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FLUX APPROXIMATION ON UNFITTED MESHES AND
APPLICATION TO MULTISCALE HYBRID-MIXED METHODS?

T. CHAUMONT-FRELET†, D. PAREDES‡, AND F. VALENTIN¶

Abstract. The flux variable determines the approximation quality of hybridization-
based numerical methods. This work proves that approximating flux variables in dis-
continuous polynomial spaces from the L2 orthogonal projection is super-convergent on
meshes that are not aligned with jumping coefficient interfaces. The results assume only
the local regularity of exact solutions in physical partitions. Based on the proposed flux
approximation, we demonstrate that the mixed hybrid multiscale (MHM) finite element
method is superconvergent in unfitted meshes, supporting the numerics presented in MHM
seminal works.

1. Introduction

Many numerical algorithms rely on their accuracy in approximating flux variables de-
fined on the skeleton of geometric partitions of physical domains. Finite volume methods,
discontinuous finite element methods and hybrid finite element methods are examples of
numerical methods of this type, but we also find the fundamental importance of flux recov-
ery in some domain decomposition methods. As a result, there has been growing interest
in developing discrete fluxes with optimal convergence properties (see [5], [16], [15], and
[14] for instance).

In this work, we are interested in retrieving discrete fluxes associated with the solution
u of partial differential equations defined in a domain Ω composed of regions ω where the
regularity of the solution is high, although u can only have moderate overall regularity.
We assume that the geometric partition TH of Ω used to define the discrete flux is general,
with characteristic length H, and composed of polytopal elements whose boundary may
not fit on the interfaces of ω. Within such a scenario, we demonstrate that the exact flux λ
can be accurately approximated through its L2 orthogonal projection into a discontinuous
polynomial space of degree ` ≥ 0 on faces of ∂TH the boundary of TH, notably,

inf
µH∈ΛH

‖λ− µH‖−1/2,∂TH = O(H`+3/2),

where H is a characteristic length associated to the discretization of ∂TH. Here, we under-
stand a flux variable λ as the normal component of vector (tensor) functions σ ∈H(div,Ω)
restricted to the skeleton of TH. We have borrowed the term flux from fluid flows, although
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2 FLUX APPROXIMATION ON UNFITTED MESHES AND MHM METHODS

it may represent other physical quantities (e.g., traction in the elasticity model). This aim
is similar to that found in the fictitious domain method [3] or in CutFEM [6], to name a
few.

We take advantage of the proposed flux approximation to renew the analysis of the mixed
hybrid multiscale method (MHM) on unfitted meshes. The MHM method was originally
proposed in [11] and a priori and a posteriori error estimates proposed in [2], and extended
to polygonal elements in [4] (see [13] for an abstract framework). It is conceived from the
primal hybridization of the original model, and characterizes the exact solution in terms
of a global formulation placed on the skeleton of a domain partition and independent local
problems. Lagrange multipliers play the role of Neumann boundary conditions for local
problems. Such decomposition leads to discretization, decouples global and local problems
and gives rise to the MHM method. Regarding the analysis, we note that the original
technique used to prove that the MHM method converges is fundamentally based on the
accuracy of the approximation flux in a polynomial space ΛH,` of degree ` on the boundary
partition (see [7] for a recent alternative proof). Specifically, if uH denotes the MHM
solution, the convergence of uH toward u in the broken H1 norm | · |1,TH behaves as follows
(c.f. [2]): for 0 ≤ q ≤ `, we have

|u− uH |1,TH ≤ C` inf
µH∈ΛH,`

‖λ− µH‖Λ ≤ C`H
q+1|u|Hq+2(TH),

where ‖·‖Λ is a norm on space Λ of trace of functions in H(div,Ω) on boundary elements,
and C` is a positive constant depending on `. We note that the above estimate depends on
the regularity of the exact solution placed on the geometric partition of Ω rather than the
physical partition. Also, the constant depends on the degree of the polynomial, but lacks
its precise dependence, which is important for establishing convergence with respect to `.

Therefore, in addition to the proposed discrete fluxes in general unfitted meshes, this
work fills the gap in the original numerical analysis of the MHM method, to contribute to

• demonstrate that the MHM method is superconvergent. Specifically, the conver-
gence rate of |u− uH |1,TH behaves like O(H`+3/2) when H → 0 (and H stay fixed),
which was numerically anticipated in [12] and [4];
• prove that the MHM method achieves convergence in unfitted meshes assuming

local regularity in the physical domain unlike the previous MHM literature;
• explicit the dependence of the constant on the error estimates in the polynomial

degree `. We show that the MHM method converges optimally when `→∞. Such
a convergence result is also new.

The outline of this article is as follows: We close this section with the functional setting
given in an abstract form to be particularized in the next sections. Section 2 includes
a description of the Ω partitions, the physical partition and the mesh, followed by the
definition of broken spaces and associated norms. In Section 3, we define continuous and
discrete fluxed and estimate the error involved. These error estimates are used in Section
4 to revisit the analysis of the MHM method. The conclusions follow in Section 5.
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1.1. Functional setting and norms. If U ⊂ Ω is a measurable set, L2(U) is the usual
Lebesgue space of square-integrable functions, equipped with its inner product (·, ·)U and
the associated norm ‖·‖2

0,U := (·, ·)U . We also employ the notation L2(U) := [L2(U)]d, and
we keep the same notation for its inner product and norm. For m ∈ N?, Hm(U) is the
usual Sobolev space that we equip with the norm

‖v‖2
Hm(U) :=

∑
α∈Nd

|α|≤m

(
1

d2
U

)m−|α|
‖∂αv‖2

U

and semi-norm

|v|2Hm(U) :=
∑
α∈Nd

|α|=m

‖∂αv‖2
U

for all v ∈ Hm(U), where dU is the diameter of U and the the partial derivative ∂α

is understood in the sense of distributions. We refer the reader to [1] for an in-depth
discussion of these spaces. We shall also use the Sobolev space H(div,U) of functions
w ∈ L2(U) with ∇ ·w ∈ L2(U), see [10].

We write H1/2(∂U) for the image of H1(U) by the trace operator. Its dual, that we
denote by H−1/2(∂U), is the image of H(div,U) by the normal trace operator, and we
reserve the notation 〈·, ·〉∂U for the duality pairing between H−1/2(∂U) and H1/2(∂U).

If P is a collection of non-overlapping measurable sets, we introduce for m ∈ N? the
broken Sobolev space

Hm(P) :=
{
v ∈ L2(Ω) | v|ω ∈ Hm(ω) for all ω ∈ P

}
,

with its norm and semi-norm

‖v‖2
Hm(P) :=

∑
ω∈P

‖v‖2
m,ω and |v|2Hm(P) :=

∑
ω∈P

|v|2Hm(ω) for all v ∈ Hm(P).

If V ⊂ Ω is contained in an hyperplane and measurable with respect to the surface
measure, we employ the same notations as above for L2(V) its norm and inner-product,
with integration performed with respect to the surface measure. Hm(V) is also defined
likewise, with multi-indices running over Nd−1. Finally, if Q is a collection of such disjoint
sets V , then Hm(Q) is the associated broken Sobolev space. We will also need the (possibly
infinite) Sobolev-Slobodeckij semi-norm

|v|2H1/2(V) :=

∫
V

∫
V

|v(x)− v(y)|2

|x− y|d
dydx for all v ∈ L2(V),

and its piecewise version

|v|2H1/2(Q) :=
∑
V∈Q

|v|2H1/2(V) for all v ∈ L2(Q).

Let U ⊂ Rd be a closed polytopal domain. We denote by hU the diameter of the smallest
ball containing U , and by ρU the diameter of the largest ball such that U is star-shaped.
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We also denote by FU the set of “faces” of U . Then, the shape-regularity parameter of U
is the constant

βU :=
hU
ρU
.

When considering a collection C := {U1, . . . , Un} of such sets, we let βC := max1≤j≤n βUj
.

2. Partitions of the Domain

We consider a Lipschitz polytopal domain Ω ⊂ Rd, with d ∈ {2, 3}, and denote by dΩ

the diameter of Ω. We decompose Ω into two separate and independent partitions. They
are detailed next.

2.1. Physical partition. We assume that Ω is partitioned into “physical subdomains”
ω ∈ PΩ. We will assume that each ω has a Lipschitz boundary. As a result [19, Theorem
5, Page 181], there exists extension operators Eω : L2(ω) → L2(Ω) satisfying (Eωv) = v
for all v ∈ L2(Ω) and such that, for all m ∈ N, Eω : Hm(ω)→ Hm(Ω) with

‖Eωv‖m,Ω ≤ CE,ω,m‖v‖m,ω
for all v ∈ Hm(ω) for some constants CE,ω,m, and we set CE,PΩ,m := maxω∈PΩ

CE,ω,m. This
physical partition typically corresponds to regions of space occupied by different materials,
each being linked with a constant (or smooth) coefficient in the considered model problem
(more in Section 4). Importantly, we may expect the model’s solution to be smooth in
each of the physical subdomains ω ∈ PΩ.

2.2. Geometrical partitions. The domain is partitioned into a computational mesh TH
characterized by a size H > 0. This partition is made of polytopal regions K, and we
collect the element boundaries ∂K in the set ∂TH. We denote by FH the faces of partition
TH, and for K ∈ TH, FK is the set of faces of K. For the sake of simplicity, we assume
that for two distinct regions K± ∈ TH, that when intersection ∂K+ ∩ ∂K− is non-empty,
it is either a full face, a full edge, or a single vertex of both regions. We highlight that we
do not assume any conformity between the partition TH with the physical partition PΩ.

We denote by Cqu(TH) the quasi-uniformity constant of TH, i.e., the smallest real number
such that

H ≤ Cqu(TH)HK ∀K ∈ TH.
Then, for each K ∈ TH, there exists a constant Ctr,K solely depending on βK and Cqu(TH)
such that

(2.1) ‖v‖2
FK
≤ C2

tr,K

(
H−1‖v‖2

K +H‖∇v‖2
K

)
and

(2.2) |v|H1/2(FK) ≤ Ctr,K‖∇v‖K
for all v ∈ H1(K), see, e.g., [9, Lemmas 6.1 and 6.4]. We write Ctr,TH := maxK∈TH Ctr,K ,
which only depends on βTH and Cqu(TH). Notice that because Cqu(TH) enters our analysis,
our results are essentially relevant on quasi-uniform meshes where the ratio between the
maximal and minimal element diameter is not large.
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We further introduce another level of geometrical discretization. Namely, each face
F ∈ FH is partitioned into a meshMF

H with elements D and characteristic length H. For
0 ≤ q ≤ `+ 1, and ` ≥ 0, the orthogonal projector πD,` : L2(D)→ P`(D) satisfies

(2.3) ‖ξ − πD,`ξ‖D ≤
(
CP,D,qHD

`+ 1

)q+1

|ξ|Hq+1(D) for all ξ ∈ Hq+1(D)

where CP,D,q only solely depends on βD and q and, if d = 3, on the ratio hD/mine∈FD
he,

see e.g. [8, Lemma 4.2 and Remark 2]. In addition, using Banach space interpolation
theory (see, e.g. [20, Chapters 22, 34 and 36]), we can combine the case q = 0 and q = 1
of (2.3) to show that

(2.4) ‖ξ − πD,`ξ‖D ≤
(
CP,D,hHD

`+ 1

)1/2

|ξ|H1/2(D) for all ξ ∈ H1/2(D),

for some constant CP,D,h only depending on βD. We denote by MH := ∪F∈FHMF
H the

global skeletal mesh, and we set

CP,MH ,q := max
F∈FH

max
D∈MF

H

CP,D,q, CP,MH ,h := max
F∈FH

max
D∈MF

H

CP,D,h.

We also set M∂K
H := ∪F∈FK

MF
H for each K ∈ TH and Mω

H := {D ∈MH | D ⊂ ω}.

Remark 2.1 (Constraint on skeleton meshes). In contrast to TH, we assume that the
partitionMH fits the physical partition PΩ. It means that every element D ∈MH entirely
belongs to a single physical subdomain ω ∈ PΩ.

3. Flux interpolation

This section presents our first set of results, where we construct an interpolation operator
for flux variables and estimate errors.

3.1. Continuous and discrete fluxes. We consider that the continuous flux variable
belongs to the space

Λ(∂TH) :=

{
µ ∈

∏
K∈TH

H−1/2(∂K)

∣∣∣∣ ∃σ ∈H(div,Ω);
σ · nK = µ|∂K ∀K ∈ TH

}
.

If µ ∈ Λ(∂TH) and v ∈ H1(TH), we define the pairing

〈µ, v〉∂TH =
∑
K∈TH

〈µ, v〉∂K .

For µ ∈ Λ(TH), we define the (semi) norm

(3.1) ‖µ‖Λ = sup
v∈H̃1(TH)
‖∇ṽ‖TH=1

〈µ, ṽ〉∂TH ,
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where H̃1(TH) stands for the space of functions in H1(TH) with zero mean value in each
K ∈ TH. Notice that ‖·‖Λ becomes a norm when restricted to the subspace N (∂TH) ⊂
Λ(∂TH) defined by

N (∂TH) := {µ ∈ Λ(∂TH) | 〈µ, v0〉∂TH = 0 for all v0 ∈ P0(TH)} .(3.2)

For a given integer ` ∈ N, we introduce an interpolation operator that is well defined for
all µ ∈ Λ ∩ L2(∂TH) by setting

(πH,`µ)|D = πD,`µ for all D ∈MH

and it follows that the discrete flux πH,`µ ∈ Λ(TH) ∩ L2(∂TH).

3.2. Error estimates. We start with a duality result that is similar to [3].

Lemma 3.1 (Duality). For all µ ∈ Λ(∂TH) ∩ L2(∂TH), we have

(3.3) ‖µ− πH,`µ‖Λ ≤ Ctr,TH

(
CP,MH ,hH

`+ 1

)1/2

‖µ− πH,`µ‖∂TH .

Proof. Let v ∈ H1(TH). For all K ∈ TH, we have

〈µ− πH,`µ, v〉∂K = (µ− πH,`µ, v)∂K =
∑

D∈M∂K
H

(µ− πD,`µ, v)D.

Recalling that πDH,`µ is the L2(D) projection of µ onto P`(D), and using (2.4), we have

(µ− πD,`µ, v)D = (µ− πD,`µ, v − πD,`v)D ≤ ‖µ− πD,`µ‖D‖v − πD,`v‖D

≤
(
CP,D,hHD

`+ 1

)1/2

‖µ− πD,`µ‖D|v|H1/2(D),

and therefore, involving (2.2), we obtain

〈µ− πH,`µ, v〉∂K ≤
(
CP,MH ,hH

`+ 1

)1/2

‖µ− πH,`µ‖FK
|v|H1/2(FK)

≤ Ctr,TH

(
CP,MH ,hH

`+ 1

)1/2

‖µ− πH,`µ‖FK
‖∇v‖K .

By summation, we see that

〈µ− πH,`µ, v〉∂TH ≤ Ctr,TH

(
CP,MH ,qH

`+ 1

)1/2

‖µ− πH,`µ‖∂TH‖∇v‖TH

for all v ∈ H1(TH), and (3.3) follows by definition (3.1) of ‖·‖Λ and noting µ − πH,`µ ∈
N (∂TH). �

As a direct consequence of Lemma 3.1 and (2.3), we have the following result.
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Corollary 3.2 (Approximation). Let 0 ≤ q ≤ `+ 1. Assuming µ ∈ Λ(∂TH)∩Hq+1(∂TH),
it holds

(3.4) ‖µ− πH,`µ‖Λ ≤ Ctr,TH

(
CA,MH ,qH

`+ 1

)q+3/2

|µ|Hq+1(MH),

where CA,MH ,q := max(CP,MH ,h, CP,MH ,q).

In practical application, the variable λ ∈ Λ(∂TH) to be approximated is related to
the “flux” of the solution u to the model problem under consideration. For instance,
λ|∂K = ∇u · nK for the Laplace operator. This motivates the main result of this section.

Theorem 3.3 (Interpolation error estimate). Let 0 ≤ q ≤ ` + 1 and µ ∈ Λ(∂TH) ∩
Hq+1(∂TH). Assume that there exists u ∈ Hq+3(PΩ) such that

|µ|Hq+1(MH) ≤ |u|Hq+2(MH).

Then, we have

(3.5) ‖µ− πH,`µ‖Λ ≤

CE,PΩ,q+3Ctr,TH

(
CA,MH ,qH

`+ 1

)q+3/2 (
H−1/2‖u‖Hq+2(PΩ) +H1/2‖u‖Hq+3(PΩ)

)
.

Proof. In view of (3.4), it is sufficient to establish that

|u|Hq+2(MH) ≤ CE,PΩ,q+3Ctr,TH
(
H−1/2‖u‖Hq+2(PΩ) +H1/2‖u‖Hq+3(PΩ)

)
.

First, because the mesh MH fits the physical partition PΩ, we have

|u|2Hq+2(MH) =
∑

D∈MH

|u|2Hq+2(D) ≤
∑
ω∈PΩ

∑
D∈Mω

H

|u|2Hq+2(D)

=
∑
ω∈PΩ

∑
D∈Mω

H

‖Eωu‖2
Hq+2(D) ≤

∑
ω∈PΩ

‖Eωu‖2
Hq+2(∂TH).

On the other hand, for K ∈ TH, we can apply (2.1) to ∂α(Eωu) for |α| ≤ q + 2. It follows
that

‖Eωu‖2
Hq+2(∂K) ≤ C2

tr,K

(
H−1‖Eωu‖2

Hq+2(K) +H‖Eωu‖2
Hq+3(K)

)
,

and therefore

‖Eωu‖2
Hq+2(∂TH) ≤ C2

tr,TH

(
H−1‖Eωu‖2

Hq+2(Ω) +H‖Eωu‖2
Hq+3(Ω)

)
≤ C2

E,PΩ,q+3C
2
tr,TH

(
H−1‖u‖2

Hq+2(ω) +H‖u‖2
Hq+3(ω)

)
,

for all ω ∈ PΩ. By summation over ω ∈ PΩ, it follows that

|u|2Hq+2(MH) ≤ C2
E,PΩ,q+3C

2
tr,TH

(
H−1‖u‖2

Hq+2(PΩ) +H‖u‖2
Hq+3(PΩ)

)
.

�

We close this section with an important property of our interpolation operator (c.f. [4])
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Proposition 1 (Mass conservation). Assume that λ ∈ Λ(∂TH)∩L2(∂TH). Then, we have

(3.6) 〈π`,Hλ, v0〉∂TH = 〈λ, v0〉∂TH ∀v0 ∈ P0(TH).

Proof. Since λ (and π`,Hλ) belongs to L2(∂TH) by assumption, we can regroup the duality
pairings into face-by-face L2 products, leading to

〈λ− πH,`λ, v0〉∂TH =
∑
F∈FH

(λ− πH,`λ, [[v0]])F =
∑
F∈FH

∑
D∈MF

H

(λ− πD,`λ, [[v0]])D = 0

since [[v0]] ∈ P0(D) for all D ∈ MH , and πD,` is the orthogonal projection onto P`(D) ⊃
P0(D). �

4. The MHM method for the Poisson problem

In this section, we revisit the convergence analysis of the MHM method using the inter-
polation operator introduced in Section 3. This analysis improves over the existing works
[2]. In particular, we obtain better constants and optimal rates in H. In addition, we are
able to establish `-convergence when the mesh is fixed the polynomial degree is increased,
which is new in the MHM context.

4.1. Model problem. Throughout this section, we fix f ∈ L2(Ω) and focus on the model
problem of finding u ∈ H1

0 (Ω) such that

(4.1) (A∇u,∇v)Ω = (f, v)Ω for all v ∈ H1
0 (Ω),

where, for a.e. x in Ω, A(x) is a symmetric matrix. We assume that A is measurable and
that there exists two constants 0 < amin ≤ amax < +∞ such that

amin ≤ min
ξ∈Rd

|ξ|=1

A(x)ξ · ξ amin ≤ max
ξ∈Rd

|ξ|=1

A(x)ξ · ξ ≤ amax

for a.e. x in Ω. For the sake of simplicity, we introduce the weighted norm

‖v‖2
A,TH :=

∑
K∈TH

∫
K

Av · v for all v ∈ L2(TH).

4.2. MHM formulation. Let us introduce

P⊥0 (TH) :=
{
v ∈ H1(TH) | (v, v0)TH = 0 for all v0 ∈ P0(TH)

}
.

Owing to Poincaré inequality, it is easily seen that the application ‖∇·‖A,TH is a norm over

P⊥0 (TH). Then, we define the mappings T : Λ(∂TH) → P⊥0 (TH) and T̂ : L2(Ω) → P⊥0 (TH)
by requiring that

(4.2) (A∇T (µ),∇v)TH = 〈µ, v〉∂TH , (A∇T̂ (g),∇v)TH = (g, v)TH for all v ∈ P⊥0 (TH),

with µ ∈ Λ(∂TH) and g ∈ L2(Ω).
Then, the continuous MHM formulation consists of finding (λ, u0) ∈ Λ(∂TH) × P0(TH)

such that

(4.3)

{
〈µ, T (λ)〉∂TH + 〈µ, u0〉∂TH = 〈µ, T̂ (f)〉∂TH for all µ ∈ Λ(∂TH),

〈λ, v0〉∂TH = (f, v0)TH for all v0 ∈ P0(TH).
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It is shown in [2] (see also [18]), that actually

λ|∂K = ∇u · nK |∂K and u0|K =
1

|K|

∫
K

u dx,

for all K ∈ TH, and that

(4.4) u = u0 + T (λ) + T̂ (f).

Let ΛH,`(∂TH) be the finite dimensional subspace of Λ(∂TH) defined by

ΛH,`(∂TH) :=
{
µ ∈ Λ(∂TH) | µ|D ∈ P`(D), for all D ∈MF

H and F ∈ FH
}
.

The discrete formulation then consists of finding (λH , u0,H) ∈ ΛH,`(∂TH)× P0(TH) such
that

(4.5)

{
〈µH , T (λH)〉∂TH + 〈µH , u0,H〉∂TH = 〈µH , T̂ (f)〉∂TH for all µH ∈ ΛH,`(∂TH)

〈λH , v0〉∂TH = (f, v0)TH for all v0 ∈ P0(TH),

and we set

(4.6) uH := u0,H + T (λH) + T̂ (f).

4.3. Convergence analysis. We start with a quasi-optimality result. Because the MHM
formulation is a saddle point problem, Galerkin orthogonality cannot be immediately em-
ployed, and a compatibility condition is required. The approximation result follows the
proof in [17][Lemma 7], but now with optimal constants.

Lemma 4.1 (Best approximation). We have

(4.7) ‖∇T (λ− λH)‖A,TH = min
µH∈ΛH,`

〈λ−µH ,v0〉∂TH=0 ∀v0∈P0(TH)

‖∇T (λ− µH)‖A,TH .

In addition, if λ ∈ L2(∂TH), then

(4.8) ‖∇T (λ− λH)‖A,TH ≤ ‖∇T (λ− πH,`λ)‖A,TH .

Proof. Consider µH ∈ ΛH,` with 〈λ− µH , v0〉∂TH = 0 for all v0 ∈ ΛH . We have

‖∇T (λ− λH)‖2
A,TH = (A∇T (λ− λH),∇T (λ− λH))TH

= 〈λ− λH , T (λ− λH)〉∂TH .(4.9)

Then, using the first equations of (4.3) and (4.5), we observe that

〈µH , T (λ− λH)〉∂TH = 0,

so that, from (4.9), it holds

‖∇T (λ− λH)‖2
A,TH = 〈λ− µH , T (λ− λH)〉∂TH = (A∇T (λ− µH),∇T (λ− λH))TH .

Next, from the Cauchy-Schwartz inequality, we get

‖∇T (λ− λH)‖A,TH ≤ ‖∇T (λ− µH)‖A,TH ,
and (4.7) follows. Then, (4.8) follows from (3.6). �
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We are now ready to establish the main result of this section.

Theorem 4.2 (Error estimate). Let 0 ≤ q ≤ ` + 1, and ` ≥ 0, and assume that u ∈
Hq+3(PΩ). Then, we have

(4.10) ‖∇(u− uH)‖TH ≤

CPΩ,TH,q

√
amax

amin

(
CA,MH ,qH

`+ 1

)q+3/2 (
H−1/2‖u‖Hq+2(PΩ) +H1/2‖u‖Hq+3(PΩ)

)
.

Proof. We have

‖∇T (λ− λH)‖TH ≤ a
−1/2
min ‖∇T (λ− λH)‖A,TH ≤ a

−1/2
min ‖∇T (λ− πH,`λ)‖A,TH ,

and

‖∇T (λ− πH,`λ)‖2
A,TH = 〈λ− πH,`λ, T (λ− πH,`λ)〉∂TH

≤ ‖λ− πH,`λ‖?,∂TH‖∇T (λ− πH,`λ)‖TH
≤ a1/2

max‖λ− πH,`λ‖?,∂TH‖∇T (λ− πH,`λ)‖A,TH ,
so that

‖∇T (λ− λH)‖TH ≤
√
amax

amin

‖λ− πH,`λ‖?,∂TH .

Hence, (4.10) follows from (3.5). �

Remark 4.3 (Super-convergence). Under local regularity assumptions for the exact solu-
tion in the physical partition of Ω, the error estimate in Theorem 4.2 indicates that the
MHM method achieves superconvergence when the skeleton diameter of the mesh H tends
to zero with an additional O(H1/2) convergence rate. Furthermore, the estimate (4.10)
establishes that the MHM method provides optimal convergent solutions with respect to the
degree of polynomial interpolation ` on the faces. These are novel results that are sup-
ported by numerical evidence presented in previous works. We also recover the (optimal)
convergence classically found when H, the diameter of the TH partition, vanishes. This
is demonstrated by assuming the exact solution is locally regular on the physical partition,
which is also new.

5. Conclusion

We proposed a strategy to approximate fluxes in partitions not aligned with physical
interfaces. Under local regularity assumptions, the theoretical result showed that the
approach provides approximate super-converged fluxes driven by exact solution regularity
in physical regions. In other words, we replace the standard and unrealistic assumption
about the regularity of the exact solution in each mesh element with the regularity of the
solution in physical regions. In addition, we highlight the dependence of the constant on
the polynomial degree used to approximate the exact fluxes.

We leverage these findings to improve the convergence results for the MHM method ap-
plied to the Poisson problem. We mainly prove that the MHM method is super-convergent
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on non-aligned meshes, assuming exact solution regularity only in the physical partition.
Such mathematical analysis supports the numerical evidence originally anticipated in [12].
It is worth mentioning that the results can be easily extended to MHM methods applied
to other operators such as the linear elasticity model or the reactive-advective-diffusive
equation, for example. Furthermore, the discrete flux can be exploited in other flux-based
numerical methods or domain decomposition techniques and inherit from its properties.
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