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1 INTRODUCTION AND PRELIMINARIES

Motivation. Today, the market capitalization of the seminal

blockchain, Bitcoin, is about $803B which incentivizes malicious

participants to find problematic executions that would allow them

to steal financial assets. As the blockchain requires a distributed

set of machines to agree on a unique block of transactions to be

appended to the chain, attackers naturally try to exploit consen-

sus vulnerabilities to double spend. As a result, formally verifying

that a blockchain consensus protocol is safe and live is key to

mitigate financial losses. Recent progress in mechanical proofs rep-

resent the first steps towards verifying blockchain consensus. The

parameterized model checking of threshold automata (TAs) has
recently proved instrumental in verifying fully asynchronous parts

of consensus algorithms, like broadcast algorithms [4]. The afore-

mentioned reduction technique cannot apply to partial synchrony:

moving the message reception step to a later point in the execution

might violate an assumed message delay.

Contribution. In this paper, we verify holistically the safety and

liveness properties of the DBFT [2] Byzantine consensus used in

the Red Belly Blockchain system [3], a scalable blockchain used

in production. Our approach is holistic because it starts from the

pseudocode of the distributed algorithm as typically presented in

the distributed computing literature, models this pseudocode and

its components into disambiguated TA, model checks the desired
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properties of these components expressed in LTL formulae, simpli-

fies the TA of the consensus algorithmwith these verified properties

and model checks the safety and liveness of the consensus protocol.

The advantage is that the formally verified algorithm matches the

pseudocode and no user-defined invariants or proofs need to be

checked, which drastically reduces the risks of human errors.

Model. We consider 𝑛 asynchronous sequential processes Π =

{𝑝1, . . . , 𝑝𝑛} that communicate by exchanging messages through

an asynchronous reliable fully connected point-to-point network.

A set of 𝑓 ≤ 𝑡 < 𝑛/3 processes are Byzantine, the rest are correct.
Distributed algorithms are communication-closed and their execu-

tion consists in an interleaving of the individual steps taken by the

processes. A threshold automaton (TA) describes the behavior of a
process in a distributed algorithm. Its nodes represent local states,

and labeled edges are guarded rules. In order to verify the safety and

liveness properties of our distributed algorithms on a multi-round

TA, we express these properties in fragments of linear temporal

logic (LTL). Since the algorithms are communication-closed, the

verification on the multi-round TAs reduces to one-round TAs. We

then use the ByMC model checker to automatically verify these

fragments.

2 THE BINARY VALUE BROADCAST

Algorithm 1 Binary value broadcast for process 𝑝𝑖 .

1: bv-broadcast(BV, ⟨val, 𝑖 ⟩) :
2: broadcast(BV, ⟨val, 𝑖 ⟩)
3: repeat:
4: if (BV, ⟨𝑣, ∗⟩) received from (𝑡 + 1) distinct proc. (not yet re-bcast) then
5: broadcast(BV, ⟨𝑣, 𝑖 ⟩)
6: if (BV, ⟨𝑣, ∗⟩) received from (2𝑡 + 1) distinct processes then
7: contestants← contestants ∪ {𝑣 }

Our holistic verification approach consists of decomposing a

distributed algorithm into encapsulated components of pseudocode

that can be modelled in TAs and verified in isolation to obtain

a simplified TA that is amenable to automated verification. The

binary value broadcast (bv-broadcast) [5] is a communication prim-

itive guaranteeing that all binary values “bv-delivered” were “bv-

broadcast” by a correct process. Each process starts this algorithm

in one of two states, depending on its input value 0 or 1. Once

a correct process receives a value from 𝑡+1 distinct processes, it

broadcasts it if it did not do it already (line 4); broadcast is not
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Figure 1: The threshold automaton model for the binary
value broadcast. The locations of the automaton correspond to

the exclusive situations for a correct process. The initial location

𝑉0 (resp. 𝑉1) indicate that the process initially has value 0 (resp.

1). Processes in 𝐵0 (resp. 𝐵1, 𝐵01) have broadcast 0 (resp. 1, {0, 1})
without delivering anything. Processes in 𝐶𝐵0 (resp. 𝐶𝐵1) have

broadcast {0, 1} and delivered 0 (resp. 1). Processes in 𝐶0 (resp. 𝐶1,

𝐶01) have both broadcast and delivered 0 (resp. 1, {0, 1}).

Byzantine fault tolerant and just sends a message to all the other

processes. Once a correct process receives a value from 2𝑡+1 distinct
processes, it “bv-delivers” it. Here such a bv-delivery at process 𝑝𝑖
is modeled by adding the value to the set contestants, which will

simplify the pseudocode of the Byzantine consensus algorithm in

Section 3.

From pseudocode to TA. To model the bv-broadcast pseudocode
(Alg. 1) parameterized by 𝑛 and 𝑡 into a TA (Fig. 1), we define 𝑏0 and

𝑏1 as the global variables counting the number of the two types of

messages (BV, ⟨0, 𝑖⟩) and (BV, ⟨1, 𝑖⟩) sent by correct processes. For

example, 𝑏0++ models a process broadcasting message (BV, ⟨0, 𝑖⟩).
Because the algorithm only counts messages regardless of sender

identities, we replace the messages from the pseudocode into 𝑏0
and 𝑏1 shared variables that are increased whenever a message

is sent. To model that, among the received messages, 𝑓 of them

could have been sent by Byzantine processes, we map the ‘if’ state-

ment of Alg. 1, comparing 𝑡+1 to the number of receptions from

distinct processes, to the TA guards, comparing the number 𝑏1+𝑓
of messages sent to 𝑡 + 1. As 𝑏1 counts the messages sent by correct

processes and 𝑓 is the number of faulty processes that can send

arbitrary values, a correct process can move from 𝐵0 to 𝐵01 as soon

as 𝑡+1−𝑓 correct processes have sent 1. As a result, the guard of

rule 𝑟4 only evaluates over global send variables as: if more than

𝑡+1messages of type 𝑏1 have been sent by correct processes (hence

the guard 𝑏1 ≥ 𝑡+1−𝑓 ), then the shared variable 𝑏1 is incremented,

mimicking the broadcast of a new message of type 𝑏1. Rule 𝑟3 cor-

responds to lines 6–7 and delivers value 𝑣 = 0 by storing it into

variable contestants upon reception of this value from 2𝑡 +1 distinct
processes. Hence, reaching location 𝐶0 in the TA indicates that the

value 0 has been delivered. As a process might stay in this location

forever, we add a self-loop with guard condition set to true.

Properties. As was previously proved by hand [5], the

bv-broadcast primitive satisfies four properties: BV-Justification,

BV-Obligation, BV-Uniformity and BV-Termination. Here, we for-

malize these properties in linear temporal logic (LTL) to formally

and automatically prove they hold. We verify them for any param-

eters 𝑛 and 𝑡 < 𝑛/3 in less then 10 seconds.

A fairness assumption to solve consensus. The traditional ap-
proach to establishing guaranteed liveness properties in verification

is to require that all fair executions, instead of all executions, satisfy

the properties. We thus introduce the fairness assumption that will

be crucial in the rest of this paper. In order to define it, we first

define a good execution of the bv-broadcast with respect to binary

value 𝑣 as an execution:

Definition 2.1 (𝑣-good bv-broadcast). A bv-broadcast execu-

tion is 𝑣-good if all its correct processes bv-deliver 𝑣 first, i.e.,

□ (^ [𝐶1−𝑣] = 0 ∧ ^ [𝐶𝐵1−𝑣] = 0).
Second, we consider an infinite sequence of bv-broadcast execu-

tions, tagged with 𝑟 ∈ N. Since we replace partial synchrony by our
fairness assumption, the setting is fair but asynchronous, that is,

processes invoke bv-broadcast infinitely many times, but at their

own relative speed. Thus, they do not all invoke the bv-broadcast
tagged with the same number 𝑟 at the same time. Nonetheless,

every process invokes bv-broadcast infinitely many times and in

the 𝑟 th invocation its behavior depends on the messages sent in

the 𝑟 th invocation of other processes. Therefore, we refer to the 𝑟 th

execution of bv-broadcast even though the processes invoke it at

different times.

Definition 2.2 (fairness). An infinite sequence of bv-broadcast
executions is fair if there exists an 𝑟 such that the 𝑟 th execution is

(𝑟 mod 2)-good.
For simplicity, we use the terminology fair bv-broadcast when

the infinite sequence of bv-broadcast executions is fair.

Algorithm 2 The Byzantine consensus algorithm at process 𝑝𝑖

1: Global scope variable:
2: contestants ⊆ {0, 1}, set of binary values, initially ∅.

3: propose(est) :
4: 𝑟 ← 0

5: repeat:
6: bv-broadcast(est, ⟨est, 𝑖 ⟩)
7: wait until (contestants ≠ ∅)
8: broadcast(aux, ⟨contestants, 𝑖 ⟩) → favorites
9: wait until ∃𝑐1, . . . , 𝑐𝑛−𝑡 : ∀1 ≤ 𝑗 ≤ 𝑛 − 𝑡 favorites [𝑐 𝑗 ] ≠ ∅
10: ∧ (qualifiers← ∪∀1≤ 𝑗≤𝑛−𝑡 favorites [𝑐 𝑗 ]) ⊆ contestants
11: if qualifiers = {𝑣 } then
12: est ← 𝑣

13: if 𝑣 = (𝑟 mod 2) then decide(𝑣)
14: else est ← (𝑟 mod 2)
15: 𝑟 ← 𝑟 + 1

3 CONSENSUS VERIFICATION
In this section, we leverage our verification of bv-broadcast to
simplify the verification of the TA of DBFT.

The Byzantine consensus algorithm. Since we replace the par-
tial synchrony assumption by fairness, DBFT can be simplified

into Algorithm 2, without coordinators and timeouts. The DBFT

binary consensus invokes bv-broadcast(·) at line 6 and uses a set

contestants of binary values, whose scope is global, updated by

the bv-broadcast (Alg. 1, line 7) and accessed by the procedure

propose(·) (Alg. 2, line 7).
Modeling deterministic consensus. Figure 2 depicts the TA ob-

tained by modeling Algorithm 2 with the aforementioned method.
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Figure 2: The naive threshold automaton of the Byzantine consensus of Algorithm 2. The embedded bv-broadcast automaton is

depicted with dashed arrows. Note that the rules 𝑟20, 𝑟21 and 𝑟22 represent transitions from the end of an odd round to the beginning of the

following (even) round of Algorithm 2, while the dotted edges represent transitions from the end of an even round to the beginning of the

following (odd) one.

𝑉0

𝑉1

𝑀

𝑀0

𝑀1

𝑀01

𝐸0

𝐷1

𝐸1

𝑉 ′
0

𝑉 ′
1

𝑀 ′

𝑀 ′
0

𝑀 ′
1

𝑀 ′
01

𝐷0

𝐸 ′
1

𝐸 ′
0

𝑠
1 : bvb

0 ++

𝑠2 :
bvb1

++

𝑠 3
:
bvb

0
≥1
↦→ 𝑎 0

++

𝑠
4 : bvb

1≥
1 ↦→

𝑎
1 ++

𝑠5 : 𝑎0 ≥ 𝑛 − 𝑡 − 𝑓

𝑠
6

: bvb
1 ≥
1

𝑠 7
:
bv
b 0
≥1

𝑠8 : 𝑎1 ≥ 𝑛 − 𝑡 − 𝑓

𝑠9 :
𝑎0
≥ 𝑛−

𝑡−𝑓

𝑠10 : 𝑎0+𝑎1≥𝑛−𝑡−𝑓

𝑠
11 : 𝑎

1 ≥ 𝑛−𝑡−𝑓

𝑠12

𝑠13

𝑠 1
4

𝑠 ′
1

𝑠 ′
2

𝑠 ′
3

𝑠 ′
4

𝑠 ′
5

𝑠 ′
6

𝑠 ′
7

𝑠 ′
8

𝑠 ′
9

𝑠 ′
10

𝑠 ′
11

Figure 3: The simplified threshold automaton of the Byzantine consensus of Algorithm 2 obtained after model checking the
bv-broadcast. Rules 𝑠 ′
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, 1 ≤ 𝑗 ≤ 11, are obtained from 𝑠 𝑗 by replacing each variable 𝑐 ∈ {𝑎0, 𝑎1, bvb0, bvb1} with its corresponding one 𝑐 ′.

The TA depicts two iterations of the repeat loop (line 5), since Al-

gorithm 2 favors different values depending on the parity of the

round number. For simplicity, we refer to the concatenation of two

consecutive rounds of the algorithm as a superround of the TA. As
one can expect, this TA embeds the TA of the bv-broadcast that

is depicted by the dashed arrows, just as Algorithm 2 invokes the

bv-broadcast algorithm of Fig. 1. We thus distinguish the outer TA
modeling the consensus algorithm from the inner TA modeling the

bv-broadcast algorithm. Although Algorithm 2 is relatively sim-

ple, the global TA happens to be too large to be verified through

model checking; the main limiting factor is its 14 unique guards

that constrain the variables to enable rules in the TA.

Simplified threshold automaton. Our objective is to formally

prove that Algorithm 2 is unconditionally safe, and that it is live

under the assumption of fairness at the bv-broadcast level. Since
the TA of Fig.2 is too large to be handled automatically, we build

on the properties proved for the bv-broadcast to simplify in the TA
from Fig.2 the part representing the bv-broadcast. We obtain Fig.3.

Verification of Byzantine Consensus. We can formally verify

that DBFT (Alg. 2) solves the Byzantine consensus with the fair

bv-broadcast and without partial synchrony. The full proofs can

be found in the companion technical report [1]. First, we verify

safety (validity and agreement) by model-checking two well-chosen

superround invariants. For both values of 𝑣 we obtain:

∀𝑅 ∈ N,∀𝑅′ ∈ N
(
♢^ [𝐷𝑣, 𝑅] ≠ 0 ⇒ □^ [𝐷1−𝑣, 𝑅′] = 0

)
(Agree𝑣 )

∀𝑅 ∈ N
(
^ [𝑉𝑣, 1] = 0 ⇒ □^ [𝐷𝑣, 𝑅] = 0

)
(Valid𝑣 )

Second, we verify liveness (termination) by model-checking four

properties with ByMC and conclude with a short proof that relies

on our fairness assumption (cf. Def. 2.2):

Theorem 3.1. Assuming fairness of the bv-broadcast, Algorithm 2
terminates.
Experiments. Thanks to our modular approach, we are able to

verify all properties of the Byzantine consensus automatically in

about 70 seconds whereas a non-compositional approach timed out

after more than 24 hours.
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