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Abstract—Neurophysiological time-series recordings of brain
activity like the electroencephalogram (EEG) or local field
potentials can be decoded by machine learning models in order
to either control an application, e.g., for communication or
rehabilitation after stroke, or to passively monitor the ongoing
brain state of the subject, e.g., in a demanding work environment.
A typical decoding challenge faced by a brain-computer interface
(BCI) is the small dataset size compared to other domains
of machine learning like computer vision or natural language
processing. The possibilities to tackle classification or regression
problems in BCI are to either train a regular model on the
available small training data sets or through transfer learning,
which utilizes data from other sessions, subjects, or even datasets
to train a model. Transfer learning is non-trivial because of the
non-stationary of EEG signals between subjects but also within
subjects. This variability calls for explicit calibration phases at
the start of every session, before BCI applications can be used
online. In this study, we present arguments to BCI researchers
to encourage the use of embeddings for EEG decoding. In
particular, we introduce a simple domain adaptation technique
involving both deep learning (when learning the embeddings
from the source data) and classical machine learning (for fast
calibration on the target data). This technique allows us to
learn embeddings across subjects, which deliver a generalized
data representation. These can then be fed into subject-specific
classifiers in order to minimize their need for calibration data.
We conducted offline experiments on the 14 subjects of the
High Gamma EEG-BCI Dataset [1]. Embedding functions were
obtained by training EEGNet [2] using a leave-one-subject-out
(LOSO) protocol, and the embedding vectors were classified by
the logistic regression algorithm. Our pipeline was compared
to two baseline approaches: EEGNet without subject-specific
calibration and the standard FBCSP pipeline in a within-subject
training. We observed that the representations learned by the
embedding functions were indeed non-stationary across subjects,
justifying the need for an additional subject-specific calibration.
We also observed that the subject-specific calibration indeed
improved the score. Finally, our data suggest, that building upon
embeddings requires fewer individual calibration data than the
FBCSP baseline to reach satisfactory scores.

Index Terms—BCI, EEG, Deep Learning, Embedding, Triplet
Loss, Motor Imagery, Calibration

I. INTRODUCTION

Brain-Computer Interfaces (BCI) are neurotechnological
systems that rely on machine learning algorithms to decode
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brain signals and use the extracted information as commands
to control applications. In this article, we argue that embed-
dings can be used in BCI as a way to utilize the benefits of
deep learning for signal decoding while still keeping online
calibration periods very short. Deep learning is a dynamic field
whose advances can benefit the BCI world. It has been applied
to nearly all the problems that involve machine learning, and
its driving applications, which are computer vision and natural
language processing, lead to new progress daily. The neural
networks used in deep learning are also known for their good
generalization abilities. Thus, they might help to mitigate
one of the greatest challenges of BCI which is the transfer
of models—between different sessions or different subjects.
Moreover, neural networks can be trained in an end-to-end
manner which reduces the importance of feature engineering
or selection and of priors about the signal features expected
for the experimental protocol. Furthermore, we can speculate
that there will be more advancement in the deep learning
techniques than for the traditional machine learning ones.

The use of deep learning models in BCI is increasing [3]
but they typically remain restricted to offline analyses. Possible
barriers to their online use are that, first, most BCI systems
require calibration data from the ongoing session to train a
session-specific machine learning model. This means that the
subject has to wait, connected to the recording equipment,
while the decoding model is trained on that calibration data.
This model training takes place between the recording of
the calibration data and the free online phase. For traditional
machine learning models, this is not a problem because they
can usually be trained within a few seconds only, whereas
training deep learning models is substantially longer or even
might be infeasible within a session. The model training
typically is also harder to automize as it may require a hyper-
parameter search or the expertise of the experimenter. Second,
deep learning requires specialized hardware. Both the training
and inference of deep learning models are computationally
expensive, and if not executed on GPU, they can even become
prohibitively so, whereas traditional methods do not require
such expensive hardware. Finally, deep learning is data-hungry
while recording BCI data is time-consuming, and datasets are
neither abundant nor necessarily transferable between sessions
or subjects due to their large variability.

In this work, we illustrate how a simple framework that
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uses a neural network to extract features from EEG recordings
and a linear classification layer can be calibrated with very
little data for a new subject or a new session. The feature
extractor - or embedding function - is trained in a leave-
one-subject-out manner. The individually calibrated classifier
is fed the embedding vectors to be trained on data from
the test subject. Such deep learning-based embeddings have
already been successfully proposed for BCI recordings but
not necessarily for the purpose of shortening the calibration
time [4]-[6]. The proposed new framework is simple but still
demonstrates that deep learning models are not restricted to
post-hoc analyses of BCI recordings.

In the analysis of the proposed framework, we will not only
focus on performance aspects but also on the comprehension
of what is learned by the embedding function, as this may
shed light on what is reasonable to expect from the classifi-
cation layer. We will also compare our method with a well-
established classification method. This comparison will cover
both raw performance aspects and practical usability in terms
of calibration times.

II. MATERIALS AND METHODS
A. Dataset

In this study, we trained and compared our models on the
publicly available High Gamma Dataset [1]. It contains EEG
recordings of fourteen healthy subjects executing three differ-
ent movement classes and a resting condition. The movements
were executed by the left hand, the right hand, and both feet.
During each trial, the subject was asked to execute one of
the movements or to rest for a duration of four seconds. The
exact number of trials varies between subjects but is balanced
between the four classes. For each subject, approximately
1000 trials were recorded in a single session. We only used
44 out of the original 128 channels, focussing on the central
scalp area, specifically the sensori-motor cortex (as did the
authors). Aside from this restriction to 44 channels, we used
the full published dataset, i. e., we did not remove potential
outlier trials or outlier channels. Likewise, we did not apply
any artifact correction methods.

Even though the higher gamma frequencies have been
reported to contain useful information, the majority of studies
conducted with this dataset focused on the alpha and beta
bands. In order to limit the network and dataset sizes for
fast prototyping, we thus decided to low-pass filter the signal
at 40 Hz and downsample it to 128 Hz, which is the same
sampling frequency used by the authors of EEGNet [2]. This
decision allowed us to use the EEGNet architecture unaltered
for our experiments. For all experiments, we corrected for
drifts in the signal by high-pass filtering the signal at 0.5 Hz.
From each trial, we used the complete four seconds, starting
at the appearance of the task cue, as input for the models.
This corresponds to the complete time interval of movement
execution, including possible delays due to reaction time. This
pre-processing led to a representation of each trial in a matrix
with dimensionality 512 x 44. All models were trained using
this exact same pre-processing. The dataset was downloaded
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and pre-processed through the MOABB library [7]. We chose
this dataset to conduct our experiments as it provides a
relatively large number of trials per class and subject. This
allowed us to evaluate how the number of training trials
impacts the performance of the classification layer, see II-B.

B. Neural network architecture

EEGNet is a popular architecture that we used in our
experiments for multiple purposes. It was originally designed
as an end-to-end EEG classifier by Lawhern et al. [2] who
successfully trained it on four different BCI classification tasks
that include both ERP and oscillatory data. The architecture of
EEGNet feeds raw EEG input through a temporal convolution
to learn frequency filters and then a depthwise convolutional
layer to learn spatial features, followed by a non-linearity and
an average pooling layer, followed by a separable convolu-
tional layer with non-linear activation and average pooling,
which provides a high-level feature representation for a final
linear classification layer. In this article, we refer to EEGNet
without its final classification layer as the so-called embedding
function (cf. Section II-D).

C. Filter Bank Common Spatial Pattern (FBCSP) baseline

FBCSP is a traditional EEG classification approach for
imagery data [8], [9]. It does not use a neural network. We used
it as a baseline method against which we compared our results.
The computation steps of FBCSP are as follows: First, a band-
pass filtering is applied to obtain 9 non-overlapping frequency
bands between 4 Hz and 40 Hz. Second, 4 spatial filters per
frequency band are learned in a supervised approach using
the multi-class common spatial patterns (CSP) algorithm [10].
Third, these spatial filters are applied to the bandpass filtered
data to deliver 9 x4 = 36 features per trial. Fourth, the features
are classified by a multinomial logistic regression classifier
with L2 regularisation.

D. Training strategies

In this work we compared three different classification
pipelines: EEGNet, EEGNet+LP and FBCSP.

The EEGNet pipeline served as a baseline. For this purpose,
the vanilla EEGNet network was trained in a leave-one-
subject-out (LOSO) validation approach, i.e. training on all the
subjects except one and testing on the left-out subject. To train
each of the 14 EEGNet models, we used the cross-entropy loss
to classify the examples into one of the four classes. Based on
our good prior experience with deep learning for BCI data, we
decided to train EEGNet using the SGD optimizer [11] and for
1500 iterations with a one-cycle learning rate scheduler [12].
The implementation we used is EEGNetv4 from Braindecode
[1] and we trained our models using PyTorch [13].

The EEGNet+LP pipeline is at the core of this work. It
consists of two parts. The first part is formed by an EEGNet
(obtained for example from the EEGNet pipeline described
above) which had been deprived of its final classification
layer after training on n-1 subjects. This pre-trained de-
prived network serves as an embedding function that delivers
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Fig. 1.

Diagram A describes the training procedure of the EEGNet pipeline. Examples from all the subjects except one - the test subject - are used to train

the neural network. The weights of the embedding function and the classification layer are updated simultaneously via gradient backpropagation. Diagram B
describes the training procedure of the EEGNet+LP pipeline. First, the pre-trained embedding function is retrieved from the corresponding EEGNet pipeline.
Then, a new classification layer is learned by a logistic regression classifier using only some of the recordings from the corresponding left-out subject. In
these diagrams, only four subjects are represented for reasons of space, but they are in fact fourteen in all.

256 dimensional embedding vectors for the raw EEG input.
Further on, the weights of the embedding function are frozen.
The second part is the actual subject-specific training of the
EEGNet+LP pipeline: a multinomial logistic regression model
with L2 regularisation is trained from scratch to classify the
embedding vectors. It is trained on data from the subject that
was left out of the embedding function training. A visual
description of how the EEGNet and EEGNet+LP pipelines
were trained is provided by Figure 1.

A within-subject filter bank common spatial pattern pipeline
(FBCSP) served as a second baseline. It was trained and tested
in the same way as the logistic regression classifier of the
EEGNet+LP pipeline. FBCSP thus was used within a single
subject only and was not transferred between subjects. We
compared to this baseline method as it is widely used for
mental imagery decoding, is fast to train (within seconds),
known to be trainable from little trials, and has won the BCI
competition IV dataset 2a [14]. Overall, it is a good contestant
to build a fast to calibrate yet efficient mental imagery-based
BCIL.

E. Validation Procedures

The validation procedures strictly followed the MOABB
benchmarking library [7].

EEGNet pipeline: This pipeline was trained using a leave-
one-subject-out cross-validation procedure. The scores re-
ported for this pipeline were computed on the complete data
of the left-out test subject.

FBCSP pipeline: FBCSP was trained and evaluated within-
subject only. Dependent on the purpose, two different proce-
dures were used: (1) For the purpose of evaluating the maxi-
mum possible performance, all of a test subject’s data was used
in a 5-fold cross-validation procedure. Following the MOABB
standards, the cross-validation was preceded by a one-time
random shuffling of every test subject’s data. The resulting
performance estimates and the average over the 14 subjects are
provided in the subsection III-B and the corresponding Table I.
Please note, that the shuffling destroys the chronological order
of the trials and thus may lead to over-optimistic generalization
estimates compared to true online performance. (2) For the
purpose of investigating the influence of the calibration data
set’s size, a so-called random permutation cross-validation
procedure was applied. Here, the test subject’s data set was

171



subject = 1 subject =4

subject = 8

im_class
® right_hand
left_hand
rest
feet

Fig. 2. Projection in 2D of the vectors produced by the embedding function
that had been trained on all subjects except subject 1. Each point corresponds
to one embedding vector. Its color denotes the class labels. The embedding
vectors were projected from 256 to 2 dimensions using UMAP. The sub-plots
depict embedding vectors obtained for different subjects, but all vectors were
generated by the same embedding function. The sub-plot of test subject 1
is marked by a red frame. The topographic isolines in the background have
been plotted after the embedding had been trained and the subject-specific
datapoints had been plotted. They indicate the four class distributions as
derived from the complete data of all subjects and serve as a visual reference
to compare sub-plots. The plots of only three subjects are displayed here for
space reasons, but the other subjects can be found in Supplementary Figure 5.

shuffled multiple times. Every time, 20% of data was kept for
testing, while from the remaining 80% a limited number of
trials were drawn to train the model. The comparison between
different calibration set sizes is provided in subsection III-B
and the corresponding Figure 3. Please note, that again the
chronological structure of the session was not maintained.

EEGNet+LP pipeline: This pipeline always makes use
of an embedding obtained from data of n-1 subjects, see
Section II-D. The calibration and validation of the logistic
regression classifier of this pipeline happened on the data of
the test subject and again was done in two versions to fulfill
different purposes. Both followed exactly the same procedures
as described for the FBCSP pipeline.

Statistical tests: The statistical significance of differences
between two processing pipelines was obtained by a Wilcoxon
signed-rank test [15]. This score was computed by pairing the
scores of each subject from the two pipelines. We choose this
test as normality can not be assumed for performance scores
due to a range limitation. We considered 0.05 as the maximal
threshold for a statistically significant p-value.

172

III. RESULTS
A. Structure of the Learned Embeddings

In order to evaluate what was learned by the embedding
functions, we will first observe the structure of the embedding
space. Figure 2 presents the 2D projections of the feature vec-
tors defined by the embedding function which had been trained
on the data from all subjects except the test subject 1. Thus
it corresponds to the first fold of the LOSO validation. The
2D-projections were obtained by the dimensionality reduction
algorithm UMAP [16]. As this is an unsupervised algorithm,
the projections from the original 256 dimensions into 2D need
to be interpreted cautiously.

The top-left sub-plot of Figure 2 depicts the projection
of the features of test subject 1. It overall shows a good
class separation, despite that subject 1 had not been seen
during the training of the embedding. This indicates a good
generalization of the embedding function learned. Figure 2
and Supplementary Figure 5 also allow examining the distri-
butions of embedding vectors of subjects, which—contrary to
subject 1—had been used to train the embedding. Across the
different sub-figures, we first observe that the blue and orange
clusters (representing feature vectors of the right and left hand,
respectively) are usually well separated from the remaining
two other clusters (rest and feet). Furthermore, the red and
green clusters are usually closer together but not overlapping.
Lastly, the blue and orange clusters tend to always overlap.
These seem to indicate a hierarchy in the capacity of the
network at separating the different imagery classes: the right-
hand/rest, left-hand/rest, right-hand/feet, and left-hand/feet are
the four best-separated class pairs. On the contrary, the right-
hand/left-hand pair seem to be the most difficult to separate,
while the separability of the rest/feet pair is on a medium level.

On another note, distribution shifts between subjects in-
dicate the inter-subject variability that has frequently been
reported for BCI datasets [17]. An example of such a shift is
obvious in the sub-plots for subjects 4 and 8. While the clusters
of the right and left hand classes of subject 4 are well sepa-
rated, those of subject 8 overlap in the 2D space. Naturally, a
supervised classification layer can be expected to separate the
embedding vectors from the four classes more successfully
than the un-supervised projector UMAP does. Nevertheless,
the distribution shifts in 2D space are an indication that sharing
the same classification layer for all the subjects may not be
sufficient to obtain a good subject-independent embedding.
Thus this observation motivates the use of strategies such
as EEGNet-LP and FBCSP which calibrate the classification
layer on data from the test subject.

B. Classification Performances

The classification performance of a BCI system measures
how well the user’s intentions are decoded by the system. It
is usually the main point of comparison between models.

In Table I, we can find the average classification accuracies
of the three pipelines across all the subjects. As explained
in subsection II-E, the scores of the EEGNet pipeline have



TABLE I
CLASSIFICATION ACCURACIES ON THE DIFFERENT SUBJECTS.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mean std
Pipeline
EEGNet 0.863 0.734 0.612 0452 0.741 0.806 0.764 0.308 0.514 0532 0414 0.736 0.517 0.790 0.627 0.171
EEGNet+LP 0.931 0.858 0.872 0.908 0.886 0.867 0.881 0.883 0.775 0.796 0.747 0.950 0.816 0.886 0.861 0.058
FBCSP 0.894 0.800 0.947 0.953 0907 0930 0.733 0912 0.743 0.845 0.808 0918 0.796 0948 0.867 0.078
0.9 standard deviations of the test performance (7.8% and 5.8%
o === respectively), which suggests that the performance of models
' /'/ using individual calibration data is more consistent than that
07 & of un-calibrated models. Moreover, they obtained scores of,
/ respectively, 86.7% and 86.1%, which are relatively high. A
2 ALY 45 R A A . . . .
g 06 / Wilcoxon signed-rank test [15] shows that there is no statis-
8 V tically significant difference between the two pipelines over
0 these subjects. However, the scores presented in Table I were
04 computed by 5-folds cross-validation over all the subject’s
' Fipeline calibration trials, which re t 241 traini
—e! EEaNetLp , presents, on average, raining
0.3 FBCSP trials per subject per class, but when trained with fewer trials,
—+— EEGNet . .
we will see that their performances are no longer equal.
0 20 40 60 80 100 Indeed, in Figure 3, we can observe the scores of these
Number of calibration trials per class . . . . . .
two pipelines for gradually increasing amounts of calibration
Fig. 3. Development of the classification accuracy for an increasing number trials. In these plots, we observe that the EEGNet+LP pipeline

of training trials per class to calibrate either the FBCSP baseline method
(within-subject scenario, denoted in orange) or the linear classification layer of
the EEGNet+LP pipeline (denoted in blue). The performance of the EEGNet
baseline model (i.e. without subject-specific calibration of the classification
layer) is marked by the green dotted line. The curves express the average
accuracies over the fourteen subjects, while the translucent bands represent
the standard errors. The score of each subject is estimated by averaging over
the different permutations, see subsection II-E. To accurately estimate the
scores when few trials are used for calibration, the number of permutations
increases in an inverse proportion to the number of calibration trials per class.
For 64 and 96 calibration trials per class, we compute 5 permutations, and for
one calibration trial per class, 50 permutations are computed. The limitation to
96 trials per class is given by the subject with the lowest trial count contained
in the dataset.

been computed on all the data from the test subject, and the
scores of the EEGNet+LP and FBCSP pipelines are the results
of 5-folds cross-validation procedures over all the available
calibration trials. As can be expected from a cross-subject
BCI without subject-specific calibration, we observe that the
EEGNet pipeline obtains a low average score of 62.7%,
which may be problematic for some BCI applications. The
standard deviation of this model across subjects is high 17.1%,
with high scores for subjects 1, 6, and 14 and performance
on chance level for subjects 8 and 11. Moreover, Table I
reveals that, for one and the same subject, FBCSP can reach
high performances while EEGNet may be lower. This is a
clear indication that the EEGNet pipeline performance is not
sufficient to make a judgment about the BCI efficiency of
a user’s dataset. Therefore, the cross-subject generalization
performance of this pipeline is highly variable and can not
be relied upon.

On the other hand, Table I indicates that the two individually
calibrated pipelines FBCSP and EEGNet+LP obtained lower

(denoted in blue) only requires two trials per class to calibrate
its classification layer so that it reaches the same score as the
one that was trained by the EEGNet pipeline on the trials from
all the other subjects. This shows that the features provided
by the embedding are very informative and easy to classify. In
contrast, we observe that the FBCSP pipeline requires between
8 and 16 trials per class to reach the EEGNet baseline because
the CSP feature extractor also has to be trained from these
calibration trials.

If we now assume that a hypothetical BCI application
requires a minimal classification accuracy of 70% to function
properly, we observe in Figure 3 that this score is reached
by the EEGNet+LP pipeline with less than 8 trials per class,
whereas between 16 and 32 trials are required by the FBCSP
pipeline to reach this threshold. We also note that the low
standard deviations of these two pipelines in Table I (i.e. when
using all the calibration trials) is still observed with fewer
calibration trials in Figure 3. Overall, even if the EEGNet+LP
and FBCSP pipelines converge to the same score when many
individual calibration trials are available, the EEGNet+LP
pipeline reaches satisfactory scores with fewer trials, and
without any sacrifice on the uncertainty of its performance.

C. Calibration Time

Reducing the number of calibration samples needed by a
system is important because it directly determines the time
that a user has to spend before starting to actually use a
BCI application productively. If we keep 70% as the minimal
classification accuracy threshold for a given BCI application
to be usable, we can simulate the time that would be needed
to reach it. The trials last four seconds and four additional
seconds of rest are spent between trials. The times needed to
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optimize the EEGNet+LP and FBCSP pipelines, once all the
calibration data is collected, are respectively 1 and 8 seconds,
and can be considered negligible. Therefore, the pipelines can
respectively be calibrated in 4 min. 15 seconds or 17 min. This
difference is non-negligible and matters to the user.

IV. DISCUSSION

In this article, we saw how splitting a neural network into
two components (embedding function and linear classification
layer) could allow to use it in an online BCI with a calibra-
tion. We observed that the trained embedding function was
able to reflect the intended motor task’s class structure but
we also observed non-neglectable distribution shifts between
the subjects. Our pipeline obtained a classification accuracy
similar to the FBCSP baseline when using a large number
of calibration trials, but performed better when fewer trials
were available. In particular, less than 8 trials per class are
required to obtain a score of 70%. This number of trials can
be recorded in around four minutes. In other words, using
our pipeline in an online application allows for reducing the
duration of the calibration phase. Although the High-Gamma
Dataset is well established as a benchmark, it comes with the
caveat that it contains only fourteen healthy subjects executing
motor tasks. Thus, our results will need to be confirmed with
further datasets.

Our data exploitation strategy is a trade-off that lies on a
spectrum between two extremes. On one end, the embedding
function could be trained using data very close to the test
subject’s distribution, which should reduce the number of
required calibration trials. However, this becomes increasingly
impractical as embedding functions would have to be trained
for every new subject. On the other end of the spectrum,
these functions could be trained on distributions distant from
the test subject’s one. While it may be easier to find such
datasets and while such embeddings could potentially be
re-used in different scenarios, they do require more cali-
bration data. The extreme case of self-supervised learning
uses unlabeled datasets or even non-BCI EEG recordings.
Kostas et al. [5] trained self-supervised embeddings using
the extremely large Temple University corpus [18]. Different
self-supervised learning techniques have been compared [4].
Further research is required to determine which strategies
are optimal in specific scenarios. For example, if a patient
regularly uses a BCI, it might be worth investing the time to
train a good individual embedding to minimize the calibration
per session. Moreover, because of the relative independence
between the feature extractor and the classification layer in
our pipeline, the classification layer can also be modified with
great freedom. We can, for example, imagine optimizing it
with an unsupervised algorithm. This would allow starting
a BCI application without any session- or subject-specific
calibration phase. Finally, testing the proficiency of this setup
in online experiments would be interesting in future studies.

To conclude, we proposed to use an established architecture
in a slightly unconventional way: we saw that deep learning-
based embeddings provide a way to build BCI systems that can
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be calibrated quickly for new subjects. The pipeline we pro-
posed is simple to implement and optimize, but already brings
improvements over state-of-the-art classical analysis pipelines,
but also state-of-the-art network architectures. Furthermore,
because of its simplicity, it can still be greatly improved.
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