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Homogeneous Finite-time Tracking Control on Lie Algebra so(3)

Yu Zhou, Andrey Polyakov, Gang Zheng

Abstract— An attitude tracking problem for a full-actuated
rigid body in 3-D is studied using a model of rotation dynamics
on the Lie group SO(3). A generalized homogeneous control is
adopted to achieve tracking of a smooth attitude trajectory in
a finite-time. The attitude dynamics on the Lie algebra so(3) is
utilized to design the homogeneous control, since SO(3) is not a
vector space. A switch control is proposed for achieving global
finite-time tracking by combining a global asymptotic control
with local homogeneous control. The simulations illustrate the
performance of the proposed control algorithm.

I. INTRODUCTION

The rigid body orientation (or attitude) control problem
occurs in different applications, such as satellites, quadro-
tors, airplanes, terrestrial mobile robots etc. In the case of
underactuated dynamics, a fast and robust attitude control
helps to achieve high performance of a translation control.
There are several alternate representations for orientation of
a rigid body in the three dimensional space, and, of course,
all of them have three degrees of freedom. This means that
any representation with more than three parameters must
have some constraints. The most common representations
are Euler angles (see, e.g. [1], [2]) and quaternions [3]. The
Euler angles have singularity in a transformation from the
time derivative of Euler angles to angular velocity [4]. The
Euler angles are used for a small rotation range. Quaternions
can represent the attitude position globally, but with an ambi-
guity, which may cause an unwinding phenomenon in control
design [5]. The representation by a rotation matrix is a global
representation with additional orthogonality constraint. The
main difficulty is that the set of all rotation matrices is not
a vector space but a manifold known as Special Orthogonal
group (SO(3)).

The geometric control on SO(3) is studied for quadrotors
[6], [7] and spacecrafts [8]. According to a general attitude
geometric control technique [9], [10], a configuration error
function needs to be predefined due to the orthogonal con-
straint such that the error dynamics is stable. The rotation
group is not a vector space, so the conventional control
design methods cannot be directly applied. However, the
Lie algebra so(3) is the tangent space of the associated Lie
group SO(3) at the identity element of the group, and it
completely captures the local structure of the group [11].
Hence, an alternative approach to geometric control can
based on dynamics in the Lie algebra [12], [13], [14] being
a vector space.
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The homogeneity is symmetry with respect to the dilation.
All linear and many essential nonlinear models of mathemat-
ical physics are homogeneous (symmetric) in a generalized
sense [15]. Homogeneous control laws appear as solutions
to some classical control problems, such as minimum-time
feedback control for the chain of integrators [16]. Most of the
high-order sliding mode control and estimation algorithms
are homogeneous in a generalized sense [17]. Homogeneity
allows time constraints in control systems to be fulfilled
easily using proper tuning of the so-called homogeneity
degree [18]. There are some advantages of homogeneous
control compared to linear control:
• finite-time and fixed-time convergence rate;
• robustness with respect to a large class of uncertainties;
• elimination of an unbounded “peaking” effect;
• possibility of design a globally bounded finite-time

stabilizing controller.
In this paper, homogeneous control is used to track a smooth
attitude trajectory in finite time. For this purpose, the attitude
dynamic on Lie algebra is used. An invariant set avoid-
ing ambiguity for the attitude dynamic with homogeneous
control is derived. Then, for global finite-time stability, a
switch control that combines the local homogeneous attitude
control with a global asymptotic control is proposed. In
comparison to prior finite-time attitude control methods,
homogeneous control is based on the implicit Lyapunov
function and requires fewer tuning parameters. The settling
time is globally bounded and can be estimated for sufficiently
small initial states.

This paper is organized as follows: Section II contains
the solution to the paper’s problem. Section III provides an
overview of homogeneous systems and control, as well as
the SO(3) group and its associated Lie algebra. The section
IV presents the key results on homogeneous control design
using Lie algebraic attitude dynamics. A switched control for
global finite-time tracking is proposed. Section V includes a
simulation that exhibits the control algorithm’s performance.

NOTATION

R is the set of real numbers, R+ = {x ∈ R : x ≥ 0};
‖ · ‖ is the Euclidean norm in Rn ; 0 denotes the zero vector
from Rn; diag {λi}ni=1 is the diagonal matrix with elements
λi;P � 0(≺ 0,� 0,� 0) for P ∈ Rn×n means that
the matrix P is symmetric and positive (negative) definite
(semidefinite); C(X,Y ) denotes the space of continuous
functions X → Y , where X,Y are subsets of normed vector
spaces; Cp(X,Y ) is the space of functions continuously
differentiable at least up to the order p; λmin(P ) and
λmax(P ) represent the minimal and maximal eigenvalue of



a matrix P = P>; for P � 0 the square root of P is a
matrix M = P

1
2 such that M2 = P ; SO(3) ⊂ R3×3 is

a special orthogonal group (discussed below) and so(3) is
the corresponding Lie algebra; (·)∧ is a map from vector
to skew matrix (·)∧ : R3 → so(3):

[
[x1, x2, x3]>

]∧ → 0 −x3 x2
x3 0 −x1
−x2 x1 0

 . And (·)∨ : so(3)→ R3 is the inverse

map of (·)∧ . Exp(·) = exp[(·)∧] is a map from R3 to
SO(3), Log(·) = [log(·)]∨ is a map from SO(3) to R3.

II. PROBLEM STATEMENT

The equations of rigid body attitude motion can be repre-
sented as:

Ṙ = Rω∧, R(0) = R0 (1a)

ω̇ = J−1 (ω × Jω +M) , ω(0) = ω0, (1b)

where R ∈ SO(3) is the rotation matrix with respect to the
inertial frame, ω ∈ R3 is the angular velocity in body frame,
J ∈ R3×3 is the moment of inertia matrix, M ∈ R3 is the
torque expressed in the body frame. For the rigid body whose
dynamics is governed by (1), this problem investigates the
following problem.

Problem 1: Given a desired attitude trajectory Rd ∈
C2 (R+, SO(3)), we need to design a homogeneous (in a
certain sense) control law M that ensures a local uniform
finite-time tracking, i.e., there exists a locally bounded func-
tion T : ΩR × Ωω → R+ such that

R(t) = Rd(t), ∀t ≥ T (R0, ω0),∀R0 ∈ ΩRd ,∀ω0 ∈ Ωωd ,

where ΩRd ⊂ SO(3) and Ωωd ⊂ R3 are the sets of admissi-
ble initial conditions depended on the desired trajectory Rd.

III. PRELIMINARIES

A. Homogeneous system

1) Linear dilations in Rn: By definition, the homogeneity
is a dilation symmetry [19], [20], [21], [22], [15]. A dilation
[23] is a one-parameter group d(s), s ∈ R of transformations
satisfying the limit property lims→s∞ ‖d(s)x‖ = es

∞
, s∞ =

±∞,∀x 6= 0.
Examples of dilations in Rn are
• Uniform dilation (L. Euler, 18th century): d(s) = esI,

where I is the identity matrix Rn;
• Weighted dilation (Zubov 1958) : d(s) =(

er1s ... 0
... ... ...
0 ... erns

)
, where ri > 0, i = 1, 2, . . . , n.

• Geometric dilation is a flow generated by unstable C1

vector field in Rn (see [20], [24]).
In this paper we deal only with the so-called linear (geomet-
ric) dilation in Rn is defined as follows

d(s) = esGd :=

+∞∑
i=0

siGid
i!

, s ∈ Rn, (2)

where Gd ∈ Rn×n is an anti-Hurwitz matrix called the
generator of the dilation d.

Definition 1: A dilation d is monotone if s → ‖d(s)x‖
is a monotone increasing function for any x 6= 0.

It is worth noting that monotonicity of the dilation may
depend of the norm in Rn. Also, any linear dilation in Rn
is monotone [25] provided that the norm in Rn is defined as
follows

‖x‖∗ =
√
x>Px, PGd +G>dP � 0, P � 0. (3)

2) Canonical Homogeneous Norm: The linear dilation
introduces an alternative norm topology in Rn by means of
a homogeneous norm (see, e.g., [26] for an example of a
homogeneous norm induced by the weighted dilation).

Definition 2: [25] The functional ‖ · ‖d : Rn → [0,+∞)
defined as ‖0‖d = 0 and

‖u‖d = esu , where su ∈ R : ‖d (−su)u‖∗ = 1,

is called the canonical homogeneous norm in Rn, where d
is a monotone dilation in Rn, where ‖ · ‖∗ is a norm in Rn.

For any linear monotone dilation in Rn, the canonical
homogeneous norm is continuous on Rn and locally Lip-
schitz continuous on Rn\{0}. Moreover, it is differentiable
on Rn\{0} provided that ‖ · ‖∗ is given by (3) (see [25]):

∂‖x‖d
∂x = ‖x‖d x>d>(− ln ‖x‖d)Pd(− ln ‖x‖d)

x>d>(− ln ‖x‖d)PGdd(− ln ‖x‖d)x . (4)

3) Homogeneous Systems:
Definition 3: A vector field f : Rn → Rn (resp. a

function h : Rn → R) is said to be d-homogeneous of
degree µ ∈ R if

f(d(s)) = eµsd(s)f(x), ∀x ∈ Rn, ∀s ∈ R,

(resp. h(d(s)) = eµsh(x), ∀x ∈ Rn, ∀s ∈ R),

where d is a linear dilation in Rn.
In [25] it is shown that any d-homogeneous system

ẋ = f(x), t > 0, x(0) = x0 ∈ Rn (5)

is diffeomorphic on Rn\{0} to a standard homogeneous
system. This means that many important results known for
standard and weighted homogeneous systems hold for linear
homogeneous systems as well. The following theorem is
the straightforward corollary of Zubov-Rosier Theorem on
homogeneous Lyapunov function [19], [27].

Theorem 1: Let f be a continuous d-homogeneous vector
field of degree µ ∈ R. The system (5) is globally uniformly
asymptotically stable if and only if there exists a positive
definite d-homogeneous function V : Rn → [0,+∞) such
that V ∈ C(Rn) ∩ C1(Rn\{0}) and

V̇ (x) ≤ −ρV 1+µ(x), ∀x 6= 0.
The latter theorem immediately implies that asymptotically
stable homogeneous system (5) is
• globally uniformly finite-time stable1 for µ < 0;
• globally uniformly exponentially stable for µ = 0;
• globally uniformly nearly fixed-time stable2 for µ > 0.

1The system (5) is finite-time stable it is Lyapunov stable and ∃T (x0) :
‖x(t)‖ = 0, ∀t ≥ T (x0), ∀x0 ∈ Rn.

2The system (5) is uniformly nearly fixed-time stable it is Lyapunov stable
and ∀r > 0, ∃Tr > 0 : ‖x(t)‖ < r,∀t ≥ Tr independently of x0 ∈ Rn.



B. Homogeneous Control for Linear Plants in Rn

Let us consider the linear control system as

ẋ = Ax+Bu(x), t > 0, x(0) = x0 (6)

where x(t) ∈ Rn is the system state, u : Rn → Rm is the
feedback control to be designed, A ∈ Rn×n and B ∈ Rn×m
are system matrices.

The system (6) is said to be d-homogeneously stabilizable
of degree µ ∈ R if there exists a feedback u : Rn → Rm such
that f(x) = Ax+Bu(x) is d-homogeneous of degree µ, and
the closed-loop system is globally asymptotically stable. The
disturbance-free (i.e., g = 0) system (6) is d-homogeneously
stabilizable with a degree µ 6= 0 if and only if the pair
{A,B} is controllable [28].

Theorem 2: [28] If the linear equation

AG0 +BY0 = G0A+A, G0B = 0. (7)

has a solution G0 ∈ Rn×n and Y0 ∈ Rm×n such that G0−In
is invertible, then for any µ 6= 0 such that Gd = In + µG0

is anti-Hurwitz, the disturbance-free system (6) can always
be homogeneously stabilized by the following control

u(x) = K0x+ ‖x‖1+µd Kd (− ln ‖x‖d)x, K = Y X−1

(8)
with any K0 = Y0(G0 − In)−1, X ∈ Rn×n, Y ∈ Rm×n by
solving the following algebraic system{

XA>0 +A0X + Y >B> +BY + ρ
(
XG>d +GdX

)
= 0

XG>d +GdX � 0, X � 0
(9)

where the canonical homogeneous norm ‖ · ‖d is induced by
the norm ‖x‖∗ =

√
x>X−1x. Then the perturbed system (6)

is
• globally uniformly finite-time stable for µ < 0;
• globally uniformly exponentially stable for µ = 0;
• globally nearly fixed-time stable for µ > 0.

The proof of this theorem is based on the use of the canonical
homogeneous norm as a Lyapunov function of the closed-
loop system (6), (8) with g = 0:

d

dt
‖x(t)‖d = −ρ‖x(t)‖1+µd . (10)

The formula (10) implies that the canonical homogeneous
norm is a Lyapunov function for the closed-loop system.
The feasibility of the algebraic system is proven in [29].
The existence of an appropriate solution for (7) is studied in
[28]. It can be shown that for any solution of (7) the matrix
G0 − I is invertible. Moreover, for a sufficiently small |µ|
we have Gd = I + µG0 is anti-Hurwitz.

C. Special orthogonal group SO(3) and Lie algebra so(3)

In this subsection, a brief summary about SO(3) group
and so(3) algebra is given (see, e.g., [11],[30], [7] for more
details). The SO(3) group can be represented as follows:

SO(3) =
{
R ∈ R3×3 | RRT = I, detR = I

}
(11)

The Lie algebra so(3) consists of 3× 3 skew-matrices with
the Lie bracket given by the commutator

so(3) =
{
X ∈ R3×3|X> = −X

}
. (12)

Since X = x∧ for x ∈ R3, then so(3) is isomorphic to R3.
Notice that for x ∈ R3 and R ∈ SO(3) one holds

Rx∧R> = (Rx)∧. (13)

The exponential map exp(·) is a surjective map, which
maps the elements of Lie algebra so(3) to elements of
SO(3). For φ ∈ R3 we have φ∧ ∈ so(3) and the exponential
map is given by

exp (φ∧) =

∞∑
n=0

1

n!
(φ∧)

n (14)

For the so(3) group parameterized by φ ∈ R3, the left
Jacobian of the group SO(3) is

J`(φ) =

∞∑
n=0

1

(n+ 1)!
(φ∧)

n
=

∫ 1

0

(
eφ
∧
)α

dα. (15)

It relates the time derivatives of R and φ as follows [11]

ṘR> =
(
J`(φ)φ̇

)∧
(16)

Notice that the inverse of J` is given by

J`(φ)−1 =

∞∑
n=0

Bn
n!

(φ∧)
n (17)

where Bn is Bernoulli number and B1 = − 1
2 . Moreover, for{

φ ∈ R3 | φ = ϕq, q>q = 1, |ϕ| = ‖φ‖, q ∈ R3, ϕ ∈ R
}

the following representations of J` and J−1`

J`(ϕ, q) =
sinϕ

ϕ
I+

(
1− sinϕ

ϕ

)
qqT +

1− cosϕ

ϕ
q∧ (18)

J−1` (ϕ, q) =
ϕ

2
cot

ϕ

2
I +

(
1− ϕ

2
cot

ϕ

2

)
qqT − ϕ

2
q∧ (19)

hold as well.
Lemma 1: If φ ∈ C1(R,R3) then the time derivative

d
dtJ
−1
` (φ(t)) exists for t : ‖φ(t)‖ ∈ [0, 2π) and

φ(t) = 0 ⇒ d

dt
J−1` (φ(t)) =

(
φ̇(t)

)∧
.

Proof: On the one hand, considering the time derivative
of J−1` in the form (19) we derive

d

dt
J−1` = a1I − a1qq> + a2q̇q

> + a2qq̇
> − φ̇

2
q∧ − φ

2
q̇∧

where a1 = d
dt

(
φ
2 cot φ2

)
= φ̇

2 cot φ2 −
φφ̇
4

1
sin2 φ

2

, a2 = 1 −
φ
2 cot φ2 . Hence, the inverse of left Jacobian is differentiable
on φ ∈ R \ {2nπ}n∈Z.

On the other hand, calculating the time derivative of J−1`
using (17) we obtain

d

dt
J−1` =

∞∑
n=0

Bn
n!

d

dt
(φ∧)

n (20)

Hence, for φ = 0 we derive d
dtJ
−1
` = φ̇∧. Therefore,

the inverse of left Jacobian is differentiable on ϕ ∈ R \
{2nπ}n∈Z\{0}.



IV. HOMOGENEOUS FINITE-TIME TRACKING CONTROL

A. Attitude dynamics on Lie algebra

Homogeneity (dilation symmetry) is defined on vector
spaces (see above). Since the SO(3) group is not a vector
space, so the conventional homogeneity-based control design
is not applicable to the system (1a). However, since the Lie
algebra so(3) is isomorphic to R3, then using the exponential
map from so(3) to SO(3), the attitude kinematics can
be represented in Lie algebra [11]. Aiming to design a
homogeneous controller on the Lie algebra, a rotation error
on so(3) is introduced as follows:

R = eθ
∧
e Rd ⇒ Re := RR>d = eθ

∧
e = Exp(θe)

⇒ θe = Log(RR>d )
(21)

where θe ∈ R3 and Exp,Log are defined above in Notation.
Combining the kinematics (16) with the attitude dynamics
(1b), the attitude error dynamics on vector space can be
derived for ‖θe‖ < π.

Lemma 2: With a smooth attitude trajectory Rd ∈
C2(R, SO(3)), the error dynamics of (21) for ‖θe‖ ∈ [0, π),
can be represented as follows:

ξ̇ = Aξ +Bu (22)

where ξ =

[
θe
θ̇1

]
, A =

[
0 I3
0 0

]
, B =

[
0
I3

]
,

θ1 = J−1l (θe)Reωe,

u =
d
(
J−1l

)
dt

Reωe + J−1l Reωe × ωe + J−1l Reω̇e,

Jl(θe) =
∫ 1

0

(
eθ
∧
e

)α
dα, ωe = Rd (ω − ωd), and

ωd =
(
R>d Ṙd

)∨
is the desired angular velocity in body frame.

Proof: Using the formula (16), we derive

Ṙe(Re)
−1 =

(
Jl(θe)θ̇e

)∧
. (23)

On the other hand, we have

Ṙe = ṘR>d +RṘ>d = Rω∧R>d −Rω∧dR>d =

R(ω − ωd)∧R>d = ReRd(ω − ωd)∧R>d = Reω
∧
e ,

where the identity (13) is utilized on the last step.
Therefore, we have

θ̇e = θ1 = J−1` (θe)Reωe (24)

According to Lemma 1, θ1 is differentiable on ‖θe‖ ∈ [0, π),
so calculating the derivative of θ1 and using the identity ωe×
ωe = ω∧e ωe, we complete the proof.

Notice that to compute ω̇ the time derivative of ωd is
required. Since the desired rotation trajectory is assumed to
be smooth, then

ω̇d =
d

dt

(
R>d Ṙd

)∨
=
(
R>d R̈d − (ω∧d )

2
)∨
∈ C(R+,R3).

B. Homegeneous attitude control

Since A in (22) is nilpotent and the pair (A,B) is
controllable, then a homogeneous controller can be designed
using Theorem 2 with K0 = 0.

Theorem 3: [Local homogeneous finite-time tracking] Let

u = ‖ξ‖1+µd Kd(− ln ‖ξ‖d)ξ, ξ =

(
θe
θ1

)
∈ R6 (25)

be a d-homogeneous controller designed by Theorem 2
for the linear control system (22). If ξ(0) ∈ Ω ={
ξ ∈ R6 : ξ>Prξ < 1

}
, where

Pr = d(− ln r)X−1d(− ln r), r =
(

π2

λmax(X)

) 1
g11

and g11 is the first element of the generator Gd = {gi,j},
then the controller

M=J
[
R>d ũ− ωd×(ω−ωd) + ω̇d

]
− ω×Jω

ũ =R>e J`

(
u− dJ−1

`

dt Reωe

) (26)

guarantees that the attitude error dynamics (22) is:
• uniformly finite-time stable for µ < 0:

ξ(t) = 0, ∀t ≥ ‖ξ(0)‖−µd /(−µρ);

• uniformly exponentially stable for µ = 0:

‖ξ(t)‖d ≤ e−ρt‖ξ(0)‖d, ∀t ≥ 0;

• uniformly nearly fixed-time stable for µ > 0:

‖ξ(t)‖d ≤ r, ∀t ≥ 1

µrµ
.

By Theorem 2, such a system (22) with the controller (25)
is globally uniformly finite-time stable. However, in our case
the model (22) is valid only locally ‖θe‖ < π. Since the
canonical homogeneous norm is the Lyapunov function of
the closed-loop system (see Theorem 2), then the set Ω =
{ξ : ‖ξ‖d ≤ r} is its invariant set. If r > 0 is such that
Ω ⊂ {ξ : ‖θe‖ < π}, then Ω defines the set of admissible
initial conditions such that the corresponding trajectories of
the closed-loop system never leave the domain. It has been
shown in [15] that ‖ξ‖d ≤ r is equivalent to

ξ>d(− ln r)X−1d(− ln r)ξ ≤ 1

Since the equivalent representation of the inequality ‖θe‖ <
π is

ξ>
[

1
π2 I3 0

0 0

]
ξ < 1

then the matrix inequality[
I
π2 0
0 0

]
< d(− ln r)X−1d(− ln r)

guarantees the inclusion Ω ⊂ {ξ : ‖θe‖ < π}.
Indeed, we have a local homogeneous attitude control and

the invariant set Ω has been derived. The attitude control
can be extended to a global one by combining it with a
global asymptotic control. A global asymptotic control is
implemented outside of invariant set Ω, and once the states



are in the set Ω, the control is switched to a homogeneous
one.

Notice the fact that there is no continuous time-invariant
feedback control that globally asymptotically stabilizes the
attitude dynamics [4]. If ‖LogRR>d ‖ = π, then θe is not
uniquely defined, i.e., there is ambiguity of the map from
SO(3) to so(3): θe = πq or θe = −πq, where q ∈ R3 :
Req = q, ‖q‖ = 1. As in [31], a jump mechanism is
introduced when ‖LogRR>d ‖ = π and d‖LogRR>d ‖

dt > 0
to globally represent the attitude dynamic in Lie algebra
coordinates:

θ+e (t) = −θ−e (t), θ̇+e (t) = θ̇−e (t), (27)

the superscripts − and + to refer to values before and after
the jump. Using a global asymptotic controller proposed in
[31], a global (locally homogeneous) switched control can
be designed easily.

Corollary 1 (Global finite-time attitude control): Let the
control be defined as follows

M =

{
M? if ξ /∈ Ω

M̃ if ξ ∈ Ω

(28a)

(28b)

M?=J
[
R>d u

? − ωd×(ω−ωd) + ω̇d
]
− ω×Jω

u? =R>e J`

(
−Kpθe −Kdθ̇e −

dJ−1
`

dt Reωe

) (29)

where M̃ is a local homogeneous control designed by
Theorem 3, Kp and Kd are two positive definite matrices.
Then the closed-loop system (22),(28) is globally uniformly
asymptotically stable and it is finite-time stable for µ < 0.

The proof of stability of the system with the global
asymptotic control is based on the Lyapunov function:

V =
1

2
θ>e (Kp + γKd) θe +

1

2
θ̇>e θ̇e + γθ̇>e θe (30)

where 0 < γ < min
{√

λmin (Kp), λmin (Kd)
}

. It can

be shown that V is positive definite and V̇ is negative
definite excluding the jump point. For the jump, it satisfies
V +(t) < V −(t) across any jump. Thus, V is strictly
decreasing along every trajectory of the system, then the
system is globally asymptotically stable (more details see
[31]). The global asymptotic control M? ensure the states
will enter the invariance set Ω, then the homogeneous control
will guarantee the states converge to the origin in finite-time.

Such a switched control (28) would guarantee a global
finite-time stabilization, but it does not allow a global settling
time estimate. The exact settling time estimate T (x0) =
‖ξ(0)‖−µd /(−µρ) is valid only for ξ(0) ∈ Ω.

V. SIMULATION RESULTS

The simulation is created in Simulink with solver ODE 4
and the time step: 10−4 for

J =

1.0× 10−2 0 0
0 8.2× 10−3 0
0 0 1.48× 10−2

 kg m2

The initial states are: R(0) = I3, ω(0) = [50, 0, 0]>rad/s,
ω̇(0) = [0, 0, 0]>rad/s2.

The set-point tracking problem is considered:
Rd = exp([π, 0, 0]>)∧, ωd = [0, 0, 0]>rad/s,
ω̇d = [0, 0, 0]>rad/s2. The global asymptotic controller
parameters is selected as : Kp = Kd = 5I3. The
homogeneous controller parameters are defined by using
MATLAB package Yalmip with solver SEDUMI for
µ = −0.5 and ρ = 5,

Gd =

[
1.5I3 0
0 I3

]
, X =

[
0.0093I3 −0.1065I3
−0.1065I3 1.6297I3

]
,

Y =
[
−0.298I3 −8.6483I3

]
,

K =
[
−374.0222I3 −29.7578I3

]
.

The simulation results are depicted in Fig. 1 and Fig. 2
in logarithmic scale. In Fig 3, there are two discontinuous
points of the control input M , the first induced by a jump in
the system state and the second by the controller switching.
Specifically, the switch instant is t = 0.452s (see, Figs. 1
and 2). The convergence becomes faster after switching t >
0.452s, and eventually both the attitude error and the angular
velocity error reach zero, theoretically, in a finite time. In
practice, a convergence to a zone can only be guaranteed
due to numerical issues and noise/perturbations. According
to the simulation, the proposed switched control can track
a smooth trajectory even with a large initial error, and the
homogeneous control ensures local finite-time stability.

Fig. 1. Rotation error θe

VI. CONCLUSION

In this paper, a homogeneous finite-time controller is
designed for attitude tracking under the assumption that
initial state is sufficiently close to the desired trajectory.
This assumption is not conservative in practice, since usually
the desired (planed) trajectory simply starts at the initial
state of the rigid body. The stability of the error dynamics
is analyzed by using the model on the Lie algebra so(3).
To achieve finite-time tracking for all initial condition, the
presented locally homogeneous controller can be combined



Fig. 2. Angular velocity error ωd − ω
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Fig. 3. Control input M

with a globally asymptotically stabilizing algorithm [31]. The
simulation results demonstrate that the switch control can
track a desired trajectory globally and in a finite time.
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