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Abstract

Reduced order modeling methods are often used as a mean to reduce simulation costs in industrial applications.
Despite their computational advantages, reduced order models (ROMs) often fail to accurately reproduce complex
dynamics encountered in real life applications. To address this challenge, we leverage NeuralODEs to propose a
novel ROM correction approach based on a time-continuous memory formulation. Finally, experimental results
show that our proposed method provides a high level of accuracy while retaining the low computational costs
inherent to reduced models.

1. Introduction

The computational cost of classical simulation methods often constitutes a major impediment on quick and efficient design
processes. Because of this, dimensionality reduction methods such as Proper Orthogonal Decomposition (also known as
PCA) are often used to try to alleviate the computational costs of numerical simulations. A large body of literature is
dedicated to this topic, as numerous methods have been proposed (Schmid & Sesterhenn, 2008; Loiseau & Brunton, 2018;
Kaiser et al., 2014; Rowley & Dawson, 2017). In this work, we focus on a specific application of the POD method, called
POD-Galerkin, which is based on the identification of a low dimensional space on which both the solutions and governing
partial differential equations (PDE) can be projected.

The main advantage of the POD-Galerkin approach is that it retains physical information about the problem, as the equation
is simply projected on a pre-defined truncated basis. This is in stark contrast with other approaches aiming to replace
the physical equations with physics-agnostic equation models (Vlachas et al., 2018; Brunton et al., 2016). Indeed, the
conservation of dynamical information through the projection of the governing equations allows the ROM to predict
dynamics in unseen conditions as it does not require any pre-emptive model fitting other than the computation of principal
components. Despite this advantage, the POD-Galerkin approach has shown limitations when applied to non-linear PDE
problems such as the Navier-Stokes equations (Osth et al., 2014). In an effort to improve the performance of Galerkin
reduced order models in such cases, the CD-ROM approach (Menier et al., 2022) has recently been developed and proposes
to add a neural closure term to classical POD-Galerkin reduced order models to account for the loss of information inherent
to linear dimensionality reduction.

The approach leverages Neural Ordinary Differential Equations (Neural ODEs, Chen et al. (2018)) to learn a time-
continuous, non-Markovian correction model for POD-Galerkin models. Using a continuous memory formulation inspired
from theoretical results (Lin & Lu, 2021), the model is able to retain past states of the system and retrieve information not
readily available in the low dimensional modeling space (see Takens theorem, Takens (1981)).

In this paper, we apply the CD-ROM approach to an industrial modeling problem. We show that the approach provides an
adjustable degree of intrusivity as it can be used to learn a closure model as well as specific terms in partial differential
equations. By augmenting an incomplete reduced order model of the problem at hand with the CD-ROM architecture, an
efficient and flexible model is obtained, able to accurately simulate the problem in conditions unseen during training.

'TAU, Inria / LISN, Université Paris-Saclay / CNRS, Orsay, France 2[RT - SystemX, Palaiseau, France 3LISN, Université Paris-Saclay &
CNRS, Orsay, France *Michelin R&D, Clermont Ferrand, France. Correspondence to: Emmanuel Menier <emmanuel.menier@inria.fr>.

ICML 2022, Workshop on continuous time methods for machine learning.



Adaptively intrusive ROM closure

2. Proposed modeling approach
2.1. Industrial problem : Rubber calendering process

This work focuses on the modeling of the rubber calendering process. Calendering is a manufacturing process which consists
in passing a rubber sheet between two rollers to determine the thickness and mechanical properties of the material (see
Figure 1). Because of the compression between the rotating cylinders, the rubber can heat up and deteriorate. To address
this issue, one needs to estimate the heat generation inside the material under different cylinder rotation speeds in order to
determine acceptable process conditions. The issue is that simulating the problem in a classical finite elements solver can
take too much time, limiting the applicability of full order simulation approaches to the control of the process. We hence
propose to use model order reduction to lower the cost of simulating the problem.
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Figure 1. Left : Schematic of the calendering process. Right : Simulation mesh used in the finite element solver.

2.2. Governing equations

In this work, we focus on the modeling of the dynamics of the temperature field, as we have observed that the velocity
field u can be inferred with sufficient accuracy from the cylinder rotational speed (S) and the temperature field (7") such
that u = u(7T,S), since it is in a quasi-steady regime due to the high viscosity of the flow. Despite this simplification,
the reduction of the temperature dynamics is challenging for classical methods such as the POD-Galerkin approach. To
understand this, one needs to look at the PDE governing the temperature dynamics:

T T 2
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where T represents the value of the temperature at any mesh point, u the velocity, n the dynamic viscosity of the material
and v the deformation rate. Because of the linear nature of the Laplacian and gradient operators, the first two terms of
the dynamics can easily be projected on a linear low dimensional basis of spatial modes, reducing their computation to
simple tensorial operations as explained in Noack et al. (2003); Menier et al. (2022). The last term however, is a source term
accounting for the heat generated by the deformation of the rubber. This phenomenon is strongly nonlinear and cannot be
reduced linearly. Computing its reduced form would require back and forth exchanges between the full order solver and the
reduced model, which would directly impact the computational performances of the ROM. To avoid these costly steps, we
extend the CD-ROM approach to model the last term of Eq. (1) in addition to the required correction term.

2.3. ROM formulation

To construct the ROM, we first assemble a collection of solutions of the system at different time steps and using different
cylinder rotational speeds by simulating Eq. (1) with the finite element solver MEF++' (Plasman et al., 2020). By
computing the POD of the obtained dataset, we can extract a reduced number of principal components (or modes) optimally
approximating the data. Following this strategy, we compute two orthonormal bases of modes, V € R™<*"T for the
temperature and V;, € R?"<*"u for the velocity. Here n.. denotes the number of grid cells in the mesh, nr the number of
selected temperatures modes, and n,, the number of selected velocity modes, so that each column of the reduced bases
matrix Vi and V4, represents a complete field. To better illustrate the idea, Figure 2 displays the leading mode of each basis.

'"MEF++ — Wikipédia, http://fr.wikipedia.org/w/index.php?title=MEF%2B%2B&01did=192108614
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Figure 2. Left: Leading temperature POD mode. Right: Vertical component of the leading velocity POD mode. Note : The legend is not
reported as the point values of the field are not relevant, this is because the POD bases are normalised so that V] V,, = I.

After computing these two bases, one can approximate the solution as linear combinations of the principal components:
T = Vyar and u = V,ay,. With this formulation, solving the problem reduces to computing the low dimensional vectors
of POD coordinates o € R™” and o, € R™=. As explained above, the velocity field is directly evaluated from the cylinder
rotational speed and the temperature field, leaving only the dynamics of the temperature reduced coordinates a to be
modeled. Following the POD-Galerkin method, the reduced forms of the temperature and velocity fields are injected in
the temperature dynamics (Eq. (1)), which are then projected on the temperature POD basis Vr, yielding a system of ny
ordinary differential equations:

daT A T2 T TT](Vuaua VvTO‘T)'y(VvuO[u)2
L = VIV Vrar — anV Ve 2
dt pcp T V TOoT « T V VVTOZT + VT pOp ( )
R(ar,on,S) I(ar,0n,S)

The number of POD modes needed to accurately reconstruct the temperature field is very low (~ 5), which means the
reduced system in Eq. (2) can be simulated very quickly, achieving significant computational cost reduction w.r.¢. full order
solvers. However, as introduced above, the equation can be separated in two parts: a reducible part R which easily expresses
in terms of the reduced coordinates «, and an irreducible part Z which cannot be directly evaluated in the reduced space.
This would normally be a major impediment on the use of model order reduction methods to solve this problem. However,
using the CD-ROM approach, we can learn the effect of Z on the reduced dynamics using a neural network. Allowing for
the extension of reduced order modeling approaches to previously irreducible problems, while retaining as much as possible
from the original dynamical equations:

dOéT

dt (t) = R(aTa Oéu,S) +NN(O£T, Oéu,87y) (3)

y(t) = / e=Dhg(s)ds,  a(t) = [ar(t), SO)] @
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where A is a positive diagonal matrix corresponding to the time horizon matrix defined in Menier et al. (2022) and y(t) is a
memory term specifically designed to be continuously integrable in parallel with the reduced dynamics as a simple linear
system. In Menier et al. (2022) the critical role of the memory term y(¢) in retrieving information necessary to the correction
of reduced order models is underlined. Using this architecture in combination with Neural ODEs, we show below that the
neural network in Eq. (3) can be trained in an a posteriori fashion to appropriately correct the incomplete reduced model R.

3. Results
3.1. Experiment setup

To train the parameters of the closure model, we simulate the system with different cylinder rotational speed trajectories
defined as a sum of sines with random coefficients:

7
S(t)=co+ Zci sin <22ﬂ;t) , co ~N(1,0.25), ¢; ~N(0,0.25) (5)
i=4
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By sampling 20 trajectories S(¢) from this distribution, we can simulate the system under varying conditions and apply the
closure learning strategy described in the previous section. After computing the two POD bases V,, and V-, we select the
leading ny = 4 and np = 6 velocity and temperature POD modes, which represent more than 95% of the variance in the
dataset. Finally, the relation oy = f(ar, S) is approximated using ridge regression. This choice is made to reduce as much
as possible the variance in R, while the approximation error introduced by this simple model is corrected by the neural
closure model Z = NN (ar, ay, S, y).

3.2. Test performance

The model is trained using 80% of the dataset using NeuralODEs in combination with the Adaptive Checkpointing Adjoint
method (Zhuang et al., 2020). The objective L is defined as the mean squared Euclidean distance between the simulated
reduced coordinates and their true value a:

1 &, 9
L= bl ; o (t;) — ar(t:)ll; (6)

The remaining 20% of the dataset is used for testing. Figure 3 presents the performance of the model and its uncorrected
counterpart on a test trajectory. We also compute the RMSE normalized by the standard deviation of the data to provide a
quantitative indication of the performance of the model on the test trajectories. Obtained results show that the CD-ROM
trajectory fits the true trajectory almost perfectly, compared with the incomplete ROM (Figure 3). The final NRMSE
computed over the complete test set is of 2.5% . Moreover, the simulation of the corrected reduced model is much more
computationally efficient than finite element solvers as the parallel simulation of 128 trajectories only takes a few seconds
on a RTX 2080 GPU, while the simulation of a single trajectory in our finite elements solver took about 5 minutes. Note that
these simulation times simply provide a rough estimation of the performance gap, as they heavily depend on the hardware,
implementation and simulation parameters of both the ROM and the FE model.
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Figure 3. Performance of the corrected ROM (Eq. (3)) on a trajectory unseen during training. Left: Trajectory of the first mode. Right:
Trajectory of the second mode. The incomplete ROM (R in Eq. (2)) is also shown for comparison.

4. Conclusion

In this work, we demonstrate the interest of using neural networks for the modeling of dynamical systems. By creating a
hybrid model combining physical knowledge and a neural closure term, we obtain a continuous model able to simulate a
complex physical problem efficiently.

We demonstrate that this model can be used outside of its training conditions while retaining a high level of accuracy. Our
proposal underlines the adaptability of the CD-ROM approach to ill-posed reduction problems such as those involving highly
nonlinear terms, while retaining a high degree of interpretability compared to physics-agnostic NeuralODE:s. In the future,
the ability of the model to generalise to new materials in addition to new conditions should be investigated. The proposed
approach could then be used in model predictive control strategies to optimally tune the parameters of the manufacturing
process.
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