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Abstract
In this paper we describe the design and implementation
of feqb, a tool that synthesizes sound equality tests for in-
ductive data types in the dependent type theory of the Coq
system.
Our procedure scales to large inductive data types, as in
hundreds of constructors, since the terms and proofs it syn-
thesizes are linear in the size of the inductive type. Moreover
it supports some forms of dependently typed arguments and
sigma types pairing data with proofs of decidable proper-
ties. Finally feqb handles deeply nested containers without
requiring any human intervention.

1 Introduction and motivation
In this paper we lower the amount of manual work one
needs to do in order to reuse formal libraries. All modern
libraries are organized around interfaces for which the user
is expected to provide an instance. For example the ssreflect

component of the Mathematical Components library is based
on the eqType interface, that stands for types equippedwith an
equality test. In order to use that library in the development
of the Jasmin compiler [2–4], we need to provide an equality
test (and its soundness proof) for each and every data type.
As of today most of these eqType instances are built by hand.

In this paper we develop the feqb tool which is able to
synthesize automatically these instances in practice. In order
to achieve this, we overcome the following difficulties.
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Tractable space and time. If one looks at the instruc-
tion set of a mainstream CPU like x86, one soon discovers
that it counts from 1503 to 2034 instructions1. Modelling the
instruction set as an inductive data type feels natural, but
when doing so one immediately incurs in performance prob-
lems [10–12]: the Scheme Equality procedure was measured
to be cubic in the number of constructors! Today Jasmin’s
backend groups instructions by family (parametrized over
the word size) and lacks all floating point instructions, hence
the inductive type modelling the instruction set has only 150
constructors. Even so, automatically synthesizing an eqType

using Scheme Equality is slow and won’t scale well when we
will extend the compiler backend.

Super linear complexity is not completely unexpected,
since the natural code for the equality test is already not
linear. The user facing syntax for inspecting two terms looks
linear, but internally Coq stores, and type checks, a term
which is quadratic in the number of constructors.

user facing syntax internal representation
match x, y with
| K1, K1 ⇒ true
| K2, K2 ⇒ true
...
| KN, KN ⇒ true
| _, _ ⇒ false

end

match x with
| K1 ⇒ match y with

| K1 ⇒ true
| K2 ⇒ false
...
| KN ⇒ false
end

| K2 ⇒ match y with
| K1 ⇒ false
| K2 ⇒ true
...
| KN ⇒ false
end

...

As we will detail in this paper, the soundness proof about
a quadratic piece of code has the same bad complexity as a
lower bound.

In order tomake “instruction-set large” data types tractable,
we show a way to describe in dependent type theory a double
case analysis which is linear in the number of constructors.

1According to different sources and ways of counting families of intruc-
tions. See for example https://stefanheule.com/blog/how-many-x86-64-
instructions-are-there-anyway/.
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Values in types, proofs in terms. In dependent type the-
ory values can occur inside types. The typical example is the
type of numbers which are smaller than a bound m which is
a parameter of their type ord m:
Inductive ord (m: nat) := mkOrd : ∀n, n < m → ord m.

In order to constrain the inhabitants of that type, type theory
lets one pair terms with proofs. An inhabitant of ord mwould
be a number n paired with a proof of n < m. The type of the
pairing constructor mkOrd uses the dependent function space
in an essential way, since the value of the first argument
must occur in the type of the second (in the statement of the
proof that constrains it).
Types like this are used in Jasmin in many places, for ex-

ample in the data type for machine words and consequently
the data types for values.
Variant wsize := U8 | U16 | U32 | U64 | U128 | U256.
Definition wsize_size (s: wsize) : nat := ... (* omitted *)
Record word (nbits: wsize) := mkWord {

w : Z;
_ : 0 <=? w && w <? 2^(wsize_size nbits)

}.
Variant value : Type :=
| Vbool : bool → value
| Vint : Z → value
| Vword : ∀ s, word s → value

It is well known that dependent pairs are not the best
friend to equality tests, since the proof component may not
be unique (there may be many different ways to prove the
same property). Luckily there is a large class of properties
which have unique (canonical) proofs: all the decidable ones.
In that case the equality test is expected to ignore proof argu-
ments, and the soundness proof to use the canonicity prop-
erty of the discarded argument to show that it is sound to
ignore it in the first place.

Our tool feqb handles value parameters and the dependent
function space, and is hence able to synthesize and prove an
equality test for the word and value types above.

Comfortable use of containers. It is well know to Coq
users that the default induction principle generated by Coq
for the following data type is too weak to be useful.
Inductive instr :=
| Cassgn : lval → assgn_tag → stype → pexpr → instr
| Copn : lvals → assgn_tag → sopn → pexprs → instr
| Csyscall : lvals → syscall_t → pexprs → instr
| Cif : pexpr → cmd → cmd → instr
| Cfor : var_i → range → cmd → instr
| Cwhile : align → cmd → pexpr → cmd → instr
| Ccall : iinfo → lvals → funname → pexprs → instr
where "'cmd'" := (list (info * instr)).

Such a principle does not give the induction hypothesis on
the terms of type instr which are inside cmd (that is a short-
hand for list (info * instr)) because of the use of the list
and pair containers. It is common practice to manually write
(and prove) deep principles like this one:
Check cmd_rect : ∀Pf Pi Pfi P,
(* constructor of pair *)
(∀ (inf: info) (i: instr), Pf inf → Pi i → Pfi (inf,i))
(* constructors of list *)
→ P [::]
→ (∀ (i: info * instr) (c: cmd), Pfi i → P c → P (i :: c))
(* constructors of instr *)

...
(* conclusion *)
→ ∀c: cmd, P c

All additional predicates and premises are needed in order
to propagate the induction property P to sub terms, deep
inside containers. While this approach “works”, in the sense
that it lets one prove properties like the soundness of an
equality test by induction on the instr type, it is not automat-
ically generated by Coq and it is not modular. Unfortunately
one needs to prove, at each use, that the pairing constructor
and the cons one preserve the property. It goes without say-
ing that one would like to prove this kind of result only once
for each container, or even better have the system prove it
automatically.

It is only recently that Johan and Polonski [13] and Tassi [16]
showed a way to synthesize automatically induction prin-
ciples which are both deep and modular. In this work we
follow the schema introduced in [16] and we extend it to
types parametrized by values.

1.1 Existing tools and their limits
There are many tools for Coq which can synthesize equality
tests and their proofs, but unfortunately none covers all the
types we need. In Figure 1 we compare the following tools:
Equations [15] is a compiler for dependent pattern matching
which also provides a Derive command; Deriving [7] is a tool
able to synthesize an eqType via a reflexive procedure; The
Coq system [17] provides the decide equality tactic and the
Scheme Equality command; Coq-Elpi is an extension language
for Coq that comes bundled with a derive [16] command.
We compare how tools deal with the induction principle

which is needed in order to prove the equality test sound.
In particular we check if the tool is able to use or generate
deep principles and if they are modular. We then check if
the tool provides the equality test and its proof as separate
concepts (which helps keeping proofs outside statements2),
if the test is heterogeneous w.r.t. parameters (i.e. lets one
state a comparison between words of different sizes) and
we try to give a lower bound on the size of the generated
equality test and proof given the size of the inductive type.
Finally we check which features are supported, in terms of
the type of the arguments of the constructors, which may
use containers, be dependent or be (canonical) proofs.

We provide some benchmarks in Section 7 on the real time
complexity of the synthesis. It is hard to claim the complexity
on paper, rather than experimentally, partially because no
tool documents it and also because all tools use the Coq
type checker as a black box, and type checking time can
be, in principle, more than exponential. Of course if a tool
generates a term which is quadratic in its input, we can
consider 𝑛2 to be a lower bound.
Equations was sometimes difficult to classify, since it de-

fines a lot of tools that one can use interactively to define
2To see why this matters read http://gallium.inria.fr/blog/coq-eval/
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Features Induction Equality test Constructors’ arguments
Tool deep modular separate heterogeneous size/kno containers dependent irrelevant
Coq (decide equality) ✓ ✗ ✗ ✗ 𝑜 (𝑛2) ✓ ✗ ✗
Coq (Scheme Equality) ✗ ✓(1) ✗ 𝑜 (𝑛3) ✗ ✗ ✗
Coq-Elpi ✓ ✓ ✓ ✗ 𝑜 (𝑛2) ✓ ✗ ✗

Deriving � ✗ ✓ ✗ ✓ ✗ ✗
Equations ✗ ✗ ✗ 𝑜 (𝑛2) ✗ ✓ ✓

feqb (this work) ✓ ✓ ✓ ✓ 𝑜 (𝑛) ✓ ✓(2) ✓

Figure 1. Tools comparison

the equality test and proof. For the comparison, we really
focused on the Derive command and its ability to generate
the equality test automatically.
We use� for positive answers but where some manual

intervention is needed. For example, if the data type uses
containers then the user has to write by hand a (nonmodular)
deep induction principle, which then Deriving can use.

Scheme equality exposes to the user a single term of type
{ x = y } + { x <> y }; with (1) we signal that the equality
test and its correctness proof are internally separate, so with
some extra work the user can access them.

Finally (2) signals that dependent arguments are accepted
only if they are used as a parameter of another eqType, or
inside an irrelevant argument. This limitation of our tool is
detailed in Section 3.

1.2 Contributions and paper structure
The contributions of this work are:

• a schema for equality tests and their proofs which is
linear in the size of the inductive type, that is the number
of constructors multiplied by their arity

• the feqb tool that implements the schema and sup-
ports containers and dependent records with irrelevant
arguments

Section 2 introduces the main idea behind linear equal-
ity tests. Section 3 describes the exact class of inductive
types feqb can handle. Section 4 analyzes in more details
the schema and its complexity. Section 5 describes how the
schema deals with dependent arguments, like the ones one
finds in sigma types. Section 6 describes how we use deep
induction principles to deal with containers. Section 7 details
a bit more the implementation and shows a few benchmarks
comparing experimentally feqb with the alternatives.

An archive containing the source code of feqb, along with
the test bed and raw results of the benchmarks, is available
in the supplementary material3.

3Its ongoing integration in Coq-Elpi can be found at https://github.com/
LPCIC/coq-elpi/pull/319

2 A schema for linear terms and proofs
The main difficulty in writing a linear-sized decision proce-
dure for equality is the quadratic factor that appears naturally
by comparing constructors pairwise. This quadratic factor is
amplified by the correctness proof of the equality test.

To illustrate the root of this complexity problem, we look
at the equality test on the type nat of Peano numbers.

2.1 The complexity problem
The natural code to test the equality of x and y starts by
matching x and then, in each branch, it does the same on y.
This is the root of a quadratic factor.

Fixpoint eqb (x y:nat) :=
match x with
| O ⇒ match y with
| O ⇒ true
| S _ ⇒ false
end

| S n ⇒ match y with
| O ⇒ false
| S m ⇒ eqb n m
end

end.

Unfortunately, the two matches on y cannot be easily
shared since they have very different branches.
The soundness proof for eqb is made of two parts, com-

pleteness and correctness.
Lemma eqb_OK x y : eqb x y ↔ x = y.
Proof. by split ⇒ [|→]; [ apply: eqb_correct | apply: eqb_refl ]. Qed.

Remark that we use the is_true implicit coercion allowing to
cast boolean to proposition. So in the previous lemma, eqb x y

should be read as is_true (eqb x y), which is equivalent to
eqb x y = true.

The proof of completeness (or reflexivity) is not problem-
atic. It is linear in the number of constructors, since the
induction principle nat_ind has one premise per constructor.
Lemma eqb_refl x : eqb x x :=
fun x : nat ⇒
nat_ind (fun n : nat ⇒ eqb n n)

eq_refl (* eqb O O *)
(fun p (IH : eqb p p) ⇒
IH) (* eqb (S p) (S p) *)

x.

On the other hand, the proof of correctness is problematic,
since it follows the definition of eqb which is quadratic.
Lemma eqb_correct : forall x y, eqb x y → x = y :=f
fun x : nat ⇒
nat_ind (fun n : nat ⇒ forall y : nat, eqb n y → n = y)
(fun y : nat ⇒

3
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match y as n return (eqb O n → O = n) with
| O ⇒ fun _ : eqb O O ⇒ eq_refl O
| S q ⇒ ... (* absurd : eqb O (S q) → false *)
end)

(fun p (IH : forall z : nat, eqb p z → p = z) y ⇒
match y as n return (eqb (S p) n → S p = n) with
| O ⇒ ... (* absurd : eqb (S p) O → false *)
| S q ⇒ fun h : eqb (S p) (S q) ⇒

(* since : eqb (S p) (S q) ≈ eqb p q *)
f_equal S (IH q h)

end)

As with the definition of eqb, the two branches for y cannot
be shared.

A possible solution to fix the complexity of eqb could be to
optimize the internal representation of Coq terms so that the
match node can share common branches (the false ones). In
particular allowing a default branchwould already be enough
to solve the problem. Even so, this optimization would not
solve the problem in the correctness proof, since the absurd
branches have slightly different proofs (p and q are bound in
different places).

2.2 The linear equality test
In the definition of eqb, the pattern matches on x and y do
two different things at once: they compare the names of the
constructors and, if they are equal, they access the fields of
the constructor and then compare the sub terms.
The key idea to avoid the quadratic blowup is to keep

these two steps separate: we first compare the names of con-
structors by giving them a first class representation, and only
then we access and compare sub terms recursively. Remark
that the first step lets us not generate the nested match nodes.

We start by defining some auxiliary functions whose signa-
ture is given in Figure 2, which provides the generic interface
to build our linear test on a type A.
The first requirement is a tag function which associates

to each constructor a first class value (a positive number)
standing for its name. For nat this can be done by associating
1 to O and 2 to S.
Definition nat_tag n := match n with O ⇒ 1 | S _ ⇒ 2 end.

The second function, fields, allows to access the fields of each
constructor. Naturally the type of the function is dependent,
since each constructor may have different fields. To write
this dependent type we define a fields_t function associating
to each tag the type of its fields. For the type nat, one obtains:
Definition nat_fields_t p :=

match p with
| 1 ⇒ unit (* no argument *)
| 2 ⇒ nat
| _ ⇒ unit (* dummy case *)
end.

Definition nat_fields n : nat_fields_t (nat_tag n) :=
match n with
| O ⇒ tt
| S p ⇒ p
end.

Given these two functions and a function named eqb_fields

to compare the fields of a given tag, we can write the generic
definition eqb_body (again in Figure 2). It first computes the

two tags of x and y; then checks their equality and, if they are
equal, it checks the equality of the fields f1 and f2. Remark
that we need a type cast on f2 to convince Coq that its type
is fields_t t1.

The generic code cannot perform the recursion itself, since
Coq does not know yet that A is inductively defined. It is
the code specific to the inductive type, nat here, which will
perform the recursion.
The eqb_fields function for nat is parametrized by the re-

cursive call (rec) to test the equality of sub terms:
Definition nat_eqb_fields rec t :
nat_fields_t t → nat_fields_t t → bool :=
match t with
| 1 ⇒ fun _ _ ⇒ true
| 2 ⇒ fun x y ⇒ rec x y
| _ ⇒ fun _ _ ⇒ false (* dead code )
end.

Remark that we have been able to share all the branches
returning false into one, the right branch of eqb_body (Fig-
ure 2). Furthermore all the other branches are defined using
nat_eqb_fields, that has one branch per constructor.
To conclude the definition, we would like to tie the knot

with a fixpoint like so:
Fixpoint nat_eqb (n1 n2 : nat) {struct n1} :=
eqb_body nat nat_tag nat_fields_t nat_fields
(nat_eqb_fields nat_eqb) n1 n2.

Here we step on a well known limitation of the Coq system:
syntactic termination checking. Indeed this definition is re-
jected, since Coq is not able to see that the recursive call will
be performed on smaller terms. Remark that the use of size
types [1, 5, 6, 9] would completely solve this problem, but
Coq does not feature this termination checking technique.

The solution to live in harmony with the current termina-
tion checker is to inline a little bit the definition of tag and
eqb_body in the definition of the fixpoint itself. To do so, we
modify a little the definition of eqb_body: instead of taking
two arguments of type A, the first argument, namely x, is
given by its (pre computed) tag and fields.
Definition eqb_body t1 (f1 : field_t t1) (y : A) :=
let t2 := tag y in
match Pos.eq_dec t2 t1 with
| left heq ⇒
let f2 : fields_t t2 := fields y in
eqb_fields t1 f1 (match heq with eq_refl ⇒ f2 end)

| right _ ⇒ false
end.

Now the following definition is accepted by Coq, since it
sees that p is smaller than n1, and, by unfolding the definition
of eqb_body and nat_eqb_fields, that the only recursive call to
nat_eqb is on p.
Fixpoint nat_eqb (n1 n2 : nat) {struct n1} :=
let body :=
eqb_body nat nat_tag nat_fields_t nat_fields
(nat_eqb_fields nat_eqb) in

match n1 with
| O ⇒ body 1 tt n2
| S p ⇒ body 2 p n2
end.
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2.3 The linear soundness proof
We now explain how the correctness proof of nat_eqb can be
expressed as a term linear in the size of the inductive. We
start by introducing some generic definitions that allow to
share part of the proof between different types.
First, we assume a construct function that builds an ele-

ment of type A from its tag and its fields. Its specification
constructP indicates that fields and construct cancel out.
Variable construct : ∀ t, fields_t t → option A.
Variable constructP : ∀ a, construct (fields a) = Some a.

The instantiation for nat leads to the following definition
and trivial proof:
Definition nat_construct t : nat_fields_t t → option nat :=

match t with
| 1 ⇒ fun _ ⇒ Some O
| 2 ⇒ fun p ⇒ Some (S p)
| _ ⇒ fun _ ⇒ None
end.

Lemma nat_constructP (a: nat) : nat_construct (nat_fields a) = Some a.
Proof. by case. Qed.

Remark that the construct function is partial. Since tags are
encoded as positive, there are tags that correspond to no
constructor. For those tags, we need to construct a witness
of A. This can be easily done for nat, it is sufficient to take O.
But in general this is not possible, for example consider the
type:
Inductive sum (L R : Type) : Type :=

| inl : L → sum L R | inr : R → sum L R.

To build a witness using the constructor inl (resp. inr), we
need an element of L (resp. R). In both cases, we cannot respect
the signature. The use of the option type allows to solve this
problem by returning None.

In order to share the part of the proof which talks about the
generic definition eqb_body, we provide the following lemma.
Definition eqb_fields_correct_on (a:A) :=
∀ f : fields_t (tag a),
eqb_fields (fields a) f → Some a = construct f.

Lemma eqb_body_correct a1 :
eqb_fields_correct_on a1 →
∀ a2,

Section Core.
Variable A : Type.

Variable tag : A → positive.
Variable fields_t : positive → Type.
Variable fields : ∀ (a:A), fields_t (tag a).
Variable eqb_fields : ∀ t, fields_t t → fields_t t → bool.

Definition eqb_body (x y : A) :=
let t1 := tag x in
let t2 := tag y in
match Pos.eq_dec t2 t1 with
| left heq ⇒
let f1 : fields_t t1 := fields x in
let f2 : fields_t t2 := fields y in
eqb_fields t1 f1 (match heq with eq_refl ⇒ f2 end)

| right _ ⇒ false
end.

End Core.

Figure 2. Core interface for generic equality

eqb_body tag fields_t fields eqb_fields
(tag a1) (fields a1) a2 → a1 = a2.

Since the definition of eqb_body is parametrized by the
function eqb_fields, its correctness proof assumes a property
on it, namely eqb_fields_correct_on, which must be proved
for each instantiation of the parameter. The proof is done by
case analysis on Pos.eq_dec and then relies on constructP.
The correctness proof of nat_eqb can be built by a simple

induction on its first argument.
Definition eqb_correct_on (f: A → A → bool) (a1: A) :=
∀ a2, f a1 a2 → a1 = a2.

Lemma nat_eqb_correct n1 : eqb_correct_on nat_eqb n1.
Proof.
pose h :=
(@eqb_body_correct nat nat_tag nat_fields_t nat_fields

nat_construct nat_constructP (nat_eqb_fields nat_eqb)).
elim ⇒ [ | n1 hrec] n2 /=.
+ (* eqb_body nat_fields (nat_eqb_fields nat_eqb) tt n2 → O = n2 *)

apply (h O) ⇒ f /=.
(* true → Some O = Some O *)
done.

(* eqb_body nat_fields (nat_eqb_fields nat_eqb) n1 n2 → S n1 = n2 *)
apply (h (S n1)) ⇒ f /=.
(* nat_eqb n1 f → Some (S n1) = Some (S f) *)
by move⇒ h1; apply (f_equal (fun p ⇒ Some (S p))); apply hrec

Qed.

The resulting proof term is linear in the number of construc-
tors.
Definition nat_eqb_correct :=
let h := eqb_body_correct nat_constructP

(eqb_fields:=nat_eqb_fields nat_eqb) in
nat_ind (fun n : nat ⇒ forall n2 : nat, nat_eqb n n2 → n = n2)
(h O (fun fO ⇒ (fun _: true ⇒ erefl (Some O))))
(fun (n1 : nat) (hrec : forall n2 : nat, nat_eqb n1 n2 → n1 = n2) ⇒
h (S n1)
(fun (fS : nat_fields_t (nat_tag (S n1))) (h1 : nat_eqb n1 fS) ⇒
f_equal (fun p ⇒ Some (S p)) (hrec fS h1))).

We chose to illustrate the schema on a simple type such
as nat in order to focus on the complexity deriving from the
number of constructors. Section 4 will extend this schema
to inductive types whose constructors have multiple fields,
and show how to keep the size of each proof branch linear
in the number of fields.

3 Specification
We build our tool feqb on top of Coq-Elpi which lets one
implement Coq commands (or tactics) in Elpi, a dialect of
𝜆Prolog. This programming language is well suited to ma-
nipulate syntax trees which contain binders and provides
Higher Order Abstract Syntax (HOAS) data types. Figure 3
shows the HOAS of inductive data types handled by feqb.
I represents a definition of a Coq inductive type. tparam

stands for the typical parameter of containers, like the A in
list A. Since we use HOAS, its argument is a function that
binds a type expression (of type E) in the rest of the inductive
definition. vparam stands for parameters which are not types
but rather values, like size in word size; similarly it binds that
value in the rest of the declaration. The last constructor of I,
inductive, encodes the declaration of the constructors. This
time the function binds the inductive itself in the declaration

5
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I :=
| tparam : (E→ I) → I
| vparam : E→ (E→ I) → I
| inductive : (E→ 𝑙𝑖𝑠𝑡 C) → I
C :=
| regular : E→ C→ C
| dependent : E→ (E→ C) → C
| irrelevant : E→ C→ C
| stop : C
E :=
| app : S→ 𝑙𝑖𝑠𝑡 E→ E

Inductive list (A : Type) := nil | cons : A → list A → list A.
Record word (nbits: wsize) := mkWord {
w : Z;
_ : 0 <=? w && w <? 2^(wsize_size nbits)

}.

”𝑙𝑖𝑠𝑡” ≜ tparam 𝜆𝑎.

inductive 𝜆𝑙 .
[stop
; regular 𝑎 (regular 𝑙 stop)]

”𝑤𝑜𝑟𝑑” ≜ vparam (app ”𝑤𝑠𝑖𝑧𝑒” []) 𝜆𝑖.
inductive 𝜆𝑡 .

[dependent (app ”𝑍 ” [])
𝜆𝑛.irrelevant (. . .) stop]

Figure 3. The AST of data types declarations

of the constructors, which can hence mention it to declare
recursive data.

A constructor declaration, represented by the node C, car-
ries the “list” of the types of the arguments of the constructor:

• regular stands for the usual, non dependent, argument
like the A and list A arguments of cons;

• dependent stands for an argument that can be used
in the type of the following arguments, like the w of
mkWord. The second argument of dependent is indeed a
function that encodes that dependency.

• irrelevant stands for an argument which can be ig-
nored by the equality test.

• stop stands for the empty list.
All arguments and vparam carry a E which stands for a Coq
type. For simplicity it pairs a symbol name and possibly
empty list of arguments, leaving out all non applicative ex-
pressions. Remark that some of the excluded type expression
can be encoded in E by using definitions, for example A → B

can be encoded to arrow A B thanks to a suitable definition
of arrow.
Remark that this syntax does not cover indexed types

like vector, since feqb does not handle them directly. If the
indexes are in an eqType, one can rephrase them in Ford style,
with a parameter and an extra equation per constructor [14,
Section 3.5], and this class of inductive types is supported
by feqb.
Coq inductive declarations are translated into I, during

this translation we identify as irrelevant equalities over bool4.
The right part of Figure 3 provides the translation for the
Coq inductive declaration of list and word.
This syntax is further constrained by the predicates de-

picted in Figure 4. The first predicate, Γ ⊢ 𝐼 ∈ VI, ensures the
validity of object of type I. The context Γ is used to carry as-
sumptions about bound variables. This validation predicate
ensures well formedness and that the feqb tool will be able
to generate the equality test and the corresponding proofs.
For example, in the rule (tp), the type parameter 𝑥 is assumed

4This can be easily extended to other irrelevant arguments like SProp

to be valid, i.e. to be a type with a decidable equality. This
assumption comes from the fact that the equality function
that the tool will generate for 𝜆𝑥.𝐼 will be parametrized by
an equality function on 𝑥 . Similarly, the rule (i) also adds the
assumption but this time this will come from the recursive
definition. The assumption is not present in the rule (vp),
i.e. value parameter does not need to be equipped with a
decidable equality.

The second predicate, Γ ⊢ 𝐾 ∈ VC, is for the well formed-
ness of constructor declarations. It ensures that all type ex-
pressions (E) occurring in the type of the constructor are
equipped with a decidable equality, rules (r) and (d), or are
irrelevant5, rule (ir).
The third predicate, Γ ⊢ 𝐸 ∈ VE, is for validity of E. The

rule (ax) is straightforward. The rule (e) ensures that the ar-
guments passed to the inductive 𝑖 satisfy their requirements
(Γ ⊢ 𝐼 ≈ 𝐴). The predicate 𝑖 ≜ 𝐼 ensures that the inductive
declaration corresponding to the name 𝑖 has already been
processed by the tool and that 𝐼 is its HOAS representation.

4 Complexity, theory and practice
In this section, we show that terms and proofs can easily
grow quadratic in the number of fields when polymorphic
containers or lemmas are applied. We explain the solutions
we found to avoid this blowup.

4.1 Taming quadratic definitions
The first quadratic factor shows up in the definition of fields_t
and fields functions. The natural idea is to use the product6
of the types of the arguments of a constructor to encode
fields_t and the pairing constructor to package the sub terms
returned by fields. The following code uses this encoding
for the tree data type:
Inductive tree :=
| Leaf
| Node : nat → tree → tree → tree.

Definition tree_fields_t p :=

5Recall that the current implementation is limited to equality over bool.
6Dependent product for dependent arguments
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Γ, 𝑥 ∈ VE ⊢ 𝐼 ∈ VI
Γ ⊢ (tparam 𝜆𝑥 .𝐼 ) ∈ VI

(𝑡𝑝) Γ ⊢ 𝐼 ∈ VI
Γ ⊢ (vparam 𝜆𝑥 .𝐼 ) ∈ VI

(𝑣𝑝) Γ, 𝑖 ∈ VE ⊢ 𝐾 𝑗 ∈ VC ∀𝑗 ∈ {1 . . . 𝑛}
Γ ⊢ (inductive 𝜆𝑖.[𝐾1; . . . ;𝐾𝑛]) ∈ VI

(𝑖)

Γ ⊢ 𝐸 ∈ VE Γ ⊢ 𝐾 ∈ VC
Γ ⊢ regular 𝐸 𝐾 ∈ VC

(𝑟 ) Γ ⊢ 𝐸 ∈ VE Γ ⊢ 𝐾 ∈ VC
Γ ⊢ dependent 𝐸 𝜆𝑥.𝐾 ∈ VC

(𝑑) Irrelevant 𝑇 Γ ⊢ 𝐾 ∈ VC
Γ ⊢ irrelevant 𝑇 𝐾 ∈ VC

(𝑖𝑟 )
Γ ⊢ stop ∈ VC

(𝑥 ∈ VE) ∈ Γ
Γ ⊢ 𝑥 ∈ VE

(𝑎𝑥) 𝑖 ≜ 𝐼 Γ ⊢ 𝐼 ≈ 𝐴
Γ ⊢ app 𝑖 𝐴 ∈ VE

(𝑒)

Γ ⊢ inductive _ ≈ 𝜖
Γ ⊢ 𝐸 ∈ VE Γ ⊢ 𝐼 ≈ 𝐴
Γ ⊢ tparam 𝜆𝑥 .𝐼 ≈ 𝐸 :: 𝐴

Γ ⊢ 𝐼 ≈ 𝐴
Γ ⊢ vparam 𝜆𝑥.𝐼 ≈ 𝐸 :: 𝐴

Figure 4. Validity of an eqType

match p with
| 1 ⇒ unit
| 2 ⇒ prod (prod nat tree) tree
| _ ⇒ unit
end.

Definition tree_fields x :=
match x with
| Leaf ⇒ tt
| Node n l r ⇒

pair (prod nat tree) tree (pair nat tree n l) r
end.

Remark that in the definition of tree_fields the number of
occurrences of tree grows non linearly. This comes from
the fact that the pair constructor takes explicitly the type
of its two arguments (Coq implements polymorphism à la
system-F ). We abandon the generic pair container in favor
of ad-hoc, monomorphic, containers: for each constructor of
the inductive type, we generate a record type gathering its
fields. For tree this leads to the following declarations:
Inductive box_for_Leaf := Box_Leaf.
Inductive box_for_Node :=
Box_Node : nat → tree → tree → box_for_Node.

Definition tree_fields_t p :=
match p with
| 1 ⇒ box_for_Leaf
| 2 ⇒ box_for_Node
| _ ⇒ unit (* dummy case *)
end.

Definition tree_fields x :=
match x with
| Leaf ⇒ Box_Leaf
| Node n l r ⇒ Box_Node n l r
end.

Definition tree_eqb_fields rec t :
tree_fields_t t → tree_fields_t t → bool :=
match t with
| 1 ⇒ fun 'Box_Leaf 'Box_Leaf ⇒ true
| 2 ⇒ fun '(Box_Node n1 l1 r1) '(Box_Node n2 l2 r2) ⇒

nat_eqb n1 n2 && rec l1 l2 && rec r1 r2
| _ ⇒ fun _ _ ⇒ false
end.

4.2 Taming quadratic proofs
A similar phenomenon occurs at proof generation time. We
illustrate it on the correctness proof of the tree data type.
For each constructor c of tree we build a proof term of type:
eqb_fields_correct_on (tree_eqb_fields tree_eqb) c

When c is Node n1 l1 r1, this statement is convertible to:

∀ f2: box_for_Node,
tree_eqb_fields tree_eqb (Box_Node n1 l1 r1) f2 →
Some (Node n1 l1 r1) = tree_construct f2

After destructing f2 into Box_Node n2 l2 r2 we have:
nat_eqb n1 n2 && rec l1 l2 && rec r1 r2 →
Some (Node n1 l1 r1) = Some (Node n2 l2 r2)

The proof can be easily concluded by chaining these three
steps:

1. breaking the conjunction into separate hypotheses
2. turning each hypothesis7 into an equation, namely

n1 = n2, l1 = l2 and r1 = r2

3. finally rewriting with these equations
The resulting goal can be trivially proved by reflexivity:
Some (Node n2 l2 r2) = Some (Node n2 l2 r2)

Unfortunately this proof strategy can lead to a quadratic
proof term if the first and third steps are not implemented
carefully.

4.2.1 Splitting 𝑛 conjunctions at once. Let a, b, and c be
booleans, P a proposition and h a proof for a → b → c → P.
A natural proof term for a && b && c → P is:
andE (andb a b) c P (andE a b (c → P) h)

where andE, the standard “eliminator” of &&, has type:
∀ a b (P: Prop): (a → b → P) → a && b → P

It is easy to check that the iterated application of andE leads
to a quadratic proof term. It is certainly possible to solve
the problem using let binding to share common sub terms,
but we prefer to use a different solution which exploits the
ability of type theory to describe statements by recursion on
values. The proof terms built this way are simple to synthe-
size automatically, and this technique will also help solving
the other problem arising in the third step.

We first define a recursive function implies as follows:
Fixpoint implies (l: list bool) (P: Prop) : Prop :=
match l with
| [::] ⇒ P
| b :: l ⇒ b → implies l P
end.

Given a list of boolean [b0; ...; bn] and a predicate P, the
term implies [b0; ...; bn] P reduces to b0 → ... → bn → P.

7The first equation comes from the correctness of nat_eqb, the two other
by induction hypothesis.
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Then we define the recursive function allr that computes
the conjunction of its arguments:
Fixpoint allr (l: list bool) :=

match l with
| [::] ⇒ true
| b :: l ⇒ b && allr l
end.

Finally, we can express and prove the elimination lemma for
the n-ary conjunction:
Lemma impliesP (l: list bool) (P:Prop) : implies l P → allr l → P.

The proof term impliesP [a;b;c] P h has type a && b && c → P

and it is linear in the number of conjuncts.

4.2.2 Rewriting 𝑛 equations at once. The proof step of
rewriting one equality is usually encoded in dependent type
theory using the standard elimination principle of equality:
eq_ind: ∀A (P: A→Prop) (x y: A), x = y → P x → P y

If we have the following three equations
hn : n1 = n2
hl : l1 = l2
hr : r1 = r2

and we want to rewrite all of them, right to left, in order to
solve the goal
Node n1 l1 r1 = Node n2 l2 r2

we have to synthesize the following proof term:
eq_ind nat (fun n ⇒ Node n1 l1 r1 = Node n l2 r2) n1 n2 hn
(eq_ind tree (fun l ⇒ Node n1 l1 r1 = Node n1 l r2) l1 l2 hl

(eq_ind tree (fun r ⇒ Node n1 l1 r1 = Node n1 l1 r) r1 r2 hr
refl_equal))

This proof term is quadratic in the number of arguments of
Node, since each rewriting step “copies” the entire goal, which
is linear in the number of arguments of Node.
We solve this problem by writing an n-ary elimination

principle for equality, again using the ability of dependent
type theory to express types by recursion on values.
Fixpoint p_type (T: list Type) :=
match T with
| [::] ⇒ Prop
| A :: T ⇒ A → p_type T
end.

Fixpoint eq_ind_r_n (T: list Type) : p_type T → p_type T → Prop :=
match T with
| [::] ⇒ fun p1 p2 ⇒

p1 → p2
| A::T ⇒ fun p1 p2 ⇒

∀ (a1 a2:A), a1 = a2 → eq_ind_r_n T (p1 a1) (p2 a2)
end.

Lemma eq_ind_r_nP (T: list Type) (p: p_type T) : eq_ind_r_n T p p.

Given a list of types such as [:: nat; tree; tree], p_type re-
duces to the following type
p_type [:: nat; tree; tree] = nat → tree → tree → Prop

and in turn eq_ind_r_n reduces to this statement
eq_ind_r_n [:: nat; tree; tree] =
fun p1 p2 : nat → tree → tree → Prop ⇒
∀ (a1 a2 : nat), a1 = a2 →
∀ (b1 b2 : tree), b1 = b2 →
∀ (c1 c2 : tree), c1 = c2 →
p1 a1 b1 c1 → p2 a2 b2 c2

which is a 3-way rewriting principle specialized on the types
of the sub terms of Node. Using this principle, we can synthe-
size this linear proof term:

eq_ind_r_nP [:: nat; tree; tree]
(fun n l r ⇒ Node n1 l1 r1 = Node n l r)
n1 n2 hn l1 l2 hl r1 r2 hr refl_equal.

Note that this time the goal is copied only once, and it is put
under a number of lambda abstractions which is linear in
the number of arguments of Node.

The eq_ind_r_nP proof device is similar to the nary_congruence
one which is part of the ssreflect library, although simpler
to explain since it recurses on the list of types, rather than
their number.

5 Dealing with dependent types
In order to simplify the synthesis of the equality test for
dependent arguments, we systematically generate equality
tests which are heterogeneous on parameters. For example
the equality test for word has the following shape:
word_eqb : ∀s1 s2, word s1 → word s2 → bool

As expected the specification constrains s1 and s2 to be the
same8:
word_eqb_OK : ∀s (w1 w2 : word s), word_eqb s s w1 w2 ↔ w1 = w2

This way of doing lets one synthesize a simpler equality
test for the value data type
Definition value_eqb_fields rec (t: tag) :
value_fields_t t → value_fields_t t

:= ...
match t with
...
| 3 (* word *) ⇒ fun '(Box_Vword s1 w1) ;(Box_Vword s2 w2) ⇒

wsize_eqb s1 s2 && word_eqb s1 s2 w1 w2
...

The alternative would have been to replace the boolean
conjunctionwith a patternmatching over a correctness proof
and then cast the type of w2 as follows:
Lemma adaptor f x y :
(∀x y, f x y ↔ x = y) → { x = y } + { x <> y }.

Definition value_eqb_fields (t: tag) :=
match t with
...
| 3 (* word *) ⇒ fun '(Box_Vword s1 w1) '(Box_Vword s2 w2) ⇒

match adaptor wsize_eqb s1 s2 wsize_eqb_OK with
| left H ⇒ word_eqb s1 w1 (case H with eq_refl ⇒ w2 end)
| right _ ⇒ false
end

...

This way of writing the equality test is not only more com-
plex, but also puts the proof wsize_eqb_OK in the path of Coq’s
evaluation mechanisms: value_eqb would only reduce if the
proof wsize_eqb_OK was kept transparent.

With our definition the proof wsize_eqb_OK is only used in
the proof of value_eqb_OK, not in the definition of the equality
test itself.
During the proof generation of value_eqb_correct, the de-

pendency between arguments adds some complications to
the proof synthesis. It is necessary to substitute all occur-
rences of s2 by s1, and then invoke word_eqb_correct, which
requires the size of the two words to match. To do this it is

8word_eqb_OK is the composition of word_eqb_correct and
word_eqb_refl.
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necessary to perform the bulk rewriting in steps, one level
of dependency at a time. To illustrate this, we look at the
proof of value_eqb_correct. The case corresponding to the
Vword constructor looks like this:
eq_ind_r_n [::wsize]
(fun s ⇒ ∀ w:word s, word_eqb s1 w1 s w →

Some (Vword s1 w1) = Some (Vword s w))
s1 s2 (wsize_eqb_correct s1 s2 hs2)
(fun (w : word s1) (hw : word_eqb s1 w1 s1 w) ⇒

eq_ind_r_n [::word s1]
(fun w:word s1 ⇒ Some (Vword s1 w1) = Some (Vword s1 w))
w1 w (word_eqb_correct w1 w hw))

w2 hw2

in the context where hs2 has type wsize_eqb s1 s2 and hw2 has
type word_eqb w1 w2. During the rewriting of s1 = s2, w2 and
hw2 need to be generalized, in order to substitute s2 in their
types. The parts of the terms involved in this generalization
are underlined. The proof concludes with one extra rewriting
step. The number of rewriting steps one needs to do is given
by the longest chain of dependencies between the fields
(typically two), and not by the number of fields.

6 Containers and deep induction
principles

We introduce the deep data type (a simplified version of the
instr one shown in the introduction) in order to explain the
problem we need to overcome and our approach. This type
occurs recursively under two containers, namely list and
option.
Inductive deep := D : list (option deep) → deep.

The induction principle generated by Coq for deep is the
following one:
deep_ind : ∀P: deep → Prop,

(∀l: list (option deep), P (D l)) →
∀d: deep, P d

This “induction” principle is too weak, since it clearly
lacks any induction hypothesis on l, or better, the subterms
of type deep which occur inside l. To overcome this problem,
we base our work on the deep and modular induction prin-
ciples synthesized by [16], which we adapt (and simplify in
Section 6.1) to better cover our case of interest.
The deep induction principle for deep has the following

type, the differences are underlined:
deep_induction : ∀P : deep → Prop,

(∀l, is_list (is_option P) l → P (D l)) →
∀d : deep, is_deep d → P d

In order to understand the difference, we need to look at
the unary parametricity translations of the types involved:
Inductive is_option {A} (is_A : A → Type) : option A → Type :=
| is_None : is_option is_A None
| is_Some : ∀a, is_A a → is_option is_A (Some a).

Inductive is_list {A} (is_A : A → Type) : list A → Type :=
| is_nil : is_list is_A nil
| is_cons : ∀a, is_A a → ∀l, is_list is_A l →

is_list is_A (cons a l).

Inductive is_deep : deep → Type :=
| is_D : ∀l, is_list (is_option is_deep) l → is_deep (D l).

The predicate is_option P intuitively means that P holds on
the contents of Some; similarly is_list Q means that Q holds
on all the elements of a list. Hence is_list (is_option P) l

intuitively states that P holds on all the subterms of type deep

of l.
The induction principle deep_induction is stronger but also

has an extra cost: in order to use it one cannot just provide
a term d or type deep, but one also has to provide a “proof”
of is_deep d. This proof is automatically synthesized by [16],
so in the end there is no extra cost on the user.

This extra argument to the induction principle also plays
an important role in the composition of the lemmaswhich are
proved by induction. In our case, if one proves the correctness
lemmas for the containers list and option without passing
this very last argument, one obtains “auxiliary” lemmas of
the following types:
list_eqb_correct_aux : ∀{A} (eqA: A → A → bool) l,
is_list (eqb_correct_on eqA) l → eqb_correct_on (list_eqb eqA) l

option_eqb_correct_aux : ∀{A} (eqA: A → A → bool) o,
is_option (eqb_correct_on eqA) o → eqb_correct_on (option_eqb eqA) o

list_eqb : ∀{A} (eqA: A → A → bool), list A → list A → bool

option_eqb : ∀{A} (eqA: A → A → bool), option A → option A → bool

The intuitive reading is that these lemmas let one move the
property eqb_correct_on across the container by applying the
equality test for the container. For example if the test eqA

is correct on all the elements of type A in the list l, then
list_eqb eqA is correct on the list l.

The shape of the induction hypothesis in deep_induction is
similar to the premise of these lemmas, but not identical. If we
set P to eqb_correct_on deep_eqb, then we have the following
induction hypothesis:
is_list (is_option (eqb_correct_on deep_eqb)) l

The predicate eqb_correct_on is deeper, under is_option, than
what the lemma list_eqb_correct_aux expects.

6.1 Functoriality
To the rescue comes the functoriality property of the unary
parametricity translation of containers:
is_list_functor : ∀{A} (P Q : A → Type),

(∀x : A, P x → Q x) →
∀l, is_list P l → is_list Q l

By passing option_eqb_correct_aux as the underlined as-
sumption one obtains a term of type:
is_list_functor
(is_option (eqb_correct_on deep_eqb))
(eqb_correct_on (option_eqb deep_eqb))
(option_eqb_correct_aux deep_eqb)

:
∀l, is_list (is_option (eqb_correct_on deep_eqb)) l →

is_list (eqb_correct_on (option_eqb deep_eqb)) l

This term can transform the induction hypothesis into the
premise of list_eqb_correct_aux.
The feqb tool synthesizes the following term before in-

voking the synthesis described in the previous sections:
fun l (IH : is_list (is_option (eqb_correct_on deep_eqb)) l) ⇒
let H : eqb_correct_on (list_eqb (option_eqb deep_eqb)) l :=
list_eqb_correct_aux (option_eqb deep_eqb) l
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(is_list_functor
(is_option (eqb_correct_on deep_eqb))
(eqb_correct_on (option_eqb deep_eqb))
(option_eqb_correct_aux deep_eqb)
l IH)

in
... (* filled by Sections 4 and 5 *)

In practice the deep induction hypotheses provided by [16]
are made shallow by using the auxiliary correctness lemmas
for the containers. When more than one container needs to
be crossed one needs to use functoriality lemmas.
Our contribution to this schema is to make functoriality

lemmas about containers featuring a vparam simpler to use.
For example the tuple type features both a tparam and a
vparam.
Inductive tuple A i := { l : list A; p : length l == i }.

is_tuple_functor :
∀A (P Q : A → Type), (∀x, P x → Q x) →
∀(i : nat) (Pi : is_nat i),
∀(x : tuple a i), is_tuple A P i Pi x → is_tuple A Q i Pi x

The argument Pi is required in order to feed is_tuple,
whose shape is dictated by the parametricity translation,
but otherwise serves no purpose, unlike P, which is equipped
with a map to Q. Since i is classified as a vparam we synthe-
size a functoriality lemma which leaves Pi untouched, and
we require no map for it.

The approach previously used in [16] was to map Pi to a Qi,
but also synthesize a proof that is_nat i has a unique inhabi-
tant for each i, and use this result in subsequent derivations
to identify Pi with Qi when needed. Since all our derivations
work on the same AST which distinguishes type parameters,
it is rather natural to use this simpler form of functoriality
laws.

6.2 Tiding the knot
Auxiliary lemmas such as list_eqb_correct_aux are turned
into proper lemmas for the final user by providing their last
argument, namely a proof that is_list (eqb_correct_on eqA) l.
In order to provide this argument, we first synthesize this
general lemma, which shows is_list P for any predicate P

which is true on its entire domain.
Fixpoint list_is_list {A} P (H : ∀x, P x) l {struct l} : is_list P l :=
match l with
| nil ⇒ is_nil P
| cons x xs ⇒ is_cons P x (H x) xs (list_is_list P H xs)
end.

Then we can prove the correctness lemma as follows:
Lemma list_eqb_correct A eqA (HeqA : ∀x, eqb_correct_on eqA x)
: ∀l, eqb_correct_on (list_eqb eqA) l.
Proof.

move⇒ l; exact: list_eqb_correct_aux eqA l
(list_is_list (eqb_correct_on eqA) HeqA l).

Qed.

That is, if eqA is a correct equality test on A, then list_eqb eqA

is a correct equality test on list A.

7 Implementation and benchmarks
The implementation consists of around 800 lines of Elpi code,
organized as follows:

file size generates
eqType 151 HOAS (and validation)

tag 55 tag

fields 264 fields_t, fields, construct, constructP
eqb 208 eqb_fields, eqb

eqbcorrect 274 eqb_correct, eqb_reflexive
eqbP 51 eqb_OK

total 803 feqb
Moreover we use the existing code for the generation of
deep induction principles (including unary parametricity
and functoriality lemmas) which amounts to about 800 lines
of Elpi code.
It is out of scope to describe all the code of feqb in the

present paper, nevertheless we give a taste of it presenting
the rules for synthesizing eqb_fields in Figure 5.

The code is divided into two procedures: Γ, 𝜎 ⊢ i | 𝐼
j | 𝐽 {𝜆 B

and Γ, 𝜎 ⊢ X𝑠 | 𝐴
Y𝑠 | 𝐵 {∧ C. The former generate abstractions

corresponding to the parameters of the inductive type, while
the latter builds the code corresponding to the conjunction
of equality tests that compares the fields of constructors.

Γ is a context which contains rules linking two types t and
s to their equality test f (of type t -> s -> bool) : t ?

= s ↦→ f.
We expect it to contain rules for known eqTypes, that is type
for which feqb has previously synthesized the equality test,
for example:

Γ ⊃


nat

?
= nat ↦→ nat_eqb

∀𝑛 𝑚, word 𝑛 ?
= word 𝑚 ↦→ word_eqb 𝑛 𝑚

∀𝑎 𝑏 𝑓 , 𝑎 ?
= 𝑏 ↦→ 𝑓 =⇒
list 𝑎

?
= list 𝑏 ↦→ list_eqb 𝑎 𝑏 𝑓


Remember that we build heterogeneous equality tests when
the types have value parameters, such as word. In the second
rule one really needs the two words, their sizes n and m ac-
tually, in order to write their equality test word_eqb n m. The
third rule has premises: since the type list is a container one
needs a test for the contained in order to write the test for
the container itself.

The predicate9 Γ ⊢ 𝑎 ?
= 𝑏 ↦→ f allows to build the composi-

tion of the rules in Γ. For example, given the Γ above:

Γ ⊢ list nat
?
= list nat ↦→ list_eqb nat nat nat_eqb

When a type expression in E needs to be used in a Coq
term we invoke the conversion procedure ⌈.⌉𝜎 . This code
is straightforward, since E is a fragment of Coq’s syntax.
The only caveat is how to map variables bound in the HOAS
to Coq terms. We carry 𝜎 which is an association between
variables crossed in the input I and Coq terms. For example⌈
𝑥 ↦→a
𝑦 ↦→b

⌉
extends the map linking 𝑥 and 𝑦 (in E) with a and b

respectively.
The rules for Γ, 𝜎 ⊢ i | 𝐼

j | 𝐽 {𝜆 B recursively traverse two
copies of the same inductive type declaration I, namely 𝐼

9Not explained in the figure
10
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Γ ∪ {a ?
= b ↦→ f}, 𝜎 ◦

⌈
𝑥 ↦→a
𝑦 ↦→b

⌉
⊢ i a | 𝑋

j b | 𝑌 {𝜆 B

Γ, 𝜎 ⊢ i | tparam(𝜆𝑥.𝑋 )
j | tparam(𝜆𝑦.𝑌 ) {𝜆 fun (a b : Type) (f : a → b → bool) ⇒ B

(𝑡𝑝)

Γ, 𝜎 ◦
⌈
𝑥 ↦→a
𝑦 ↦→b

⌉
⊢ i a | 𝑋

j b | 𝑌 {𝜆 B

Γ, 𝜎 ⊢ i | vparam 𝑇𝑥 (𝜆𝑥.𝑋 )
j | vparam 𝑇𝑦 (𝜆𝑦.𝑌 ) {𝜆 fun (a : ⌈𝑇𝑥 ⌉𝜎) (b : ⌈𝑇𝑦 ⌉𝜎) ⇒ B

(𝑣𝑝)

B𝑤 = fun '(Box𝑤 k𝑤) '(Box𝑤 l𝑤) ⇒ C𝑤 Γ ∪ {i ?
= j ↦→ rec}, 𝜎 ◦

⌈
𝑥 ↦→i
𝑦 ↦→j

⌉
⊢ k𝑤 | 𝐾𝑤

l𝑤 | 𝐿𝑤 {∧ C𝑤 ∀𝑤 ∈ {1 . . . 𝑛}

Γ, 𝜎 ⊢ i | inductive (𝜆𝑥. [𝐾1;...;𝐾𝑛 ])
j | inductive (𝜆𝑦. [𝐿1;...;𝐿𝑛 ]) {𝜆

fun (rec : i → j → bool) (t : positive) ⇒
match t with 1 ⇒ B1 | . . . | n ⇒ B𝑛 | _ ⇒ false end

(𝑖𝑛𝑑)

Γ ⊢ ⌈𝑇𝑥 ⌉𝜎
?
= ⌈𝑇𝑦 ⌉𝜎 ↦→ F Γ, 𝜎 ⊢ X𝑠 | 𝐴

Y𝑠 | 𝐵 {∧ C

Γ, 𝜎 ⊢ X :: X𝑠 | regular 𝑇𝑥 𝐴
Y :: Y𝑠 | regular 𝑇𝑦 𝐵 {∧ F X Y && C

Γ ⊢ ⌈𝑇𝑥 ⌉𝜎
?
= ⌈𝑇𝑦 ⌉𝜎 ↦→ F Γ, 𝜎 ◦

⌈
𝑥 ↦→X
𝑦 ↦→Y

⌉
⊢ X𝑠 | 𝐴

Y𝑠 | 𝐵 {∧ C

Γ, 𝜎 ⊢ X :: X𝑠 | dependent 𝑇𝑥 (𝜆𝑥.𝐴)
Y :: Y𝑠 | dependent 𝑇𝑦 (𝜆𝑦.𝐵) {∧ F X Y && C

Γ, 𝜎 ⊢ X𝑠 | 𝐴
Y𝑠 | 𝐵 {∧ C

Γ, 𝜎 ⊢ X :: X𝑠 | irrelevant 𝑇𝑥 𝐴
Y :: Y𝑠 | irrelevant 𝑇𝑦 𝐵 {∧ C

(𝑖𝑟𝑟 )
Γ, 𝜎 ⊢ 𝜖 | stop

𝜖 | stop {∧ true

Figure 5. Elpi code for the synthesis of eqb_fields

and 𝐽 . This is necessary since it has to generate heteroge-
neous tests. During this recursion it carries in i and j the
name of the inductive type applied to the variables which
were previously abstracted. Remark how rule (𝑡𝑝) abstracts
a function f to compare the type parameter, and adds to Γ a
rule a

?
= b ↦→ f to later know how to compare fields of types,

respectively, a and b.
Once all parameters are abstracted, rule (𝑖𝑛𝑑) abstracts

one last equality test for the inductive type itself (namely
rec), and dispatches on the positive t all the branches 𝐵𝑤 ,
one per constructor. All branches abstract and destruct the
box corresponding to the constructor, and pass all its fields
𝑘𝑤 and 𝑙𝑤 , together with the corresponding 𝐾𝑤 and 𝐿𝑤 , to
the other function {∧ .

The first two rules of {∧ are identical: they compare the
field variables X and Y by looking up a function F in Γ using
their types. If these arguments have the type of the inductive
being currently processed, then the lookup gives rec. If their
type is one of the type parameters of the inductive, then the
test abstracted by rules (𝑡𝑝) is used. If their type is an already
known type, possibly a container, we expect Γ to contain a
rule for it.

Rule (𝑖𝑟𝑟 ) simply ignores the irrelevant argument, indeed
the equality tests we synthesize discard this kind of fields.

Inference rules like the ones in Figure 5 write quite natu-
rally in a logic programming language such as Elpi, which
also allows for a trivial implementation of Γ ⊢ 𝑎 ?

= 𝑏 ↦→ f.

7.1 Benchmarks
To get an idea of the performance of feqb in practice, we
performed a few benchmarks comparing feqb to the tools
mentioned in Section 1.1.
All the experiments were performed on a HP EliteBook

840 G3 with an Intel Core i7-6600U processor at 2.60 GHz

and 16 GB of memory. We used the following versions of
the tools: OCaml 4.14.0, Coq 8.16, Coq-Elpi 1.16, Deriving
0.1.0 and Equations 1.3+8.16. Deriving tries by default to
simplify the terms it produces, but following the advice in
the README, we disabled this costly pass.

We tested the tools on two families of types. The first one
is variants, i.e. inductive types where all constructors have no
arguments. The second family is records, i.e. inductive types
with just one constructor but a potentially large number of
arguments. The two tests measure how each dimension in
the size of the inductive impacts the synthesis time. For each
tool, we measured the time taken by the entire generation
procedure seen as a black box (which includes synthesis,
typechecking, etc. . . ).

The results on the first family are shown in Figure 6a. We
tested the tools on a few variant types (number of construc-
tors from 10 to 1000), and measured their execution time,
with a time out of one hour. The results are shown using
solid lines. There are three more curves in the graph, using
dashed lines: we tried to make some mathematical functions
fit our curves, based on what we anticipated as complexity
of the tools (cf. Figure 1). Four tools run out of time when
the number of constructors is more than a few hundreds:
Equations, Deriving, Scheme Equality and decide equality. Ex-
perimentally they look cubic in the number of constructors.
Coq-Elpi scales better and is plausibly quadratic in the num-
ber of constructors. Our tool, feqb, outclasses the other ap-
proaches and appears to be roughly linear.
The results on the second family are shown in Figure 6b.

We tested the tools on a few records (number of fields from 5
to 200). Three tools timeout before reaching 100 fields: Coq-
Elpi, Equations and Deriving. decide equality behaves much
better, but is still outperformed by feqb and Scheme Equality

whose performances are really similar.
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Figure 6. Benchmark results

Admittedly, the sizes that we tested in these two bench-
marks were big compared to what the daily Coq user needs.
But they are not completely unrealistic either, and wewanted
to get an idea of the asymptotic complexity.

To be honest, our initial measurements were not reflecting
the asymptotic complexity we hoped for feqb. It is only after
eliminating unrelated slowdowns from Coq-Elpi (on which
feqb is based) that we could sample the real complexity. And
we think that there is still a lot of room for improvement in
both the code of Coq-Elpi and feqb. This engineering work
is an additional contribution of the current paper and also
explains why Coq-Elpi’s derive is, in spite of being quadratic,
faster than the alternatives. We believe some engineering
work could make the other tools show their actual complex-
ity bound. For example Deriving is a reflexive procedure,
it does not really generate an equality test, but it rather
provides a program that given a first class description of
an inductive data type generates the test, together with its
proof. It is totally unclear to us why it does not scale to large
inductives.
Last, we want to mention that Elpi is an interpreted lan-

guage, and in spite of being reasonably efficient [8], it cannot
outperform OCaml code. Still, thanks to the better asymp-
totic complexity, our synthesis is faster than all other tools
starting from 50 constructors or 50 fields, even if the other
tools are written in OCaml!

Until now, we discussed the performance of the generation
of the boolean tests, but not the performance of the boolean
tests themselves. We tried to run the tests on objects of
type tree with 220 nodes to check how they perform on
big objects. The fastest approaches are Scheme Equality and
Coq-Elpi (0.16 s). When we call the simplifying procedure of
Deriving, the resulting test is nearly as fast as these two (0.26
s); without the simplifying pass, it becomes much slower (26
s). decide equality and feqb are a bit slower (1.2 s), certainly
paying for mixing terms and proofs for the first, and for

introducing too many indirections for the second. As for
the test produced by Equations, it runs out of memory, also
paying for mixing terms and proofs, but this time heavily.
We consider that the relative slowness of the test synthesized
by feqb is not a problem in practice.

The other main goal when designing feqb was to support
a certain number of features of Coq inductive types. Figure 7
illustrates on a few concrete types the features supported by
feqb and the other tools. On top of types already introduced
in this paper, we introduce two new types: forest encodes
forests (from graph theory) as a mutual inductive type, and
vector is taken from the standard library of Coq as an example
of indexed data type.
Inductive forest := | empty | add : tree -> forest -> forest
with tree := | node : nat -> forest -> tree.

Inductive vector A : nat -> Type :=
| nil : vector A 0
| cons : A -> forall n, vector A n -> vector A (S n).

While feqb behaves very well, it does not support these
two types. It does not support indexed data types such as vect
like every other tool except Equations. It also inherits from
Coq-Elpi the limitation of not covering mutual inductive
types such as forest, although we believe the schema we
presented can be easily extended to that case once mutual
inductive types are available in Coq-Elpi.

8 Future work
For future work we look at other places where a naive equal-
ity test brings terrible effects on the computation complexity.
The first one that comes to mind is the discriminate tactic
which internally generates a proof term similar to the one
of an equality test proof: when a data type occurs in the
index of an inductive relation its equality test is key to dis-
charge impossible branches when reasoning by inversion.
We may be able to apply our technique there and reduce the
space and time complexity of the inversion and discriminate
tactics.
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