
HAL Id: hal-03936686
https://inria.hal.science/hal-03936686

Submitted on 12 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building CFA for λ-calculus from Skeletal Semantics
Thomas Jensen, Vincent Rébiscoul, Alan Schmitt

To cite this version:
Thomas Jensen, Vincent Rébiscoul, Alan Schmitt. Building CFA for λ-calculus from Skeletal Seman-
tics. JFLA 2023 - 34èmes Journées Francophones des Langages Applicatifs, Jan 2023, Praz-sur-Arly,
France. pp.152-171. �hal-03936686�

https://inria.hal.science/hal-03936686
https://hal.archives-ouvertes.fr

Building CFA for λ-calculus from Skeletal Semantics

Thomas Jensen, Vincent Rébiscoul, and Alan Schmitt

INRIA Rennes

Abstract

This paper describes a method to define a correct abstract interpretation from a formal descrip-
tion of the semantics of a programming language. Our approach is based on Skeletal Semantics.
We extend it with a notion of program points, in order to differentiate two fragments of the
program that are syntactically equivalent but appear at different locations. We introduce a
methodology for deriving an abstract interpretation from a Skeletal Semantics that is correct
by construction: given a program, abstract states are computed for each program points. We
apply our method by defining a Control Flow Analysis for λ-calculus from its Skeletal Semantics.

1 Introduction

As the complexity of software increases, building static analyses becomes more and more im-
portant. Analyzers have improved for years and many companies use them to save time by
detecting bugs [2], or prove some properties on their code [4]. In both cases, the soundness
of the analysis is paramount. Methods to develop analyses from a description of a language
are useful because they are systematic, even if done by hand. One of the most famous exam-
ple is Abstract Interpretation [3], which explains how to define an abstract semantics from an
operational semantics and how to prove that the abstract semantics is sound using a Galois con-
nection. Other works used abstract interpretation, for example to build an abstract semantics
from a big-step semantics [10].

In order to mechanize the design of sound analyses, one should start from a mechanized
semantics. Several tools provide such semantics, such as K [7], a framework to mechanize se-
mantics using rewriting rules. This makes the formal definition of a semantics easier, and allows
to mechanically derive objects from the semantics: for example in K, one can automatically
derive an interpreter from the mechanization of a language. However, K is not an extensible
framework and it is unclear how to derive an analysis from a mechanization in K.

In this paper we describe the first steps towards the generation of analyses from a Skeletal
Semantics. Skeletal Semantics [1] is a recent proposal for machine-representable semantics
of programming languages, using a minimalist functional language, Skel. From the Skeletal
Semantics of a language, a semantics can be derived by meta-interpretation of Skel, as a big-
step semantics [6]. Abstract Interpretation is a powerful framework to build analyses, thus
our work focuses on building an abstract interpretation from a Skeletal Semantics. Because
both big-step semantics and abstract interpretations stem from the same syntactic object, the
proof of soundness of the abstract interpretation is in large part independent from the language
considered. Proving the correctness of the abstract interpretation and the big-step semantics
given a particular Skeletal Semantics is therefore dependent on small lemmas only.

Our goal is to provide a methodology to easily define several semantics for a language
that can be related to one another. Skeletal Semantics [1] is a recent proposal for machine-
representable semantics of programming languages The Skeletal Semantics of a language is a
partial description of the language. Several meanings, called interpretations, can be given to this

Static Analyses for Skeletal Semantics

description like a big-step semantics [6]. However, because the description is partial, some parts
are left unspecified, and to fully define a semantics, one needs to provide specifications to the
unspecified parts. There are two benefits to this approach. First, the different interpretations
are language independent: an interpretation can be used with any Skeletal Semantics. Second,
two interpretations can be related to one another: for example, in this paper we present an
abstract interpretation that is a correct approximation of the big-step interpretation.

One benefit to this approach is that the interpretations of Skel can be used for any language
with a Skeletal Semantics, the definition of a semantics is done by only specifying the language
dependent unspecified parts. Because it is often easy to define relations between interpreta-
tions, the different semantics of one language can also be related to by proving small lemmas
on the specifications that depend on the interpretations. For example, we present a method
in this paper to define an abstract interpretation from a Skeletal Semantics that is a sound
approximation of the big-step semantics, provided that some lemmas about the

Contributions We propose a new interpretation of Skel that includes program points in a
systematic way. We define an abstract interpretation for Skel which is correct: the set of all
the executions of the big-step semantics is safely over-approximated. We provide a modular
methodology to prove correctness at the skeletal meta-level. We give an example of how to
define a CFA analysis for λ-calculus using the abstract interpretation of Skel. This work has
been implemented in a small OCaml program which takes as inputs a Skeletal Semantics and
the definitions of unspecified types and terms, and returns an abstract interpreter.

In Section 2, we introduce the syntax of Skeletal Semantics. In Section 3, we present a
big-step semantics (or concrete interpretation) of Skel. In Section 4, we show how to modify
the big-step semantics to use program points of a given program. In Section 5, we present an
abstract interpretation of Skel, used to define abstract interpretation for any language with a
Skeletal Semantics, with a theorem of soundness between the Skel abstract interpretation and
big-step semantics. Finally, in Section 6, we use the abstract interpretation to define a CFA
analysis for the λ-calculus

2 Skeletal Semantics and their Syntax

Skeletal Semantics is a recent approach to mechanize semantics for programming languages [1].
It uses a minimalist, functional, and strongly typed language called Skel [6]. The Necro li-
brary [5] is a tool to manipulate Skeletal Semantics. Given Skel code, it can generate Ocaml
code, Coq code, step by step debuggers, and more.

The mechanization of a semantics of a language using Skeletal Semantics is done by meta-
interpretation of the Skel language, therefore interpretations must be provided. In this paper,
we will present two interpretations: a big-step semantics and an abstract interpretation.

A Skeletal Semantics is a syntactic object, written in Skel, describing a language. We present
the Skeletal Semantics of the call-by-value λ-calculus with environments. We start by defining
useful types for our language:

1 type ident

2 type env

3

4 type clos =

5 | Clos (ident, lterm, env)

6

2

Static Analyses for Skeletal Semantics

7 type lterm =

8 | Lam (ident, lterm)

9 | Var ident

10 | App (lterm, lterm)

It starts with two definitions of unspecified types, and two definitions of specified types.
The types refer, in that order, to identifiers, environments, closures, and λ-terms. Having
unspecified types is a unique trait of Skel. Keeping some types unspecified is useful because
their instantiation can depend on the interpretation of Skel. Specified types are algebraic data
types (ADT). The clos type contains only one constructor which parameter is a triplet with an
identifier (representing a variable), a λ-term, and an environment, which is a usual definition
for a closure. The type lterm is the definition of λ-terms: it can be a λ-abstraction, a variable
or an application.

Moreover, a Skeletal Semantics contains terms:

12 val extEnv : (env, ident, clos) → env

13 val getEnv : (ident, env) → clos

The term getEnv(x, e) is a lookup function: it returns the closure associated to x in e. The
term extEnv(e, x, v) returns a new environment equals to e but with the new binding where
x maps to v. Terms must be explicitly typed. Moreover, both terms are unspecified : like
types, terms do not need to be completely defined in the Skeletal Semantics. In fact, as env is
unspecified, functions to access or extend it must be unspecified.

A Skeletal Semantics also contains specified terms:

15 val eval (s:env) (l:lterm): clos =

16 branch

17 let Lam (x, t) = l in

18 Clos (x, t, s)

19 or

20 let Var x = l in

21 getEnv (x, s)

22 or

23 let App (t1, t2) = l in

24 let Clos (x, t, s') = eval s t1 in

25 let w = eval s t2 in

26 let s'' = extEnv (s', x, w) in

27 eval s'' t

28 end

29

This specified term is the function detailing how a lterm should be computed given an
environment. For example, the eval function starts with a branching with three branches, and
each branch is guarded by a let-binding doing pattern-matching: this particular branching acts
as a case analysis. Indeed, a branching is used to cover several cases: here, there is one case
per constructor in the lterm type. The first branch evaluates a λ-abstraction by returning a
closure, the second branch evaluates a variable by using the getEnv function. The final branch
evaluates an application: first t1 is evaluated, which gives a closure Clos(x, t, s′) representing
the function with parameter x and body t, and where environment s’ gives meaning to free
variables in t. Then t2 is evaluated to another closure w, and s’ is extended such that x maps

3

Static Analyses for Skeletal Semantics

Term t ::= x | C t | (t, . . . , t) | λp : τ → S

Skeleton S ::= t0 t1 . . . tn | let p = S in S | branchS or .. orS end | t
Pattern p ::= x | | C p | (p, . . . , p)

Type τ ::= b | τ → τ | (τ, . . . , τ)
Term decl rt ::= val x : τ | val x : τ = t

Type decl rτ ::= type b

| type b = |C1 τ1 . . . |Cn τn

Figure 1: The Syntax of Skeletal Semantics

to w, giving a new environment s”. Finally, the body of the function t is evaluated with the
new environment s”. This should not be too surprising for people familiar with the semantics
of λ-calculus with environments.

Formally, the syntax of Skel is given in Figure 1: it is similar to λ-calculus where the
syntax ensures that programs are in A-Normal Form [9]. A specified term is either a variable,
a constructor applied to a term, a tuple, or a function. Intuitively, a term is a construct that
is fully computed. A skeleton is either an application, a let-binding, a branching, or a term.
Intuitively, a skeleton is a computation. Branching is the most exotic construct of the language,
it will be explained in more depth later on. Skel uses patterns, notably to perform pattern-
matching with let-bindings. A term declaration introduces a top-level term. It can either be
unspecified, in which case only its name and type are given, or specified, in which case the
specification is a term. A type declaration introduces a type that may be unspecified, or it can
be the declaration of an algebraic datatype.

A Skeletal Semantics is a set of type definitions and term definitions, that can be specified
or unspecified. In the following, for any constructor C of a specified algebraic data type τ , we
write C : (τi, τ) to state that C belongs to type τ and expects an argument of type τi.

3 Big-step Semantics of Skel

To give meaning to a Skeletal Semantics, we provide interpretations of Skel. In this section, we
give the big-step semantics of Skel.

The predicate na(τ) is true when τ is not an arrow type. The arity of a function f , arity(f),
is n if f has type τ1 → . . .→ τn → τ , where na(τ). Let S be an arbitrary Skeletal Semantics. We
write Funs(S) for the set of pairs (Γ, λp : τ1 → S0) such that λp : τ1 → S0 appears in Skeletal
Semantics S. The typing environment Γ gives types to the free variables of λp : τ1 → S0.
Typing rules are given in the Appendix B and Funs(·) is formally defined in the Appendix C.

3.1 From Types to Concrete Values

We call the interpretation of types the function V(τ), that given a type τ returns the set of
values of that type. These sets are defined with the relation ⊢ · ∈ V(·) in Figure 2. These rules
are language independent and are completed with language-dependent rules upon instantiation.

4

Static Analyses for Skeletal Semantics

∀1 ≤ i ≤ n ⊢ vi ∈ V(τi)

⊢ (v1, . . . , vn) ∈ V(τ1 × · · · × τn)
Tuple

⊢ v ∈ V(τ) C : (τ, τa)

⊢ C v ∈ V(τa)
ADT

(Γ, λp : τ1 → S) ∈ Funs(S) Γ ⊢ E Γ + p← τ1 ⊢ S : τ2

⊢ (p, S,E) ∈ V(τ1 → τ2)
Clos

val f : τ1 → · · · → τn → τ [= t] ∈ S na(τ)

⊢ (f, arity(f)) ∈ V(τ1 → · · · → τn → τ)
Def

dom Γ = dom E ∀x ∈ dom E, Γ ⊢ E(x) : Γ(x)

Γ ⊢ E
IEnv

Figure 2: Rules to Build Values

The Tuple and ADT rules build tuples and values of ADTs. The Clos rule builds a
closure, which is a a triplet (p, S,E). p is the pattern that contains the parameters of the
function, S is the body of the function and E an environment for the free variables in S. Note
that this environment must be compatible with the typing of the free variables of the function
(Rule IEnv). The Def rule builds named closures for application of unspecified and specified
terms with arrow type. The closure contains only the name and the arity of the function.

An instantiation of a Skeletal Semantics must define the values belonging to unspecified
types. We now show how this is done by example. In the case of λ-calculus, the unspecified
types are ident and env, thus we provide rules to build these values.

id ∈ V = {x, y, z... }
⊢ id ∈ V(ident)

Ident
⊢ [] ∈ V(env)

Env-Empty

⊢ id ∈ V(ident) ⊢ c ∈ V(clos) ⊢ e ∈ V(env)

⊢ (id, c) :: e ∈ V(env)
Env-Cons

Identifiers are variables from a countable set of variables V, and an environment is an association
list: it can be empty or built from a new binding and another environment.

3.2 Interpretation of Unspecified Terms

If X is a set, Pf (X) is the set of finite parts of X.

Now that values are defined, there remains to give definitions to unspecified terms. Take an
unspecified term val t : τ1 → · · · → τn → τ such that na(τ), then an instantiation of t, written
JtK, is a function such that: JtK ∈ (V(τ1) × · · · × V(τn)) → Pf (V(τ)). In particular, if val t : τ
and na(τ), then JtK ⊆ V(τ). Allowing the specification of a term to be a function returning a
set is useful to model non-determinism.

5

Static Analyses for Skeletal Semantics

For our λ-calculus, the specifications of unspecified terms are:

JgetEnvK(x, (x, c) :: e) = { c }
JgetEnvK(x, (y, c) :: e) = JgetEnvK(x, e) x ̸= y

JgetEnvK(x, []) = { }

JextEnvK(e, x, c) = (x, c) :: e

The interpretation JgetEnvK(x,e) is defined with three equations: the first equation returns
the closure when the correct binding is at the head of the environment, the second equation
is a recursive call when the first binding is not the correct one, and in last equation, getEnv
returns the empty set because the environment is empty. JextEnvK(e, x, c) returns a similar
environment to e, but with a new binding where x is associated to c.

3.3 Big-step Semantics

We now define the big-step semantics of Skel. E,S ⇓ v is a relation from a skeletal environment
E, mapping skeletal variables to values, and a skeleton S to a value v. The relation is defined
in Figure 3a.

There are four rules to evaluate variables, depending on how the variable was defined and
its type. If the variable was defined in a ’let’ expression, the environment E maps the variable
to its value (Rule Var). Otherwise, assuming the Skeletal Semantics is well typed, the variable
must be the name of a specified or unspecified term. If this term has an arrow type, we simply
return a named closure, whether the variable is specified or not. A named closure is a pair of
the name and arity of the function (Rule TermClos). If the variable is declared in the Skeletal
Semantics, then it is bound to a closed term t, which is evaluated in the empty environment
because it only depends on term declarations of the Skeletal Semantics (RuleTermSpec). If the
variable is unspecified, a value of the provided instantiation is returned (Rule TermUnspec).
Rules Const and Tuple are usual. Rule Clos returns a skeletal closure. One may observe
a similarity between this meta-rule and the corresponding object rule in the λ-calculus; this is
because Skel is a meta-language that is an extension of the λ-calculus, but the meta-language
and the object language should not be confused.

We now turn to the evaluation of skeletons. Rule LetIn is usual. Rule Branch evaluates a
branching by non-deterministically returning the result of the evaluation of a branch. To evalu-
ate an application, we define another relation, defined in Figure 3b with four rules. Rule Base
returns the result when all arguments have been processed. Rule Clos is the application of a
closure. Rules Spec and Unspec are the application of a named closure to a list of arguments.
The first evaluates the corresponding definition while the second one uses the user-provided
instantiation. Non-specified functions may be non-deterministic since their instantiation may
return a set. Note that we only consider full application of named functions: all arguments
must be provided. Extending this semantics to partial application is easy, although verbose,
but it is not necessary to describe our contributions. Finally, the pattern matching rules for
environment extension are given in Figure 4.

6

Static Analyses for Skeletal Semantics

E(x) = v

E, x ⇓ v
Var

val f : τ1 → · · · → τn → τ [= t] na(τ) n ≥ 1

E, f ⇓ (f, n)
TermClos

val x : τ = t ∈ S na(τ) ∅, t ⇓ v

E, x ⇓ v
TermSpec

val x : τ ∈ S na(τ) v ∈ JxK
E, x ⇓ v

TermUnspec
E, t ⇓ v

E, (C t) ⇓ C v
Const

E, t1 ⇓ v1 . . . E, tn ⇓ vn

E, (t1, . . . , tn) ⇓ (v1, . . . , vn)
Tuple

E, (λp : τ → S) ⇓ (p, S,E)
Clos

E,S1 ⇓ v ⊢ E + p← v ⇝ E′ E′, S2 ⇓ w

E, let p = S1 inS2 ⇓ w
LetIn

E,Si ⇓ v

E, (S1, .., Sn) ⇓ v
Branch

∀i ∈ [0..n]. E, ti ⇓ vi v0 v1 . . . vn ⇓app w

E, (t0 t1 . . . tn) ⇓ w
App

(a) Rules for the Big-step Semantics of Skeletons and Terms

v ⇓app v
Base

⊢ E + p← v1 ⇝ E′ E′, S ⇓ v v v2 . . . vn ⇓app w

(p, S,E) v1 . . . vn ⇓app w
Clos

val f : τ1 → · · · → τn → τ = t ∈ S na(τ) ∅, t ⇓ v v v1 . . . vn ⇓app w

(f, n) v1 . . . vn ⇓app w
Spec

val f : τ1 → · · · → τn → τ ∈ S na(τ) w ∈ JfK(v1, . . . , vn)
(f, n) v1 . . . vn ⇓app w

Unspec

(b) Rules for Application for the Big-step Semantics

Figure 3: Interpretation rules of the Big-step Semantics

⊢ E + ← v ⇝ E
asn-wildcard

⊢ E + x← v ⇝ (x, v) :: E
asn-var

⊢ E + p← v ⇝ E′

⊢ E + C p← C v ⇝ E′ asn-constr

⊢ E + p1 ← v1 ⇝ E2 . . . ⊢ En + pn ← vn ⇝ E′

⊢ E + (p1, . . . , pn)← (v1, . . . , vn)⇝ E′ asn-tuple

Figure 4: Rule of Extension of Environment through Pattern Matching

7

Static Analyses for Skeletal Semantics

4 Big-step Semantics with Program Points

4.1 Program Points and New Values

We present our first contribution, which is a method to use program points in the big-step
semantics of a Skeletal Semantics. This methodology is reused later for the abstract interpreta-
tion of Skel. Let S be a Skeletal Semantics. It usually contains one or more specified algebraic
data types that define the syntax of the language, i.e., programs. We call these types program
types. In the case of λ-calculus, lterm is the only program type. Let τ a program type in S
and prg ∈ V(τ) a program, we can refer to sub-terms of prg using program points. A program
point is a path from the root of prg to one of its sub-term. Given a program point pp, prg@pp
is the sub-term of prg obtained by following path pp. A program point pp is an element of
ppt = N∗, the set program points. ϵ is the empty path and i · pp is a path with first element i,
and pp is the rest of the path. The @ operator is formally defined as:

v@ϵ = v

C(v0, . . . , vn−1)@i · pp = vi@pp when 0 ≤ i ≤ n− 1

To give an example, for λ-calculus, let prg = Lam(x, V ar x). Then, prg@0 = x and prg@1 =
V ar x.

Our approach is to replace values of program types with program points. Each program point
refers to a sub-term of the main program: prg, which is now a parameter of the interpretation.
Let T be the set of program types from S and prg a program. Therefore, all values of τ ∈ T
are program points and represent sub-terms of prg . In particular, because prg is a program,
its type should be in T .

For each type τ , a set of values is built using previously defined rules 2 except for program
types that are defined by the equation:

τ ∈ T =⇒ V ppt
prg(τ) = { pp ∈ ppt |prg@pp ∈ V(τ) }

The set V
ppt
prg(τ) is the set of program points that refer to sub-terms of prg of type τ . This is

an important restriction because if τ ∈ T , then a value v ∈ V
ppt
prg(τ) is a program point and

therefore necessarily represent a fragment of prg and not an arbitrary program.
T is a set because some languages may have many types for different parts of pro-

grams: an imperative language would need at least one type for statements and one type
for expressions. Let us give an example with the λ-calculus. We take our program to be
prg = App(Lam(x, V ar x), V ar y) and T = { lterm }. The interpretation of the λ-terms is
defined in the next equation. The program points are underlined to differentiate them from
natural numbers.

V ppt
prg(lterm) = { ϵ, 0, 1, 01 }

For example, we have prg@1 = V ar y
The interpretation of unspecified types does not change and other types are built using

previous rules in Figure 2. However, we assume new specifications of unspecified terms. Indeed,
some unspecified terms may depend on types in T , therefore, for all unspecified terms x in S,
we suppose that new specifications are provided: JxKppt.

4.2 Pattern Matching with Program Points

The interpretation of skeletons with program points does not fundamentally change: only the
pattern matching is modified and uses an unfolding mechanism. Unfolding matches a program

8

Static Analyses for Skeletal Semantics

NC(τ1 → τ2) =

{
(f, n)

∣∣∣∣ val f : τ1 → τ2[= t] ∈ S
arity(f) = n

}
C(τ1 → τ2) =

{
(p, S,E♯)

∣∣∣∣ ∃(Γ, λp : τ1 → S) ∈ Funs(S),
Γ ⊢ E♯ ∧ Γ + p← τ1 ⊢ S : τ2

}

Figure 5: Sets of Abstract Named Closures and Closures

point with a constructor pattern and is described by the following rule.

prg@pp = C (v′0, . . . , v
′
n−1) C : (τ0 × · · · × τn−1, τ)

vj = if τj ∈ T then pp ·j else v′j T ,prg ⊢ E + p← (v0, . . . , vn−1)⇝ E′

T ,prg ⊢ E + C p← pp⇝ E′ asn-unfold

When a program point pp is matched with a constructor pattern C p, prg@pp is expected to
have the form C(v′0, . . . , v

′
n−1). Then, for 0 ≤ j ≤ n − 1, vj is pp ·j if v′j has a program type

τj ∈ T , or v′j otherwise. Then the pattern p is matched with (v1, . . . , vn). The unfolding rule
exhibits the constructor and its parameters at program point pp, then continues the pattern
matching recursively.

We give an example for λ-calculus, let prg = App(Lam(x, V ar x), V ar y). To compute
T ,prg ⊢ E + Lam(p) ← 0 ⇝ E′ where p is a pattern, by applying the asn-unfold rule, it
comes that: T ,prg ⊢ E + p ← (x, 01) ⇝ E′ Indeed, prg@0 = Lam(x, V ar x) and V ar x has
program point 01, therefore p is matched with (x, 01)

The big-step semantics of skeletons and the big-step semantics of skeletons with program
points are closely related. We formalize this connection through a theorem presented in Ap-
pendix D.

5 Abstract Interpretation

We define an abstract interpretation of Skel that is sound with respect to the big-step semantics
of Section 4. The abstract interpretation is used in the next section to define a Control Flow
Analysis for λ-calculus.

We define the abstract values, comparison functions and upper bounds in Section 5.1. We
define the state of the abstract interpretation in Section 5.2. We present the interpretation rules
of skeletons for an abstract interpretation in Section 5.3, We present how the abstract values
are linked to the concrete values by defining concretization functions in Section 5.4. Finally,
we formulate a theorem of soundness in Section 5.5. In the following sections, S denotes an
arbitrary Skeletal Semantics.

5.1 Definition of Abstract Values

The abstract values are defined similarly to the concrete ones. In Figure 5 we define the set
of abstract named closures and the set of abstract closures. Abstract named closures are pairs
of a name of a function defined in the skeletal semantics and its arity. Abstract closures are a
triplet with a pattern, a skeleton and an abstract environment. The abstract environment is
defined later in the this section.

9

Static Analyses for Skeletal Semantics

⊢♯ ⊥τ ∈ V ♯(τ)
Bottom

⊢♯ ⊤τ ∈ V ♯(τ)
Top

∀(v♯1, . . . , v♯n) ∈ t♯ ∀1 ≤ i ≤ n, ⊢♯ v♯i ∈ V ♯(τi) ∧ v♯i ̸= ⊥τi

⊢♯ t♯ ∈ V ♯(τ1 × · · · × τn)
Tuple

⊢♯ v♯ ∈ V ♯(τ) C : (τ, τa) v♯ ̸= ⊥τ

⊢♯ C v♯ ∈ V ♯(τa)
ADT

nc ⊆ NC(τ1 → τ2) c ⊆ C(τ1 → τ2)

⊢♯ c ∪ nc ∈ V ♯(τ1 → τ2)
Funs

dom Γ = dom E♯ ∀x ∈ dom E♯, Γ ⊢ E♯(x) : Γ(x)

Γ ⊢ E♯
IEnv

Figure 6: Rules to Build Abstract Values

The rules to define abstract values are presented on Figure 6. The Bottom and Top rules
define a least and a greatest element for each type. The Tuple rule define the abstract tuples,
that are a set of tuples of abstract values. Because one of our target is CFA analysis for λ-
calculus, having a set is necessary not to loose too much precision during the analysis. On
line 24 of the Skeletal Semantics of the λ-calculus A, eval s t1 returns a closure, Clos(x, t, s)
which is essentially a triplet. The relation between identifier, term and environment must be
preserved. Values of algebraic types, defined by the rule ADT, are constructors applied to
abstract values. Abstract functions, defined by the rule Funs, is the union of a subset of
abstract named closures, and a subset of abstract closures. For instance for the λ-calculus, the
set {(eval, 2), (s, λl:lterm.Seval, ∅)} belongs to V ♯(env→ lterm→ clos), where Seval is the
body of the eval specified term. Finally, the rule IEnv defines abstract environments, that are
partial functions mapping skeletal variables to abstract values.

To compare abstract values, we define partial orders. For every unspecified type τu, we
assume comparison function ⊑♯

τu which is an order and with the constraint that ⊤τu and ⊥τu

are the greatest and smallest elements of V ♯
prg(τu) respectively. For every other types, the

comparison function is the smallest order that satisfies the following equations:

C v♯ ⊑♯
τa C w♯ ⇐⇒ v♯ ⊑♯

τ w♯ with C : (τ, τa)

t♯1 ⊑
♯
τ1×···×τn t♯2 ⇐⇒ ∀(v

♯
1, . . . , v

♯
n) ∈ t♯1,∃(w

♯
1, . . . , w

♯
n) ∈ t♯2,∀i, 1 ≤ i ≤ n, v♯i ⊑

♯
τi w

♯
i

F1 ⊑♯
τ1→τ2 F2 ⇐⇒

{
(f, n) ∈ F1 =⇒ (f, n) ∈ F2

(p, S,E♯
1) ∈ F1 =⇒ ∃(p, S,E♯

2) ∈ F2, E
♯
1 ⊑♯

env E♯
2

E♯
1 ⊑♯

env E♯
2 ⇐⇒ Γ ⊢ E♯

1 ∧ Γ ⊢ E♯
2 ∧ ∀x ∈ dom E♯

1, E
♯
1(x) ⊑

♯
Γ(x) E

♯
2(x)

v♯ ⊑♯
τ ⊤τ

⊥τ ⊑♯
τ v♯

To compare algebraic values, their parameters are compared. Tuples are compared by checking

10

Static Analyses for Skeletal Semantics

that all tuples of abstract values of the left tuple are smaller than a tuple of abstract values
in the right tuple. To compare two functions, all named closures of the left function must be
in the right function. Moreover, for all closures in the left function, there must be a closure in
the right function with the same pattern and skeleton, but with a bigger abstract environment.
Abstract environments are compared using point-wise lifting. For each type, top and bottom
are respectively the smallest and greatest elements of the type.

For each type, an upper bound (or join) is defined. For every non-specified type τu, we
assume an upper bound ⊔♯τu . We define an upper bound ⊔♯τ for every other types.

(C v♯)⊔♯τa(C w♯) =C (v♯⊔♯τw♯) with C : (τ, τa)

(C v♯)⊔♯τa(D w♯) =⊤τa with C : (τ, τa) ∧ D : (τ ′, τa)

t♯1⊔♯τ1×···×τnt
♯
2 =t♯1 ∪ t♯2

F1⊔♯τ1→τ2F2 =F1 ∪ F2

E♯
1⊔♯envE

♯
2 =

{
x ∈ dom E♯

1 7→ E♯
1(x)⊔♯E

♯
2(x)

}
v♯⊔♯τ⊤τ = ⊤τ⊔♯τv♯ =⊤τ

v♯⊔♯τ⊥τ = ⊥τ⊔♯τv♯ =v♯

Joining two algebraic values with the same constructor is joining their parameters, and joining
algebraic values with different constructors yield top. Joining abstract tuples our abstract
functions is set union. Joining abstract environments is done by point-wise lifting. For each
type, top is an absorbing element, and bottom is the neutral element.

5.2 State of the Abstract Interpretation

The state of the abstract interpretation A is a machine representable state that contains infor-
mation collected throughout the abstract interpretation. It is dependent on the analysis and
the language, and therefore is non-generic and must be specified. To give an example, when
defining a CFA in the next section, the abstract state will contain a mapping from program
points to sets of λ-abstraction, that can be viewed as the potential results when evaluating a
sub-term at some program point of the analyzed program. We require an order on the abstract
states. Intuitively, we should only add information in the states throughout the analysis, and
therefore at each step of the analysis, the states should only increase.

A state contains several components: A · c is the component c of the abstract state A. The
notation { A with c = v } denotes a new state equals to A, excepts for the c component which
is equal to v.

5.3 The Abstract Interpretation of Skel

The abstract interpretation maintains a callstack of specified function. This is used for loop
detection and prevent infinite computations: the idea is to inspect the callstack at each call
to a specified function to detect identical nested calls. Callstacks are ordered list of frames,

11

Static Analyses for Skeletal Semantics

formally defined as:

ϵ ∈ callstack

A an abstract state

valf : τ1 → · · · → τn → τ = t ∈ S na(τ) vi ∈ V ♯
prg(τi) π ∈ callstack

(f,A, [v1, . . . , vn]) :: π ∈ callstack

The abstract interpretation of skeletons is given on Figure 7a. The abstract interpretation of
skeletons is similar to the big-step interpretation: the evaluation of terms is almost unchanged
except that evaluating a closure or a tuple returns a singleton. When evaluating a skeleton
(branch, let-binding, or application), a state of the abstract interpretation is carried through
the computations. In the Branch rule, all branches are evaluated and joined instead of only
one branch being evaluated. The pattern matching now returns sets of environments rather
than one, and this will be detailed later, but in consequence the LetIn rule may evaluate S2 in
several abstract environments. The App rule evaluates all terms and pass a list of values to the
application relation. There are separate rules to handle applications on Figure 7b. Because the
abstraction of a function is a set of closures and named closures, the App-Set rule evaluates
each one individually. The Base rule returns the remaining value when all arguments have
been processed. Because the extension of environments returns a set of abstract environment,
the Clos rule is modified accordingly and the body of the function S is evaluated in all abstract
environments. The Spec rule evaluates the call to a specified function by doing three things:

• it uses an updateinf (·) function which is language dependent and must be specified. It can
modify the arguments and the state of the abstract interpretation.

• the call is performed (a frame is added to the callstack at that point).

• an updateoutf (·) function can modify the state of the interpretation and the returned value.

These update functions are used to maintain invariants and update the state of the abstract
interpretation. An example of their use will be presented in the next section. The update
functions must respect the following constraints to ensure soundness:

Remark 1.

updateinf (A, [v♯1, . . . , v
♯
k]) = [v′♯1 , . . . , v

′♯
k],A

′ =⇒ (v♯1, . . . , v
♯
k) ⊑

♯ (v′♯1 , . . . , v
′♯
k) ∧ A ⊑

♯ A′

updateoutf (A, [v♯1, . . . , v
♯
k], v

♯) = v′♯,A′ =⇒ v♯ ⊑♯ v′♯ ∧ A ⊑♯ A′

The extension of environments, or pattern matching, presented on Figure 8 is modified such
that it returns a set of abstract environments. This is necessary because our abstraction of
tuples is a finite set of tuples of abstract values. In order not to lose too much precision, we
return one abstract environment per tuple of abstract values in our abstract tuple. The rules
are similar to the big-step semantics, excepts that there are two rules for tuples: the rule asn-
tuple-singleton extends the environment with a tuple of abstract values, the asn-tuple
forwards all tuples of abstract values in t♯ to the asn-tuple-singleton rule.

12

Static Analyses for Skeletal Semantics

E♯(x) = v♯

E♯, x ⇓ v♯
Var

val f : τ1 → · · · → τn → τ [= t] ∈ S na(τ)

E♯, f ⇓ { (f, arity(f)) }
TermClos

val x : τ = t ∈ S ∅, t ⇓ v♯ na(τ)

E♯, x ⇓ v♯
TermSpec

val x : τ ∈ S na(τ)

E♯, x ⇓ JxK♯
TermUnspec

E♯, t ⇓ v♯

E♯,C t ⇓ C v♯
Const

E♯, t1 ⇓ v♯1 . . . E♯, tn ⇓ v♯n

E♯, (t1, . . . , tn) ⇓
{
(v♯1, . . . , v

♯
n)

} Tuple

π,E♯, λp : τ · S ⇓♯
{
(p, S,E♯)

} Clos
π,A, E♯, Si ⇓♯ v♯i ,Ai

π,A, E♯, (S1 . . . Sn) ⇓♯ ⊔♯v♯i ,⊔
♯Ai

Branch

π,A, E♯, S1 ⇓♯ v♯,A′

T ,prg ⊢ E♯ + p← v♯ ⇝
{
E♯

1, . . . , E
♯
n

}
π,A′, E♯

i , S2 ⇓♯ w♯
i ,Ai

π,A, E♯, let p = S1 inS2 ⇓♯ ⊔♯w♯
i ,⊔

♯Ai

LetIn

E♯, ti ⇓ v♯i π,A, v♯0 v♯1 . . . v
♯
n ⇓app v♯,A′

π,A, E♯, t0 t1 . . . tn ⇓♯ v♯,A′ App

(a) Rules for the Abstract Interpretation of Skeletons and Terms

v♯0 =

n⋃
i=1

{wi } π,A, wi v
♯
1 . . . v

♯
n ⇓app v♯wi

,Ai

π,A, v♯0 v♯1 . . . v
♯
n ⇓app ⊔♯v♯wi

,⊔♯Ai

App-Set
π,A, v♯ ⇓app v♯,A

Base

T ,prg ⊢ E♯ + p←♯ v♯1 ⇝
{
E♯

1, . . . , E
♯
m

}
∀E♯

i ∈
{
E♯

1, . . . , E
♯
m

}
π,A, E♯

i , S ⇓ w♯
i ,Ai π,Ai, w

♯
i v♯2 . . . v

♯
n ⇓app u♯

i ,A
′
i

π,A, (p, S,E♯) v♯1 . . . v
♯
n ⇓app ⊔♯u

♯
i ,⊔

♯A′
i

Clos

val f : τ1 → · · · → τn → τ = t ∈ S
na(τ) ∅, t ⇓ v♯ updateinf (A, [v♯1, . . . , v♯n]) = A′, [v′♯1 , . . . , v

′♯
n]

(f, [v′♯1 , . . . , v
′♯
n]) /∈ π (f, [v′♯1 , . . . , v

′♯
n]) :: π,A′, v♯ v′♯1 . . . v′♯n ⇓app w♯,A′′

updateoutf (A′′, [v′♯1 , . . . , v
′♯
n], w

♯) = w′♯,A′′′

π,A, (f, n) v♯1 . . . v♯n ⇓app w′♯,A′′′ Spec

val f : τ1 → · · · → τn → τ = t ∈ S na(τ) ∅, t ⇓ v♯

updateinf (A, [v♯1, . . . , v♯n]) = A′, [v′♯1 , . . . , v
′♯
n] (f, [v′♯1 , . . . , v

′♯
n]) ∈ π

π,A, (f, n) v♯1 . . . v♯n ⇓app ⊥,A′ Spec-Loop

val f : τ1 → · · · → τn → τ ∈ S na(τ) JfK♯(A, v♯1, . . . , v♯n) = w♯,A′

π,A, (f, n) v♯1 . . . v♯n ⇓app w♯,A′ Unspec

(b) Rules for the application of the Abstract Interpretation

Figure 7: Abstract Interpretation of Skel

13

Static Analyses for Skeletal Semantics

T ,prg ⊢ E♯ + ←♯ v ⇝
{
E♯

} asn-wildcard

T ,prg ⊢ E♯ + x←♯ v ⇝
{
(x, v♯) :: E♯

} asn-var

T ,prg ⊢ E♯ + p←♯ v ⇝ ξ

T ,prg ⊢ E♯ + C p←♯ C v ⇝ ξ
asn-constr

T ,prg ⊢ E♯ + p1 ←♯ v1 ⇝ ξ1
. . . T ,prg ⊢ ξn−1 + pn ←♯ vn ⇝ ξn

T ,prg ⊢ E♯ + (p1, . . . , pn)←♯ (v1, . . . , vn)⇝ ξn
asn-tuple-singleton

(v1, . . . , vn) ∈ t T ,prg ⊢ E♯ + (p1, . . . , pn)←♯ (v1, . . . , vn)⇝ ξv1,...,vn

T ,prg ⊢ E♯ + (p1, . . . , pn)←♯ t⇝
⋃

(v1,...,vn)∈t

ξ(v1,...,vn)
asn-tuple

prg@pp = C (v′1, . . . , v
′
n) C : (τ1 × · · · × τn, τ)

vj = if τj ∈ T then pp ·j else v′j T ,prg ⊢ E♯ + p←♯ { (v1, . . . , vn) }⇝ ξ

T ,prg ⊢ E♯ + C p←♯ pp⇝ ξ
asn-unfold

Figure 8: Extension of Environment through Pattern Matching for Abstract Interpretation

5.4 Concretization Function

To define concretization functions for abstract values, we assume monotonic concretization
functions for abstract values of non-specified types. Concretization functions are defined for
every specified types, and take the state of the abstract interpretation as a parameter:
γτ (A, ·) : V ♯

prg(τ)→ Pf (V
ppt
prg(τ)). We also define a function of concretization γenv which maps

abstract skeletal environments to concrete skeletal environments.

γτa(A, C v♯) =
{
C v | C : (τ, τa), v ∈ γτ (A, v♯)

}
γτ1×···×τn(A, t♯) =

⋃
(v♯

1,...,v
♯
n)∈t♯

γτ1(A, v
♯
1)× · · · × γτn(A, v♯n)

γτ1→τ2(A, F) = { (f, n) | (f, n) ∈ F } ∪
{
(p, S,E)

∣∣ (p, S,E♯) ∈ F ∧ E ∈ γenv(A, E♯)
}

γenv(A, E♯) =

{
E

∣∣∣∣ Γ ⊢ E ∧ Γ ⊢ E♯ ∧ Γ(x) = τ
dom E = dom E♯, E(x) ∈ γτ (A, E♯(x))

}
γ(A,⊥τ) =∅
γ(A,⊤τ) =V ♯(τ)

Lemma 1. If for all unspecified types τu, γτu is monotonic on both arguments, then for all τ ,
γτ is also monotonic on both arguments.

14

Static Analyses for Skeletal Semantics

5.5 Correctness of the Abstract Interpretation

Definition 1. Let f be an unspecified term of type τ1 → · · · → τn → τ where na(τ). We

say that JfK♯ is a sound approximation of JfKppt iff ∀vi ∈ V ppt
prg(τi), ∀v♯i ∈ V ♯

prg(τi), and for all
abstract state A, if

vi ∈ γτi(A, v
♯
i)

JfK♯(A, v♯1, . . . , v♯n) = A′, w♯
=⇒ JfKppt(v1, . . . , vn) ⊆ γτ (A′, w♯)

We state the following theorem of correction that states that the abstract interpretation
computes a sound approximation of the big-step interpretation.

Theorem 1. Suppose E,S ⇓ v and ϵ,A0, E
♯, S ⇓♯ v♯,A and Γ ⊢ E and Γ ⊢ E♯ and Γ ⊢ S : τ

and E ∈ γ(A, E♯).
Suppose ∀(val x : τ) ∈ S, JxK♯ is a sound approximation of JxKppt.
Then, v ∈ γτ (A, v♯).

Therefore, to prove the soundness of the analysis, it is sufficient to prove that the abstract
specifications of terms are sound approximation of the concrete specifications of terms.

6 Toward a Control Flow Analysis for λ-calculus

In this section we show how the abstract interpretation of Skel can be used to define a Control
Flow Analysis (CFA) from the Skeletal Semantics of λ-calculus. A Control Flow Analysis
computes an approximation of the Control Flow for higher-order languages. We aim at defining
an analysis similar to 0-CFA for λ-calculus. Let t be a λ-term, the result of a 0-CFA for term
t is two maps. The first one maps variables of t to an approximation of the values the variable
can be bound to. The second one maps sub-terms of t to an approximation of the results of the
evaluation of the sub-term.

In this section, we call prg the λ-term to be analyzed.

6.1 The State of the Abstract Interpretation

For our analysis, the state of the abstract interpretation contains two maps that we call C and
ρ:

A · C : ppt→ Pf (V
♯
prg(ident)× V ♯

prg(lterm))

A · ρ : ppt→ V ♯
prg(ident)→ Pf (V

♯
prg(ident)× V ♯

prg(lterm))

The C function maps a program point to an approximation of the result of evaluation of the
sub-term of prg at the program point. For a program point pp, C(pp) is a set of pairs (x, t),
that are really λ-abstractions λx.t.

ρ is a function from program points to some abstraction of an environment of λ-calculus.
In classic 0-CFA, there is only one global environment, whereas in our analysis, there is one
environment per program point. Practically, it means that to evaluate term t, a subterm of the
main program prg at program point pp, we use the abstract environment A · ρ(pp).

15

Static Analyses for Skeletal Semantics

6.2 Specification of the Unspecified Types and Unspecified Terms

As for the big-step semantics with program points, the λ-terms are program types: T =
{ lterm }.

We give the specifications of the unspecified types.

id ∈ {x, y, z... }
⊢♯ id ∈ V ♯

prg(ident)
Ident

pp ∈ ppt

⊢♯ pp ∈ V ♯
prg(env)

Env

V ♯
prg(ident) is a set of variables. An abstract environment ppe ∈ V ♯

prg(env) is a program point
and refers to A · ρ(ppe) which maps variables to a set of pairs representing λ-abstractions. The
definitions of the unspecified terms are:

JgetEnvK♯(A, x,ppe) = A, Clos({ (y,pp ·1,pp) | (y,pp ·1) ∈ A · ρ(ppe)(x) })
JextEnvK♯(A,ppe, x, c) = { A with ρ = ρ[ppv → A · ρ(ppe)[x→ A · ρ(ppe)(x) ∪ c]] },ppv ppv fresh

A · ρ(ppe)(x) contains pairs of the form (y,pp ·1) representing λ-abstractions, therefore
prg@pp = Lam(y, t). t has a program point that ends with 1 because it is the second element
of the Lam constructor. getEnv type constraint the result to be in V ♯

prg(clos), so we need to
attach an environment to our pairs (y,pp ·1). Because (y,pp ·1) denotes a λ-abstraction defined
at program point pp, the associated environment is pp.

JextEnvK♯(A,ppe, x, c) does two things: it modifies the state of the interpretation, and re-
turns a virtual program point. Indeed, extEnv returns a new environment, therefore a program
point, but what program point should be returned? We do not know until we evaluate a new
lterm with this environment. Therefore, we create virtual program point that will be linked to
a real program point later. The JextEnvK♯ modifies the abstract state such that ρ(ppv) contains
ρ(ppe) plus the following constraint: ρ(ppv)(x) = ρ(ppe(x)) ∪ c.

There remains to define our update functions:

updateineval(A, [ppe,ppt]) = { A with ρ = A · ρ[ppt → A · ρ(ppt)⊔♯A · ρ(ppe)] }, [ppt,ppt]
updateouteval(A, [ppe,ppt], c) = { A with C = C[ppt → A · C(pp) ∪ c] }, c

The first update function is used before performing the call eval ppe ppt, and the second
update function is used after the call was done.

ppe has type env and therefore is a program point which refers to A · ρ(ppe). ppt has type
lterm, and therefore is also a program point denoting the sub-term of prg at ppt. Because we
want to compute the sub-term at program point ppt, we should use the abstract environment
A · ρ(ppt). Therefore, the abstract state needs to be modified such that A · ρ(ppe) is included
into A · ρ(ppt), and this is what the first update function does.

The second update function is called after the call is performed. The only thing does is to
record the result into the map A · C.

A derivation gives a CFA:

ϵ,A0, { e 7→ [], l 7→ ϵ } , eval e l ⇓♯ A, v♯

The derivation is implicitly parameterized by the λ-term prg. In the initial environment, l
is mapped to the program point ϵ, the root of the λ-term prg. e is mapped to an empty

16

Static Analyses for Skeletal Semantics

environment of λ-calculus. A0 is the initial state of the abstract interpretation with empty
mappings A0 · ρ and A0 ·C. The result of the derivation is a value v♯, but most importantly a
new state of the interpretation A, that contains mappings A · ρ and A · C that are the results
of the CFA: A · ρ gives an abstraction of what closures the variables in prg can be bound to,
and A · C gives an abstraction of the closures that can appear at a given program point.

7 Implementation

This work resulted in an implementation of an Abstract Interpreter Generator [8]: given a
skeletal semantics, a specification of unspecified types and terms, it generates an abstract
interpreter. We have used it to try our CFA analysis defined in previous sections, and we
experimentally compared its output to another CFA program and we found no differences on
the examples we tested. So far, our CFA has not been proven incorrect but it remains to do a
formal proof or correction.

Moreover, the Abstract Interpreter Generator has been used to generate an abstract inter-
preter for a small imperative language, with basic integer arithmetic, conditional branchings
and loops. For instance, one can do a basic interval analysis. However, we did not do relational
analyses.

8 Conclusion

We presented our work to generate a CFA analysis for λ-calculus from a skeletal semantics. We
presented what are Skeletal Semantics and how they can be interpreted to define a semantics.
The strength of this approach is that one only needs to define the unspecified types and terms
to mechanize a big-step semantics for a language that has a Skeletal Semantics. An example
of how the big-step semantics of λ-calculus could be mechanized using Skeletal Semantics was
given using the big-step semantics of Skel. Then we presented our first contribution which is a
big-step semantics of Skel with program points. Our second contribution which is an abstract
interpretation of Skel, and we stated a theorem of correction. The proof is a work in progress.
Our final contribution is a CFA analysis built using the abstract interpretation of Skel for λ-
calculus. We implemented an abstract interpreter generator that produces an analyzer from
a Skeletal Semantics. We used this program to generate a CFA analyzer for λ-calculus. Our
analyzer was experimentally tested and gives similar results to other 0-CFA analyzers.

However, when mechanizing a semantics using an intermediate language like Skel, we expect
to lose precision compared to a language specific semantics. Moreover, there are several possible
definitions of a Skeletal Semantics for given a language, the abstract interpretation precision
may depend on the definition of the Skeletal Semantics. It is a language-independent approach
to generates an abstract interpretation for languages with a Skeletal Semantics.

The proof of correction between the big-step semantics and the abstract interpretation
must be mechanized. Moreover, our CFA analysis must be compared to other CFA analyses,
in particular 0-CFA analysis and verify if we are systematically at least as precise as 0-CFA.
Finally, there are not proofs of termination of the abstract interpretation, and this should be
addressed.

17

Static Analyses for Skeletal Semantics

References

[1] Bodin, M., Gardner, P., Jensen, T., Schmitt, A.: Skeletal semantics and their interpretations.
Proceedings of the ACM on Programming Languages 3(POPL), 1–31 (2019)

[2] Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn, P., Pa-
pakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with software verification. In: NASA
Formal Methods Symposium. pp. 3–11. Springer (2015)

[3] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. pp. 238–252 (1977)

[4] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The astrée
analyzer. In: European Symposium on Programming. pp. 21–30. Springer (2005)

[5] Noizet, L.: Necro Library, https://gitlab.inria.fr/skeletons/necro, https://gitlab.inria.fr/

skeletons/necro

[6] Noizet, L., Schmitt, A.: Semantics in Skel and Necro. In: ICTCS 2022 - Italian Conference on
Theoretical Computer Science. CEUR Workshop Proceedings, Rome, Italy (Sep 2022)

[7] Ros,u, G., S, erbănută, T.F.: An overview of the k semantic framework. The Journal of Logic and
Algebraic Programming 79(6), 397–434 (2010)

[8] Rébiscoul, V.: Abstract Interpreter Generator, https://gitlab.inria.fr/skeletons/

abstract-interpreter-generator

[9] Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style. In: LISP AND
SYMBOLIC COMPUTATION. pp. 288–298 (1993)

[10] Schmidt, D.A.: Natural-semantics-based abstract interpretation (preliminary version). In: Inter-
national Static Analysis Symposium. pp. 1–18. Springer (1995)

A Skeletal Semantics of λ-calculus

type ident

type env

type clos =

| Clos (ident, lterm, env)

type lterm =

| Lam (ident, lterm)

| Var ident

| App (lterm, lterm)

val extEnv : (env, ident, clos) → env

val getEnv : (ident, env) → clos

val eval (s:env) (l:lterm): clos =

branch

let Lam (x, t) = l in

Clos (x, t, s)

or

let Var x = l in

getEnv (x, s)

18

https://gitlab.inria.fr/skeletons/necro
https://gitlab.inria.fr/skeletons/necro
https://gitlab.inria.fr/skeletons/abstract-interpreter-generator
https://gitlab.inria.fr/skeletons/abstract-interpreter-generator

Static Analyses for Skeletal Semantics

or

let App (t1, t2) = l in

let Clos (x, t, s') = eval s t1 in

let w = eval s t2 in

let s'' = extEnv (s', x, w) in

eval s'' t

end

B Typing Rules of Skeletons and Terms

Γ(x) = τ

Γ ⊢ x : τ
Var

val x : τ [= t] ∈ S
Γ ⊢ x : τ

TermDef
Γ ⊢ t : τ C : (τ, τ ′)

Γ ⊢ C t : τ ′
Const

∀i,Γ ⊢ ti : τi

Γ ⊢ (t1, . . . , tn) : (τ1, . . . , τn)
Tuple

Γ + p← τ ⊢ S : τ ′

Γ ⊢ (λp : τ → S) : τ → τ ′
Fun

Γ ⊢ S1 : τ . . . Γ ⊢ Sn : τ

Γ ⊢ (S1 . . . Sn) : τ
Branch

Γ ⊢ S : τ Γ + p← τ ⊢ S′ : τ ′

Γ ⊢ let p = S inS′ : τ ′
LetIn

Γ ⊢ t0 : τ1 → · · · → τn → τ ∀i Γ ⊢ ti : τi

Γ ⊢ (t0 t1 . . . tn) : τ
App

C The Functions of a Skeletal Semantics S

Funs(Γ, let p = S1 in S2) = Funs(Γ, S1) ∪ Funs(Γ + p← τ, S2)

Funs(Γ,branch S1 . . . Sn end) =

n⋃
i=1

Funs(Γ, Si) Funs(Γ, t0 t1 . . . tn) =

n⋃
i=0

Funs(Γ, ti)

Funs(Γ, λp : τ → S0) = {Γ, λp : τ → S0 } ∪ Funs(Γ + p← τ, S0)

Funs(Γ, (t1, . . . , tn)) =

n⋃
i=1

Funs(Γ, ti) Funs(Γ, C t) = Funs(Γ, t) Funs(Γ, x) = ∅

The set of λ-abstractions in the Skeletal Semantics S is:

Funs(S) ≡
⋃

val x:τ=t∈S

Funs(∅, t)

19

Static Analyses for Skeletal Semantics

D Correction of Big-Step Interpretation with Program
Points

Definition 2. To relate element with or without program points, we define the following
function γ, such that ∀τ, γτ ∈ V

ppt
prg(τ) → V(τ). The function γ is parameterized by the global

value of type τ ∈ T and satisfies the following constraints.

• γτ (pp) = prg@pp and τ ∈ T

• γτ1×···×τn((v
′
1, . . . , v

′
n)) = (γτ1(v

′
1), . . . , γτn(v

′
n))

• γτa(C v′) = C γτ (v
′) with C : (τ, τa)

• Suppose Γ ⊢ E, and Γ ⊢ E′

γenv(E
′) = E ⇐⇒ dom E′ = dom E ∧ ∀x ∈ dom E′, γΓ(x)(E

′(x)) = E(x)

• γτ1→τ2((p, S,E
′)) = (p, S, γenv(E

′))

• Suppose val f : τ1 → · · · → τn → τ [= t] ∈ S, then
γτ ((f, [v

′
1, . . . , v

′
n], k)) = (f, [γτ1(v

′
1), . . . , γτn(v

′
n)], k)

Definition 3. Take f such that val f : τ1 → · · · → τn → τ ∈ S:

γunspec(JfKppt) = JfK ⇐⇒ ∀(v′i, vi) ∈ V ppt
prg(τi)× V(τi) such that γτi(v

′
i)vi

γτ (JfKppt(v′1, . . . , v
′
n)) = JfK(v1, . . . , vn)

Theorem 2. Let γenv(E
′) = E, and suppose for all unspecified functions f , γunspec(JfKppt) =

JfK, then:

E,S ⇓ v =⇒ ∃v′, E′, S ⇓PP v′ and γτ (v
′) = v

20

	Introduction
	Skeletal Semantics and their Syntax
	Big-step Semantics of Skel
	From Types to Concrete Values
	Interpretation of Unspecified Terms
	Big-step Semantics

	Big-step Semantics with Program Points
	Program Points and New Values
	Pattern Matching with Program Points

	Abstract Interpretation
	Definition of Abstract Values
	State of the Abstract Interpretation
	The Abstract Interpretation of Skel
	Concretization Function
	Correctness of the Abstract Interpretation

	Toward a Control Flow Analysis for -calculus
	The State of the Abstract Interpretation
	Specification of the Unspecified Types and Unspecified Terms

	Implementation
	Conclusion
	Skeletal Semantics of -calculus
	Typing Rules of Skeletons and Terms
	The Functions of a Skeletal Semantics S
	Correction of Big-Step Interpretation with Program Points

