metrics is
complex to determine [20].

3.2. Exploration/Exploitation trade-off in reinforcement learning

Despite the qualitative results achieved with DRL strategies for VNE prob-
lems, one of the major problems when using reinforcement learning in such a
context is the trade-off existing between exploration and exploitation [19]. Ex-
ploration allows to better explore the space of solutions in order to increase
the chances of finding better ones, with the risk of exploring less interesting
or even useless regions. On the other hand, exploitation allows to use the
knowledge accumulated to find new solutions, with the risk of converging to a
local minima, if the exploration has not been sufficient. Some of the existing
exploration/exploitation methods are: ε-Greedy [19], thompson sampling [21],
bayesian techniques [22], and risk seeking utility function [23].

ε-Greedy is certainly one of the simplest approaches for exploring the action
space [19]. The idea consists in exploring a random action with a probability
equal to ε. It is quite practical to reduce the value of this parameter as the
experiment progresses, but this makes the agent less efficient as the environment
changes (i.e. change of service type, topological change, . . . ), which may happen
in practical use cases. Thompson sampling, whose idea is to select an action (i.e.
an arm) according to its probability of being the best, allows to obtain a result
close to the optimum [21]. However, this type of approaches is only applicable
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in stationary systems and when the number of actions is very limited. This is
clearly not the case for the services placement problems, as the environment
is not stationary and the number of actions can be quasi-unlimited or even
unlimited.

The authors, in [22], review recent work dealing with Bayesian techniques
for reinforcement learning and which allow naturally a good compromise be-
tween exploration and exploitation. More recently, the author, in [23], derived
an efficient exploration policy relying on propagating the certainty value corre-
sponding to an epistemic risk-seeking utility function in the MDP, which led to
a more efficient exploration. The latter strategies allow a better exploration of
the action space, but present the disadvantage of not adjusting to very changing
environments, unlike the strategy developed in this paper.

Recent years have seen the emergence of promising solutions combining ma-
chine learning with control theory. In [24], the exploration/exploitation trade-off
is managed automatically using control theory, e.g. through controlling the ε
hyper-parameter in the ε-greedy exploration technique [24]. In [25], the authors
proposed Value Difference Based Exploration (VDBE), an approach that dy-
namically computes a state-dependent exploration probability, increasing the
parameter robustness. However, to the best of our knowledge, there is no con-
trol approach for regulation of the exploration process that use Monte Carlo
iterations as a control knob.

Note that although the proposed strategy is applied to service placement
problems, it can be used to solve the exploration-exploitation dilemma in any
combinatorial problem.

4. Dynamic control of the exploration in DRL

In short, a dynamical exploration strategy is proposed based on control
theory. Exploration is leveraged by the number of Monte Carlo iterations trying
out N output in the DQMC algorithm. The dynamic adaptation is based on
an error, i.e. the difference between the current R2C and a reference R2C
value. In this case, the DQMC is trained in competition with a simple Monte
Carlo algorithm, with fixed number of iterations. Comparison with a reference
algorithm enables the DQMC to take into account the task complexity, and thus
to deal with the varying VNR patterns.

The core contribution of this paper is twofold. First, the exploration is for-
mulated as a dynamical problem based on performance comparison with a refer-
ence followed by decision making. Second, this feedback adaptation is backed up
on algorithms from control theory, and corresponding analysis tools of precision
and rapidity. To highlight the additive benefits of those two points, two dy-
namic exploration laws are provided: a threshold-based strategy (Section 4.1),
i.e. adaptation without control tools, and a control-based strategy (Section 4.2).

The dynamic exploration strategies have two steps, detailed hereafter for
each one:

1. performance evaluation and comparison with a reference,
2. decision on the exploration depth.
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4.1. Threshold-based dynamic exploration

As a first pedagogical approach to dynamically leverage RL exploration, we
present the threshold-based strategy. In this naive approach, the following two
steps are applied at each timestep. First, the R2C of the DQMC, denoted as
R(k) with k the timestep index, is compared with the R2C of the Monte Carlo-
based strategy with fixed number of iterations R∗(k), taken as a baseline. Then
the exploration level—i.e. the number of iterations N(k) > 1 of the Monte
Carlo-based strategy trying out DQN output—is incremented or decremented
depending on the former condition. Eq. (10) formalize the threshold-based
strategy while illustration is given by Fig. 3.

N(k) =


N(k − 1) + 1 if R(k) ≤ R∗(k)

N(k − 1)− 1 if
∑k
i=k−H R(i) >

∑k
i=k−H R

∗(i)
N(k − 1) otherwise

(10)

When the DQMC performance is lower than the reference value, exploration
is increased. Conversely when DQMC significantly outperforms the reference,
exploration is reduced. This second condition reducesN and thus computational
costs when non necessary, i.e. when the placement task is performed accurately
and no exploration is needed. The averaging on a horizon H for exploration
aims at avoiding oscillations. Indeed with H = 1 and as R converges towards
R∗, small variations on R could make the exploration N constantly oscillate
between two values. Conversely a very large horizon H slows the process of
exploration reduction. Note that the N update law here is a simple constant
increment of ±1. No tuning is needed, at the cost of a slow evolution and poor
reactivity.

Emerges here the notions of stability and rapidity, and their contradictory
nature. Dedicated tools are needed to properly address this trade-off.

DQN

VNF

placement

R(k)

R*(k)MCN=8

placement

VNF

N(k)++

delayN(k-1)True

False

R<R*?
True

False

ΣR>ΣR*?

+1

Naive Strategy

-1

0

R(k)

Figure 3: Threshold-based exploration strategy. R2C comparison between DQMC and refer-
ence placement strategy followed by iteration increment decision. VNF placement tasks are
depicted in blue, the threshold-based strategy in gray.
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4.2. Control-based exploration strategies

To overcome the expected limitations of the threshold-based approach—slow
and possibly oscillatory—we adopt a control theory-based approach. Control
relies on the feedback principle, taking action in accordance to the distance
to the desired state, refer to [26] for an introduction of its use on computing
systems. In our case, the comparison condition of the threshold-based strategy
(Section 4.1) is substituted by the quantification of the error ∆R:

∆R(k) = R∗(k)−R(k) (11)

We propose three different control-based strategies: a proportional con-
troller, an integral one and a controller combining proportional and integral
action. This classification depicts the treatment done to the error ∆R(k) in
the computation of the exploration level N(k) [27]. While the proportional P
controller reacts to the present learning accuracy, the integral I control realizes
adjustments with a memory of the past. All controllers manage differently the
stability, rapidity and precision trade-off.

4.2.1. Proportional Control P-DQMC

The proportional controller dynamically computes the exploration iterations
N(k) at each timestep depending of the R2C difference, as given in Eq. (12).

N(k) = gP ∆R(k) (12)

The parameter gP , called controller gain, leverages the adaptation behavior:
learning speed, performance achieved and cost awareness [27]. Sound choices
for this gain will be discussed in Section 5.2.2.

4.2.2. Integral Control I-DQMC

The second proposed control-based exploration strategy is updated propor-
tionally to the error:

N(k) = N(k − 1) + gI ∆R(k) (13)

The former law is called integral controller as Eq. (13) can be reformulated as:

N(k) = N(0) + gI

k∑
i=0

∆R(i),

highlighting that the current exploration level is proportional to the integral of
the errors. The integral controller has by definition a memory of the past, which
accounts for a higher precision in reaching the objective accuracy level. The
gain gI can be tuned to obtained the best trade-off between fast and accurate
learning, see Section 5.2.2.

The integral control law is illustrated in Fig. 4. Note that the proportional
control can be obtained from this representation by removing the addition of
the delayed N signal.
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Figure 4: Control-based dynamic exploration strategy for I-DQMC. Increment on iterations is
computed from R2C difference following the integral control law. VNF placement tasks are
depicted in blue, the integral controller in orange.

4.2.3. Proportional-Integral Control PI-DQMC

Advantages of both proportional and integral controller are combined in the
PI-DQMC strategy. The exploration law is given is Eq. (14) [26].

N(k) = N(k − 1) + (gp + gI) ∆R(k)− gp ∆R(k − 1) (14)

There are two parameters in this formulation: gp and gI . This allows for
a finer tuning of the learning characteristic in term of rapidity, precision and
computation cost.

5. Evaluation

In this section, we evaluate our dynamic exploration strategies for various
configurations and compare them with static (i.e., non-adaptive) approaches.
Robustness analysis in case of node failure and VNR load variation is also
provided. First, the simulation setup is presented.

5.1. Evaluation Setup

To evaluate the performance of the proposed approach, the following setup
is considered:

• The substrate network follows the btEurope topology [28] with 24 nodes.
The capacity of the substrate nodes and links is drawn uniformly from the
interval [50, 100].

• To generate the virtual requests, we use the Erdős–Rényi model [29]. In
this model the generated graph is defined by the number of nodes n and the
probability p of creating an edge between the nodes. With, for instance,

p = 2
lnn

n
, the generated graph is in general connected (more precisely, this
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probability value goes to 1 as n→∞). The requested resources (CPU and
bandwidth) of Virtual Network Requests are drawn randomly following a
uniform distribution from the interval [5, 10]. The system operates in a
dynamic manner: during each timestep, VNRs arrive to the system —
with a mean time between arrival MTBA ∈ {1, 5, 10, 20, 40} in seconds —
and once a VNR is processed, the next one arrives. A VNR stays in the
system between 5 and 10 timesteps.

• The model architecture is implemented in Python with the Pytorch library
2, and the DGL library 3. The neural network architecture is constructed
with the following hyperparameters. Two fully connected 3-layers neural
networks are used: one for substrate network features extraction, and the
second for VNRs features extraction. Then, a fully connected layer is used,
this layer takes as an entry the concatenation of both features extraction
results and gives as an output the value network with 24 nodes. The
learning rate is set to 5× 10−4 and the discount factor γ is set to 0.95. To
train the model, the Adam optimizer was used [30].

• The control reference value R∗ is taken as the R2C of the Monte Carlo-
based strategy only with fixed number of iteration MC|N=8.

For better results visualization, figures represent the average R2C over 100
timesteps.

5.2. Behavior and performance of control strategies

We evaluate the performance of our control-based exploration strategies on
a DQMC, where the number of iterations is set either by the Proportional (P),
Integral (I) or Proportional-Integral (PI) law. Different values of the controllers’
parameters are used. Evaluation criteria are the properties of stability, rapidity
and precision of the learning, as well as the computational cost. First, we
illustrate and explain the behavior of the controllers.

5.2.1. Proportional controller

Fig. 5a presents the measured revenue to the cost R through time obtained
by the P-DQMC strategy, for various values of the parameter gP . The reference
value R∗ given by the reference MC|N=8algorithm is also reported. Fig. 5b
shows the corresponding number of iterations computed by the controllers.

Choice of the controller parameter:. N varies in [1; 100], the error ∆R is roughly
lower than 0.1 and significant above 0.01 (given R variability, see Fig. 5a for
instance). Given the relation on orders of magnitude in Eq. (12), gP is chosen
in [100; 1000]. Three values were used: {200; 500; 1000}.

Let us give insights on the P controller behavior. In the first timesteps of
P-DQMC, R is significantly lower than R∗. The error ∆R is, thus, large, which
causes large values of N . Note, however, that a large number of iteration speeds
up the learning and starts increasing the revenue to the cost R. While R stays
lower than R∗, N keeps being large, however decreases as R reaches R∗. It is
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important to note that we ensure that the minimum number of MC iterations
is equal to 1, so that at least one MC iteration is done, even when the ∆R

gives negative values of N . Then, the error ∆R starts being negative and N
converges. The revenue to the cost eventually converges to a same level no
matter the configuration gP , at a higher value than the reference R∗. The larger
gP , the larger N in the first timesteps, and the faster the learning, however at
the cost of numerous iterations.

We observe that P-DQMC with gP = 500 achieves a reasonable trade-off be-
tween R rapid increase and sober number of iterations.

5.2.2. Integral controller

We now evaluate the Integral strategy I-DQMC. Figs. 6a and 6b respectively
show the average R and the number of iterations, for different values of the gain
gI .

Choice of the controller parameter:. By considering a reasonable N update or-
der of magnitude of about ±1 at each time step and using ∆R previous estima-
tion, Eq. (13) gives rough bounds for gI ∈ [10; 100]. Three values were used:
{10, 50, 100}.

At the first timesteps, R is significantly lower than R∗: N increases at each
timestep. By increasing the number of iterations N , the learning is improved,
and eventually R meets R∗. Then, ∆R becomes negative and N starts de-
creasing. However, as N stays large, R keeps increasing. When decreasing N
becomes impossible as it would reach negative values, the controller settles N
to 1. R slightly decreases as the number of MC iterations decrease, and finally
converges to a value that is higher than R∗. Note that this behavior with a R
peak reveals a poor learning: R is large because N is large, e.g. the number of
iterations computed is such that even with a poor quality upstream DQN, R
is large. Keeping a high R value with low N is the real indicator of a learning
improvement.

The larger gI , the faster N increases but also decreases. Less timestemps
with large N means less exploration. We observe that with a gain of gI = 10,
the I-DQMC strategy achieves the highest revenue to the cost R, with conver-
gence after 7000 timesteps. With gI = 50, I-DQMC reaches stability faster, at
the expense of lower final R. This shows the trade-off between rapidity and
final performance permitted by the integral controller parameterization. We
also observe an overshoot — a peak in R value before convergence to a lower
value. The peak value can be sustained only at the cost of very large number of
iterations N , an undesirable situation in practice due to the excessive duration
of a timestep it implies. The control smartly boosts learning in the initial mo-
ments to allow for high R level in steady state with very few iterations. With
an average of only N = 2.86 after convergence (k > 5, 000), the control-based
I-DQMC reaches better R than MC|N=8 in average (reps. 0.69 and 0.66, e.g.
increase of +4.5%).
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5.2.3. Proportional-Integral controller

The benefits of the proportional and integral controllers — fast, efficient and
sober learning — are combined in the PI-DQMC dynamic exploration strategy.
Figs. 7a and 7b present the average R and the number of iterations N through
time in comparison with the reference R∗.

Choice of the controller parameters:. we use the range of parameters of the
proportional and integral controllers.

The first thing to note is that higher values of revenue over cost are achieved
than with previous controllers, and in a short time. With large gP , R increases
fast and reaches higher values, at the cost of high N in average after stabilization
(i.e. significant computing time). The larger is gI , the faster is the learning, at
the cost of large N peak. gP = 200 and gI = 10 achieves a fair compromise
with high R2C and low number of MC iteration, despite a relative cold start.

To sum-up, our PI-DQMC allows to leverage between efficient (high R
value), fast (rapid R increase), and sober (low N value at convergence) learning.

5.3. Comparison with competitive strategies

After evaluating the performance of our control approach, we compare to
different exploration strategies. We first select static (i.e. non-dynamic, N
fixed) competitive exploration strategies to illustrate the benefit of the dynamic
perspective. The comparison with a naive threshold-based dynamic strategy
highlights the relevance of the control theory. In detail, competitive strategies
are:

• Monte Carlo-based with fixed number of iteration (N = 8), without DQN.

• DQN without control and only one iteration (N = 1). We show the system
performance after it reaches convergence, after at least 300,000 iterations,
see Fig. 2.

• DQMC with threshold-based dynamic exploration (N = N ± 1).

• DQMC with N constant (N∗ = 4, i.e. average number of iterations ob-
tained using the integral strategy with gI = 10). Again, we show the
obtained R after the system converges and learns to find optimal solu-
tions, which takes around 70k timesteps.

• I-DQMC with gI = 10, where the ideal reference is not based on Monte
Carlo but fixed at R∗ = 1

We select the I-DQMC strategy with gI = 10 as our control baseline, as
it achieves outstanding trade-off between learning efficiency and rapidity, and
reasonable number of iteration. Revenue to the cost R and number of iterations
N for each strategy are presented respectively in Figs. 8a and 8b. In comparison
with static strategies (N = 1, MC|N=8), I-DQMC reaches higher revenue to the
cost. Similar results are achieved with N∗ strategy, which is expected as N∗

is the average of I-DQMC’s N after convergence. Our control based strategy
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however converges in only 6k timesteps against 70k for N∗, that is a reduction
of 86%.

When comparing to the naive dynamic strategy (N = ±1), I-DQMC again
allows for higher R and even reaches high R values faster. Even if the dynamic
N variation look similar, the control-based strategy has better performances:
this mathematically founded dynamic exploration law makes the difference.

The best performance of all is achieved by the control strategy with R∗ =
1. However, the number of iteration saturates at its upper bound N = 100.
Indeed as R never reaches 1, N is never large enough and thus the controller
keep increasing it. Such high values of N are not sustainable in practice, as it
represents very long and costly computations. Using R∗ =MC|N=8 then reveals
all its usefulness: it allows for more efficient and faster learning than all other
competitive strategies, with number of iterations practically realizable.

5.4. Robustness analysis

Three aspects of robustness are evaluated hereafter: robustness coming from
a fast convergence of the placement to high performance, robustness to a change
in the incoming distribution of the VNRs’ size, and robustness to a node failure
in the substrate network.

5.4.1. Robustness from rapid convergence

Rapid convergence implies robustness in the sense that transitory sub-optimal
decisions’ phases are shorter with the control-based DQMC, potential detrimental
decision are avoided. This method ensures the automation of Virtual network
embedding in 6G Zero Touch Network.

5.4.2. Change in the VNRs’ size

We consider a variation of VNRs CPU requests happening at 15k timesteps
that ends at 25k timesteps. More precisely, we consider a CPU requests range of
[5, 10] from 0 to 15k, then it increases to [15, 20] between 15k and 25k, and even-
tually returns to [5, 10]. The evaluated R through time of the different strategies
are reported in Fig. 9a, and the corresponding variations of the number of it-
erations in Fig. 9b. The initial convergence part is omitted. Control-based
strategies require around 8k timesteps to converge, while DQN require around
350k timesteps to converge. The timesteps axis between 10k and 35k corre-
sponds actually to 310k and 335k for the DQN strategy, this presentation was
adopted in order to have comparable plots. The parameter chosen for each of
the three controllers are the parameters that offer the optimal R/Number of
iterations trade-off.

Even when the task changes, all control-based DQMC strategies are able to
adapt and maintain a higher R than R∗. The I and PI controllers have similar
performance in terms of R, while I controllers have a lower number of MC
iterations. After increasing the CPU request at 15k, we observe an increase in
R. This is related to the fact that when increasing the size of CPU requests,
the difference between the revenue and the cost decreases and thus R increases.
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To sum-up, the advantage of control-based strategies are: 1) rapidity of
convergence around 6k timesteps compared to 350k timesteps for DQN, 2) ro-
bustness of the solution by staying less time in the suboptimal region and by
reactively adapting with system changes when the task changes.

5.4.3. Substrate node failure

We now consider a different type of perturbation that can be managed by
the controllers: substrate node failure. We show the control behavior (R in
Fig. 10a and N in Fig. 10b) of the Integral controller (gI = 10), the Proportional
controller (gP = 500), and the PI controller (gP = 200, gI = 10) with a node
failure happening at t = 15k [s]. The proportional and the PI controllers are able
to keep a stable performance contrarily to MC|N=8 and the integral controller,
for which a drop in the R performance is visible. Thus, the revenue to the cost
of the PI-DQMC is the highest at the expense of a higher number of iterations
N. I-DQMC shows however a better trade-off between the revenue-to-the-cost R
and the number of iterations N.

6. Conclusion

In this paper, we proposed a combination between Deep Reinforcement
Learning and Control strategies for robust 6G slices embedding and resource
management. In short, we combine a Deep Q-Network with Monte Carlo (DQMC),
with a control-theory-based exploration strategy. The proposed approach allows
increasing the exploration of the system in a short time compared to the long-
time required for DQN to converge in a system without control. We compared
different aspects for VNE including robustness, especially in the case of change
in the pattern of VNR requests and studied the system performance in this case.
We also considered the case of node failure, and showed the advantage of the
Control-DQMC system in this case both in terms of performance and robustness.

An improvement of the control strategy is to be considered in the future
work by integration a derivation action in the controller in addition to the
current proportional and integral control, as well as, exploring the potential
of control more advanced than PID, especially in the perspective of obtaining
guarantees on the exploration safety. While presented and validated on service
placement problems, we believe that this strategy can be broadly used to solve
the exploration-exploitation dilemma in learning problems.
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Figure 5: Evaluation of proportional control for dynamic DQMC exploration. Evaluation for
various gp parameters.
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Figure 6: I-DQMC: Integral control of dynamic DQMC exploration evaluation. Evaluation for
various gI parameters.
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Figure 7: PI-DQMC: Proportional Integral control of dynamic DQMC exploration. Evaluation
for various gP ,gI parameters
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(b) Number of iterations, averaged over 30 timesteps.

Figure 8: Comparison with competitive exploration strategies.25
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Figure 9: Robustness analysis: change of VNR size at k = 15, 000 and k = 25, 000. Initial
convergence part is omitted

26
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(b) Number of iterations, averaged over 30 timesteps.

Figure 10: Robustness analysis: the case of Node failure.27
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