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Abstract

We propose an interpretation of multiparty sessions as Flow Event Structures, which
allows concurrency within sessions to be explicitly represented. We show that
this interpretation is equivalent, when the multiparty sessions can be described by
global types, to an interpretation of such global types as Prime Event Structures.

Keywords: Communication-centric Systems, Communication-based
Programming, Process Calculi, Event Structures, Multiparty Session Types.

1. Introduction1

Session types were proposed in the mid-nineties [54, 38], as a tool for speci-2

fying and analysing web services and communication protocols. They were first3

introduced in a variant of the π-calculus to describe binary interactions between4

processes. Such binary interactions may often be viewed as client-server protocols.5

Subsequently, session types were extended to multiparty sessions [39, 40], where6

several participants may interact with each other. A multiparty session is an inter-7

action among peers, and there is no need to distinguish one of the participants as8

representing the server. All one needs is an abstract specification of the protocol9

that guides the interaction. This is called the global type of the session. The global10

type describes the behaviour of the whole session, as opposed to the local types that11

describe the behaviours of single participants. In a multiparty session, local types12

may be retrieved as projections from the global type.13

Typical safety properties ensured by session types are communication safety (ab-14

sence of communication errors), session fidelity (agreement with the protocol) and15

deadlock-freedom [40]. When dealing with multiparty sessions, the type system is16

often enhanced so as to guarantee also the liveness property known as progress (no17

participant gets stuck) [41].18

Some simple examples of sessions not satisfying the above properties are: 1) a19
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sender emitting a message while the receiver expects a different message (commu-20

nication error); 2) two participants both waiting to receive a message from the other21

one (deadlock due to a protocol violation); 3) a three-party session where the first22

participant waits to receive a message from the second participant, which keeps23

interacting forever with the third participant (starvation).24

What makes session types particularly attractive is that they offer several ad-25

vantages at once: 1) static safety guarantees, 2) automatic check of protocol imple-26

mentation correctness, based on local types, and 3) a strong connection with linear27

logics [13, 55, 59, 52, 14], and with concurrency models such as communicating28

automata [32], graphical choreographies [44, 56] and message-sequence charts [40].29

In this paper we further investigate the relationship between multiparty session30

types and concurrency models, by focussing on Event Structures [62]. We consider31

a standard multiparty session calculus where sessions are described as networks of32

sequential processes [33]. Each process implements a participant in the session. We33

propose an interpretation of such networks as Flow Event Structures (FESs) [8, 10]34

(a subclass of Winskel’s Stable Event Structures [62]), which allows concurrency35

between session communications to be explicitly represented. We then introduce36

global types for these networks, and define an interpretation of them as Prime Event37

Structures (PESs) [60, 49]. Since the syntax of global types does not allow all the38

concurrency among communications to be expressed, the events of the associated39

PES need to be defined as equivalence classes of communication sequences up to40

permutation equivalence. We show that when a network is typable by a global type,41

the FES semantics of the former is equivalent, in a precise technical sense, to the42

PES semantics of the latter. To prove this equivalence, we exploit the bisimilarity of43

their Labelled Transition Systems, as expressed by the Subject Reduction and Session44

Fidelity theorems (Theorem 6.10 and Theorem 6.11). An alternative approach would45

have been to compare the two ESs directly, thus conducting the whole reasoning46

within the denotational model itself. However, while one side of the comparison47

(mapping the PES of the type to the FES of the network, which can be viewed as a48

synthesis problem) would be very direct, the other side (reconstructing the PES of49

the type from the FES of the network) would be more involved, as it would require50

a structural characterisation of the FESs that represent typable networks, which is51

far from obvious and therefore is left for future work. This issue will be discussed52

at length at the end of Section 7.53

Event Structures have been used to give semantics to process calculi ever since54

their introduction at the beginning of the eighties [60, 49] (see Section 9 for an55

extensive historical discussion). A specific feature of our proposed FES semantics56

for networks is that we impose strong semantic constraints on the construction of57

the events themselves (like duality of the histories of their components) in order to58

reduce the number of events from the very beginning, and to enforce already at the59

syntactic level some of the expected semantic properties. This allows us to obtain60

more compact FESs, with fewer events, which is an advantage when displaying61

their graphical representations3, as well as handling examples and carrying out62

3Both FESs and PESs enjoy a graphical representation (see Figure 5 and Figure 6), as opposed to
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proofs.63

In a companion paper [16], we investigated a similar Event Structure semantics64

for a session calculus with asynchronous communication, which led to a quite65

different treatment as it made use of a new notion of asynchronous global type. A66

detailed comparison with [16] will be given in Section 9.67

This paper is an expanded and amended version of [15]. The main novelty is68

that we use a coinductive definition for processes and global types, which simplifies69

several definitions and proofs, and a more stringent definition for network events.70

This definition relies on the new notion of causal set, which is crucial for the71

correctness of our ES semantics. Finally, the present paper includes the proofs of all72

results, some of which require ingenuity.73

The paper is organised as follows. Section 2 introduces our multiparty session74

calculus. In Section 3 we recall the definitions of PESs and FESs, which will be used75

to interpret processes (Section 4) and networks (Section 5), respectively. PESs are76

also used to interpret global types (Section 7), which are defined in Section 6. In77

Section 8 we prove the equivalence between the FES semantics of a network and78

the PES semantics of its global type. Section 9 discusses related work and sketches79

directions for future work.80

The proofs of all theorems and propositions are given in the main paper, except81

for those of Subject Reduction (Theorem 6.10) and Session Fidelity (Theorem 6.11),82

which are standard and thus deferred to Appendix B. The proofs of lemmas, when83

not trivial, are collected in Appendices A, B, C, D and E. To help the reader, Ap-84

pendix F contains a glossary of the symbols used and a table of the notations with85

their meaning and a reference to where they are defined.86

2. A Core Calculus for Multiparty Sessions87

We now formally introduce our calculus, where multiparty sessions are rep-88

resented as networks of processes. We assume the following base sets: session89

participants, ranged over by p,q, r, . . . and forming the set Part, and messages, ranged90

over by λ, λ′, . . . and forming the set Msg.91

Let π ∈ {p!λ,p?λ | p ∈ Part, λ ∈ Msg} denote an action. The action p!λ represents92

an output of message λ to participant p, while the action p?λ represents an input93

of message λ from participant p. The participant of an action, pt(π), is defined by94

pt(p!λ) = pt(p?λ) = p.95

Definition 2.1 (Processes). Processes are defined by:

P ::=coind
⊕

i∈I p!λi; Pi | Σi∈Ip?λi; Pi | 0

where I is non-empty and λh , λk for all h, k ∈ I, h , k, i.e. messages in choices are all96

different.97

Processes of the shape
⊕

i∈I p!λi; Pi andΣi∈Ip?λi; Pi are called output and input processes,98

respectively.99

other kinds of stable ESs.
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The symbol ::=coind, in the definition above and in later definitions, indicates that100

the productions should be interpreted coinductively. Namely, they define possibly101

infinite processes. However, we assume such processes to be regular, that is, with102

finitely many distinct subprocesses. In this way, we only obtain processes which103

are solutions of finite sets of equations, see [20]. So, when writing processes, we104

shall use (mutually) recursive equations. When I is a singleton,
⊕

i∈I p!λi; Pi will105

be rendered as p!λ; P and Σi∈Ip?λi; Pi will be rendered as p?λ; P. When I contains106

only two elements, as it will be the case in most of our examples, we shall feel107

free to use the binary choices p!λ1; P1 ⊕ p!λ2; P2 and p!λ1; P1 + p!λ2; P2, where the108

branches p!λi; Pi should be viewed as being parenthesised (since the connector ; is109

not an operator of our calculus, but an integral part of the guarded sum operators).110

Trailing 0 processes will be omitted.111

Processes may be viewed as trees whose internal nodes are decorated by p! or112

p?, leaves by 0, and edges by messages λ.113

In a full-fledged calculus, messages would carry values, namely they would be114

of the form λ(v). For simplicity, we consider only pure messages here. This will115

allow us to project global types directly to processes, without having to explicitly116

introduce local types, see Section 6.117

Definition 2.2 (Networks). Networks are defined by:

N = p[[ P ]] | p[[ P ]] ∥ N

We assume the standard structural congruence ≡ on networks, stating that118

parallel composition is associative and commutative and has neutral element p[[ 0 ]]119

for any fresh p. Given the associativity of ∥, we shall feel free to write networks in120

the form N = p1[[ P1 ]] ∥ · · · ∥ pn[[ Pn ]] in the sequel.121

If P , 0 we write p[[ P ]] ∈ N as short for N ≡ p[[ P ]] ∥ N′ for some N′. We define122

the set of participants of N to be {p | ∃P. p[[ P ]] ∈ N}. We say that a network is unary if123

it has a unique participant4 and binary if it has exactly two participants.124

To express the operational semantics of networks, we use an LTS whose labels125

record the message exchanged during a communication together with its sender126

and receiver. The set of communications, ranged over by α, α′, is defined to be127

{pqλ | p,q ∈ Part, λ ∈ Msg}, where pqλ represents the transmission of a message λ128

from participant p to participant q.129

p[[
⊕

i∈I q!λi; Pi ]] ∥ q[[Σ j∈Jp?λ j; Q j ]] ∥ N
pqλk
−−−→ p[[ Pk ]] ∥ q[[ Qk ]] ∥ N where k ∈ I∩J [Com]

Figure 1: LTS for networks.

The LTS semantics of networks is specified by the unique rule [Com] given in130

Figure 1. Notice that rule [Com] is symmetric with respect to input and output131

4Unary networks will not be typable, and therefore, by Subject Reduction, a typable network will
never evolve to a unary network. On the other hand, this will be possible for non typable networks.
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choices. In a well-typed network (see Section 6) it will always be the case that I ⊆ J,132

ensuring that participant p can freely choose an output, since participant q offers133

all corresponding inputs. Note also that a unary network has no transitions.134

Note that we could have given first the (standard) LTS semantics for processes,135

and then derived the LTS for networks from it. However, the syntax of our calculus136

is so simple that the LTS for networks can be defined directly. Thus we chose to137

omit the LTS for processes, which would anyway be of no use in the sequel.138

In the following we will make an extensive use of finite (and possibly empty)139

sequences of communications. As usual we define them as traces.140

Definition 2.3 (Traces). (Finite) traces σ ∈ Traces are defined by:

σ ::= ϵ | α · σ

We use |σ | to denote the length of the trace σ.141

The set of participants of a trace, notation part(σ), is defined by part(ϵ) = ∅ and142

part(pqλ · σ) = {p,q} ∪ part(σ).143

When σ = α1 · . . . ·αn (n ≥ 1) we write N σ
−→ N′ as short for N

α1
−→ N1 · · ·

αn
−−→ Nn = N′.144

3. Event Structures145

We recall now the definitions of Prime Event Structure (PES) from [60, 49] and146

Flow Event Structure (FES) from [8]. The class of FESs is more general than that147

of PESs: for a precise comparison of various classes of event structures, we refer148

the reader to [9]. As we shall see in Sections 4 and 5, while PESs are sufficient to149

interpret processes, the greater generality of FESs is needed to interpret networks.150

Definition 3.1 (Prime Event Structure). A prime event structure (PES) is a tuple S =151

(E,≤, # ) where:152

1. E is a denumerable set of events;153

2. ≤⊆ (E × E) is a partial order relation, called the causality relation;154

3. # ⊆ (E×E) is an irreflexive symmetric relation, called the conflict relation, satisfying155

the property: ∀e, e′, e′′ ∈ E : e # e′ ≤ e′′ ⇒ e # e′′ (conflict hereditariness).156

Definition 3.2 (Flow Event Structure). A flow event structure (FES) is a tuple S =157

(E,≺, # ) where:158

1. E is a denumerable set of events;159

2. ≺⊆ (E × E) is an irreflexive relation, called the flow relation;160

3. # ⊆ (E × E) is a symmetric relation, called the conflict relation.161
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Note that the flow relation is not required to be transitive, nor acyclic (its reflexive162

and transitive closure is just a preorder, not necessarily a partial order). Intuitively,163

the flow relation represents a possible direct causality between two events. More-164

over, in a FES the conflict relation is not required to be irreflexive nor hereditary;165

indeed, FESs may exhibit self-conflicting events, as well as disjunctive causality (an166

event may have conflicting causes).167

Any PES S = (E,≤, # ) may be regarded as a FES, with ≺ given by < (the strict168

ordering) or by the covering relation of ≤.169

We now recall the definition of configuration for event structures. Intuitively, a170

configuration is a set of events having occurred at some stage of the computation.171

Thus, the semantics of an event structure S is given by its poset of configurations172

ordered by set inclusion, where X1 ⊂ X2 means that S may evolve from X1 to X2.173

Definition 3.3 (PES configuration). Let S = (E,≤, # ) be a prime event structure. A174

configuration of S is a finite subset X of E such that:175

1. X is downward-closed: e′ ≤ e ∈ X ⇒ e′ ∈ X;176

2. X is conflict-free: ∀e, e′ ∈ X,¬(e # e′).177

The definition of configuration for FESs is slightly more elaborated. For a subset X178

of E, let ≺X be the restriction of the flow relation to X and ≺∗
X

be its transitive and179

reflexive closure.180

Definition 3.4 (FES configuration). Let S = (E,≺, # ) be a flow event structure. A181

configuration of S is a finite subset X of E such that:182

1. X is downward-closed up to conflicts: e′ ≺ e ∈ X, e′ < X ⇒ ∃ e′′ ∈ X. e′ # e′′ ≺ e;183

2. X is conflict-free: ∀e, e′ ∈ X,¬(e # e′);184

3. X has no causality cycles: the relation ≺∗
X

is a partial order.185

Condition (2) is the same as for prime event structures. Condition (1) is adapted186

to account for the more general – non-hereditary – conflict relation. It states that187

any event appears in a configuration with a “complete set of causes”. Condition (3)188

ensures that any event in a configuration is actually reachable at some stage of the189

computation.190

If S is a prime or flow event structure, we denote byC(S) its set of configurations.191

Then, the domain of configurations of S is defined as follows:192

Definition 3.5 (ES configuration domain). Let S be a prime or flow event structure193

with set of configurationsC(S). The domain of configurations of S is the partially ordered194

setD(S)=def(C(S),⊆).195

We recall from [9] a useful characterisation for configurations of FESs, which is196

based on the notion of proving sequence, defined as follows:197
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Definition 3.6 (Proving sequence). Given a flow event structure S = (E,≺, # ), a
proving sequence in S is a sequence e1; · · · ; en of distinct non-conflicting events (i.e.
i , j ⇒ ei , e j and ¬(ei # e j) for all i, j) satisfying:

∀i ≤ n∀e ∈ E : e ≺ ei ⇒ ∃ j < i . either e = e j or e # e j ≺ ei

Note that any prefix of a proving sequence is itself a proving sequence.198

We have the following characterisation of configurations of FESs in terms of199

proving sequences.200

Proposition 3.7 (Representation of FES configurations as proving sequences [9]).201

Given a flow event structure S = (E,≺, # ), a subset X of E is a configuration of S if and202

only if it can be enumerated as a proving sequence e1; · · · ; en.203

Since PESs may be viewed as particular FESs, we may use Definition 3.6 and
Proposition 3.7 both for the FESs associated with networks (see Sections 5) and
for the PESs associated with global types (see Section 7). Note that for a PES the
condition of Definition 3.6 simplifies to

∀i ≤ n∀e ∈ E : e < ei ⇒ ∃ j < i . e = e j

To conclude this section, we recall from [17] the definition of downward surjectiv-204

ity (or downward-onto, as it was called there), a property that is required for partial205

functions between two FESs in order to ensure that they preserve configurations.206

We will make use of this property in Section 5.207

Definition 3.8 (Downward surjectivity). Let Si = (Ei,≺i, # i), be a flow event struc-
ture, i = 0, 1. Let ei, e′i range over Ei, i = 0, 1. A partial function f : E0 →∗ E1 is
downward surjective if it satisfies the condition:

e1 ≺1 f (e0) =⇒ ∃e′0 ∈ E0 . e1 = f (e′0)

4. Event Structure Semantics of Processes208

In this section, we define an event structure semantics for processes, and show209

that the obtained event structures are PESs. This semantics will be the basis for210

defining the ES semantics for networks in Section 5. We start by introducing process211

events, which are non-empty sequences of actions.212

Definition 4.1 (Process event). Process events η, η′, also called p-events, are defined
by:

η ::= π | π · η π ∈{p!λ,p?λ | p ∈ Part, λ ∈ Msg}

We denote by PE the set of p-events, and by |η | the length of the sequence of actions in the213

p-event η.214
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Let ζ denote a (possibly empty) sequence of actions, and ⊑ denote the prefix215

ordering on such sequences. Each p-event η may be written either in the form216

η = π · ζ or in the form η = ζ ·π. We shall feel free to use any of these forms. When217

a p-event is written as η = ζ ·π, then ζ may be viewed as the causal history of η,218

namely the sequence of past actions that must have happened in the process for the219

last action π to be able to happen.220

We define the action of a p-event to be its last action:

act(ζ ·π) = π

Definition 4.2 (Causality and conflict relations on process events). The causality re-221

lation ≤ and the conflict relation # on the set of p-events PE are defined by:222

1. η ⊑ η′ ⇒ η ≤ η′;223

2. π , π′ ⇒ ζ ·π · ζ′ # ζ ·π′ · ζ′′.224

Definition 4.3 (Event structure of a process). The event structure of process P is the
triple

S
P(P) = (PE(P),≤P, # P)

where:225

1. PE(P) ⊆ PE is the set of non-empty sequences of labels along the nodes and edges of226

a path from the root to an edge in the tree of P;227

2. ≤P is the restriction of ≤ to the set PE(P);228

3. # P is the restriction of # to the set PE(P).229

It is easy to see that # P = (PE(P) ×PE(P)) \ (≤P ∪ ≥P). In the following we shall230

feel free to drop the subscript in ≤P and # P.231

Note that the setPE(P) may be denumerable, as shown by the following example.232

Example 4.4. If P = q!λ; P ⊕ q!λ′, then PE(P) = {q!λ · . . . · q!λ︸         ︷︷         ︸
n

| n ≥ 1} ∪

{q!λ · . . . · q!λ︸         ︷︷         ︸
n

·q!λ′ | n ≥ 0}

233

Theorem 4.5. Let P be a process. Then SP(P) is a prime event structure.234

Proof We show that≤ and # satisfy Properties 2 and 3 of Definition 3.1. Reflexivity,235

transitivity and antisymmetry of ≤ follow from the corresponding properties of ⊑.236

As for irreflexivity and symmetry of # , they follow from Clause 2 of Definition237

4.2 and the corresponding properties of inequality. To show conflict hereditariness,238

suppose that η # η′ ≤ η′′. From Clause 2 of Definition 4.2 there are π, π′, ζ, ζ′ and239

ζ′′ such that π , π′ and η = ζ ·π · ζ′ and η′ = ζ ·π′ · ζ′′. From η′ ≤ η′′ we derive that240

η′′ = ζ ·π′ · ζ′′ · ζ1 for some ζ1. Therefore η # η′′, again from Clause 2.241
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5. Event Structure Semantics of Networks242

In this section we define the ES semantics of networks and show that the result-243

ing ESs, which we call network ESs, are FESs. We also show that when the network244

is binary, then the obtained FES is a PES. The formal treatment involves defining245

the set of potential events of network ESs, which we call network events, as well as246

introducing the notion of causal set of a network event and the notion of narrowing247

of a set of network events. This will be the subject of Section 5.1.248

In Section 5.2, we first prove some properties of the conflict relation in network249

ESs. Then, we come back to causal sets and we show that they are always finite and250

that each configuration includes a unique causal set for each of its network events.251

We also discuss the relationship between causal sets and prime configurations,252

which are specific configurations that are in 1-1 correspondence with network events253

in ESs. Finally, we define a notion of projection of network events on participants,254

yielding p-events, and prove that this projection (extended to sets of network events)255

is downward surjective and preserves configurations.256

The proofs omitted in this section can be found in Appendix A.257

5.1. Definitions and Main Properties258

We start by defining network events, the potential events of network ESs. Since259

these events represent communications between two network participants p and q,260

they should be pairs of dual p-events, namely, of p-events emanating respectively261

from p and q, which have both dual actions and dual causal histories.262

Formally, to define network events we need to specify the location of p-events,263

namely the participant to which they belong:264

Definition 5.1 (Located event). We call located event a p-event η pertaining to a par-265

ticipant p, written p :: η.266

As hinted above, network events should be pairs of dual located events p :: ζ · π267

and q :: ζ′ · π′ with matching actions π and π′ and matching histories ζ and ζ′.268

To formalise the matching condition, we first define the projections of p-events on269

participants, which yield sequences of undirected actions of the form !λ and ?λ, or the270

empty sequence ϵ. Then we introduce a notion of duality between located events,271

based on a notion of duality between undirected actions.272

Let ϑ range over !λ and ?λ, andΘ range over (possibly empty) sequences of ϑ’s.273

Definition 5.2 (Projection of p-events on participants). The projection of a p-event η
on a participant p, written η↱p , is defined by:

q!λ↱p =

!λ if p = q
ϵ otherwise

q?λ↱p =

?λ if p = q
ϵ otherwise

(π · η)↱p = π↱p · η↱p

Definition 5.3 (Duality of undirected action sequences). The duality of undirected
action sequences, written Θ Z Θ′, is the symmetric relation induced by:

ϵ Z ϵ Θ Z Θ′ ⇒ !λ ·Θ Z ?λ ·Θ′

9



Definition 5.4 (Duality of located events). Two located events p :: η,q :: η′ are dual,274

written p :: η Ẑ q :: η′, if η↱q Z η′ ↱p and pt(act(η)) = q and pt(act(η′)) = p.275

Dual located events may be sequences of actions of different length. For instance276

p :: q!λ · r!λ′ Ẑ r :: p?λ′ and p :: q!λ Ẑ q :: r!λ′ ·p?λ.277

Definition 5.5 (Network event). Network events ν, ν′, also called n-events, are un-
ordered pairs of dual located events, namely:

ν ::= {p :: η,q :: η′} where p :: η Ẑ q :: η′

We denote byNE the set of n-events.278

We define the communication of the event ν, notation cm(ν), by cm(ν) = pqλ if ν =279

{p :: ζ ·q!λ,q :: ζ′ ·p?λ} and we say that the n-event ν represents the communication280

pqλ. We also define the set of locations of an n-event to be loc({p :: η,q :: η′}) = {p,q}.281

It is handy to have a notion of occurrence of a located event in a set of network282

events:283

Definition 5.6. A located event p :: η occurs in a set E of n-events, notation p :: η∈∈E,284

if p :: η ∈ ν and ν ∈ E for some ν.285

We define now the flow and conflict relations on network events. While the286

flow relation is the expected one (a network event inherits the causality from its287

constituent processes), the conflict relation is more subtle, as it can arise also between288

network events with disjoint sets of locations.289

In the following definition we use |Θ| to denote the length of the sequence Θ.290

Definition 5.7 (Flow and conflict relations on n-events). The flow relation≺ and the291

conflict relation # on the set of n-eventsNE are defined by:292

1. ν ≺ ν′ if p :: η ∈ ν & p :: η′ ∈ ν′ & η < η′;293

2. ν # ν′ if294

(a) either p :: η ∈ ν & p :: η′ ∈ ν′ & η # η′;295

(b) or p :: η ∈ ν & q :: η′ ∈ ν′ & p , q & |η↱q | = |η′ ↱p | & ¬(η↱q Z η′ ↱p ).296

Two n-events are in conflict if they share a participant with conflicting p-events297

(Clause (2a)) or if some of their participants have communicated with each other in298

the past in incompatible ways (Clause (2b)), as illustrated by the n-events ν and ν′299

in Example 5.8 (Point 3). Observe that in Clause (2b) the condition |η↱q | = |η′ ↱p |300

is needed if we want to check duality of the two projections. Without this condition301

we could get unwanted conflicts, for instance between ν = {p :: q!λ,q :: p?λ} and302

ν′ = {p :: q!λ · q!λ′,q :: p?λ · p?λ′}. Removing this condition and checking duality303

only up to the length of the shortest projection would yield more conflicting events,304

as discussed in Example 5.8 (Point 3). Note also that the two clauses (2a) and (2b)305

are not exclusive, as shown in Example 5.8 (Point 4).306
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Example 5.8. This example illustrates the use of Definition 5.7 in various cases. It also307

shows that the flow and conflict relations may be overlapping on n-events.308

1. Let ν = {p :: q!λ1 · r!λ, r :: p?λ} and ν′ = {p :: q!λ2,q :: p?λ2}. Then ν # ν′ by Clause309

(2a) since q!λ1 · r!λ # q!λ2. Note that ν # ν′ can be also deduced by Clause (2b), since310

(q!λ1 · r!λ)↱q = !λ1 and p?λ2 ↱p = ?λ2 and |!λ1 | = |?λ2 | and ¬(!λ1 Z?λ2).311

2. Let ν be as in (1) and ν′ = {p :: q!λ2 · q!λ,q :: p?λ2 · p?λ}. Again, we can deduce312

ν # ν′ using Clause (2a), since q!λ1 · r!λ # q!λ2 · q!λ. On the other hand, Clause (2b)313

does not apply in this case, since (q!λ1 · r!λ)↱q = !λ1 and (p?λ2 · p?λ)↱p = ?λ2·?λ314

and thus |!λ1 | , |?λ2·?λ | .315

3. Let ν be as in (1) and ν′ = {q :: p?λ2 · s!λ, s :: q?λ}. Here loc(ν) ∩ loc(ν′) = ∅,316

so clearly Clause (2a) does not apply. On the other hand, ν # ν′ can be deduced by317

Clause (2b), since (q!λ1 · r!λ)↱q = !λ1 and (p?λ2 · s!λ)↱p = ?λ2 and | !λ1 | = |?λ2 |318

and ¬(!λ1 Z?λ2). Consider now ν′′ = {q :: p?λ2 · p?λ′ · s!λ, s :: q?λ}. Then we319

cannot deduce ν # ν′′ in the same way because the two projections do not have the same320

length. However, we can deduce ν # ν′′′ ≺ ν′′, where ν′′′ = {p :: q!λ2,q :: p?λ2}.321

In other words, ν and ν′′ are in semantic conflict, as Proposition 5.22 shows, but322

not in the syntactic conflict # (the fact that semantic conflict is in general larger323

than syntactic conflict is common to all classes of ESs except PESs). We could have324

chosen to make the syntactic conflict larger by replacing Clause (2b) by the following325

alternative clause, where Θ,Θ′ are as in Definition 5.3 and ⊑ is the prefix ordering:326

Clause (2b’) or p :: η ∈ ν & q :: η′ ∈ ν′ & p , q &
(∃Θ ⊑ η↱q ,∃Θ′ ⊑ η′ ↱p . |Θ | = |Θ′ | & ¬(Θ Z Θ′))

327

With this alternative clause, we could deduce the syntactic conflict ν # ν′′. However,328

in Definition 5.7 we chose to keep our definition of # stricter in order to have fewer329

syntactic conflicts to handle in examples and proofs.330

4. Let ν be as in (1) and ν′ = {p :: q!λ2 · r!λ · r!λ′, r :: p?λ · p?λ′}. In this case we have331

both ν ≺ ν′ by Clause (1) and ν # ν′ by Clause (2a), namely, causality is inherited332

from participant r and conflict from participant p.333

We introduce now the notion of causal set of an n-event ν in a given set of events334

Ev. Intuitively, a causal set of ν in Ev is a complete set of non-conflicting direct causes335

of νwhich is included in Ev.336

Definition 5.9 (Causal set). Let ν ∈ Ev ⊆ NE. A set of n-events E is a causal set of ν in337

Ev if E is a minimal subset of Ev such that338

1. E ∪ {ν} is conflict-free and339

2. p :: η ∈ ν and η′ < η imply p :: η′∈∈E.340

Note that in the above definition, the conjunction of minimality and Clause (2)341

implies that, if ν′ ∈ E, then ν′ ≺ ν. Thus E is a set of direct causes of ν. Moreover,342

a causal set of an n-event cannot be included in another causal set of the same n-343

event, as this would contradict the minimality of the larger set. Hence, Definition 5.9344

indeed formalises the idea that causal sets should be complete sets of compatible345

direct causes of a given n-event.346
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Example 5.10. Let ν1 = {p :: q!λ1 · r!λ, r :: p?λ} and ν2 = {p :: q!λ2 · r!λ, r :: p?λ}. Then347

both {ν1} and {ν2} are causal sets of ν = {r :: p?λ · s!λ′, s :: r?λ′} in Ev = {ν1, ν2, ν}. Note348

that ν1 # ν2 and that neither ν1 nor ν2 has a causal set in Ev.349

Let us now consider also ν′1 = {p :: q!λ1,q :: p?λ1} and ν′2 = {p :: q!λ2,q :: p?λ2}.350

Then ν still has the same causal sets {ν1} and {ν2} in Ev′ = {ν′1, ν
′

2, ν1, ν2, ν}, while each νi,351

i = 1, 2, has the unique causal set {ν′i } in Ev′, and each ν′i , i = 1, 2, has the empty causal set352

in Ev′.353

Finally, ν has infinitely many causal sets in NE. For instance, if for every natural354

number n we let νn = {p :: q!λn · r!λ, r :: p?λ}, then each {νn} is a causal set of ν in355

NE. Symmetrically, a causal set may cause infinitely many events in NE. For instance,356

the above causal sets {ν1} and {ν2} of ν could also act as causal sets for any n-event357

ν′′n = {r :: p?λ · s!λn, s :: r?λn} or, assuming the set of participants to be denumerable, for358

any event ν′′′n = {r :: p?λ · sn!λ′, sn :: r?λ′}.359

When defining the set of events of a network ES, we want to prune out all the360

n-events that do not have a causal set in the set itself. The reason is that such361

n-events should not happen in the event structure of a network, although, when362

projected on their locations (see Definition 5.25), they would always give rise to363

p-events occurring in a configuration5. Example 5.14 should further clarify this364

point. This pruning is achieved by means of the following narrowing function.365

Definition 5.11 (Narrowing of a set of n-events). The narrowing of a set E of n-events,
denoted by n(E), is the greatest fixpoint of the function fE on sets of n-events defined by:

fE(X) = {ν ∈ E | ∃E′ ⊆ X.E′is a causal set of ν in X }

Note that we could not have taken n(E) to be the least fixpoint of fE rather than366

its greatest fixpoint. Indeed, the least fixpoint of fE would be the empty set.367

Example 5.12. The following two examples illustrate the notions of causal set and narrow-
ing. Let

ν1 = {r :: s?λ1, s :: r!λ1} ν2 = {r :: s?λ2, s :: r!λ2}

ν3 = {p :: r?λ1, r :: s?λ1 · p!λ1} ν4 = {q :: s?λ2, s :: r!λ2 · q!λ2}

ν5 = {p :: r?λ1 · q!λ,q :: s?λ2 · p?λ}

Then n({ν1, . . . , ν5}) = {ν1, . . . , ν4}, because a causal set for ν5 would need to contain both
ν3 and ν4, but this is not possible, since ν3 # ν4 by Clause (2b) of Definition 5.7. In fact
(s?λ1 · p!λ1)↱s = ?λ1 and (r!λ2 · q!λ2)↱ r = !λ2 and |?λ1 | = |!λ2 | and ¬(?λ1 Z!λ2). Let

ν1 = {r :: s?λ1, s :: r!λ1} ν2 = {r :: s?λ2, s :: r!λ2}

ν3 = {p :: r?λ1, r :: s?λ1 · p!λ1} ν4 = {p :: r?λ1 · s?λ2, s :: r!λ2 · p!λ2}

ν5 = {p :: r?λ1 · s?λ2 · q!λ,q :: p?λ}

Here n({ν1, . . . , ν5}) = {ν1, ν2, ν3}. Indeed, a causal set for ν4 would need to contain both368

ν2 and ν3, but this is not possible, since ν2 # ν3 by Clause (2a) of Definition 5.7. In fact369

s?λ2 # s?λ1 · p!λ1. Then, ν5 will also be pruned by the narrowing, since any causal set for370

ν5 should contain ν4.371

5In fact, every event of a PES occurs in a configuration.
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We can now finally define the event structure associated with a network. The372

intuition is that the events appearing in some configuration of the event structure373

should correspond exactly to the transitions executable in some state of the network.374

Definition 5.13 (Event structure of a network). The event structure of network N is
the triple

S
N (N) = (NE(N),≺N, # N)

where:375

1. NE(N) = n(CE(N)) with
CE(N) = {{p :: η,q :: η′} | p[[ P ]]∈N,q[[ Q ]]∈N, η∈PE(P), η′∈PE(Q),p :: η Ẑ q :: η′}

376

377

2. ≺N is the restriction of ≺ to the setNE(N);378

3. # N is the restriction of # to the setNE(N).379

The set of n-events of the ES associated with a network N is the narrowing of its380

set of candidate n-events, CE(N), which contains all pairs of dual located events that381

may be constructed from two different components of N. We give now a simple382

example that justifies the use of the narrowing function for building the set of events383

of a network ES.384

Example 5.14. Let N = p[[ q?λ · r!λ′ ]] ∥ r[[ p?λ′ ]]. Then CE(N) contains the unique385

n-event ν = {p :: q?λ · r!λ′, r :: p?λ′}. If we did not apply the narrowing function to386

CE(N), namely if we took CE(N) as the set of n-events for SN (N), then {ν} would be a387

possible configuration of SN (N), which is clearly wrong, since the network N does not388

have a corresponding transition. Instead, by applying the narrowing function to CE(N) we389

obtain NE(N) = n(CE(N)) = ∅, since the n-event ν has no causal set in CE(N), which is390

what we expect.391

The set of n-events of a network ES can be infinite, as shown by the following392

example.393

Example 5.15. Let P be as in Example 4.4, Q = p?λ; Q + p?λ′ and N = p[[ P ]] ∥ q[[ Q ]].
Then

NE(N) = {{p :: q!λ · . . . · q!λ︸         ︷︷         ︸
n

,q :: p?λ · . . . · p?λ︸          ︷︷          ︸
n

} | n ≥ 1} ∪

{{p :: q!λ · . . . · q!λ︸         ︷︷         ︸
n

·q!λ′,q :: p?λ · . . . · p?λ︸          ︷︷          ︸
n

·p?λ′} | n ≥ 0}

A simple variation of this example shows that even within the events of a network ES, an
n-event ν may have an infinite number of causal sets. Let ν = {r :: p?λ · s!λ′, s :: r?λ′} be
as in Example 5.10. Consider the network N′ = p[[ P′ ]] ∥ q[[ Q ]] ∥ r[[ R ]] ∥ s[[ S ]], where
P′ = q!λ; P′ ⊕ q!λ′; r!λ, Q is as above, R = p?λ; s!λ′ and S = r?λ′. Then ν has an infinite
number of causal sets En = {νn} inNE(N′), where

νn = {p :: q!λ · . . . · q!λ︸         ︷︷         ︸
n

·q!λ′ · r!λ, r :: p?λ}

13



On the other hand, a causal set may only cause a finite number of events in a network ES,394

since the number of branches in any choice is finite, as well as the number of participants in395

the network.396

Theorem 5.16. Let N be a network. Then SN (N) is a flow event structure with an397

irreflexive conflict relation.398

Proof The relation ≺N is irreflexive since η < η′ implies ν , ν′, where η, η′, ν, ν′ are399

as in Definition 5.7(1). As for the conflict relation, note first that a conflict between400

an n-event and itself could not be derived by Clause (2b) of Definition 5.7, since401

the two located events of an n-event are dual by construction. Lastly, symmetry402

and irreflexivity of the conflict relation follow from the corresponding properties of403

conflict between p-events.404

The fact that the conflict relation is irreflexive in our network FESs means that405

we do not exploit the possibility of self-conflicts offered by general FESs. This is due406

to the way we defined the set of events of our network FESs, using the narrowing407

function as discussed previously. We could have chosen an alternative definition,408

introducing additional self-conflicting events of a more liberal form6 which would409

have disappeared when building configurations (together with their successors410

having no other possible causes), as it was done for CCS in [10]. However, this411

would have resulted in much larger sets of events for network FESs, leading to412

more cumbersome examples and proofs. Our design choice here was to reduce the413

set of events of network FESs by introducing already some semantic constraints on414

their events (like duality and the existence of causal sets). It should be stressed,415

however, that the narrowing function does not exclude all non executable events,416

as shown by the FES in Example 5.20, which has three events, each of which has a417

causal set but none of which is executable.418

Although they have an irreflexive conflict relation like PESs, our network FESs419

exhibit two important features which are not shared by PESs, namely non-hereditary420

conflict (as shown by the FES given in Figure 5, where the two conflicting events421

ν′1 and ν′2 have a common successor ν) and causality cycles (as shown by the FES in422

Example 5.20, where there is a circular dependency among the three events ν1, ν2423

and ν3).424

Note that n-events with disjoint sets of locations may be related by the transitive425

closure of the flow relation, as illustrated by the next example, which also shows426

how n-events inherit the flow relation from the causality relation of their p-events.427

Example 5.17. Let N be the network

p[[ q!λ1 ]] ∥ q[[ p?λ1; r!λ2 ]] ∥ r[[ q?λ2; s!λ3 ]] ∥ s[[ r?λ3 ]]

6For instance, we could have allowed events of the form {p :: η, ∗} to represent incomplete commu-
nications, and then prevented them from occurring by putting them in conflict with themselves. In
this case, the event ν of Example 5.14 would have also been prevented from occurring because of its
unique self-conflicting cause {p :: q?λ, ∗}, and we would not have needed the narrowing function.
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Then SN (N) has three network events

ν1={p :: q!λ1,q :: p?λ1} ν2={q :: p?λ1 · r!λ2, r :: q?λ2} ν3={r :: q?λ2 · s!λ3, s :: r?λ3}

The flow relation obtained by Definition 5.13 is: ν1 ≺ ν2 and ν2 ≺ ν3. These two flows are428

inherited from the causality relations within the process ESs associated with participants q429

and r, respectively. The non-empty configurations are {ν1}, {ν1, ν2} and {ν1, ν2, ν3}. Note430

that SN (N) has only one proving sequence per configuration (which is the one given by the431

numbering of events).432

Clearly, if a network is unary, then the set of events of its FES is empty. If a433

network is binary, then its FES may be turned into a PES by replacing ≺ with its434

reflexive and transitive closure ≺∗. To prove this result, we first show a property of435

n-events of binary networks. We say that an n-event ν is binary if the participants436

occurring in the p-events of ν are contained in loc(ν).437

Lemma 5.18. Let ν and ν′ be binary n-events with loc(ν) = loc(ν′). Then ν # ν′ iff438

p :: η ∈ ν and p :: η′ ∈ ν′ imply η # η′.439

Proposition 5.19. Let N = p1[[ P1 ]] ∥ p2[[ P2 ]] and SN (N) = (NE(N),≺N, # ). Then440

n(CE(N)) = CE(N) and the structureSN∗ (N)=def(NE(N),≺∗N, # ) is a prime event structure.441

Proof We first show that n(CE(N)) = CE(N). By Definition 5.13(1)

CE(N) = {{p1 :: η1,p2 :: η2} | η1 ∈ PE(P1), η2 ∈ PE(P2),p1 :: η1 Ẑ p2 :: η2}

Let {p1 :: η1,p2 :: η2} ∈ CE(N). Since p1 :: η1 Ẑ p2 :: η2 and all the actions in η1442

involve p2 and all the actions in η2 involve p1, we know that η1 and η2 have the443

same length n ≥ 1 and for each i, 1 ≤ i ≤ n, the prefixes of length i of η1 and η2,444

written ηi
1 and ηi

2, must themselves be dual. Then {p1 :: ηi
1,p2 :: ηi

2} ∈ CE(N) for each445

i, 1 ≤ i ≤ n, hence {p1 :: η1,p2 :: η2} has a causal set in CE(N).446

We prove now that the reflexive and transitive closure ≺∗N of ≺N is a partial order.447

Since by definition ≺∗N is a preorder, we only need to show that it is antisymmetric.448

Define the length of an n-event ν = {p1 :: η1,p2 :: η2} to be length(ν)=def |η1 | + |η2 |449

(where | η | is the length of η). Let now ν, ν′ ∈ NE(N), with ν = {p1 :: η1,p2 :: η2}450

and ν′ = {p1 :: η′1,p2 :: η′2}. By definition ν ≺N ν′ implies ηi < η′i for some451

i = 1, 2, which in turn implies | ηi | < | η′i | . As observed above, η1 and η2 must452

have the same length, and so must η′1 and η′2 . This means that if ν ≺N ν′ then453

length(ν) = |η1 | + |η2 | < |η′1 | + |η
′

2 | = length(ν′). From this we can conclude that if454

ν ≺∗N ν
′ and ν′ ≺∗N ν, then necessarily ν = ν′.455

Finally we show that the relation # satisfies the required properties. By Theo-456

rem 5.16 we only need to prove that # is hereditary. Let ν and ν′ be as above. If457

ν # ν′, then by Lemma 5.18 η1 # η′1 and η2 # η′2. Let now ν′′ = {p1 :: η′′1 ,p2 :: η′′2 }. If458

ν′ ≺∗N ν
′′, this means that there exist ν1, . . . , νn such that ν′ ≺N ν1 . . . ≺N νn = ν′′. We459

prove by induction on n that ν # ν′′. For n = 1 we have ν′ ≺N ν′′. Then by Clause460

(1) of Definition 5.13 we have η′j < η
′′

j for some j ∈ {1, 2}. Since ηi # η′i for all i ∈ {1, 2}461

and # is hereditary on p-events, we deduce η j # η′′j , which implies ν # ν′′. Suppose462

now n > 1. By induction ν # νn−1. Since νn−1 ≺N νn = ν′′ we then obtain ν # ν′′ by the463

same argument as in the base case.464
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If a network has more than two participants, then the duality requirement on465

its n-events is not sufficient to ensure the absence of circular dependencies7. For466

instance, in the following ternary network (which may be viewed as representing467

the 3-philosopher deadlock) the relation ≺∗ is not a partial order.468

Example 5.20. Let N be the network

p[[ r?λ; q!λ′ ]] ∥ q[[ p?λ′; r!λ′′ ]] ∥ r[[ q?λ′′; p!λ ]]

Then SN (N) has three n-events

ν1 = {p :: r?λ, r :: q?λ′′ ·p!λ} ν2 = {p :: r?λ ·q!λ′,q :: p?λ′}
ν3 = {q :: p?λ′ · r!λ′′, r :: q?λ′′}

By Definition 5.13(1) we have ν1 ≺ ν2 ≺ ν3 and ν3 ≺ ν1. The only configuration of SN (N)469

is the empty configuration, because the only set of n-events that satisfies downward-closure470

up to conflicts is X = {ν1, ν2, ν3}, but this is not a configuration because ≺∗X is not a partial471

order (recall that≺X is the restriction of≺ to X) and hence the condition (3) of Definition 3.4472

is not satisfied.473

5.2. Further Properties474

In this subsection, we first prove two properties of the conflict relation in network475

ESs: non disjoint n-events are always in conflict, and conflict induced by Clause (2b)476

of Definition 5.7 is semantically inherited. We then discuss the relationship between477

causal sets and prime configurations and prove two further properties of causal478

sets, which are shared with prime configurations8: finiteness, and the existence of479

a causal set for each event in a configuration. Finally, observing that the FES of a480

network may be viewed as the product of the PESs of its processes, we proceed to481

prove a classical property for ES products, namely that their projections on their482

components preserve configurations. To this end, we define a projection function483

from n-events to participants, yielding p-events, and we show that configurations484

of a network ES project down to configurations of the PESs of its processes.485

Let us start with the conflict properties. By definition, two n-events intersect486

each other if and only if they share a located event p :: η. Otherwise, the two487

n-events are disjoint. Note that if p :: η ∈ (ν ∩ ν′), then loc(ν) = loc(ν′) = {p,q},488

where q = pt(act(η)). The next proposition establishes that two distinct intersecting489

n-events inNE are in conflict.490

Lemma 5.21 (Sharing of located events implies conflict). If ν, ν′ ∈ NE and ν , ν′491

and (ν ∩ ν′) , ∅, then ν # ν′.492

Although conflict is not hereditary in FESs, we prove that a conflict due to incom-493

patible mutual projections (i.e., a conflict derived by Clause (2b) of Definition 5.7)494

is semantically inherited. Let ϑ↘n denote the prefix of length n of ϑ.495

7This is a well-known issue in multiparty session types, which motivated the introduction of global
types in [39], see Section 6.

8A prime configuration is a configuration with a unique maximal element, its culminating event.
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Proposition 5.22 (Semantic conflict hereditariness). Let p :: η ∈ ν and q :: η′ ∈ ν′496

with p , q. Let n = min{|η↱q |, |η′ ↱p |}. If ¬((η↱q )↘n Z (η′ ↱p )↘n), then there exists497

no configuration X such that ν, ν′ ∈ X.498

Proof Suppose ad absurdum that X is a configuration such that ν, ν′ ∈ X. If499

| η ↱ q | = | η′ ↱ p | then ν # ν′ by Definition 5.7(2b) and we reach immediately a500

contradiction. So, assume |η ↱q | > |η′ ↱p | = n. This means that |η | > 1 and thus501

there exists a non-empty causal set Eν of ν such that Eν ⊆ X. Let η0 < η be such that502

|η0 ↱ q | = |η′ ↱ p | = n. By definition of causal set, there exists ν0 ∈ Eν such that503

p :: η0 ∈ ν0. By Definition 5.7(2b) we have then ν0 # ν′, contradicting the fact that X504

is conflict-free.505

We prove now two further properties of causal sets. For the reader familiar with506

ESs, the notion of causal set may be reminiscent of that of prime configuration [60],507

which similarly consists of a complete set of causes for a given event9. However,508

there are some important differences: the first is that a causal set does not include509

the event it causes, unlike a prime configuration. The second is that a causal set510

only contains direct causes of an event, and thus it is not downward-closed up to511

conflicts, as opposed to a prime configuration. The last difference is that, while512

a prime configuration uniquely identifies its caused event, a causal set may cause513

different events, as shown in Example 5.10.514

A common feature of prime configurations and causal sets is that they are both515

finite. For causal sets, this is implied by minimality together with Clause (2) of516

Definition 5.9, as shown by the following proposition.517

Proposition 5.23. Let ν ∈ Ev ⊆ NE. If E is a causal set of ν in Ev, then E is finite.518

Proof Suppose ν = {p :: η,q :: η′}. We show that | E | ≤ | η | + | η′ | − 2, where519

|E | is the cardinality of E. By Condition (2) of Definition 5.9, for each η0 < η and520

η′0 < η
′ there must be ν0, ν′0 ∈ E such that p :: η0 ∈ ν0 and q :: η′0 ∈ ν

′

0. Note521

that ν0 and ν′0 could possibly coincide. Moreover, there cannot be ν′ ∈ E such that522

p :: η0 ∈ ν′ , ν0 or q :: η′0 ∈ ν
′ , ν′0, since this would contradict the minimality of E523

(and also its conflict-freeness, since by Lemma 5.21 we would have either ν′ # ν0 or524

ν′ # ν′0). Hence the number of events in E is at most (|η | − 1) + (|η′ | − 1).525

A key property of causal sets, which is again shared with prime configurations,526

is that each configuration includes a unique causal set for each n-event in the527

configuration.528

Lemma 5.24. If X is a configuration of SN (N) and ν ∈ X, then there is a unique causal529

set E of ν such that E ⊆ X.530

In the remainder of this section we show that projections of n-event configura-531

tions give p-event configurations. We start by formalising the projection function of532

n-events on participants, which yields p-events, and showing that it is downward533

surjective.534

9In PESs, the prime configuration associated with an event is unique, while it is not unique in FESs
and more generally in Stable ESs, just like a causal set.
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Definition 5.25 (Projection of n-events on participants).

projp(ν) =

η if p :: η ∈ ν,
unde f ined otherwise.

The projection function projp(·) is extended to sets of n-events in the obvious way:

projp(X) = {η | ∃ν ∈ X . projp(ν) = η}

Example 5.26. Let {ν1, ν2, ν3} be the configuration defined in Example 5.17. We get

projq({ν1, ν2, ν3}) = {p?λ1,p?λ1 · r!λ2}

Example 5.27. Let N and ν be as in Example 5.14. As observed there, if we did not apply535

narrowing the set of events of SN (N) would be the singleton {ν}, which would also be a536

configuration of SN (N). However, projp(ν) = {q?λ · r!λ′} would not be a configuration in537

S
P(P), since it would contain the event q?λ · r!λ′ without its cause q?λ.538

Narrowing ensures that each projection of the set of n-events of a network FES539

on one of its participants is downward surjective (according to Definition 3.8).540

Proposition 5.28 (Downward surjectivity of projections).541

Let SN (N) = (NE(N),≺N, # N) and SP(P) = (PE(P),≤P, # P) and p[[ P ]] ∈ N. Then542

the partial function projp : NE(N)⇀ PE(P) is downward surjective.543

Proof As mentioned already in Section 3, any PES S = (E,≤, # ) may be viewed
as a FES, with ≺ given by < (the strict ordering underlying ≤). Let η ∈ PE(P) and
ν ∈ NE(N). Then the property we need to show is:

η <P projp(ν) =⇒ ∃ν′ ∈ NE(N) . η = projp(ν′)

Note that η <P projp(ν) implies projp(ν) = η · η′ for some η′. Recall that NE(N) =544

n(CE(N)), where n(·) is the narrowing function (Definition 5.11).545

By definition of narrowing, p :: η · η′ ∈∈NE(N) implies that there is E ⊆ NE(N) such546

that E is a causal set of ν in NE(N). Therefore p :: η · η′ ∈ ν implies p :: η∈∈E and so547

p :: η∈∈NE(N), which is what we wanted to show.548

Theorem 5.29 (Projection of n-events preserves configurations). If p[[ P ]] ∈ N, then549

X ∈ C(SN (N)) implies projp(X) ∈ C(SP(P)).550

Proof Clearly, projp(X) is conflict-free. We show that it is also downward-closed.551

If ν ∈ X, by Lemma 5.24 there is a causal set E of ν such that E ⊆ X. If p :: η ∈ ν552

and η′ < η, by Definition 5.9 there is ν′ ∈ E such that p :: η′ ∈ ν′. We conclude that553

ν′ ∈ X, and therefore η′ ∈ projp(X).554

Notice that the reverse of Theorem 5.29 is not true, namely p[[ P ]] ∈ N does555

not imply that each configuration of C(SP(P)) can be obtained by projecting some556
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configuration of C(SN (N)) on p. Consider for instance the network N = p[[ q?λ ]].557

Then {q?λ} ∈ C(SP(P)), while C(SN (N)) = ∅.558

The reader may wonder why our ES semantics for sessions is not cast in cate-559

gorical terms, like classical ES semantics for process calculi [60, 17], where process560

constructions arise as categorical constructions (e.g., parallel composition arises as561

a categorical product). In fact, a categorical formulation of our semantics would not562

be possible, due to our two-level syntax for processes and networks, which does563

not allow networks to be further composed in parallel. However, it should be clear564

that our construction of a network FES from the process PESs of its components is565

a form of parallel composition, and the properties expressed by Proposition 5.28566

and Theorem 5.29 give some evidence that this construction satisfies the conditions567

usually required for a categorical product of ESs.568

6. Global Types569

This section is devoted to our type system for multiparty sessions. Global types570

describe the communication protocols involving all session participants. Usually,571

global types are projected into local types and typing rules are used to derive local572

types for processes [39, 19, 40]. The simplicity of our calculus allows us to project573

directly global types into processes and to have exactly one typing rule, see Figures 2574

and 3. This section is split in two subsections.575

The first subsection presents the projection of global types onto processes, together576

with the proof of its soundness. Moreover it introduces a boundedness condition on577

global types, which is crucial for our type system to ensure progress.578

The second subsection presents the type system, as well as an LTS for global types.579

Lastly, the properties of Subject Reduction, Session Fidelity and Progress are shown.580

The omitted proofs can be found in Appendix B.581

6.1. Well-formed Global Types582

Global types are built from choices among communications.583

Definition 6.1 (Global types). Global types G are defined by:

G ::=coind p→ q :⊞i∈Iλi; Gi | End

where I is not empty, λh , λk for all h, k ∈ I, h , k, i.e. messages in choices are all different.584

As for processes, ::=coind indicates that global types are defined coinductively.585

Again, we focus on regular terms. Since also processes are defined coinductively586

this allows for a simpler definition of projection, see Figure 2.587

The type p→ q :⊞i∈Iλi; Gi formalises a protocol which starts with the commu-588

nication of a message λk from p to q, for some k ∈ I, and then, depending on which589

λk was chosen by p, continues as Gk.590

When I is a singleton, a choice p → q : ⊞i∈Iλi; Gi will be rendered simply as591

p λ
→ q ; G. When I contains only two elements, as for processes we will use the592

binary choice notation p→ q : (λ1; G1⊞ λ2; G2). Trailing End types will be omitted.593
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G↾ r = 0 if r < part(G)

(p→ q :⊞i∈Iλi; Gi)↾ r =


Σi∈Ip?λi; Gi↾ r if r = q,⊕

i∈I q!λi; Gi↾ r if r = p,
G1↾ r if r < {p,q} and r ∈ part(G1) and

Gi↾ r = G1↾ r for all i ∈ I

Figure 2: Projection of global types onto participants.

Global types may be viewed as trees whose internal nodes are decorated by pq,594

leaves by End, and edges by messages λ. Given a global type, the sequences of595

decorations of nodes and edges on the path from the root to an edge in the tree of596

the global type are traces, in the sense of Definition 2.3. We denote by Tr+(G) the set597

of traces of G. By definition, Tr+(End) = ∅ and each trace in Tr+(G) is non-empty.598

The set of participants of a global type G, part(G), is defined to be the union of the599

sets of participants of all its traces, namely600

part(G) =
⋃
σ∈Tr+(G) part(σ)601

Note that the regularity assumption ensures that the set of participants is finite.602

The projection of a global type onto participants is given in Figure 2. As usual,603

projection is defined only when it is defined on all participants. Because of the604

simplicity of our calculus, the projection of a global type, when defined, is simply a605

process. The definition is coinductive, so a global type with an infinite (regular) tree606

produces a process with a regular tree. The projection of a choice type on the sender607

produces an output process, i.e. a process sending one of its possible messages to608

the receiver and then acting according to the projection of the corresponding branch.609

Similarly for the projection on the receiver, which produces an input process.610

Projection of a choice type on the other participants is defined only if it produces611

the same process for all the branches of the choice. This is a standard condition for612

multiparty session types [39].613

614

Our coinductive definition of global types is more permissive than that based615

on the standard µ-notation used in [39], because it allows more global types to be616

projected, as shown by the following example.617

Example 6.2. The global type G = p→ q : (λ1; q
λ3
→ r⊞ λ2; G) is projectable and618

• G↾p = P = q!λ1 ⊕ q!λ2; P619

• G↾q = Q = p?λ1; r!λ3 + p?λ2; Q620

• G↾ r = q?λ3621

On the other hand, the corresponding global type based on the µ-notation

G′ = µt.p→ q : (λ1; q
λ3
→ r⊞ λ2; t)
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is not projectable because G′↾ r is not defined.622

However, this additional permissiveness will not be exploited in the present623

paper. Indeed, the global type G of Example 6.2 will be ruled out by the condition624

of boundedness, introduced next, which aims at forbidding starvation. On the625

other hand, such permissiveness could be of interest whenever starvation is not a626

concern.627

To achieve progress, we need to ensure that each network participant occurs in628

every computation, whether finite or infinite. This means that each type participant629

must occur in every path of the tree of the type. Projectability already ensures that630

each participant of a choice type occurs in all its branches. This implies that if one631

branch of the choice gives rise to an infinite path, either the participant occurs at632

some finite depth in this path, or this path crosses infinitely many branching points633

in which the participant occurs in all branches. In the latter case, since the depth of634

the participant increases when crossing each branching point, there is no bound on635

the depth of the participant over all paths of the type. Hence, to ensure that all type636

participants occur in all paths, it is enough to require the existence of such bounds.637

This motivates the following definition of depth and boundedness.638

Definition 6.3 (Depth and boundedness).
Let the two functions depth(σ,p) and depth(G,p) be defined by:

depth(σ,p) =

n if σ = σ1 ·α · σ2 and |σ1 | = n − 1 and p < part(σ1) and p ∈ part(α)
0 otherwise

Then639

depth(G,p) = sup{depth(σ,p) | σ ∈ Tr+(G)}640

641

We say that a global type G is bounded if depth(G′,p) is finite for all subtrees G′ of642

G and for all participants p.643

If depth(G,p) is finite, then there are no paths in the tree of G in which p is delayed644

indefinitely. Note that if depth(G,p) is finite, G may have subtrees G′ for which645

depth(G′,p) is infinite as the following example shows.646

Example 6.4. Consider G′ = q λ
→ r; G where G is as defined in Example 6.2. Then we

have:
depth(G′,p) = 2 depth(G′,q) = 1 depth(G′, r) = 1

whereas
depth(G,p) = 1 depth(G,q) = 1 depth(G, r) = ∞

since647

Tr+(G) = {pqλ2 · · · pqλ2︸          ︷︷          ︸
n

·pqλ1 · qrλ3 | n ≥ 0} ∪ {pqλ2 · · · pqλ2 · · · }648

and sup{2, 3, . . .} = ∞.649
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The depths of the participants in G which are not participants of its root com-650

munication decrease in the immediate subtrees of G. The proof is trivial since, if651

G = p → q : ⊞i∈Iλi; Gi, then σ ∈ Tr+(G) implies σ = pqλi · σ′ and σ′ ∈ Tr+(Gi) for652

some i ∈ I.653

Lemma 6.5. If G = p → q : ⊞i∈Iλi; Gi and r ∈ part(G)\{p,q}, then depth(G, r) >654

depth(Gi, r) for all i ∈ I.655

We can now show that the definition of projection given in Figure 2 is sound for656

bounded global types.657

Lemma 6.6. If G is bounded, then G↾ r is a partial function for all r.658

Boundedness and projectability single out the global types we want to use in our659

type system.660

Definition 6.7 (Well-formed global types). We say that the global type G is well661

formed if G is bounded and G↾p is defined for all p.662

Clearly it is sufficient to check that G ↾ p is defined for all p ∈ part(G), since663

otherwise G↾p = 0.664

6.2. Type System665

0 ≤ 0 [ ≤ -0]
Pi ≤ Qi i ∈ I

Σi∈I∪Jp?λi; Pi ≤Σi∈Ip?λi; Qi

=====================================[ ≤-In]
Pi ≤ Qi i ∈ I⊕

i∈Ip!λi; Pi ≤
⊕

i∈I p!λi; Qi

===================================[ ≤-Out]

Pi ≤ G↾pi i ∈ I part(G) ⊆ {pi | i ∈ I}

⊢Πi∈Ipi[[ Pi ]] : G
[Net]

Figure 3: Preorder on processes and network typing rule.

The definition of well-typed networks is given in Figure 3. We first define a666

preorder on processes, P ≤ Q, meaning that process P can be used where we expect667

process Q. More precisely, P ≤ Q if either P is equal to Q, or we are in one of two668

situations: either both P and Q are output processes with the same receiver and669

choice of messages, and their continuations after the send are two processes P′ and670

Q′ such that P′ ≤ Q′; or they are both input processes with the same sender and671

choice of messages, and P may receive more messages than Q (and thus have more672

behaviours) but whenever it receives the same message as Q their continuations are673

two processes P′ and Q′ such that P′ ≤ Q′. The rules are interpreted coinductively,674

since the processes may have infinite (regular) trees.675

A network is well typed if all its participants have associated processes that676

behave as specified by the projections of a global type. In Rule [Net], the condition677

part(G) ⊆ {pi | i ∈ I} ensures that all participants of the global type appear in the678
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p→ q :⊞i∈Iλi; Gi
pqλ j
−−−→ G j j ∈ I [Ecomm]

Gi
α
−→ G′i for all i ∈ I part(α) ∩ {p,q} = ∅

[Icomm]
p→ q :⊞i∈Iλi; Gi

α
−→ p→ q :⊞i∈Iλi; G′i

Figure 4: LTS for global types.

network. Moreover it permits additional participants that do not appear in the679

global type, allowing the typing of sessions containing p[[ 0 ]] for a fresh p — a680

property required to guarantee invariance of types under structural congruence of681

networks.682

Example 6.8. The first network of Example 5.15 and the network of Example 5.17 can be
typed respectively by

G = p→ q : (λ; G⊞ λ′)
G′ = p

λ1
→ q; q

λ2
→ r; r

λ3
→ s

It is handy to define the LTS for global types given in Figure 4. Rule [Icomm]683

is justified by the fact that in a projectable global type p → q : ⊞i∈Iλi; Gi, the684

behaviours of the participants different from p and q are the same in all branches,685

and hence they are independent from the choice and may be executed before it.686

This LTS respects well-formedness of global types, as shown by Lemma 6.9.687

Lemma 6.9. If G is a well-formed global type and G
pqλ
−−−→ G′, then G′ is a well-formed688

global type.689

Given this lemma, we will focus on well-formed global types from now on.690

691

We end this section with the expected results of Subject Reduction, Session692

Fidelity [39, 40] and Progress [19, 51]. The proof of Progress relies on Session693

Fidelity. Both Subject Reduction and Session Fidelity will be used in Section 8 to694

show the isomorphism between the configuration domains of the FES of a typable695

network and the PES of its global type (Theorem 8.18).696

Theorem 6.10 (Subject Reduction). If ⊢ N : G and N α
−→ N′, then G α

−→ G′ and697

⊢ N′ : G′.698

Theorem 6.11 (Session Fidelity). If ⊢ N : G and G α
−→ G′, then N α

−→ N′ and ⊢ N′ : G′.699

We are now able to prove that in a typable network, every participant whose700

process is not terminated may eventually perform a communication. This property701

is generally referred to as progress.702

Theorem 6.12 (Progress). If ⊢ N : G and p[[ P ]] ∈ N, then N σ·α
−−→ N′ and p ∈ part(α).703
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Proof We prove by induction on d = depth(G,p) that: if ⊢ N : G and p[[ P ]] ∈ N,704

then G σ ·α
−−−→ G′ with p ∈ part(α). This will imply N σ ·α

−−−→ N′ by Session Fidelity705

(Theorem 6.11).706

Case d = 1. In this case G = q→ r :⊞i∈Iλi; Gi and p ∈ {q, r} and G
qrλh
−−−→ Gh for some707

h ∈ I by Rule [Ecomm].708

Case d > 1. In this case G = q → r : ⊞i∈Iλi; Gi and p < {q, r}. By Lemma 6.5 this709

implies depth(Gi,p) < d for all i ∈ I. Using Rule [Ecomm] we get G
qrλi
−−−→ Gi for all710

i ∈ I. By Session Fidelity, N
qrλi
−−−→ Ni and ⊢ Ni : Gi for all i ∈ I. Moreover, since711

p < {q, r} we also have p[[ P ]] ∈ Ni for all i ∈ I. By induction Gi
σi ·αi
−−−→ G′i with712

p ∈ part(αi) for all i ∈ I. We conclude G
qrλi·σi ·αi
−−−−−−−→ G′i for all i ∈ I.713

The proof of the progress theorem shows that the execution strategy which uses714

only Rule [EComm] is fair, since there are no infinite transition sequences where715

some participant is stuck. This is due to the boundedness condition on global716

types.717

Example 6.13. The second network of Example 5.15 and the network of Example 5.20
cannot be typed because they do not enjoy progress. Notice that the candidate global type
for the second network of Example 5.15:

G′′ = p→ q : (λ; G′′⊞ λ′; p λ
→ r; r λ

′

→ s)

is not bounded, given that depth(G′′, r) and depth(G′′, s) are not finite.718

Moreover we cannot define a global type whose projections are greater than or equal to the719

processes associated with the network of Example 5.20.720

7. Event Structure Semantics of Global Types721

We define now the event structure associated with a global type, whose events722

are equivalence classes of particular traces, and we show that it is a PES.723

The unique omitted proof can be found in Appendix C.724

We recall that a trace σ ∈ Traces is a finite sequence of communications (see725

Definition 2.3). We will use the following notational conventions:726

• We denote by σ[i] the i-th element of σ, i > 0.727

• If i ≤ j, we define σ[i ... j] = σ[i] · · · σ[ j] to be the subtrace of σ consisting of the728

( j − i + 1) elements starting from the i-th one and ending with the j-th one. If729

i > j, we convene σ[i ... j] to be the empty trace ϵ.730

If not otherwise stated we assume that σ has n elements, so σ = σ[1 ...n].731

We start by defining an equivalence relation on Traces which allows swapping732

of communications with disjoint participants.733
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Definition 7.1 (Permutation equivalence). The permutation equivalence on Traces is
the least equivalence ∼ such that

σ ·α ·α′ · σ′ ∼ σ ·α′ ·α · σ′ if part(α) ∩ part(α′) = ∅

We denote by [σ]∼ the equivalence class of the trace σ, and by Traces/∼ the set of equivalence734

classes on Traces. Note that [ϵ]∼ = {ϵ} ∈ Traces/∼, and [α]∼ = {α} ∈ Traces/∼ for any α.735

Moreover |σ′| = |σ| for all σ′ ∈ [σ]∼.736

The events associated with a global type, called g-events and denoted by γ, γ′,737

are equivalence classes of particular traces that we call pointed. Intuitively, in a738

pointed trace all communications but the last one are causes of some subsequent739

communication. Formally:740

Definition 7.2 (Pointed trace). A trace σ = σ[1 ...n] is said to be pointed if

for all i, 1 ≤ i < n, part(σ[i]) ∩ part(σ[(i + 1) ...n]) , ∅

Note that the condition of Definition 7.2 must be satisfied only by the σ[i] with i < n,741

thus it is vacuously satisfied by any trace of length 1.742

Example 7.3. Let α1 = pqλ1, α2 = rsλ2 and α3 = rpλ3. Then σ1 = α1 and σ3 =743

α1 ·α2 ·α3 are pointed traces, while σ2 = α1 ·α2 is not a pointed trace.744

We use last(σ) to denote the last communication of σ.745

Lemma 7.4. Let σ be a pointed trace. If σ ∼ σ′, then σ′ is a pointed trace and last(σ) =746

last(σ′).747

Definition 7.5 (Global event). Let σ = σ′ ·α be a pointed trace. Then γ = [σ]∼ is a748

global event, also called g-event, with communication α, notation cm(γ) = α.749

We denote by GE the set of g-events.750

Notice that cm(γ) is well defined due to Lemma 7.4.751

We now introduce an operator of prefixing of a g-event γ by a communication752

α, which acts as follows: if α is a cause of some communication in the trace of γ,753

then α is added at the beginning of the trace, otherwise γ is left unchanged. This754

ensures that the operator always transforms a g-event into another g-event. We call755

this operator “retrieval of a g-event before a communication”, because it yields the756

g-event obtained from γ if we were to execute the communication α before γ. This757

operator is the counterpart of the “residual of a g-event after a communication”,758

which yields the g-event obtained from γ after executing the communication α from759

γ, see Definition 8.9.760

Definition 7.6 (Retrieval of g-events before communications).761762

1. The retrieval operator ◦ applied to a communication and a g-event is defined by:

α ◦ [σ]∼ =

[α · σ]∼ if part(α) ∩ part(σ) , ∅
[σ]∼ otherwise
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2. The operator ◦ naturally extends to traces:

ϵ ◦ γ = γ (α · σ) ◦ γ = α ◦ (σ ◦ γ)

Using the retrieval, we can define the mapping ev(·) which, applied to a trace763

σ, gives the g-event representing the communication last(σ) prefixed by its causes764

occurring in σ.765

Definition 7.7. The g-event generated by a non-empty trace is defined by:

ev(σ ·α) = σ ◦ [α]∼

Clearly cm(ev(σ)) = last(σ).766

Example 7.8. A trace of the global type p
λ1
→ q; q

λ2
→ r; s

λ3
→ p is pqλ1 · qrλ2 · spλ3, and

ev(pqλ1 · qrλ2 · spλ3) = pqλ1 · qrλ2 ◦ {spλ3} = pqλ1 ◦ {spλ3} = {pqλ1 · spλ3}

We proceed now to define the causality and conflict relations on g-events. To767

define the conflict relation, it is handy to define the projection of a trace on a768

participant, which gives the sequence of the participant’s actions in the trace. The769

result is a p-event. In this way we can define the conflict between g-events using770

the conflict between p-events.771

Definition 7.9 (Projection of traces on participants).772773

1. The projection of α onto r, α@r , is defined by:

pqλ@r =


q!λ if r = p
p?λ if r = q
ϵ if r < {p,q}

2. The projection of a trace σ onto r, σ@r , is defined by:

ϵ@r = ϵ (α · σ)@r = α@r · σ@r

Definition 7.10 (Causality and conflict relations on g-events). The causality relation774

≤ and the conflict relation # on the set of g-events GE are defined by:775

1. γ ≤ γ′ if γ = [σ]∼ and γ′ = [σ · σ′]∼ for some σ, σ′;776

2. [σ]∼ # [σ′]∼ if σ@p # σ′@p for some p.777

If γ = [σ ·α · σ′ ·α′]∼, then the communication α must be done before the com-778

munication α′. This is expressed by the causality [σ ·α]∼ ≤ γ. An example is779

[pqλ]∼ ≤ [rsλ′ ·pqλ · sqλ′′]∼.780

As regards conflict, note that if σ ∼ σ′ then σ@p = σ′@p for all p, because ∼ does781

not swap communications which share some participant. Hence, conflict is well782

defined, since it does not depend on the trace chosen in the equivalence class.783

The condition σ@p # σ′@p states that participant p does the same actions in both784

traces up to some point, after which it performs two different actions in σ and785

σ′. For example [pqλ · rpλ1 ·qpλ′]∼ # [pqλ · rpλ2]∼, since (pqλ · rpλ1 ·qpλ′)@p =786

q!λ · r?λ1 ·q?λ′ # q!λ · r?λ2 = (pqλ · rpλ2)@p .787
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Definition 7.11 (Event structure of a global type). The event structure of the global
type G is the triple

S
G(G) = (GE(G),≤G, # G)

where:788

1. GE(G) = {ev(σ) | σ ∈ Tr+(G)}789

2. ≤G is the restriction of ≤ to the set GE(G);790

3. # G is the restriction of # to the set GE(G).791

Note that, in case the tree of G is infinite, the set GE(G) is denumerable.792

Example 7.12. Let G1 = p
λ1
→ q; r

λ2
→ s; r

λ3
→ p and G2 = r

λ2
→ s; p

λ1
→ q; r

λ3
→ p. Then

GE(G1) = GE(G2) = {γ1, γ2, γ3} where

γ1 = {pqλ1} γ2 = {rsλ2} γ3 = {pqλ1 · rsλ2 · rpλ3, rsλ2 ·pqλ1 · rpλ3}

with γ1 ≤ γ3 and γ2 ≤ γ3. The configurations are {γ1}, {γ2}, {γ1, γ2} and {γ1, γ2, γ3}, and
the proving sequences are

γ1 γ2 γ1;γ2 γ2;γ1 γ1;γ2;γ3 γ2;γ1;γ3

If G′ is as in Example 6.8, then GE(G′) = {γ1, γ2, γ3} where

γ1 = {pqλ1} γ2 = {pqλ1 ·qrλ2} γ3 = {pqλ1 ·qrλ2 · rsλ3}

with γ1 ≤ γ2 ≤ γ3. The configurations are {γ1}, {γ1, γ2} and {γ1, γ2, γ3}, and there is a793

unique proving sequence corresponding to each configuration.794

Theorem 7.13. Let G be a global type. Then SG(G) is a prime event structure.795

Proof We show that ≤ and # satisfy Properties (2) and (3) of Definition 3.1.796

Reflexivity and transitivity of ≤ follow from the properties of concatenation and of797

permutation equivalence. As for antisymmetry, by Definition 7.10(1) [σ]∼ ≤ [σ′]∼798

implies σ′ ∼ σ · σ1 for some σ1 and [σ′]∼ ≤ [σ]∼ implies σ ∼ σ′ · σ2 for some σ2.799

Hence σ ∼ σ · σ1 · σ2, which implies σ1 = σ2 = ϵ. Irreflexivity and symmetry of #800

follow from the corresponding properties of # on p-events.801

As for conflict hereditariness, suppose that [σ]∼ # [σ′]∼ ≤ [σ′′]∼. By Definition 7.10(1)802

and (2) we have respectively that σ′ · σ1 ∼ σ′′ for some σ1 and σ@p # σ′@p for some803

p. Hence also σ@p # (σ′ · σ1)@p , whence by Definition 7.10(2) we conclude that804

[σ]∼ # [σ′′]∼.805

Observe that, while our interpretation of networks as FESs exactly reflects the806

concurrency expressed by the syntax of networks, our interpretation of global types807

as PESs exhibits more concurrency than that given by the syntax of global types.808

We conclude this section with two pictures that summarise the features of our809

ES semantics and illustrate the difference between the FES of a network and the810
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N = p[[ q!λ1; r!λ ⊕ q!λ2; r!λ ]] ∥ q[[ p?λ1; s!λ′ + p?λ2; s!λ′ ]] ∥ r[[ p?λ; s!λ′′ ]] ∥
s[[ q?λ′; r?λ′′ ]]

ν1 = {p :: q!λ1,q :: p?λ1}

ν′′1 = {q :: p?λ1 · s!λ′, s :: q?λ′}

ν = {r :: p?λ · s!λ′′, s :: q?λ′ · r?λ′′}

ν2 = {p :: q!λ2,q :: p?λ2}

ν′′2 = {q :: p?λ2 · s!λ′, s :: q?λ′}

ν′1 = {p :: q!λ1 · r!λ, r :: p?λ} ν′2 = {p :: q!λ2·r!λ , r :: p?λ}

#
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Figure 5: FES of the network N.

G = p→ q : (λ1; p λ
→ r; q λ′

→ s; r λ
′′

→ s⊞ λ2; p λ
→ r; q λ′

→ s; r λ
′′

→ s)

γ1 = [pqλ1]∼

γ′′1 = [pqλ1 · qsλ′]∼

γ = [pqλ1 · prλ · qsλ′ · rsλ′′]∼ γ′ = [pqλ2 · prλ · qsλ′ · rsλ′′]∼

γ2 = [pqλ2]∼

γ′1 = [pqλ1 · prλ]∼ γ′′2 = [pqλ2 · qsλ′]∼ γ′2 = [pqλ2 · prλ]∼
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Figure 6: PES of the type G.

PES of its type. In general these two ESs are not isomorphic, unless the FES of the811

network is itself a PES.812

Consider the network FES pictured in Figure 5, where the arrows represent the813

flow relation and all the n-events on the left of the dotted line are in conflict with all814

the n-events on the right of the line. In particular, notice that the conflicts between815
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n-events with a common location are deduced by Clause (2a) of Definition 5.7, while816

the conflicts between n-events with disjoint sets of locations, such as ν′1 and ν′′2 , are817

deduced by Clause (2b) of Definition 5.7. Observe also that the n-event ν has two818

different causal sets inNE(N), namely {ν′1, ν
′′

1 } and {ν′2, ν
′′

2 }. The reader familiar with819

ESs will have noticed that there are also two prime configurations whose maximal820

element is ν, namely {ν1, ν′1, ν
′′

1 , ν} and {ν2, ν′2, ν
′′

2 , ν}. It is easy to see that the network821

N can be typed with the global type G shown in Figure 6.822

Consider now the PES of the type G pictured in Figure 6, where the arrows823

represent the covering relation of the partial order of causality and inherited conflicts824

are not shown. Note that while the FES of N has a unique maximal n-event ν, the825

PES of its type G has two maximal g-events γ and γ′. This is because an n-event826

only records the computations that occurred at its locations, while a g-event records827

the global computation and keeps a record of each choice, including those involving828

locations that are disjoint from those of its last communication. Indeed, g-events829

correspond exactly to prime configurations.830

Note that the FES of a network may be easily recovered from the PES of its
global type by using the following function gn(·) that maps g-events to n-events:

gn(γ) = {p :: σ@p ,q :: σ@q } if γ = [σ]∼ with part(cm(γ)) = {p,q}

On the other hand, the inverse construction is not as direct. First of all, an831

n-event in the network FES may give rise to several g-events in the type PES, as832

shown by the n-event ν in Figure 5, which gives rise to the pair of g-events γ and γ′833

in Figure 6. Moreover, the local information contained in an n-event is not sufficient834

to reconstruct the corresponding g-events: for each n-event, we need to consider all835

the prime configurations that culminate with that event, and then map each of these836

configurations to a g-event. Hence, we need a function ng(·) that maps n-events to837

sets of prime configurations of the FES, and then maps each such configuration to838

a g-event. We will not explicitly define this function here, since we miss another839

important ingredient to compare the FES of a network and the PES of its type,840

namely a structural characterisation of the FESs that represent typable networks.841

Indeed, if we started from the FES of a non typable network, this construction842

would not be correct. Consider for instance the network N′ obtained from N by843

omitting the output r!λ from the second branch of the process of p. Then the FES844

of N′ would not contain the n-event ν′2 and the event ν would have the unique845

causal set {ν′1, ν
′′

1 }, and the unique prime configuration culminating with ν would846

be {ν1, ν′1, ν
′′

1 , ν}. Then our construction would give a PES that differs from that of847

type G only for the absence of the g-events γ′2 and γ′. However, the network N′848

is not typable and thus we would expect the construction to fail. Note that in the849

FES of N′, the n-event ν′′2 is a cause of ν but does not belong to any causal set of850

ν. Thus a possible well-formedness property to require for FESs to be images of a851

typable network would be that each cause of each n-event belong to some causal852

set of that event. However, this would still not be enough to exclude the FES of853

the non typable network N′′ obtained from N′ by omitting the output s!λ′ from the854

second branch of the process of q.855

To conclude, in the absence of a semantic counterpart for the well-formedness856

properties of global types, which eludes us for the time being, we will follow another857
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approach here, namely we will compare the FESs of networks and the PESs of their858

types at a more operational level, by looking at their configuration domains and by859

relating their configurations to the transition sequences of the underlying networks860

and types.861

8. Equivalence of the two Event Structure Semantics862

ν1; . . . ; νn = nec(σ)
Th.8.8

uu

N σ = cm(ν1) · . . . · cm(νn)

SR

��

//

Th.8.7jj

N′

G

Th.8.15 ))

σ = cm(γ1) · . . . · cm(γn) //

SF

OO

G′

gec(σ) = γ1; . . . ;γn

Th.8.16

55

Figure 7: Isomorphism proof in a nutshell.

In this section we establish our main result for typable networks (Theorem 8.18),863

namely the isomorphism between the domain of configurations of the FES of a864

typable network and the domain of configurations of the PES of its global type.865

To do so, we first relate the transition sequences of networks and global types to866

the configurations of their respective ESs. Then, we exploit our results of Subject867

Reduction (Theorem 6.10) and Session Fidelity (Theorem 6.11), which relate the868

transition sequences of networks and their global types, to derive a similar relation869

between the configurations of their respective ESs. The schema of our proof is870

described by the diagram in Figure 7. Here, SR stands for Subject Reduction and SF871

for Session Fidelity, and ν1; . . . ; νn andγ1; . . . ;γn are proving sequences ofSN (N) and872

S
G(G), respectively. Finally, nec(σ) and gec(σ) denote the proving sequences of n-873

events and g-events which correspond to the trace σ (as given by Definition 8.3 and874

Definition 8.13). Theorem 8.8 says that, if ν1; · · · ; νn is a proving sequence of SN (N),875

then N σ
−→ N′, where σ = cm(ν1) · . . . · cm(νn). By Subject Reduction (Theorem 6.10)876

G σ
−→ G′. This implies that gec(σ) is a proving sequence of SG(G) by Theorem 8.15.877

Dually, Theorem 8.16 says that, if γ1; · · · ;γn is a proving sequence of SG(G), then878

G σ
−→ G′, where σ = cm(γ1) · . . . · cm(γn). By Session Fidelity (Theorem 6.11) N σ

−→ N′.879

Lastly, nec(σ) is a proving sequence of SN (N) by Theorem 8.7. The equalities in the880

top and bottom lines are proved in Lemmas 8.4(1a) and 8.14(1).881

This section is divided in two subsections: Section 8.1, which handles the upper882

part of the above diagram, and Section 8.2, which handles the lower part of the883

diagram and then connects the two parts using both SR and SF within Theorem 8.18,884

our closing result. The omitted proofs of Sections 8.1 and 8.2 can be found in885

Appendices D and E, respectively.886

30



8.1. Relating Transition Sequences of Networks and Proving Sequences of their ESs887

The aim of this subsection is to relate the traces that label the transition sequences888

of networks with the configurations of their FESs. We start by showing how network889

communications affect n-events in the associated FES. To this end we define two890

partial operators ♢ and ♦, which applied to a communication α and an n-event ν891

yield another n-event ν′ (when defined), which represents the event ν before the892

communication α or after the communication α, respectively. We call “retrieval”893

the ♢ operator (in agreement with Definition 7.6) and “residual” the ♦ operator.894

Formally, the operators ♢ and ♦ are defined as follows.895

Definition 8.1 (Retrieval and residual of n-events with respect to communications).896

897

898

1. The retrieval operator ♢ applied to a communication and a located event returns the
located event obtained by prefixing the p-event by the projection of the communication:

α♢ (p :: η) = p :: (α@p ) · η

2. The residual operator ♦ applied to a communication and a located event returns the
located event obtained by erasing from the p-event the projection of the communication
(if possible):

α♦ (p :: η) = p :: η′ if η = (α@p ) · η′

3. The operators ♢ and ♦ naturally extend to n-events and to traces:

α♢ ({p :: η,q :: η′}) = {α♢ (p :: η), α♢ (q :: η′)}
α♦ ({p :: η,q :: η′}) = {α♦ (p :: η), α♦ (q :: η′)}

ϵ♢ ν = ν (α · σ)♢ ν = α♢ (σ♢ ν)
ϵ♦ ν = ν (α · σ)♦ ν = σ♦ (α♦ ν)

Note that the operator ♢ is always defined. Instead pqλ♦ r :: η is undefined if899

r ∈ {p,q} and either η is just one atomic action or pqλ@r is not the first atomic action900

of η. For example pqλ♦p :: q!λ and pqλ♦p :: q!λ′ · η with λ , λ′ are undefined for901

any η.902

The retrieval and residual operators are inverse of each other. Moreover they903

preserve the flow and conflict relations.904

Lemma 8.2 (Properties of retrieval and residual for n-events).905906

1. If α♦ ν is defined, then α♢ (α♦ ν) = ν;907

2. α♦ (α♢ ν) = ν;908

3. If ν ≺ ν′, then α♢ ν ≺ α♢ ν′;909

4. If ν ≺ ν′ and both α♦ ν and α♦ ν′ are defined, then α♦ ν ≺ α♦ ν′;910

5. If ν # ν′, then α♢ ν #α♢ ν′;911

6. If ν # ν′ and both α♦ ν and α♦ ν′ are defined, then α♦ ν #α♦ ν′;912
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7. If α♢ ν #α♢ ν′, then ν # ν′.913

Starting from the trace σ , ϵ that labels a transition sequence in a network,914

one can reconstruct the corresponding sequence of n-events in its FES. Recall that915

σ[1 ... i] is the prefix of length i of σ and σ[i ... j] is the empty trace if i > j.916

Definition 8.3 (Building sequences of n-events from traces). Ifσ is a non-empty trace
with σ[i] = piqiλi, 1 ≤ i ≤ n, we define the sequence of n-events corresponding to σ by

nec(σ) = ν1; · · · ; νn

where νi = σ[1 ... i − 1]♢ {pi :: qi!λi,qi :: pi?λi} for 1 ≤ i ≤ n.917

It is immediate to see that, if σ = pqλ, then nec(σ) is the event {p :: q!λ,q :: p?λ}.918

We show now that σ can be recovered from nec(σ), and that two n-events oc-919

curring in nec(σ) cannot be in conflict. Moreover, the n-event obtained by applying920

nec to a communication cannot be in conflict with the n-event obtained by applying921

the retrieval to the same communication and an arbitrary n-event.922

Lastly, we relate the sequences of n-events generated by two traces one of which923

is a suffix of the other. Given that the mapping nec is based on the retrieval operator,924

this relation is naturally expressed using the retrieval and residual operators.925

Lemma 8.4 (Properties of nec(·)).926927

1. Let nec(σ) = ν1; · · · ; νn. Then928

(a) cm(νi) = σ[i] for all i, 1 ≤ i ≤ n;929

(b) If 1 ≤ h, k ≤ n, then ¬(νh # νk).930

2. ¬(nec(α) #α♢ ν) for all ν.931

3. Let σ = α · σ′ and σ′ , ϵ. If nec(σ) = ν1; · · · ; νn and nec(σ′) = ν′2; · · · ; ν′n, then932

α♢ ν′i = νi and α♦ νi = ν′i for all i, 2 ≤ i ≤ n.933

Notice that if α♦ ν is undefined and ν is an n-event of a network with commu-934

nication α, then either ν = nec(α) or ν # nec(α).935

Lemma 8.5. If N α
−→ N′ and ν ∈ NE(N), then ν = nec(α) or ν # nec(α) or α♦ ν is defined.936

The following lemma, which is technically quite challenging as it involves rea-937

soning about the fixpoint properties of the set of n-events of a network FES (as938

defined by the narrowing function), relates the sets of n-events of two network939

FESs, where one network is a one-step derivative of the other, by means of the940

retrieval and residual operators.941

Lemma 8.6. Let N α
−→ N′. Then942

1. {nec(α)} ∪ {α♢ ν | ν ∈ NE(N′)} ⊆ NE(N);943
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2. {α♦ ν | ν ∈ NE(N) and α♦ ν defined} ⊆ NE(N′).944

We may now prove the correspondence between the traces labelling the transi-945

tion sequences of a network and the proving sequences of its FES.946

Theorem 8.7. If N σ
−→ N′, then nec(σ) is a proving sequence in SN (N).947

Proof The proof is by induction on σ.948

Base case. Let σ = α. From N α
−→ N′ and Lemma 8.6(1) nec(α) ∈ NE(N). Since nec(α)949

has no causes, by Definition 3.6 we conclude that nec(α) is a proving sequence in950

S
N (N).951

Inductive case. Let σ = α · σ′. From N σ
−→ N′ we get N α

−→ N′′ σ
′

−→ N′ for some N′′.952

Let nec(σ) = ν1; · · · ; νn and nec(σ′) = ν′2; · · · ; ν′n. By induction nec(σ′) is a proving953

sequence in SN (N′′).954

We show that nec(σ) is a proving sequence in SN (N). By Lemma 8.4(1b) nec(σ′)955

is conflict free. By Lemma 8.4(3) νi = α♢ ν′i for all i, 2 ≤ i ≤ n. This implies956

νi ∈ NE(N) for all i, 2 ≤ i ≤ n by Lemma 8.6(1) and ¬(ν1 # ν j) for all i, j, 2 ≤ i, j ≤ n957

by Lemma 8.2(7). Finally, since ν1 = nec(α), by Lemma 8.4(2) we obtain ¬(ν1 # νi)958

for all i, 2 ≤ i ≤ n. We conclude that nec(σ) is conflict-free and included in NE(N).959

Let ν ∈ NE(N) and ν ≺ νk for some k, 1 ≤ k ≤ n. This implies k > 1 since nec(α) has960

no causes. Hence νk = α♢ ν
′

k. By Lemma 8.5, we know that ν = nec(α) or ν # nec(α)961

or α♦ ν is defined. We consider the three cases. Let part(α) = {p,q}.962

Case ν = nec(α). In this case we conclude immediately since nec(α) = ν1 and 1 < k.963

Case ν # nec(α). Since nec(α) = ν1, if ν1 ≺ νk we are done. If ν1 ⊀ νk, then964

loc(νk)∩{p,q} = ∅ otherwise ν1 # νk. We get νk = α♢ ν
′

k = ν
′

k. Since ν ≺ νk, there exists965

r :: η ∈ ν and r :: η′ ∈ νk = ν
′

k such that η < η′, where r < {p,q} because r ∈ loc(νk).966

Since nec(σ′) is a proving sequence in SN (N′′), by Lemma 5.24 there is ν′h ∈ NE(N′′)967

such that r :: η ∈ ν′h. Since α♢ r :: η = r :: η we get r :: η ∈ νh. This implies νh ≺ νk,968

where νh # ν by Lemma 5.21.969

Case α♦ ν defined. We get α♦ ν ≺ ν′k by Lemma 8.2(4). Since nec(σ′) is a proving970

sequence in SN (N′′), there is h < k such that either α♦ ν = ν′h or α♦ ν # ν′h ≺ ν
′

k. In971

the first case ν = α♢ (α♦ ν) = α♢ ν′h = νh by Lemma 8.2(1). In the second case:972

• from α♦ ν # ν′h we get (α♢ (α♦ ν)) # (α♢ ν′h) by Lemma 8.2(5), which implies973

ν # νh by Lemma 8.2(1), and974

• from ν′h ≺ ν
′

k we get (α♢ ν′h) ≺ (α♢ ν′k) by Lemma 8.2(3), namely νh ≺ νk.975

Theorem 8.8. If ν1; · · · ; νn is a proving sequence in SN (N), then N σ
−→ N′, where σ =976

cm(ν1) · · · cm(νn).977

Proof The proof is by induction on n.
Case n = 1. Let ν1 = {p :: ζ · q!λ,q :: ζ′ · p?λ}. Then cm(ν1) = pqλ. We first show that
ζ = ζ′ = ϵ. Assume ad absurdum that ζ , ϵ or ζ′ , ϵ. By narrowing, this implies
that there is ν ∈ NE(N) such that ν ≺ ν1, contradicting the fact that ν1 is a proving
sequence.
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By Definition 5.13(1) we have N = p[[ P ]] ∥ q[[ Q ]] ∥ N0 with q!λ ∈ PE(P) and p?λ ∈
PE(Q). Whence by Definition 4.3(1) we get P =

⊕
i∈I q!λi; Pi and Q = Σ j∈Jp?λ j; Q j

where λ = λk for some k ∈ I ∩ J. Therefore

N
pqλ
−−−→ p[[ Pk ]] ∥ q[[ Qk ]] ∥ N0

Case n > 1. Let ν1 and N be as in the basic case, N′′ = p[[ Pk ]] ∥ q[[ Qk ]] ∥ N0 and978

α = pqλ. Since ν1; · · · ; νn is a proving sequence, we have ¬(νl # νl′) for all l, l′ such979

that 1 ≤ l, l′ ≤ n. Moreover, for all l, 2 ≤ l ≤ n we have νl , ν1 = nec(α), thus α♦ νl980

is defined by Lemma 8.5. Let ν′l = α♦ νl for all l, 2 ≤ l ≤ n, then ν′l ∈ NE(N′′) by981

Lemma 8.6(2).982

We show that ν′2; · · · ; ν′n is a proving sequence in SN (N′′). First notice that for all l,983

2 ≤ l ≤ n, ¬(νl # νl′) implies ¬(ν′l # ν′l′) by Lemma 8.2(5) and (1). Let now ν ≺ ν′h for984

some h, 2 ≤ h ≤ n. By Lemma 8.2(3) and (1) α♢ ν ≺ α♢ (α♦ νh) = νh. This implies985

by Definition 3.6 that there is h′ < h such that either α♢ ν = νh′ or α♢ ν # νh′ ≺ νh.986

Therefore, since ν′l is defined for all l, 2 ≤ l ≤ n, we get either ν = ν′h′ by Lemma 8.2(2)987

or ν # ν′h′ ≺ ν
′

h by Lemma 8.2(6) and (4).988

By induction N′′ σ
′

−→ N′ where σ′ = cm(ν′2) · · · cm(ν′n). Since cm(νl) = cm(ν′l ) for all l,989

2 ≤ l ≤ n we get σ = α ·σ′. Hence N α
−→ N′′ σ

′

−→ N′ is the required transition sequence.990

8.2. Relating Transition Sequences of Global Types and Proving Sequences of their ESs991

In this subsection, we relate the traces that label the transition sequences of992

global types with the configurations of their PESs. As for n-events, we need retrieval993

and residual operators for g-events. The first operator was already introduced in994

Definition 7.6, so we only need to define the second one, which is given next.995

Definition 8.9 (Residual of g-events after communications).996997

1. The residual operator • applied to a communication and a g-event is defined by:

α • [σ]∼ =

[σ′]∼ if σ ∼ α · σ′ and σ′ , ϵ
[σ]∼ if part(α) ∩ part(σ) = ∅

2. The operator • naturally extends to traces:

ϵ • γ = γ (α · σ) • γ = σ • (α • γ)

The operator •, applied to a communication and a g-event, gives the g-event998

obtained by erasing the communication, if it occurs in head position (modulo ∼) in999

the given g-event, and leaves the g-event unchanged if its participants are disjoint1000

from those of the communication. Note that the operator α • [σ]∼ is undefined1001

whenever either [σ]∼ = {α} or one of the participants of α occurs in σ but the1002

first communication of σ is different from α. For example pqλ • [pqλ]∼ and pqλ •1003

[pqλ′ · σ]∼ with λ , λ′ are undefined for any σ.1004

The following lemma gives some simple properties of the retrieval and residual1005

operators for g-events. The first five statements correspond to those of Lemma 8.21006

for n-events. The last three statements give properties that are relevant only for the1007

operators ◦ and •.1008
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Lemma 8.10 (Properties of retrieval and residual for g-events).10091010

1. If α • γ is defined, then α ◦ (α • γ) = γ;1011

2. α • (α ◦ γ) = γ;1012

3. If γ1 < γ2, then α ◦ γ1 < α ◦ γ2;1013

4. If γ1 < γ2 and both α • γ1 and α • γ2 are defined, then α • γ1 < α • γ2;1014

5. If γ1 # γ2, then α ◦ γ1 # α ◦ γ2;1015

6. If γ < α ◦ γ′, then either γ = [α]∼ or α • γ < γ′;1016

7. If part(α1) ∩ part(α2) = ∅, then α1 ◦ (α2 ◦ γ) = α2 ◦ (α1 ◦ γ);1017

8. If part(α1)∩part(α2) = ∅ and bothα2•(α1 ◦ γ), α2•γ are defined, thenα1◦(α2 • γ) =1018

α2 • (α1 ◦ γ).1019

The next lemma relates the retrieval and residual operator with the global types1020

in the branches of choices.1021

Lemma 8.11. The following hold:10221023

1. If γ ∈ GE(G), then pqλ ◦ γ ∈ GE(p → q : ⊞i∈Iλi; Gi), where λ = λk and G = Gk1024

for some k ∈ I;1025

2. If γ ∈ GE(p → q : ⊞i∈Iλi; Gi) and pqλk • γ is defined, then pqλk • γ ∈ GE(Gk),1026

where k ∈ I.1027

The following lemma plays the role of Lemma 8.6 for n-events.1028

Lemma 8.12. Let G α
−→ G′.1029

1. If γ ∈ GE(G′), then α ◦ γ ∈ GE(G);1030

2. If γ ∈ GE(G) and α • γ is defined, then α • γ ∈ GE(G′).1031

Each non-empty trace gives rise to a sequence of g-events, compare with Defi-1032

nition 8.3.1033

Definition 8.13 (Building sequences of g-events from traces). We define the sequence
of g-events corresponding to a non-empty trace σ by

gec(σ) = γ1; · · · ;γn

where γi = ev(σ[1 ... i]) for all i, 1 ≤ i ≤ n.1034

We show that gec(·) has similar properties as nec(·), see Lemma 8.4(1). The1035

proof is straightforward.1036

Lemma 8.14. Let gec(σ) = γ1; · · · ;γn.1037

35



1. cm(γi) = σ[i] for all i, 1 ≤ i ≤ n.1038

2. If 1 ≤ h, k ≤ n, then ¬(γh # γk);1039

We may now prove the correspondence between the traces labelling the transi-1040

tion sequences of a global type and the proving sequences of its PES. Let us stress1041

the difference between the set of traces Tr+(G) of a global type G as defined at page1042

20 and the set of traces that label the transition sequences of G, which is a larger set1043

due to the internal Rule [Icomm] of the LTS for global types given in Figure 4.1044

Theorem 8.15. If G σ
−→ G′, then gec(σ) is a proving sequence in SG(G).1045

Proof By induction on σ.1046

Base case. Let σ = α, then gec(α) = [α]∼. We use a further induction on the inference1047

of the transition G α
−→ G′.1048

Let G = p → q : ⊞i∈Iλi; Gi, G′ = Gh and α = pqλh for some h ∈ I. By Defini-1049

tion 7.11(1) [pqλh]∼ ∈ GE(G).1050

Let G = p → q : ⊞i∈Iλi; Gi and G′ = p → q : ⊞i∈Iλi; G′i and Gi
α
−→ G′i for all i ∈ I1051

and part(α) ∩ {p,q} = ∅. By induction [α]∼ ∈ GE(Gi) for all i ∈ I. By Lemma 8.11(1)1052

pqλi ◦ [α]∼ ∈ GE(G) for all i ∈ I. By Definition 7.11(1) pqλi ◦ [α]∼ = [α]∼, since1053

part(α)∩{p,q}=∅. We conclude [α]∼ ∈ GE(G).1054

Inductive case. Let σ = α · σ′ with σ′ , ϵ. From G σ
−→ G′ we get G α

−→ G′′ σ
′

−→ G′ for1055

some G′′. Let gec(σ) = γ1; · · · ;γn and gec(σ′) = γ′2; · · · ;γ′n. By induction gec(σ′) is a1056

proving sequence in SG(G′′). By Definitions 8.13 and 7.6 γi = α ◦ γ′i , which implies1057

α • γi = γ′i by Lemma 8.10(2) for all i, 2 ≤ i ≤ n.1058

We can show that γ1 = [α]∼ ∈ GE(G) as in the proof of the base case. By1059

Lemma 8.12(1) γi ∈ GE(G) since γ′i ∈ GE(G′′) and α • γi = γ′i for all i, 2 ≤ i ≤ n. We1060

prove that gec(σ) is a proving sequence in SG(G). Let γ < γk for some k, 1 ≤ k ≤ n.1061

Note that this implies k > 1. Since γk = α ◦ γ
′

k by Lemma 8.10(6) either γ = [α]∼ or1062

α•γ < γ′h. If γ = [α]∼ = γ1 we are done. Otherwiseα•γ ∈ GE(G′′) by Lemma 8.11(2).1063

Since gec(σ′) is a proving sequence in SG(G′′), there is h < k such that α • γ = γ′h1064

and this implies γ = α ◦ (α • γ) = α ◦ γ′h = γh by Lemma 8.10(1).1065

Theorem 8.16. If γ1; · · · ;γn is a proving sequence in SG(G), then G σ
−→ G′, where σ =1066

cm(γ1) · · · · · cm(γn).1067

Proof The proof is by induction on the length n of the proving sequence. Let1068

cm(γ1) = α and {p,q} = part(α).1069

Case n = 1. Since γ1 is the first event of a proving sequence, we have γ1 = [α]∼. We1070

show this case by induction on d = depth(G,p) = depth(G,q).1071

Case d = 1. Let α = pqλ and G = p→ q :⊞i∈Iλi; Gi and λ = λh for some h ∈ I. Then1072

G α
−→ Gh by rule [Ecomm].1073

Case d > 1. Let G = r → s : ⊞i∈Iλi; Gi and {r, s} ∩ {p,q} = ∅. By Definition 8.9(1)1074

rsλi • γ1 is defined for all i ∈ I since {r, s} ∩ {p,q} = ∅. This implies rsλi • γ1 ∈ GE(Gi)1075

for all i ∈ I by Lemma 8.11(2). By induction hypothesis Gi
α
−→ G′i for all i ∈ I. Then1076

we can apply rule [Icomm] to derive G α
−→ r→ s :⊞i∈Iλi; G′i .1077
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Case n > 1. Let G α
−→ G′′ be the transition as obtained from the base case. We1078

show that α • γ j is defined for all j, 2 ≤ j ≤ n. If α • γk were undefined for some k,1079

2 ≤ k ≤ n, then by Definition 8.9(1) either γk = γ1 or γk = [σ]∼ with σ / α · σ′ and1080

part(α) ∩ part(σ) , ∅. In the second case α@ p # σ@ p or α@ q # σ@ q, which implies1081

γk #γ1. So both cases are impossible. If α • γ j is defined, by Lemma 8.12(2) we get1082

α • γ j ∈ GE(G′′) for all j, 2 ≤ j ≤ n.1083

We show that γ′2; · · · ;γ′n is a proving sequence in SG(G′′) where γ′j = α • γ j for all j,1084

2 ≤ j ≤ n. By Lemma 8.10(1) γ j = α ◦ γ′j for all j, 2 ≤ j ≤ n. Then by Lemma 8.10(5)1085

no two events in the sequence γ′2; · · · ;γ′n can be in conflict. Let γ ∈ GE(G′′) and1086

γ < γ′h for some h, 2 ≤ h ≤ n. By Lemma 8.12(1) α ◦γ and α ◦γ′h belong to GE(G). By1087

Lemma 8.10(3) α ◦ γ < α ◦ γ′h. By Lemma 8.10(1) α ◦ γ′h = γh. Let γ′ = α ◦ γ. Then1088

γ′ < γh implies, by Definition 3.6 and the fact that SG(G) is a PES, that there is k < h1089

such that γ′ = γk. By Lemma 8.10(1) we get γ = α • γ′ = α • γk = γ
′

k.1090

Since γ′2; · · · ;γ′n is a proving sequence in SG(G′′), by induction G′′ σ
′

−→ G′ where1091

σ′ = cm(γ′2) · . . . · cm(γ′n). Let σ = cm(γ1) · . . . · cm(γn). Since cm(γ′j) = cm(γ j) for1092

all j, 2 ≤ j ≤ n, we have σ = α · σ′. Hence G α
−→ G′′ σ

′

−→ G′ is the required transition1093

sequence.1094

The last ingredient required to prove our main theorem is the following separa-1095

tion result from [9] (Lemma 2.8 p. 12):1096

Lemma 8.17 (Separation [9]). Let S = (E,≺, # ) be a flow event structure and X,X′ ∈1097

C(S) be such that X ⊂ X′. Then there exist e ∈ X′\X such that X ∪ {e} ∈ C(S).1098

We may now finally show the correspondence between the configurations of the1099

FES of a network and the configurations of the PES of its global type. Let ≃ denote1100

isomorphism on domains of configurations.1101

Theorem 8.18 (Isomorphism). If ⊢ N : G, thenD(SN (N)) ≃ D(SG(G)).1102

Proof By Theorem 8.8 if ν1; · · · ; νn is a proving sequence of SN (N), then N σ
−→ N′1103

where σ = cm(ν1) · · · cm(νn). By applying iteratively Subject Reduction (Theo-1104

rem 6.10) G σ
−→ G′ and ⊢ N′ : G′. By Theorem 8.15 gec(σ) is a proving sequence of1105

S
G(G).1106

By Theorem 8.16 if γ1; · · · ;γn is a proving sequence of SG(G), then G σ
−→ G′1107

whereσ = cm(γ1) · · · cm(γn). By applying iteratively Session Fidelity (Theorem 6.11)1108

N σ
−→ N′ and ⊢ N′ : G′. By Theorem 8.7 nec(σ) is a proving sequence of SN (N).1109

Therefore we have a bijection between D(SN (N)) and D(SG(G)), given by1110

nec(σ)↔ gec(σ) for any σ generated by the (bisimilar) LTSs of N and G.1111

We show now that this bijection preserves inclusion of configurations. By1112

Lemma 8.17 it is enough to prove that if ν1; · · · ; νn ∈ C(SN (N)) is mapped to1113

γ1; · · · ;γn ∈ C(SG(G)), then ν1; · · · ; νn; ν ∈ C(SN (N)) iff γ1; · · · ;γn;γ ∈ C(SG(G)),1114

whereγ1; · · · ;γn;γ is the image of ν1; · · · ; νn; νunder the bijection. I.e. let nec(σ ·α) =1115

ν1; · · · ; νn; ν and gec(σ ·α) = γ1; · · · ;γn;γ. This implies σ = cm(ν1) · · · cm(νn) =1116

cm(γ1) · · · cm(γn) and α = cm(ν) = cm(γ) by Lemmas 8.4 and 8.14.1117

37



By Theorem 8.8, if ν1; · · · ; νn; ν is a proving sequence of SN (N), then N σ
−→ N0

α
−→1118

N′. By applying iteratively Subject Reduction (Theorem 6.10) G σ
−→ G0

α
−→ G′ and1119

⊢ N′ : G′. By Theorem 8.15 gec(σ ·α) is a proving sequence of SG(G).1120

By Theorem 8.16, if γ1; · · · ;γn;γ is a proving sequence of SG(G), then G σ
−→1121

G0
α
−→ G′. By applying iteratively Session Fidelity (Theorem 6.11) N σ

−→ N0
α
−→ N′1122

and ⊢ N′ : G′. By Theorem 8.7 nec(σ ·α) is a proving sequence of SN (N).1123

9. Related Work and Conclusions1124

Event Structures (ESs) were introduced in Winskel’s PhD Thesis [60] and in the
seminal paper by Nielsen, Plotkin and Winskel [49], roughly in the same frame of
time as Milner’s calculus CCS [47]. It is therefore not surprising that the relationship
between these two approaches for modelling concurrent computations started to
be investigated very soon afterwards. The first interpretation of CCS into ESs was
proposed by Winskel in [61]. This interpretation made use of Stable ESs, because
PESs, the simplest form of ESs, appeared not to be flexible enough to account for
CCS parallel composition. Indeed, since CCS parallel composition allows for two
concurrent complementary actions to either synchronise or occur independently
in any order, each pair of such actions gives rise to two forking computations:
this requires duplication of the same continuation process for these forking com-
putations in PESs, while the continuation process may be shared by the forking
computations in Stable ESs, which allow for disjunctive causality. Subsequently,
ESs (as well as other nonsequential “denotational models” for concurrency such as
Petri Nets) have been used as the touchstone for assessing noninterleaving oper-
ational semantics for CCS: for instance, the pomset semantics for CCS by Boudol
and Castellani [7, 8] and the semantics based on “concurrent histories” proposed
by Degano, De Nicola and Montanari [29, 27, 28], were both shown to agree with an
interpretation of CCS processes into some class of ESs (PESs for [27, 28], PESs with
non-hereditary conflict for [7], and FESs for [8]). Among the early interpretations
of process calculi into ESs, we should also mention the PES semantics for TCSP
(Theoretical CSP [11, 50]), proposed by Goltz and Loogen [46] and later generalised
by Baier and Majster-Cederbaum [2], and the Bundle ES semantics for LOTOS, pro-
posed by Langerak [45] and extended by Katoen [43]. Like FESs, Bundle ESs are a
subclass of Stable ESs. We recall the relationships between the above classes of ESs
(the reader is referred to [10] for separating examples):

Prime ESs ⊂ Bundle ESs ⊂ Flow ESs ⊂ Stable ESs ⊂ General ESs

More sophisticated ES semantics for CCS, based on FESs and designed to be1125

robust under action refinement [1, 26, 34], were subsequently proposed by Goltz1126

and van Glabbeek [57]. Importantly, all the above-mentioned classes of ESs, except1127

General ESs, give rise to the same prime algebraic domains of configurations, from1128

which one can recover a PES by selecting the complete prime elements.1129

More recently, ES semantics have been investigated for the π-calculus by Crafa,1130

Varacca and Yoshida [21, 58, 22] and by Cristescu, Krivine and Varacca [23, 24, 25].1131

Previously, other causal models for the π-calculus had already been put forward1132
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by Jategaonkar and Jagadeesan [42], by Montanari and Pistore [48], by Cattani and1133

Sewell [18] and by Bruni, Melgratti and Montanari [12]. The main new issue, when1134

addressing causality-based semantics for the π-calculus, is the implicit causality1135

induced by scope extrusion. Two alternative views of such implicit causality had1136

been proposed in early work on noninterleaving operational semantics for the π-1137

calculus, respectively by Boreale and Sangiorgi [6] and by Degano and Priami [30].1138

Essentially, in [6] an extruder (that is, an output of a private name) is considered to1139

cause any action that uses the extruded name, whether in subject or object position,1140

while in [30] it is considered to cause only the actions that use the extruded name1141

in subject position. Thus, for instance, in the process P = νa (b⟨a⟩ | c⟨a⟩ | a), the two1142

parallel extruders are considered to be causally dependent in the former approach,1143

and independent in the latter. All the causal models for the π-calculus mentioned1144

above, including the ES-based ones, take one or the other of these two stands. Note1145

that opting for the second one leads necessarily to a non-stable ES model, where1146

there may be causal ambiguity within the configurations themselves: for instance,1147

in the above example the maximal configuration contains three events, the extruders1148

b⟨a⟩, c⟨a⟩ and the input on a, and one does not know which of the two extruders1149

enabled the input. Indeed, the paper [22] uses non-stable ESs. The use of non-stable1150

ESs (General ESs) to express situations where a computational step can merge parts1151

of the state is advocated for instance by Baldan, Corradini and Gadducci in [3].1152

These ESs give rise to configuration domains that are not prime algebraic, hence1153

the classical representation theorems have to be adjusted.1154

In our simple setting, where we deal only with single sessions and do not con-1155

sider session interleaving nor delegation, we can dispense with channels altogether,1156

and therefore the question of parallel extrusion does not arise. In this sense, our1157

notion of causality is closer to that of CCS than to the more complex one of the1158

π-calculus. However, even in a more general setting, where participants would be1159

paired with the channel name of the session they pertain to, the issue of parallel1160

extrusion would not arise: indeed, in the above example b and c should be equal,1161

because participants can only delegate their own channel, but then they could not1162

be in parallel because of linearity, one of the distinguishing features enforced by1163

session types. Hence we believe that in a session-based framework the two above1164

views of implicit causality should collapse into just one.1165

We now briefly discuss our design choices.1166

• The calculus considered in the present paper uses synchronous communi-1167

cation - rather than asynchronous, buffered communication - because this1168

is how communication is classically modelled in ESs, when they are used1169

to give semantics to process calculi. We should mention however that after1170

first proposing the present study in [15], we also considered a calculus with1171

asynchronous communication in the companion paper [16]. In that work too,1172

networks are interpreted as FESs, and their associated global types, which1173

we called asynchronous types as they split communications into outputs and1174

inputs, are interpreted as PESs. The key result is again an isomorphism be-1175

tween the configuration domain of the FES of a typed network and that of the1176

PES of its type.1177
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• Concerning the choice operator, we adopted here the basic (and most restric-1178

tive) variant for it, as it was originally proposed for multiparty session calculi1179

in [39]. This is essentially a simplifying assumption, and we do not foresee any1180

difficulty in extending our results to a more general choice operator, where the1181

projection is rendered more flexible through the use of a merge operator [31].1182

• As regards the preorder on processes, which is akin to a subtyping relation,1183

we envisaged to use the standard subtyping, in which a process with fewer1184

outputs can be used in place of a process with more outputs. However, in that1185

case Session Fidelity would become weaker, since a transition in the LTS of1186

a global type would only ensure a transition in the LTS of the corresponding1187

network, but not necessarily with the same labelling communication. The1188

main drawback would be that Theorem 8.18 would no longer hold: more1189

precisely, the domains of network configurations would only be embedded1190

in (and not isomorphic to) the domains of their global type configurations.1191

Notably, typability is independent from the use of our preorder or of the1192

standard one, as proved in [4].1193

As regards future work, we plan to define an asynchronous transition system1194

(ATS) [5] for our calculus, along the lines of [10], and show that it provides a1195

noninterleaving operational semantics for networks that is equivalent to their FES1196

semantics. This would enable us also to investigate the issue of reversibility, jointly1197

on our networks and on their FES representations, since the ATS semantics would1198

give us the handle to unwind networks, while the corresponding FESs could be1199

unrolled following one of the methods proposed in existing work on reversible1200

event structures [53, 25, 36, 37, 35].1201

As mentioned at the end of Section 7, the quest for a semantic counterpart1202

of our well-formedness conditions on global types – namely, for properties that1203

characterise the FESs obtained from typable networks – is still open. By way1204

of comparison, such semantic well-formedness conditions have been proposed1205

in [56] for graphical choreographies, a truly concurrent graphical model for global1206

specifications with two kinds of forking nodes, representing respectively choice1207

and parallel composition. In [56], those well-formedness conditions, called well-1208

sequencing and well-branchedness, were shown to be sufficient to ensure projectability1209

on local specifications. In our case, the property corresponding to well-sequencing1210

is automatically ensured by our ES semantics, and we conjecture that the well-1211

branchedness condition for choice nodes (corresponding to projectability) could1212

amount in our simpler setting10 to the following semantic condition:1213

Let ν1, ν2 ∈ NE(N) and p :: ζ · π ∈ ν1 and p :: ζ · π′ ∈ ν2 with π , π′ and1214

q = pt(π) = pt(π′). If ν1 ≺
∗ ν′1 for some ν′1 ∈ NE(N) such that r ∈ loc(ν′1) with1215

r < {p,q}, then ν2 ≺
∗ ν′2 for some ν′2 ∈ NE(N) such that r ∈ loc(ν′2).1216

This condition would allow us to rule out the FESs of both networks N′ and N′′1217

discussed at the end of Section 7. However, it should be completed with a condition1218

corresponding to boundedness, and the conjunction of these two conditions might1219

10Our choice operator for global types is less general than that of [56].
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still not be sufficient in general to ensure typability. We plan to further investigate1220

this question in the near future.1221
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Appendices1403

A. Proofs of Section 51404

This section contains the proofs of Lemmas 5.18, 5.21 and 5.24.1405

Lemma 5.18 Let ν and ν′ be binary n-events with loc(ν) = loc(ν′). Then ν # ν′ iff p :: η ∈ ν1406

and p :: η′ ∈ ν′ imply η # η′.1407

Proof The “if” direction holds by Definition 5.7(2a). We show the “only-if” di-1408

rection. First observe that for any n-event ν = {p :: η1,q :: η2} the condition1409

p :: η1 Ẑ q :: η2 of Definition 5.5 implies η1 ↱q Z η2 ↱p by Definition 5.4, which in1410

turn implies |η1 ↱q | = |η2 ↱p | by Definition 5.3. If ν is a binary event, we also have1411

|η1 | = |η1 ↱q | and |η2 | = |η2 ↱p | by Definition 5.2, since all the actions of η1 involve1412

q and all the actions of η2 involve p, and thus the projections do not erase actions.1413

Assume now ν′ = {p :: η′1,q :: η′2}. We consider two cases (the others being symmet-1414

ric):1415

– ν # ν′ because η1 # η′1. Then η1 ↱q Z η2 ↱p and η′1 ↱q Z η′2 ↱p imply η2 # η′2;1416

– ν # ν′ because |η1 ↱q | = |η′2 ↱p | and ¬(η1 ↱q Z η′2 ↱p ). As argued before, we1417

have |η2 ↱p | = |η1 ↱q | and |η′2 ↱p | = |η′1 ↱q | . Then, from |η1 ↱q | = |η′2 ↱p | and1418

the above remark about binary events, we get |η2 | = |η1 | = |η′2 | = |η
′

1 | . From1419

¬(η1 ↱q Z η′2 ↱p ) it follows that η1 , η′1 and η2 , η′2. Then we may conclude,1420

since |ηi | = |η′i | and ηi , η′i imply ηi # η′i for i = 1, 2.1421

Lemma 5.21 (Sharing of located events implies conflict) If ν, ν′ ∈ NE and ν , ν′1422

and (ν ∩ ν′) , ∅, then ν # ν′.1423

Proof Let p :: η ∈ (ν ∩ ν′) and loc(ν) = loc(ν′) = {p,q}. Then there must exist η0, η′01424

such that q :: η0 ∈ ν and q :: η′0 ∈ ν
′. From p :: η Ẑ q :: η0 and p :: η Ẑ q :: η′01425

it follows that η0 ↱ p = η′0 ↱ p . This, in conjunction with the fact that pt(act(η0)) =1426

pt(act(η′0)) = p, implies that neither η0 < η′0 nor η′0 < η0. Thus η0 # η′0 and therefore1427

ν # ν′ by Definition 5.7.1428

Lemma 5.24 If X is a configuration of SN (N) and ν ∈ X, then there is a unique causal set1429

E of ν such that E ⊆ X.1430

Proof By Definition 5.11, if ν ∈ NE(N), then ν has at least one causal set included1431

in NE(N). Let E′ = {ν′ ∈ X | ν′ ≺ ν}. By Definition 3.4, E′ ∪ {ν} is conflict-free.1432

Moreover, if p :: η ∈ ν and η′ < η, then by Lemma 5.21 there is at most one ν′′ ∈ E′1433

such that p :: η′ ∈ ν′′. Therefore, E′ ⊆ E for some causal set E of ν by Definition 5.9.1434

We show that E ⊆ E′. Assume ad absurdum that ν0 ∈ E\E′. By definition of causal1435

set, ν0 ≺ ν. By definition of E′, ν0 < E′ implies ν0 < X. By Definition 3.4 this implies1436

ν0 # ν1 ≺ ν for some ν1 ∈ X. Then ν1 ∈ E′ by definition of E′, and thus ν1 ∈ E. Hence1437

ν0, ν1 ∈ E and ν0 # ν1, contradicting Definition 5.9.1438
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B. Proofs of Section 61439

This section contains the proofs of Lemmas 6.6, 6.9, Theorems 6.10, 6.11 and of1440

the auxiliary Lemmas B.1, B.2, B.3.1441

Lemma 6.6 If G is bounded, then G↾ r is a partial function for all r.1442

Proof We redefine the projection ↓r as the largest relation between global types and1443

processes such that (G,P) ∈↓r implies:1444

i) if r < part(G), then P = 0;1445

ii) if G = r→ p :⊞i∈Iλi; Gi, then P =
⊕

i∈I q!λi; Pi and (Gi,Pi) ∈↓r for all i ∈ I;1446

iii) if G = p→ r :⊞i∈Iλi; Gi, then P = Σi∈Ip?λi; Pi and (Gi,Pi) ∈↓r for all i ∈ I;1447

iv) if G = p→ q : ⊞i∈Iλi; Gi and r < {p,q} and r ∈ part(Gi), then (Gi,P) ∈↓r for all1448

i ∈ I.1449

The equality E of processes is the largest symmetric binary relation R on processes1450

such that (P,Q) ∈ R implies:1451

(a) if P =
⊕

i∈I p!λi; Pi , then Q =
⊕

i∈I p!λi; Qi and (Pi,Qi) ∈ R for all i ∈ I;1452

(b) if P = Σi∈Ip?λi; Pi , then Q = Σi∈Ip?λi; Qi and (Pi,Qi) ∈ R for all i ∈ I.1453

It is then enough to show that the relation

Rr = {(P,Q) | ∃G . (G,P) ∈↓r and (G,Q) ∈↓r}

satisfies Clauses (a) and (b) (with R replaced by Rr), since this will imply Rr ⊆ E.1454

Note first that (0, 0) ∈ Rr because (End, 0) ∈↓r, and that (0, 0) ∈ E because Clauses (a)1455

and (b) are vacuously satisfied by the pair (0, 0). The proof is by induction on1456

d = depth(G, r). We only consider Clause (b), the proof for Clause (a) being similar.1457

So, assume (P,Q) ∈ Rr and P = Σi∈Ip?λi; Pi.1458

Case d = 1. In this case G = p → r : ⊞i∈Iλi; Gi and P = Σi∈Ip?λi; Pi and (Gi,Pi) ∈↓r1459

for all i ∈ I. From (G,Q) ∈↓r we get Q = Σi∈Ip?λi; Qi and (Gi,Qi) ∈↓r for all i ∈ I.1460

Hence Q has the required form and (Pi,Qi) ∈ Rr for all i ∈ I.1461

Case d > 1. In this case G = p → q : ⊞ j∈Jλ
′

j; G j and r < {p,q} and (G j,P) ∈↓r for all1462

j ∈ J. From (G,Q) ∈↓r we get (G j,Q) ∈↓r for all j ∈ J. Then (P,Q) ∈ Rr.1463

We need a lemma relating the projections of a well-formed global type with its1464

transitions.1465

Lemma B.1. Let G be a well-formed global type.1466

1. If G↾p =
⊕

i∈I q!λi; Pi and G↾q = Σ j∈Jp?λ′j; Q j, then I = J, λi = λ′i , G
pqλi
−−−→ Gi,1467

Gi↾p = Pi and Gi↾q = Qi for all i ∈ I.1468

2. If G
pqλ
−−−→ G′, then G ↾ p =

⊕
i∈I q!λi; Pi, G ↾ q = Σi∈Ip?λi; Qi, where λk = λ for1469

some k ∈ I, and G′↾ r = G↾ r for all r < {p,q}.1470
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Proof (1). The proof is by induction on d = depth(G,p).1471

If d = 1, then by definition of projection (see Figure 2) G↾p =
⊕

i∈I q!λi; Pi implies1472

G = p→ q :⊞i∈Iλi; Gi with Gi↾p = Pi. By the same definition G↾q = Σ j∈Jp?λ′j; Q j1473

implies J = I and λ′j = λ j and Q j = G j ↾q for all j ∈ J. Moreover G
pqλi
−−−→ Gi by Rule1474

[Ecomm] for all i ∈ I.1475

If d > 1, then G = r → s : ⊞h∈Hλ
′′

h ; G′h with {p,q} ∩ {r, s} = ∅. By definition of1476

projection G ↾ p = G′h ↾ p and G ↾ q = G′h ↾ q for all h ∈ H. By Lemma 6.51477

depth(G,p) > depth(G′h,p) for all h ∈ H. Then by induction I = J, λi = λ′i ,1478

G′h
pqλi
−−−→ Gi

h, Gi
h ↾ p = Pi and Gi

h ↾ q = Qi for all i ∈ I and all h ∈ H. Let1479

Gi = r → s : ⊞h∈Hλ
′′

h ; Gi
h. By Rule [Icomm] G

pqλi
−−−→ Gi for all i ∈ I. By defini-1480

tion of projection Gi↾p = Pi and Gi↾q = Qi for all i ∈ I.1481

(2). The proof is by induction on the transition rules of Figure 4.1482

The interesting case is:
Gh

pqλ
−−−→ G′h h ∈ H {p,q} ∩ {s, t} = ∅

[Icomm]
s→ t :⊞h∈Hλ

′

h; Gh
pqλ
−−−→ s→ t :⊞h∈Hλ

′

h; G′h

1483

with G = s → t : ⊞h∈Hλ
′

h; Gh and G′ = s → t : ⊞h∈Hλ
′

h; G′h. By induction1484

Gh↾p =
⊕

i∈I q!λi; Pi, Gh↾q = Σi∈Ip?λi; Qi, λ = λk for some k ∈ I and G′h↾ r = Gh↾ r1485

for all r < {p,q} and all h ∈ H. By definition of projection G ↾ p = Gh ↾ p and1486

G↾q = Gh ↾q for all h ∈ H. For r < {p,q, s, t} we get G′ ↾ r = G′h ↾ r = Gh ↾ r = G↾ r .1487

Moreover G′ ↾ s =
⊕

h∈H t!λ′h; G′h ↾ s =
⊕

h∈H t!λ′h; Gh ↾ s = G ↾ s and G′ ↾ t =1488

Σh∈Ht?λ′h; G′h↾ t = Σh∈Hs?λ′h; Gh↾s = G↾ t .1489

Lemma 6.9 If G is a well-formed global type and G
pqλ
−−−→ G′, then G′ is a well-formed1490

global type.1491

Proof If G
pqλ
−−−→ G′, by Lemma B.1(1) and (2) G′ ↾ r is defined for all r. The proof1492

that depth(G′′, r) is finite for all r and G′′ subtree of G′ is easy by induction on the1493

transition rules of Figure 4.1494

The proofs of Subject Reduction and Session Fidelity rely on the Inversion and1495

Canonical Form lemmas whose proofs are immediate.1496

Lemma B.2 (Inversion). If ⊢ N : G, then P ≤ G↾p for all p[[ P ]] ∈ N.1497

Lemma B.3 (Canonical Form). If ⊢ N : G and p ∈ part(G), then p[[ P ]] ∈ N and1498

P ≤ G↾p .1499

Theorem 6.10 (Subject Reduction) If ⊢ N : G and N α
−→ N′, then G α

−→ G′ and ⊢ N′ : G′.1500

Proof Let α = pqλ. By Rule [Com] of Figure 1, N ≡ p[[ P ]] ∥ q[[ Q ]] ∥ N′′ where1501

P =
⊕

i∈I q!λi; Pi and Q = Σ j∈Jp?λ j; Q j and N′ ≡ p[[ Ph ]] ∥ q[[ Qh ]] ∥ N′′ and λ = λh1502

for some h ∈ I ∩ J. From Lemma B.2 we get1503

1. G↾p =
⊕

i∈I q!λi; P′i with Pi ≤ P′i for all i ∈ I, from Rule [ ≤ -Out] of Figure 3,1504

and1505
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2. G ↾ q = Σ j∈J′p?λ j; Q′j with Q j ≤ Q′j for all j ∈ J′ ⊆ J, from Rule [ ≤ -In] of1506

Figure 3, and1507

3. R ≤ G↾ r for all r[[ R ]] ∈ N′′.1508

By Lemma B.1(1) G
pqλh
−−−→ Gh and Gh ↾ p = P′h and Gh ↾ q = Q′h. By Lemma B.1(2)1509

Gh↾ r = G↾ r for all r < {p,q}. We can then choose G′ = Gh.1510

Theorem 6.11 (Session Fidelity) If ⊢ N : G and G α
−→ G′, then N α

−→ N′ and ⊢ N′ : G′.1511

Proof Let α = pqλ. By Lemma B.1(2) G↾p =
⊕

i∈I p!λi; Pi and G↾q = Σi∈Ip?λi; Qi1512

andλ = λi for some i ∈ I and G′↾ r = G↾ r for all r < {p,q}. By Lemma B.1(1) G′↾p =1513

Pi and G′↾q = Qi. From Lemma B.3 and Lemma B.2 we get N ≡ p[[ P ]] ∥ q[[ Q ]] ∥ N′′1514

and1515

1. P =
⊕

i∈I q!λi; P′i with P′i ≤ Pi for i ∈ I, from Rule [ ≤ -Out] of Figure 3, and1516

2. Q = Σ j∈Jp?λ j; Q′j with Q′j ≤ Q j for j ∈ I ⊆ J, from Rule [ ≤ -In] of Figure 3, and1517

3. R ≤ G↾ r for all r[[ R ]] ∈ N′′.1518

We can then choose N′ = p[[ P′i ]] ∥ q[[ Q′i ]] ∥ N′′.1519

C. Proofs of Section 71520

Lemma 7.4 Let σ be a pointed trace. If σ ∼ σ′, then σ′ is a pointed trace and last(σ) =1521

last(σ′).1522

Proof Let σ ∼ σ′. By Definition 7.1 σ′ is obtained from σ by m swaps of adjacent
communications. The proof is by induction on such a number m.
If m = 0 the result is obvious.
If m > 0, then there exists σ0 obtained from σ by m − 1 swaps of adjacent communi-
cations and there are σ1, σ2, α and α′ such that

σ0 = σ1 ·α ·α
′
· σ2 ∼ σ1 ·α

′
·α · σ2 = σ

′ and part(α) ∩ part(α′) = ∅

By induction hypothesis σ0 is a pointed trace and last(σ) = last(σ0). Therefore
σ2 , ϵ since otherwise α′ would be the last communication of σ0 and it cannot be
part(α) ∩ part(α′) = ∅. This implies last(σ) = last(σ′).
To show that σ′ is pointed, since all the communications in σ1 and σ2 have the same
successors in σ0 and σ′, all we have to prove is that the required property holds for
the two swapped communications α′ and α in σ′, namely:

part(α′) ∩ (part(α) ∪ part(σ2)) , ∅
part(α) ∩ part(σ2) , ∅

Since part(α) ∩ part(α′) = ∅, these two statements are respectively equivalent to:

part(α′) ∩ part(σ2) , ∅
part(α) ∩ (part(α′) ∪ part(σ2)) , ∅

The last two statements are known to hold since σ0 is pointed by induction hypoth-1523

esis.1524
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D. Proofs of Subsection 8.11525

This section contains the proofs of Lemmas 8.2, 8.4, 8.5 and 8.6.1526

Lemma 8.2 (Properties of retrieval and residual for n-events).1527

1. If α♦ ν is defined, then α♢ (α♦ ν) = ν;1528

2. α♦ (α♢ ν) = ν;1529

3. If ν ≺ ν′, then α♢ ν ≺ α♢ ν′;1530

4. If ν ≺ ν′ and both α♦ ν and α♦ ν′ are defined, then α♦ ν ≺ α♦ ν′;1531

5. If ν # ν′, then α♢ ν #α♢ ν′;1532

6. If ν # ν′ and both α♦ ν and α♦ ν′ are defined, then α♦ ν #α♦ ν′;1533

7. If α♢ ν #α♢ ν′, then ν # ν′.1534

Proof For (1) and (2) it is enough to show the corresponding properties for located1535

events.1536

(1) Since α♦ (p :: η) is defined, we have η = (α@p ) · η′ and α♦ (p :: η) = p :: η′ for1537

some η′. Then α♢ (α♦ (p :: η)) = α♢ (p :: η′) = p :: (α@p ) · η′ = p :: η.1538

(2) Since α♢ (p :: η) = p :: (α@p ) · η is always defined, we immediately get1539

α♦ (α♢ (p :: η)) = α♦ (p :: (α@p ) · η) = p :: η.1540

(3) Let ν ≺ ν′. By Definition 5.7(1), there are p :: η ∈ ν and p :: η′ ∈ ν′ such that1541

η < η′. Then α♢ (p :: η) = p :: (α@p ) · η ∈ α♢ ν and α♢ (p :: η′) = p :: (α@p ) · η′ ∈1542

α♢ ν′. Since η < η′ implies (α@p ) · η < (α@p ) · η′, we conclude that α♢ ν ≺ α♢ ν′.1543

(4) As in the previous case, there are p :: η ∈ ν and p :: η′ ∈ ν′ such that η < η′.1544

Since both α♦ ν and α♦ ν′ are defined, there exist η0 and η′0 such that η = (α@p ) · η01545

and η′ = (α@p ) · η′0 and α♦ (p :: η) = p :: η0 and α♦ (p :: η′) = p :: η′0. Since η < η′1546

implies η0 < η′0, we conclude that α♦ ν ≺ α♦ ν′.1547

(5) Let ν # ν′. If Clause (2a) of Definition 5.7 applies, then there are p :: η ∈ ν1548

and p :: η′ ∈ ν′ such that η # η′. From α♢ (p :: η) = p :: (α@p ) · η and α♢ (p :: η′) =1549

p :: (α@p ) · η′ we get (α@p ) · η # (α@p ) · η′. If Clause (2b) of Definition 5.7 applies,1550

then there are p :: η ∈ ν and q :: η′ ∈ ν′ with p , q such that | η ↾ q | = | η′ ↾ p |1551

and ¬(η ↾ q Z η′ ↾ p ). Let η0 = (α@p ) · η and η′0 = (α@q ) · η′. If part(α) , {p,q},1552

then (α@p ) ↾ q = ϵ = (α@q ) ↾ p and thus η0 ↾ q = η ↾ q and η′0 ↾ p = η′ ↾ p . If1553

part(α) = {p,q}, say α = pqλ, then η0 = q!λ · η and η′0 = p?λ · η′, which implies1554

|η0 ↾q | = |η↾q | + 1 = |η′ ↾p | + 1 = |η′0 ↾p | and ¬(η0 ↾q Z η′0 ↾p ). In both cases we1555

conclude that α♢ ν #α♢ ν′.1556

(6) The proof is similar to that of Point (5), considering that α♦ ν and α♦ ν′ are1557

defined.1558

(7) Letα♢ ν #α♢ ν′. If Clause (2a) of Definition 5.7 applies, then there are p :: η ∈ ν1559

and p :: η′ ∈ ν′ such that (α@p ) · η # (α@p ) · η′. Therefore η # η′ and thus ν # ν′. If1560

Clause (2b) of Definition 5.7 applies, then there are p :: η0 = α♢ (p :: η) ∈ α♢ ν1561

and q :: η′0 = α♢ (q :: η′) ∈ α♢ ν′ with p , q such that | η0 ↾ q | = | η′0 ↾ p | and1562

¬(η0 ↾ q Z η′0 ↾ p ). It follows that η0 = (α@p ) · η and η′0 = (α@q ) · η′ and p :: η ∈ ν1563
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and q :: η′ ∈ ν′. If part(α) , {p,q}, then (α@p ) ↾ q = ϵ = (α@q ) ↾ p and thus1564

η ↾q = η0 ↾q and η′ ↾p = η′0 ↾p . If part(α) = {p,q}, say α = pqλ, then η0 = q!λ · η1565

and η′0 = p?λ · η′, and thus | η ↾ q | = | η0 ↾ q | − 1 = | η′0 ↾ p | − 1 = | η′ ↾ p | and1566

¬(η↾q Z η′↾p ). In both cases we conclude that ν # ν′.1567

Lemma 8.4 (Properties of nec(·))1568

1. Let nec(σ) = ν1; · · · ; νn. Then1569

(a) cm(νi) = σ[i] for all i, 1 ≤ i ≤ n;1570

(b) If 1 ≤ h, k ≤ n, then ¬(νh # νk).1571

2. ¬(nec(α) #α♢ ν) for all ν.1572

3. Let σ = α · σ′ and σ′ , ϵ. If nec(σ) = ν1; · · · ; νn and nec(σ′) = ν′2; · · · ; ν′n, then1573

α♢ ν′i = νi and α♦ νi = ν′i for all i, 2 ≤ i ≤ n.1574

Proof (1a) Immediate from Definition 8.3, since cm(σ♢ ν) = cm(ν) for any event ν.1575

(1b) We show that neither Clause (2a) nor Clause (2b) of Definition 5.7 can be1576

used to derive νh # νk. Notice that νi = {pi :: σ[1 ... i]@pi ,qi :: σ[1 ... i]@qi }. So if1577

p :: η ∈ νh and p :: η′ ∈ νk with h < k, then either η < η′ or η = η′. Therefore Clause1578

(2a) does not apply. If p :: η ∈ νh and q :: η′ ∈ νk and p , q and |η↾q | = |η′↾p |, then1579

it must be η ↾ q = (σ[1 ... h]@p ) ↾ q Z (σ[1 ... k]@q ) ↾ p = η′ ↾ p . Therefore Clause1580

(2b) cannot be used.1581

(2) We show that neither Clause (2a) nor Clause (2b) of Definition 5.7 can be used1582

to derive nec(α) #α♢ ν. Let part(α) = {p,q}. Then nec(α) = {p :: α@p ,q :: α@q }.1583

Note that p :: η ∈ α♢ ν iff η = (α@p ) · η′ and p :: η′ ∈ ν. Since α@p < (α@p ) · η′,1584

Clause (2a) of Definition 5.7 cannot be used. Now suppose r :: η ∈ α♢ ν for some1585

r < {p,q}. In this case (α@p )↾ r = (α@q )↾ r = ϵ. Therefore, since ϵ Z ϵ, Clause (2b)1586

of Definition 5.7 does not apply.1587

(3) Notice that σ[i] = σ′[i − 1] for all i, 2 ≤ i ≤ n. Then, by Definition 8.3

νi = σ[1 ... i − 1]♢nec(σ[i]) = α♢ (σ[2 ... i − 1]♢nec(σ[i])) =
α♢ (σ′[1 ... i − 2]♢nec(σ′[i − 1])) = α♢ ν′i

for all i, 2 ≤ i ≤ n.1588

By Lemma 8.2(2) α♢ ν′i = νi implies α♦ νi = ν′i for all i, 2 ≤ i ≤ n.1589

Lemma 8.5 If N α
−→ N′ and ν ∈ NE(N), then ν = nec(α) or ν # nec(α) or α♦ ν is defined.1590

Proof Let nec(α) = {p :: α@p ,q :: α@q } and ν = {r :: η, s :: η′}. By Definition 8.1(3)1591

α♦ ν is defined iff η = (α@r ) · η0 and η′ = (α@s ) · η′0 for some η0, η′0.1592

There are 2 possibilities:1593

• {r, s} ∩ {p,q} = ∅. Then α@r = α@s = ϵ and α♦ ν = ν;1594

• {r, s} ∩ {p,q} , ∅. Suppose r = p. There are three possible subcases:1595

1. η = π · ζwith π , α@p . Then r :: η # p :: α@p and thus ν # nec(α);1596
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2. η = α@p . Then either η′ = α@q and ν = nec(α), or η′ , α@q and1597

ν # nec(α) by Lemma 5.21;1598

3. η = (α@p ) · η0. Then α♦p :: η = p :: η0. Now, if s , q we have α♦ s :: η′ =1599

s :: η′, and thus α♦ ν = {p :: η0, s :: η′}. Otherwise, ν = {p :: (α@p ) · η0,q ::1600

η′}. By Definition 5.5 p :: (α@p ) · η0 Ẑ q :: η′, which implies η′ =1601

(α@q ) · η′0 for some η′0.1602

Lemma 8.6 Let N α
−→ N′. Then1603

1. {nec(α)} ∪ {α♢ ν | ν ∈ NE(N′)} ⊆ NE(N);1604

2. {α♦ ν | ν ∈ NE(N) and α♦ ν defined} ⊆ NE(N′).1605

Proof Let α = pqλ. From N α
−→ N′ we get

N = p[[
⊕

i∈I q!λi; P ]] ∥ q[[Σ j∈Jp?λ j; Q j ]] ∥ N0

where for some k ∈ (I ∩ J) we have λk = λ and

N′ = p[[ Pk ]] ∥ q[[ Qk ]] ∥ N0

(1) Let RT = {nec(α)} ∪ {α♢ ν | ν ∈ NE(N′)}. We first show that RT ⊆ CE(N).1606

By Definition 5.13(1) nec(α) ∈ CE(N). Let ν = {r :: η, s :: η′} ∈ NE(N′). We want to1607

prove that α♢ ν ∈ CE(N). By Definition 5.13(1) there are R,S such that r[[ R ]] ∈ N′1608

and s[[ S ]] ∈ N′ and η ∈ PE(R) and η′ ∈ PE(S). There are two possible cases:1609

• {r, s} ∩ {p,q} = ∅. Then r[[ R ]] ∈ N and s[[ S ]] ∈ N and thus α♢ ν = ν ∈ CE(N);1610

• {r, s} ∩ {p,q} , ∅. Suppose r = p. Then η ∈ PE(Pk) and p :: q!λk · η ∈ α♢ ν and1611

q!λk · η ∈ PE(
⊕

i∈I q!λi; Pi). There are two subcases:1612

– s = q. Then η′ ∈ PE(Qk) and q :: p?λk · η
′
∈ α♢ ν and q!λk · η

′
∈1613

PE(Σ j∈Jp?λ j; Q j). We have α♢ ν = {p :: q!λk · η,q :: p?λk · η
′
} ∈ CE(N);1614

– s , q. Then α♢ s :: η′ = s :: η′, and thus α♢ ν = {p :: q!λk · η, s :: η′} ∈1615

CE(N).1616

Therefore in all cases RT ⊆ CE(N). We want now to show that RT ⊆ NE(N).1617

Recall from Section 5 thatNE(N) is the greatest fixed point of the function

fCE(N)(X) = {ν0 ∈ CE(N) | ∃E0 ⊆ X.E0 is a causal set of ν0 in X}

ThenNE(N) is also the greatest post-fixed point of fCE(N)(X), namely the greatest X1618

such that X ⊆ fCE(N)(X). Therefore, to show that RT ⊆ NE(N), it is enough to show1619

that RT is also a post-fixed point of fCE(N)(X), namely that RT ⊆ fCE(N)(RT).1620

Consider first the event nec(α). Since the only causal set of nec(α) in any set
is ∅, it is immediate that nec(α) ∈ fCE(N)(RT). Consider now α♢ ν ∈ RT for some
ν ∈ NE(N′) with loc(ν) = {r, s}. Define

pre(α,E, ν) =

Ξ if {r, s} ∩ {p,q} = ∅
{nec(α)} ∪ Ξ otherwise
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where Ξ = {α♢ ν′ | ν′ ∈ E and E is a causal set of ν inNE(N′)}.1621

We show that pre(α,E, ν) is a causal set of α♢ ν inRT, namely that it is a minimal1622

subset of RT satisfying Conditions (1) and (2) of Definition 5.9.1623

Condition (1) If nec(α) ∈ pre(α,E, ν), then {r, s}∩{p,q} , ∅. A conflict between nec(α)1624

and any other event of pre(α,E, ν) ∪ {α♢ ν} can only be derived by Clause (2a) of1625

Definition 5.7, since nec(α) = {p :: q!λ,q :: p?λ} and (α@p ) ↾ t = (α@q ) ↾ t = ϵ for1626

all t < {p,q}. Suppose r = p. Then p :: q!λ · η ∈ α♢ ν. Since q!λ < q!λ · η, Clause (2a)1627

cannot be used to derive a conflict nec(α) #α♢ ν. Similarly, if α♢ ν1 ∈ pre(α,E, ν)1628

and p :: η1 ∈ ν1, then p :: q!λ · η1 ∈ α♢ ν1. Then q!λ < q!λ · η1, hence Clause (2a)1629

cannot be used to derive nec(α) #α♢ ν1.1630

Suppose now α♢ ν1 ∈ pre(α,E, ν) and α♢ ν2 ∈ pre(α,E, ν). Since E is a causal set, we1631

have ¬(ν1 # ν2). Thus ¬(α♢ ν1 #α♢ ν2) by Lemma 8.2(7).1632

Condition (2) Let ν = {r :: η, s :: η′}, we have α♢ ν = {r :: (α@r ) · η, s :: (α@s ) · η′}.1633

We show that if η0 < (α@r ) · η, then r :: η0 ∈ ν0 for some ν0 ∈ pre(α,E, ν). From1634

η0 < (α@r ) · η we derive η0 = (α@r ) · ζ for some ζ such that ζ < η. If ζ , ϵ,1635

then ζ = η′0 < η. Since E is a causal set, η′0 < η0 implies r :: η′0 ∈∈ E. Hence1636

r :: η0∈∈pre(α,E, ν). If instead ζ = ϵ, then it must be η0 = α@r , ϵ and thus r ∈ {p,q}.1637

In this case {nec(α)} ∈ pre(α,E, ν) and thus r :: η0∈∈pre(α,E, ν).1638

As for minimality , we first show that ν′ ≺ α♢ ν for all ν′ ∈ pre(α,E, ν). If nec(α) ∈1639

pre(α,E, ν), then {r, s} ∩ {p,q} , ∅. Then nec(α) ≺ α♢ ν. If ν1 ∈ pre(α,E, ν) and1640

ν1 , nec(α), then there exists ν′1 ∈ E such that ν1 = α♢ ν′1. Since E is a causal set for1641

ν, we have ν′1 ≺ ν. Therefore ν1 = α♢ ν′1 ≺ α♢ ν by Lemma 8.2(3). Assume now that1642

pre(α,E, ν) is not minimal. Then there is E′ ⊂ pre(α,E, ν) that verifies Condition (2)1643

of Definition 5.9 for α♢ ν. Let ν′ ∈ pre(α,E, ν) \ E′. Then ν′ ≺ α♢ ν = {r :: ηr, s :: ηs}.1644

Assume that r :: η′r ∈ ν
′ with η′r < ηr (the proof is similar for s). By Condition (2),1645

there is ν′′ ∈ E′ such that r :: η′r ∈ ν
′′. But then ν′ # ν′′ by Lemma 5.21, contradicting1646

the fact that pre(α,E, ν) verifies Condition (1). Therefore pre(α,E, ν) is minimal.1647

(2) Let RS = {α♦ ν | ν ∈ NE(N) and α♦ ν defined}. We first show that RS ⊆1648

CE(N′). Let ν = {r :: η, s :: η′} ∈ NE(N) be such that α♦ ν is defined. We want to1649

prove that α♦ ν ∈ CE(N′). By Definition 5.13(1) there are R,S such that r[[ R ]] ∈ N1650

and s[[ S ]] ∈ N and η ∈ PE(R) and η′ ∈ PE(S). There are two possible cases:1651

• {r, s} ∩ {p,q} = ∅. Then r[[ R ]] ∈ N′ and s[[ S ]] ∈ N′ and thus α♦ ν = ν ∈ CE(N′);1652

• {r, s} ∩ {p,q} , ∅. Suppose r = p. Then η ∈ PE(
⊕

i∈I q!λi; Pi) and since α♦ ν is1653

defined we have that η = q!λk · ηk where ηk ∈ PE(Pk). There are two subcases:1654

– s = q. Then η′ ∈ PE(Σ j∈Jp?λ j; Q j) and since α♦ ν is defined η′ = p?λk · η
′

k1655

where η′k ∈ PE(Qk). In this case we have α♦ ν = {p :: ηk,q :: η′k} ∈ CE(N′);1656

– s , q. Then α♦ s :: η′ = s :: η′, and thus α♦ ν = {p :: ηk, s :: η′} ∈ CE(N′).1657

Therefore in all cases RS ⊆ CE(N′). We want now to show that RS ⊆ NE(N′).1658

We proceed as in the proof of Statement (1). We know thatNE(N′) is the greatest
post-fixed point of the function

fCE(N′)(X) = {ν0 ∈ CE(N′) | ∃E0 ⊆ X.E0 is a causal set of ν0 in X}

Then, in order to obtain RS ⊆ NE(N′) it is enough to show that RS is a post-fixed1659

point of fCE(N′)(X), namely that RS ⊆ fCE(N′)(RS).1660
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Let α♦ ν ∈ RS for some ν ∈ NE(N). Define

post(α,E, ν) = {α♦ ν′ | ν′ ∈ E and E is a causal set of ν inNE(N)}

We show that post(α,E, ν) is a causal set of α♦ ν in RS, namely that it is a minimal1661

subset of RS satisfying Conditions (1) and (2) of Definition 5.9.1662

Condition (1) Suppose α♦ ν1 ∈ post(α,E, ν) and α♦ ν2 ∈ post(α,E, ν). Since E is a1663

causal set and ν1, ν2 ∈ E, we have ¬(ν1 # ν2). Thus ¬(α♦ ν1 #α♦ ν2) by Lemma 8.2(5)1664

and (1).1665

Condition (2) Since ν = {r :: η, s :: η′} and α♦ ν is defined, we have η = (α@r ) · ηr and1666

η′ = (α@s ) · ηs and α♦ ν = {r :: ηr, s :: ηs}. Let η0 < ηr. Then (α@r ) · η0 < (α@r ) · ηr =1667

η. Since E is a causal set for ν in NE(N), this implies r :: (α@r ) · η0 ∈∈ E. Hence1668

r :: η0∈∈post(α,E, ν).1669

As for minimality, we first show that ν′ ≺ α♦ ν for all ν′ ∈ post(α,E, ν). If ν1 ∈1670

post(α,E, ν), then there exists ν′1 ∈ E such that ν1 = α♦ ν′1. Since E is a causal set for1671

ν, we have ν′1 ≺ ν. Therefore ν1 = α♢ ν′1 ≺ α♢ ν by Lemma 8.2(3). Assume now that1672

post(α,E, ν) is not minimal. Then there is E′ ⊂ post(α,E, ν) that verifies Condition (2)1673

of Definition 5.9 for α♦ ν. Let ν′ ∈ post(α,E, ν) \ E′. Then ν′ ≺ α♦ ν = {r :: ηr, s :: ηs}.1674

Assume that r :: η′r ∈ ν
′ with η′r < ηr (the proof is similar for s). By Condition (2),1675

there is ν′′ ∈ E′ such that r :: η′r ∈ ν
′′. But then ν′ # ν′′ by Lemma 5.21, contradicting1676

the fact that post(α,E, ν) verifies Condition (1). Therefore post(α,E, ν) is minimal.1677

E. Proofs of Subsection 8.21678

This section contains the proofs of Lemmas 8.10, 8.11 and 8.12.1679

Lemma 8.10 (Properties of retrieval and residual for g-events).1680

1. If α • γ is defined, then α ◦ (α • γ) = γ;1681

2. α • (α ◦ γ) = γ;1682

3. If γ1 < γ2, then α ◦ γ1 < α ◦ γ2;1683

4. If γ1 < γ2 and both α • γ1 and α • γ2 are defined, then α • γ1 < α • γ2;1684

5. If γ1 # γ2, then α ◦ γ1 # α ◦ γ2;1685

6. If γ < α ◦ γ′, then either γ = [α]∼ or α • γ < γ′;1686

7. If part(α1) ∩ part(α2) = ∅, then α1 ◦ (α2 ◦ γ) = α2 ◦ (α1 ◦ γ);1687

8. If part(α1)∩part(α2) = ∅ and bothα2•(α1 ◦ γ), α2•γ are defined, thenα1◦(α2 • γ) =1688

α2 • (α1 ◦ γ).1689

Proof (1) If α•[σ]∼ is defined, then in case part(α)∩part(σ) = ∅we get α•[σ]∼ = [σ]∼1690

and also α ◦ [σ]∼ = [σ]∼, so α ◦ (α • [σ]∼) = [σ]∼. Instead if part(α) ∩ part(σ) , ∅,1691

then α • [σ]∼ = [σ′]∼ where σ ∼ α · σ′ and σ′ , ϵ. From part(α) ∩ part(σ) , ∅ we get1692

α ◦ [σ′]∼ = [α · σ′]∼ by Definition 7.6. This implies α ◦ (α • [σ]∼) = [σ]∼.1693
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(2) By Definition 7.6 either α◦[σ]∼ = [α · σ]∼ if part(α)∩part(σ) , ∅, or α◦σ = [σ]∼.1694

In the first case α • [α · σ]∼ = [σ]∼ and in the second α • [σ]∼ = [σ]∼, which proves1695

the result.1696

(3) Let γ1 = [σ]∼ and γ2 = [σ · σ′]∼. If part(α) ∩ part(σ) , ∅, then part(α) ∩1697

part(σ · σ′) , ∅, and we have α ◦ γ1 = [α · σ]∼ and α ◦ γ2 = [α · σ · σ′]∼. Whence1698

α ◦ γ1 ≤ α ◦ γ2. Suppose now part(α) ∩ part(σ) = ∅. Then α ◦ γ1 = [σ]∼ = γ1. If1699

also part(α) ∩ part(σ′) = ∅, then α ◦ γ2 = [σ · σ]∼ = γ2 and we are done. If instead1700

part(α) ∩ part(σ′) , ∅, then α ◦ γ2 = [α · σ · σ′]∼ = [σ ·α · σ′]∼, whence γ1 ≤ α ◦ γ2.1701

(4) Let γ1 = [σ]∼ and γ2 = [σ · σ′]∼. If part(α)∩ part(σ) = part(α)∩ part(σ · σ′) = ∅,1702

then α•γ1 = γ1 and α•γ2 = γ2. If part(α)∩part(σ) , ∅, then σ ∼ α · σ0, which implies1703

α•γ1 = [σ0]∼ andα•γ2 = [σ0 · σ′]∼. If part(α)∩part(σ) = ∅ and part(α)∩part(σ · σ′) , ∅,1704

then α • γ1 = [σ]∼ and σ′ ∼ α · σ0, which implies α • γ2 = [σ · σ0]∼.1705

(5) Let γ1 = [σ]∼ and γ2 = [σ′]∼ and σ@ p # σ′@ p for some p. The only interesting1706

case is part(α) ∩ part(σ) = ∅ and part(α) ∩ part(σ′) , ∅. This implies α ◦ γ1 = [σ]∼1707

and α ◦ γ2 = [α · σ′]∼. We get (α · σ′) @ p = σ′@ p since part(α) ∩ part(σ) = ∅ implies1708

p < part(α). We conclude α ◦ γ1 # α ◦ γ2.1709

(6) The case γ = [α]∼ is immediate. If α • γ is defined, we get α • γ < α • (α ◦ γ′)1710

by Point 4 and α • (α ◦ γ′) = γ′ by Point 2. Otherwise let γ = [σ]∼ and α ◦ γ′ =1711

[σ · σ′]∼. From α • γ undefined we get part(α) ∩ part(σ) , ∅ and σ / α · σ0. Since1712

part(α) ∩ part(σ) , ∅ implies part(α) ∩ part(σ · σ′) , ∅ we get σ · σ′ ∼ α · σ1 for some1713

σ1 by Definition 7.6(1). Then this case is impossible.1714

(7) Let γ = [σ]∼. By Definition 7.6(1) we have four cases:1715

(a) α1◦(α2 ◦ σ) = [α1 · (α2 · σ)]∼ = [α2 · (α1 · σ)]∼ = α2◦(α1 ◦ σ) if part(α1)∩part(σ) ,1716

∅ and part(α2) ∩ part(σ) , ∅, since part(α1) ∩ part(α2) = ∅;1717

(b) α1 ◦ (α2 ◦ σ) = [α1 · σ]∼ = α2 ◦ (α1 ◦ σ) if part(α1) ∩ part(σ) , ∅ and part(α2) ∩1718

part(σ) = ∅;1719

(c) α1 ◦ (α2 ◦ σ) = [α2 · σ]∼ = α2 ◦ (α1 ◦ σ) if part(α1) ∩ part(σ) = ∅ and part(α2) ∩1720

part(σ) , ∅;1721

(d) α1◦(α2 ◦ σ) = [σ]∼ = α2◦(α1 ◦ σ) if part(α1)∩part(σ) = ∅ and part(α2)∩part(σ) =1722

∅.1723

(8) Let γ = [σ]∼. By Definitions 7.6(1) and 8.9(1) we have four cases:1724

(a) α1 ◦ (α2 • σ) = [α1 · σ′]∼ = α2 • (α1 ◦ σ) if part(α1) ∩ part(σ) , ∅ and σ ∼ α2 · σ′;1725

(b) α1 ◦ (α2 • σ) = [α1 · σ]∼ = α2 • (α1 ◦ σ) if part(α1) ∩ part(σ) , ∅ and part(α2) ∩1726

part(σ) = ∅;1727

(c) α1 ◦ (α2 • σ) = [σ′]∼ = α2 • (α1 ◦ σ) if part(α1) ∩ part(σ) = ∅ and σ ∼ α2 · σ′;1728

(d) α1◦(α2 • σ) = [σ]∼ = α2•(α1 ◦ σ) if part(α1)∩part(σ) = ∅ and part(α2)∩part(σ) =1729

∅.1730

Lemma 8.11 The following hold:17311732
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1. If γ ∈ GE(G), then pqλ ◦ γ ∈ GE(p → q : ⊞i∈Iλi; Gi), where λ = λk and G = Gk1733

for some k ∈ I;1734

2. If γ ∈ GE(p → q : ⊞i∈Iλi; Gi) and pqλk • γ is defined, then pqλk • γ ∈ GE(Gk),1735

where k ∈ I.1736

Proof (1) By Definition 7.11(1) γ ∈ GE(G) implies γ = ev(σ) for some σ ∈ Tr+(G).1737

Since pqλ◦γ = ev(pqλ · σ) by Definitions 7.6, 7.7 and pqλ · σ ∈ Tr+(p→ q :⊞i∈Iλi; Gi)1738

we conclude pqλ ◦ γ ∈ GE(p→ q :⊞i∈Iλi; Gi) by Definition 7.11(1).1739

(2) By Definition 7.11(1) γ ∈ GE(p → q : ⊞i∈Iλi; Gi) implies γ = ev(σ) for some1740

σ ∈ Tr+(p → q : ⊞i∈Iλi; Gi). We get σ = pqλh · σ
′ with σ′ ∈ Tr+(Gh) or σ′ = ϵ for1741

some h ∈ I. The hypothesis pqλk • γ defined implies either h = k and σ′ , ϵ or1742

part(σ′) ∩ {p,q} = ∅ and pqλk • γ = ev(σ′) by Definition 8.9(1). In the first case1743

σ′ ∈ Tr+(Gk). In the second case σ′′ ∈ Tr+(Gk) for some σ′′ ∼ σ′ by definition of1744

projection, which prescribes the same behaviours to all participants different from1745

p,q, see Figure 2. We conclude pqλk • γ ∈ GE(Gk) by Definition 7.11(1).1746

Lemma 8.12 Let G α
−→ G′.1747

1. If γ ∈ GE(G′), then α ◦ γ ∈ GE(G);1748

2. If γ ∈ GE(G) and α • γ is defined, then α • γ ∈ GE(G′).1749

Proof Both proofs are by induction on the inference of the transition G α
−→ G′, see1750

Figure 4.1751

(1) For rule [Ecomm] we get G = p → q : ⊞i∈Iλi; Gi and G′ = Gk and α = pqλk1752

for some k ∈ I. We conclude α ◦ γ ∈ GE(G) by Lemma 8.11(1).1753

For rule [Icomm] we get G = p → q : ⊞i∈Iλi; Gi and G′ = p → q : ⊞i∈Iλi; G′i and1754

Gi
α
−→ G′i for all i ∈ I and part(α)∩{p,q} = ∅. By Definition 7.11(1) γ ∈ GE(G′) implies1755

γ = ev(σ) for some σ ∈ Tr+(G′). This implies σ = pqλk · σ
′ and γ = [σ0]∼ with either1756

σ0 ∼ pqλk · σ
′

0 for some k ∈ I or part(σ0) ∩ {p,q} = ∅ by Definition 7.6. Then pqλk • γ1757

is defined unless σ0 = pqλk by Definition 8.9(1). We consider two cases.1758

If σ0 = pqλk, then α◦γ = [pqλk]∼ since part(α)∩{p,q} = ∅. We conclude α◦γ ∈ GE(G)1759

by Definition 7.11(1). Otherwise let γ′ = pqλk • γ. By Lemma 8.11(2) γ′ ∈ GE(G′k).1760

By induction α ◦ γ′ ∈ GE(Gk). By Lemma 8.11(1) pqλk ◦ (α ◦ γ′) ∈ GE(G). We now1761

show that pqλk ◦ (α ◦ γ′) = α ◦ γ. By Lemma 8.10(7) and part(α) ∩ {p,q} = ∅ we1762

get pqλk ◦ (α ◦ γ′) = α ◦ (pqλk ◦ γ
′) and by Lemma 8.10(1) we have pqλk ◦ γ

′ =1763

pqλk ◦ (pqλk • γ) = γ. Therefore pqλk ◦ (α ◦ γ′) = α ◦ γ ∈ GE(G).1764

(2) For rule [Ecomm] we get G = p → q : ⊞i∈Iλi; Gi and G′ = Gk and α = pqλk1765

for some k ∈ I. We conclude α • γ ∈ GE(G′) by Lemma 8.11(2).1766

For rule [Icomm] we get G = p → q : ⊞i∈Iλi; Gi and G = p → q : ⊞i∈Iλi; G′i and1767

Gi
α
−→ G′i for all i ∈ I and part(α)∩ {p,q} = ∅. By Definition 7.11(1) γ ∈ GE(G) implies1768

γ = ev(σ) for some σ ∈ Tr+(G). This implies σ = pqλk · σ
′ and γ = [σ0]∼ with either1769

σ0 ∼ pqλk · σ
′

0 for some k ∈ I or part(σ0) ∩ {p,q} = ∅ by Definition 7.6. Then pqλk • γ1770

is defined unless σ0 = pqλk by Definition 8.9(1). We consider two cases.1771

Ifσ0 = pqλk, thenα•γ = [pqλk]∼ since part(α)∩{p,q} = ∅. We concludeα•γ ∈ GE(G′)1772

by Definition 7.11(1). Otherwise let γ′ = pqλk • γ. By Lemma 8.11(2) γ′ ∈ GE(Gk).1773
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We first show that α • γ′ is defined. Since α • γ and pqλk • γ are defined, by1774

Definition 8.9(1) we have four cases:1775

(a) σ0 ∼ α · σ1 for some σ1 and σ0 ∼ pqλk · σ
′

0;1776

(b) σ0 ∼ α · σ1 and part(σ0) ∩ {p,q} = ∅;1777

(c) part(α) ∩ part(σ0) = ∅ and σ0 ∼ pqλk · σ
′

0;1778

(d) part(α) ∩ part(σ0) = ∅ and part(σ0) ∩ {p,q} = ∅.1779

In case (a) σ0 ∼ α ·pqλk · σ
′

1 ∼ pqλk ·α · σ
′

1 for some σ′1 since part(α)∩{p,q} = ∅. Notice1780

that σ′1 , ϵ since σ0 is pointed and part(α)∩{p,q} = ∅. We get γ′ = pqλk•γ = [α · σ′1]∼1781

and α • γ′ = [σ′1]∼.1782

In case (b) γ′ = γ and α • γ′ = [σ1]∼.1783

In case (c) γ′ = [σ′0]∼ and α • γ′ = [σ′0]∼, since part(α) ∩ part(σ0) = ∅ implies1784

part(α) ∩ part(σ′0) = ∅.1785

In case (d) γ′ = γ and α • γ′ = γ.1786

By induction α • γ′ ∈ GE(G′k). By Lemma 8.11(1) pqλk ◦ (α • γ′) ∈ GE(G′).1787

We now show that pqλk ◦ (α • γ′) = α•γ. From γ′ = pqλk •γ and Lemma 8.10(1)1788

pqλk ◦ γ
′ = γ. Therefore from α • γ defined we have α • (pqλk ◦ γ

′) defined.1789

Since α • γ′ is also defined and part(α) ∩ {p,q} = ∅, by Lemma 8.10(8) we get1790

pqλk ◦ (α • γ′) = α • (pqλk ◦ γ
′). Therefore pqλk ◦ (α • γ′) = α • γ ∈ GE(G′).1791

F. Glossary of Symbols and Table of Notations1792

Symbol Meaning
π input/output action: p!λ, p?λ
α communication pqλ
σ trace, finite sequence of communications
S event structure
X configuration of an event structure
η p-event, non-empty finite sequence of input/output actions
PE set of p-events
ζ (possibly empty) finite sequence of input/output actions
ϑ undirected action: !λ, ?λ
Θ (possibly empty) finite sequence of undirected actions
ν n-event, unordered pair of dual located p-events
NE set of n-events
γ g-event, equivalence class [σ]∼ with σ pointed
GE set of g-events

1793
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Notation Meaning Where Defined
pt(π) participant of action π before Def. 2.1

part(σ) participants of trace σ Def. 2.3
D(S) domain of configurations of ES S Def. 3.5
act(η) action of p-event η after Def. 4.1
S
P(P) event structure of process P Def. 4.3
PE(P) set of p-events of SP(P) Def. 4.3
p :: η located event, p-event η located at participant p Def. 5.1
η↱p projection of p-event η on participant p Def. 5.2
Θ Z Θ′ duality of undirected action sequences Θ and Θ′ Def. 5.3

p :: η Ẑ q :: η′ duality of located events p :: η and q :: η′ Def. 5.4
cm(ν) communication of n-event ν after Def. 5.5
loc(ν) set of locations of n-event ν after Def. 5.5

p :: η∈∈E occurrence of located event p :: η in some n-event of E Def. 5.6
n(E) narrowing of the n-event set E Def. 5.11
S
N (N) event structure of network N Def. 5.13
CE(N) set of candidate n-events of SN (N) Def. 5.13
NE(N) set of n-events of SN (N) Def. 5.13
ϑ↘n prefix of length n of ϑ before Prop. 5.22

projp(ν) projection of n-event ν on participant p Def. 5.25
part(G) participants of global type G after Def. 6.1
G↾p projection of global type G on participant p Figure 2
σ[i] i-th element of trace σ before Def. 7.1
σ[i ... j] subtrace σ[i] · · · σ[ j] of trace σ before Def. 7.1
σ ∼ σ′ permutation equivalence of traces Def. 7.1
[σ]∼ equivalence class of trace σw.r.t ∼ Def. 7.1

last(σ) last communication of trace σ before Lemma 7.4
cm(γ) communication of g-event γ Def. 7.5
σ ◦ γ retrieval of g-event γ before trace σ Def. 7.6(1) and (2)
ev(σ) g-event generated by trace σ Def. 7.7
σ@p projection of trace σ on participant p Def. 7.9(1) and (2)
S
G(G) event structure of global type G Def. 7.11
GE(G) set of g-events of SG(G) Def. 7.11
σ♢ ν retrieval of n-event ν before trace σ Def. 8.1(1) and (3)
σ♦ ν residual of n-event ν after trace σ Def. 8.1(2) and (3)

nec(σ) sequence of n-events corresponding to trace σ Def. 8.3
σ • γ residual of g-event γ after trace σ Def. 8.9(1) and (2)

gec(σ) sequence of g-events corresponding to trace σ Def. 8.13

1795
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