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Figure 1: Our rough animation system supports the inbetweening of complex special effects with multiple topological events, here a flame
splitting into smaller components. In (a), we show the input key drawings traced over a reference from Gilland’s book [Gil09], while in
(b) we show their decomposition into transient embeddings. Even though we use a unique color per embedding throughout the animation
for visualization, each embedding only exists between a pair of keyframes in this example. This allows the handling of topological changes,
which occur at the third and fifth keyframes. In (c), we display in magenta a subset of the inbetween frames generated by our animation
system in real-time. Please see the supplemental results video for the full sequence.

Abstract
Traditional 2D animation requires time and dedication since tens of thousands of frames need to be drawn by hand for a typical
production. Many computer-assisted methods have been proposed to automatize the generation of inbetween frames from a set
of clean line drawings, but they are all limited by a rigid workflow and a lack of artistic controls, which is in the most part due
to the one-to-one stroke matching and interpolation problems they attempt to solve. In this work, we take a novel view on those
problems by focusing on an earlier phase of the animation process that uses rough drawings (i.e., sketches). Our key idea is to
recast the matching and interpolation problems so that they apply to transient embeddings, which are groups of strokes that only
exist for a few keyframes. A transient embedding carries strokes between keyframes both forward and backward in time through
a sequence of transformed lattices. Forward and backward strokes are then cross-faded using their thickness to yield rough
inbetweens. With our approach, complex topological changes may be introduced while preserving visual motion continuity.
As demonstrated on state-of-the-art 2D animation exercises, our system provides unprecedented artistic control through the
non-linear exploration of movements and dynamics in real-time.

CCS Concepts
• Computing methodologies → Graphics systems and interfaces; Animation;

1. Introduction

Traditional 2D animation requires a lot of planning, not only at the
level of storyboards, but also for the animation itself where rough
drawings (i.e., sketches) are used to test out the motion of different
characters or special effects (e.g., water, smoke). These tests aim
at defining the trajectories of the characters or objects, as well as

their dynamics (e.g., their speed and acceleration) through the tim-
ing & spacing of drawings [JT95, Wil01]. Even though the rough
animation itself is not directly visible in the final movie, its impact
on motion design is vividly retained, since it serves as a guide for
“inbetweeners” – the artists who draw all the intermediate frames.
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In this paper, we introduce a system for the design and explo-
ration of rough 2D animations; a problem which, to the best of
our knowledge, has never been addressed in previous work. Our
main contribution is in the assembly and adaptation of a set of ex-
isting techniques for the previsualization of 2D animations. The
main goal is to provide real-time feedback at intermediate frames
between rough key drawings, to both significantly speed up the an-
imation process and allow artists to experiment with different cre-
ative alternatives. This is useful not only for experienced animators,
who may try variations in early tests for discussions with art direc-
tors and quickly converge to final rough animations to pass down
to inbetweeners; but also for animation students, who may benefit
from the ability to observe interactively the look-and-feel of differ-
ent animation choices. As described in supplemental material, we
relied on an observational study of a professional animator at work
followed by interviews to guide the design of our system. By work-
ing at the rough animation stage, we leverage the fact that draw-
ings are sketchy and the global perception of movement is more
important than the appearance of the strokes themselves that will
eventually be redrawn at the cleaning stage. However, it brings two
fundamental challenges. First, artists may create drawings through
very different workflows such as “shift-and-trace” (drawings are
traced over deformations of previous ones) or “pose-to-pose” (all
key drawings are created in advance then interpolated). Second, the
drawings themselves are most often composed of different numbers
of strokes and routinely differ in their number of parts.

As described by Fekete et al. [FBC∗95], automated inbetween-
ing systems can be divided in two main families: those based on
templates or embeddings (e.g., [BW75]), and those relying on ex-
plicit correspondences between strokes (e.g., [MIT67]). The for-
mer family is mostly well-suited for “cut-out” animations since the
movement of the embedded objects or characters is restricted by
the motion of their template (e.g., skeleton, control polygon, cage)
whose topology is usually fixed throughout the animation. Explicit
correspondence systems are more flexible as the stroke-to-stroke
mapping is transient, changing between each pair of keyframes.
However they are restricted to “tight inbetweening” of clean line
drawings due to the challenge (or chore) of matching complex net-
works of strokes. In this work, we propose transient embeddings to
keep the best of both approaches, hence allowing template-based
animation of rough drawings with topological changes. In practice,
this requires adapting two common problems to deal with transient
embeddings: the matching problem where two drawings must be
registered, here with drawings having different numbers of strokes;
and the interpolation problem, where the movement from one key
drawing to the next must be generated while providing flexible
and interactive artistic control over timing, spacing and trajecto-
ries. A key feature of our approach is to enable changes of topol-
ogy at keyframes (i.e., key drawings may have different numbers of
embeddings), while ensuring visual continuity through constrained
trajectories that persist over multiple keyframes.

Our main contribution is a novel animation system that relies
on transient embeddings to provide full non-linear artistic control
at the rough animation stage, as described in Section 3. Methods
for matching embeddings at keyframes are introduced in Section 4:
they work with shift-and-trace and pose-to-pose workflows, or any
combination of them. Methods for interpolating between embed-

dings are presented in Section 5, featuring non-linear control over
timing & spacing and direct artistic control over trajectories be-
tween and across keyframes. Implementation details including a
novel real-time ARAP registration technique for vector strokes are
exposed in Section 6. We demonstrate that our system allows users
to produce complex 2D animations in Section 7, by reproducing
typical animation exercises [Wil01], such as walk cycles, special ef-
fects, articulated motion, and some principles of animation [JT95],
such as anticipation and follow-through, or squash and stretch.

2. Related work

The design of computer-aided 2D animation systems dates back to
the inception of Computer Graphics in the late ’60s and early ’70s
[MIT67, Bae69, BW71]. As already observed by Catmull [Cat78],
automatic inbetweening is a central problem tackled by most of
such systems, and yet – more than forty years later – current com-
mercial solutions [Ado, Too, CAC, Com] often remain too limited
or time consuming for most use cases in production. In addition,
by focusing on inbetweening of final clean line drawings, we be-
lieve that those systems and most previous work in academia have
missed the real potential benefit of computer assistance, that is, us-
ing the words of Durand [Dur91], to “boost user creativity by al-
lowing them to concentrate on the most interesting part of their
work”: the design and exploration of motion.

The key idea of our approach is to shift focus from the animation
of individual strokes to the animation of groups of strokes that are
only defined between a pair of keyframes, which we call transient
embeddings. Nevertheless, it requires to revisit the two main stages
of explicit correspondence techniques: matching and interpolation.

Matching. Most early methods require the user to manually iden-
tify correspondences between the strokes of consecutive keyframes
and do not handle occlusions or topological changes [MIT67,
Bae69, Ree81, Dur91]. More recent techniques support such fea-
tures using manually populated 2.5D [DFSEVR01, RID10] or
space-time [DRvdP15] data structures. Despite their appeal, these
approaches require ad hoc, rather constraining drawing represen-
tations which are not suitable for rough drawings. To partially au-
tomatize the stroke correspondence process, a large body of work
represents the drawings as a graph of strokes and try to match
those graphs at subsequent keyframes [Kor02, WNS∗10, LCY∗11,
YBS∗12, CMV17, Yan18, YSC∗18, MFXM21]. They differ by the
graph matching algorithm they employ, and the way users inter-
act with the system to guide or correct correspondences, espe-
cially when strokes appear or disappear. To resolve occlusions in a
user-controllable fashion, Jiang et al. [JSL22] introduce “boundary
strokes”, i.e., strokes with an occluding side that acts as occluding
surfaces. However, none of these methods can handle rough draw-
ings with an highly dissimilar number of strokes per keyframe, and
despite recent advances in rough sketch cleanup [YVG20], no algo-
rithm is currently able to produce a sequence of clean line drawings
that can be automatically inbetweened.

Alternatively, some methods aim at estimating region (rather
than stroke) correspondences between consecutive frames based on
their appearance (color, shape, distance) [Xie95, MSG96, SBv05,
dJB06,BBA09,ZHF12,LMY∗13] and motion features [ZLWH16],
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but they are limited to polygonal shapes or cel animations (i.e.,
mostly flat color regions with clean line boundaries). Taking in-
spiration from As-Rigid-As-Possible (ARAP) shape deformation
techniques [IMH05, WXXC08], Sýkora et al. [SDC09] present an
image registration algorithm that decouples the matching resolution
from the image complexity by embedding it into a square lattice.
Noris et al. [NSC∗11] use this method to estimate a global warp
between two drawings of an existing rough animation, abstract-
ing the input strokes by their rasterized distance fields. Then, each
stroke of the first drawing, deformed by the ARAP transformation,
is matched with the most similar stroke in the second one. We also
embed strokes into square lattices, but extend the registration algo-
rithm to directly take as input vectorial strokes. Furthermore, we
make the assumption that stroke-to-stroke correspondences are not
required to depict motion in rough animations, which we demon-
strate in our results.

Closest to our work, Xing et al. [XWSY15] present an interac-
tive system that combines a global shape similarity metric with an
embedding-free ARAP deformation model [SSP07] to match an
existing drawing with a new set of hand-drawn guidelines. We dis-
cuss the benefits of our explicit embeddings in Section 8.1 and pro-
vide visual comparison in the supplemental results video.

Following the current trend in computer science, learning-based
techniques [Yag17,NHA19,LZLS21,SZY∗21] have also been pro-
posed to estimate per-pixel correspondence between two raster
clean line drawings. In the work of Casey et al. [CPL21], line-
enclosed segments are first extracted from the two drawings, and
then correspondences between segments are estimated using a com-
bination of convolutional and transformer neural networks. Extend-
ing such approaches to rough drawings, whose style may consider-
ably vary from one artist to another, seems extremely difficult for
such data-driven approaches.

Interpolation. Once the key drawings have been put into corre-
spondence, inbetween frames can be generated by interpolation.
As already noted by Burtnyk et al. [BW75], linear interpolation
and thus linear trajectories sampled at uniform rates do not produce
natural motion in the great majority of cases.

To offer maximum artistic control, the animation system of
Reeves [Ree81] allows the user to specify the trajectory and dy-
namics of a set of “moving points” spanning multiple keyframes.
This effectively decomposes the full 2D+t space of the animation
into a network of Coons patches, into which interpolation can be
performed independently but with continuity at boundaries. How-
ever heuristics are required to complete the patch network, and user
manipulation of moving points in space and time may be laborious.

Kort [Kor02] models trajectories of stroke vertices by quadratic
splines. The user can correct these paths when needed and spec-
ify their spacing. Since this simple interpolation scheme does not
take the shape of the strokes into account, it may lead to local or
global distortions. Sederberg et al. [SGWM93] introduce an in-
trinsic interpolation technique which minimizes shape distortion.
Similar approaches [FTA05, SZGP05] attempt to preserve local
differential quantities (Laplacian coordinates or edge deformation
gradients). But those three methods only apply to a single poly-
line. Motivated by classical 2D animation books [JT95, Wil01],

Whited et al. [WNS∗10] present an interpolation scheme that pro-
duces arc trajectories for a full graph of strokes. It first computes
motion paths for stroke endpoints along logarithmic spirals, and
then deform the intermediate stroke vertices using intrinsic interpo-
lation [SGWM93] followed by curve fitting and a tangent-aligning
warp to ensure continuity between adjacent strokes. The trajectory
of any stroke vertex can be edited, albeit without considering its
dynamics. This scheme was later used by Noris et al. [NSC∗11] for
generating smooth stroke trajectories between pairs of strokes.

An alternative solution to minimize shape distortion is to rely
on ARAP interpolation [ACOL00, XZWB05] of 2D embeddings
of the drawings. The interpolated trajectories can be controlled
through point and vector constraints [BBA08, KHS∗12] or even a
full skeleton [YHY19]. However, the boundary polygon of those
embeddings must be compatible across keyframes and put into cor-
respondence, and a compatible triangulation of their interior must
also be built. Baxter et al. [BBA09] describe the most relevant tech-
niques to solve this challenging problem along with their own so-
lution. Zhu et al. [ZPBK17] extend these approaches to handle ex-
treme shape deformations and topological changes, but it requires
significant manual intervention and involves an expensive numeri-
cal optimization that prevents its use in an interactive system.

Yang [Yan18] combines the strokes deformation technique of
Whited et al. [WNS∗10] with a simpler embedding, called “con-
text mesh”, that better preserves the global layout of the stroke
network. He presents an automatic construction algorithm of these
compatible meshes based on the matched strokes, and an edge-
based rigid interpolation technique inspired by the method of
Igarashi et al. [IMH05] which is robust to degenerated configura-
tions (e.g., collapsing edges) and may be constrained to follow a
given trajectory. It is however unclear how such “context meshes”
could be built for rough drawings. Instead, we use even simpler lat-
tice embeddings, which are compatible between two keyframes by
construction, but do not need to extend further in time.

Dvorožnák et al. [DLKS18] use similar embeddings to build de-
formable puppets, but since those are connected at fixed junctions
driven by a skeleton, their results suffer from the “cut-out” look-
and-feel. The animation system of Bai et al. [BKLP16] integrates
handle-based shape deformations with example-based simulations
to interpolate drawings embedded into triangular meshes. This ap-
proach manages to reproduce many of the principles of anima-
tion [JT95], supports manual topological changes and local control
of the dynamics, but user interaction is restricted to handles manip-
ulation, hence once again following the “cut-out” metaphor rather
than hand-drawn animation.

For image-based approaches, interpolation turns into an image
morphing (i.e., deformation and blending) problem. Many solu-
tions have been proposed for photographs (e.g., [FZP∗20,PSN20]),
cartoon animations [LZLS21, SZY∗21, CZ22] and, closest to our
inputs, concept sketches [ADN∗17]. Yet, rough drawings have a
very specific style which requires preserving the distribution, spa-
tial continuity and color or gray-level intensity of the strokes. Pre-
vious approaches are unlikely to satisfy all three criteria. In this
work, we do not attempt to solve this problem, and use simple
cross-fading of stroke thicknesses that turns out to be sufficient for
motion previsualization in practice.
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3. Animation system

Most computer-aided 2D animation systems (e.g., [TVP,Too,Ado,
CAC]) provide a timeline which displays the timing (i.e., frame
number) and the layers in a simplified and systematic manner. Lay-
ers are organized in a stack defining the compositing order of the
drawings on the canvas. Each layer is animated independently and
populated by keyframes that may hold a drawing and be “exposed”
(i.e., repeated) over multiple frames.

The design of our animation system is guided by extended dis-
cussions with a professional 2D animator and 2D animation soft-
ware developers. As detailed in supplemental material, we arrived
at the following conclusions and thus guidelines:

G1: Contours in rough drawings are depicted with multiple strokes
which implies working with groups of strokes rather than indi-
vidual elements; the artist must be able to redefine the number of
groups according to the complexity of the motion.

G2: Topological changes, such as parts of the drawing appear-
ing, disappearing, splitting or merging, are explicitly drawn at
keyframes, hence do not need to be automatically in-betweened.

G3: Artists alternately use pose-to-pose and shift-and-trace work-
flows that must be both supported; they are used to provide indi-
cations to inbetweeners, but their creative flow should be inter-
rupted as least as possible.

G4: Control over timing, spacing and interpolation trajectories
is crucial to design motion, yet extremely complex and time-
consuming since all intermediate frames must be redrawn.

Based on these guidelines, we extend the structure of a classic
animation system to work on groups of strokes, which we call em-
beddings, as detailed in the remainder of this section. Embeddings
act as units of motion (e.g., the forearm of a character), which may
be refined throughout the animation process when needed (G1).
Each embedding is transformed from its start keyframe to the next,
carrying along its strokes so that they come into alignment with a
different subpart of the next key drawing. Embeddings may thus
be said to be transient in the sense that they do not last past the
next keyframe, where new embeddings take over the animation
process, possibly with a different topology (G2). This novel ani-
mation structure is well adapted to existing artistic workflows (G3)
and grants new non-linear controls (G4), as described in Sections 4
and 5 respectively.

3.1. Transient embeddings

In its simplest form, as shown in Figure 2(a), an embedding is de-
fined by a pair of lattices with the same topology at two keyframes.
The lattice at the start keyframe holds strokes (a subset from the
corresponding key drawing) that are propagated forward in time. A
second set of strokes is stored in a transformed lattice at the end
keyframe, which is lined up in time with the next keyframe. How-
ever, the end keyframe itself is never displayed. The transformation
between the two lattices must be invertible so that strokes from the
end keyframe can be propagated backward in time. The two sets of
forward and backward strokes are cross-faded using stroke thick-
ness instead of opacity. Such a representation opens up a number
of possibilities. For instance, backward strokes may be obtained
by copying a subset of the strokes in the next key drawing, hence

(a)

Start
keyframe

Breakdown
keyframe

End
keyframe

(b)

*

Invertible
transformations

(c)

Figure 2: A transient embedding is a sequence of transformed lat-
tices carrying strokes between keyframes. (a) A first set of strokes
(in red), stored in the start keyframe, is propagated forward via a
transformation, while another set of strokes (in green), stored in
the end keyframe, is propagated backward via the inverse transfor-
mation. Forward and backward strokes are cross-faded in between.
(b) An additional inbetween lattice transformation may be added
through a breakdown keyframe, which holds a single set of strokes
(in blue) that are propagated both backward and forward in time.
(c) Symbolic representation of a transient embedding: each type of
keyframe is represented by a different symbol, which are connected
by segments that represent lattice transformations. The regular ex-
pression notation [· · · ]∗ indicates that breakdowns are optional.

avoiding popping artifacts when transitioning from one embedding
to the next. But they may also differ significantly from the strokes
found in the next keyframe, hence allowing topological changes
to occur, as demonstrated in Section 3.3. However, in our system,
topological changes never occur between keyframes.

A same embedding may be used over multiple keyframes, as
shown in Figure 2(b). To make this possible, we introduce break-
down keyframes, inspired by the traditional animation technique of
the same name [Wil01]. In our system, they amount to storing a
new transformed lattice in the embedding, along with an additional
set of strokes that is propagated both backward and forward in time.

Figure 2(c) abstracts the structure of a transient embedding with
a simple sequence of symbols: a square for the start keyframe, cir-
cles for (optional) breakdown keyframes, and a crossed circle for
the end keyframe. In effect, the end keyframe is a special case of
breakdown that is only propagated backward in time, and is not it-
self displayed. Segments between symbols represent both forward
and backward embedding transformations, which may be evaluated
at any time step to yield cross-faded strokes.
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(a)

(b)

(c)

Figure 3: In our animation system, the timeline is segmented
into intervals whose boundaries are shown with tall ticks, while
short ticks delimit frames. An animation is created by (a) adding
transient embeddings that span one or more intervals, with their
keyframes lined up at the beginning of each interval. Timing is read-
ily modified by (b) automatically updating embeddings when inter-
val boundaries are moved. Edits are local since (c) the removal of
an embedding does not affect other embeddings.

3.2. Animation structure

With this formal definition of a single transient embedding at hand,
we must now formalize the global animation structure used in our
system. This is required for a non-linear animation system as we
need to ensure that a valid animation structure is maintained irre-
spective of the order in which operations are performed on it.

The first structural constraint is that the timeline must be seg-
mented into contiguous intervals, which act as containers for em-
beddings. Intervals may hold zero, one or more embeddings. The
keyframes of all embeddings in the same layer must be lined up in
time with the first frame of an existing interval, as shown in Fig-
ure 3(a). Interval boundaries may then be modified, carrying with
them all the embeddings they store, as shown in Figure 3(b). This
amounts to modifying the timing of an animation, in which case
embeddings must be evaluated at different time steps. An additional
advantage of this structure is that removing an embedding does not
affect the rest of the animation as illustrated in Figure 3(c), hence
making the animation process globally non-destructive.

Intervals that do not contain any embedding may be safely
deleted or split into two intervals. New intervals may similarly
be added before or after existing ones. A more complex situation
arises when the same operations are applied to an interval that con-
tains one or more embeddings. When splitting an interval in two,
each of its stored embeddings must also be split at the same frame
to preserve the aforementioned keyframe alignment constraint. As
shown in Figure 4(a), we do so by inserting a breakdown keyframe
for each involved embedding. These breakdown keyframes may be
converted into end keyframes if needed, which results in the auto-
matic creation of a new embedding as shown in the second row of
the figure. When removing a key interval, all the involved embed-
dings must be updated according to three different rules, depending
on the type of keyframe involved. This is illustrated in Figure 4(b):
an end keyframe is not removed but merely extended to the start
frame of the next interval; removing a breakdown keyframe re-
quires reconnecting the start or previous breakdown keyframe to
the next breakdown or end keyframe; when a start keyframe is re-
moved, there is no other choice than deleting the entire embedding
since there is no key drawing to rely on anymore.

*

Split

Remove

(a)

(b)

Figure 4: Non-linear editing of the animation structure is made
possible by special updates of the transient embeddings. Splitting
an interval in two is done by (a) inserting a breakdown keyframe in
all involved embeddings, which may optionally be converted into
an end keyframe followed by a new, automatically generated em-
bedding. Removing an interval yields (b) three different types of
results depending on the type of keyframe: extension of the embed-
ding, removal of a breakdown, or removal of the embedding.

Er

Eg

Eb

Figure 5: We illustrate our animation system on a simple example
made of three intervals. A pair of green Eg and red Er embeddings
meet a blue embedding Eb at the second keyframe, where the topol-
ogy of the drawing changes. This is achieved by using backward
strokes for Eg and Er (dashed lines) that are different from forward
strokes for Eb. The latter spans the two remaining intervals via a
breakdown keyframe, which enables additional deformation. The
end keyframe of Eb is empty and strokes are faded out. The gray
triangles indicate the frames at which the above embeddings are
evaluated, both at and in between keyframes.

3.3. A simple example

We conclude this section with a simple example animation,
shown in Figure 5. It demonstrates several structural properties
of our animation system: a topological change with different for-
ward/backward strokes, a breakdown keyframe, and a fade out. End
keyframes are shown as dashed lines since they are not displayed,
but their strokes are propagated backward to be used for interpola-
tion. We also rely on this example for illustration purposes in Sec-
tions 4 and 5, and in the supplemental demo video.

Such a simple example leaves open a number of questions that
we address in the next two sections. They precisely correspond to
the matching and interpolation problems recast on transient embed-
dings: How are embeddings deformed at keyframes so that back-
ward and forward strokes are put in alignment, yielding visually
continuous animations (Section 4)? How are embeddings interpo-
lated between keyframes, while providing control over motion dy-
namics, trajectories and smoothness (Section 5)?

submitted to EUROGRAPHICS 2023.



6 M. Even, P. Bénard & P. Barla / Non-linear Rough 2D Animation using Transient Embeddings

Shift

E0

TId Trace
E0

E0

E1

Id
T

IdT

E0

Figure 6: With the shift-and-trace workflow, an initial embedding
E0 is first manually modified through a target transformation T ⋆

– the shift step. The embedded strokes (symbolized by the light blue
color) are then copied either to a breakdown keyframe, or to a new
embedding E1 – the trace step.

4. The matching problem

Recall that an embedding in our system corresponds to a unit of
motion. By default, all strokes in a key drawing are part of a single
embedding, but this may be refined at any time by the user to assign
different subsets of strokes to different embeddings. This choice
must be made based on which strokes of the current keyframe are
expected to move together to the next keyframe, i.e., based on mo-
tion complexity rather than the complexity of the drawing itself.

As shown in Figure 2, each embedding stores its strokes in a
square lattice, which is built axis-aligned at the start keyframe.
Recall that the lattice does not change topology throughout a
transient embedding, but may undergo transformations at break-
down and end keyframes. The main goal of the matching prob-
lem is then to establish lattice transformations that put embed-
ded strokes in alignment with strokes at the next keyframe.

t1
t2

t3
t4

t5
t6

t7
t8

Such a target transformation T ⋆ consists
in a discrete vector field {⃗t ⋆i } defined
on lattice corners (see inset figure). We
present two basic matching approaches,
inspired by traditional animation work-
flows: shift-and-trace (Section 4.1), and
pose-to-pose (Section 4.2).

4.1. Shift-and-trace

The main idea of the shift-and-trace workflow is to deform a lattice
to the next keyframe (the “shift” step), and then to redraw a similar
set of strokes over the deformed, embedded ones (the “trace” step).
Any combination of tools may be used to yield the transformation
T ⋆. We have implemented classic linear transformations (transla-
tion, rotation and scaling), as well as an ARAP deformation tool
similar to the “Warp tool” in TVPaint Animation [TVP].

The shift-and-trace workflow is illustrated in Figure 6. An em-
bedding E0 is subject by default to an identity transformation, and
acts on a set of strokes, symbolized by the light blue color. The ini-
tial configuration is thus a static drawing exposed over the whole
interval, similarly to traditional animation systems. During the shift
step, a target transformation T ⋆ is applied to E0, but no stroke is
stored yet in its end keyframe. The trace step creates a new interval
and populates it in one of the following two ways: the embedded
strokes may either be duplicated to a new breakdown keyframe,
thus extending E0 in time; or a new embedding E1 may be created,
with embedded strokes separately copied to the end keyframe of E0
and the start keyframe of E1.

Shift Trace Shift

Eb start
keyframe

Eb breakdown
keyframe

Eb end
keyframe

Figure 7: The lattice of Eb is first transformed using ARAP de-
formation from the start to the breakdown keyframe. New, slightly
different strokes are then traced in the breakdown. Finally, ARAP
deformation is once again used to yield the lattice transformation
in the end keyframe, which is tagged as fading out.

Register

E0 E0

E1E1
Id

Id Id
T

Figure 8: In the pose-to-pose workflow, the initial embeddings E0
and E1 are provided as input, each storing its own set of embedded
strokes (symbolized by light green and light blue colors). A single
registration step is used to automatically find a target transforma-
tion T ⋆ that aligns the embedded strokes of E0 with a subset of
strokes in E1, and to copy the latter to the end keyframe of E0.

At the end of the shift-and-trace process, we end up with a new
interval in a configuration similar to the one we started with; the
process may thus be repeated to produce a longer animation se-
quence. The embedded strokes of any keyframe may be redrawn
at any time during that process, allowing artists to add visual com-
plexity. Redrawing strokes in a breakdown or end keyframe is con-
strained to lie within the deformed lattice, since the new strokes
must be propagated forward and/or backward using the same lat-
tice topology. Redrawing strokes in the start keyframe of a new
embedding does not impose any constraint since the newly created
lattice can be trivially extended to cover the new strokes, which are
only propagated forward.

The shift-and-trace workflow is illustrated in Figure 7 on the blue
embedding Eb of Figure 5, which spans two intervals.

4.2. Pose-to-pose

The pose-to-pose workflow instead starts from an existing sequence
of drawings (i.e., “poses”), each stored in its respective keyframe,
and registers subsets of strokes from one keyframe to the next. Con-
sequently, the target transformation T ⋆ is not manually specified by
the artist but automatically inferred from a pair of drawings.

The pose-to-pose workflow is detailed in Figure 8. A sequence
of two embeddings E0 and E1 is shown, each with an identity
transformation by default, but acting on different sets of strokes
symbolized by different colors. As before, the initial configura-
tion is identical to the one found in traditional animation systems:
a sequence of static drawings exposed over their whole interval.
Next, a vector registration algorithm – adapting the method of
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Register Redraw

Eg end 
keyframe

Eb start
keyframe

Eg

Eb

Figure 9: A subset of strokes is first selected in Eb to be matched by
Eg. Then registration automatically finds a lattice transformation
for Eg that aligns strokes in both embeddings, and matching strokes
in the start keyframe of Eb are copied to the end keyframe of Eg. We
then partially redraw these strokes.

Sỳkora et al. [SDC09] to vector drawings to yield real-time perfor-
mance (see Section 6) – is used to find the target transformation T ⋆

that best aligns the strokes embedded in E0 with any user-selected
subset of strokes in E1, which are immediately copied inside the
end keyframe of E0. The transformed forward strokes of E0 may
alternatively be copied to its end keyframe.

Once again, this process ends up with an interval in a configura-
tion similar to the one it started with, such that registrations may be
applied over and over again to match pairs of drawings over several
keyframes. Shift-and-trace and pose-to-pose workflows may even
be interleaved since they both end up in the same configuration.
Moreover, the transformation T ⋆ found through registration may
optionally be adjusted manually or semi-automatically – thanks to
the real-time performance of our vector registration algorithm – at
any time during that process, while the strokes in any keyframe
might be redrawn as before.

The pose-to-pose workflow is illustrated in Figure 9 on the em-
beddings Eg and Eb of Figure 5 (a similar process is used to match
Er with Eb), with an additional redrawing step.

5. The interpolation problem

In our system, interpolation is available at all times. As shown in the
demo video, after little interaction (sometimes a single click) our
system provides instant interpolation results. The process is trivial
for newly created embeddings since their lattice is static (e.g., Id
arrows in Figures 6 and 8). As soon as a target transformation T ⋆

is introduced, we must find an invertible family of transformations
T (t) that satisfies T (0) = {⃗0} and T (1) = T ⋆. We choose ARAP
interpolation [ACOL00] for T (t) since it provides a natural default
behavior in general, while enabling artistic control through addi-
tional constraints. This should not be mistaken with the ARAP de-
formation or registration tools of Section 4. Indeed, matching and
interpolation are decoupled in our approach.

In practice, we use the symmetric formulation of Bax-
ter et al. [BBA08] which is fast to evaluate, easy to implement, and
offers control through linear constraints. We triangulate the axis-
aligned lattice and store the initial and transformed coordinates of
its corners in two matrices V0 and V1. By construction, we have
T ⋆ = V1 −V0, and the time-varying transformation is then defined

Figure 10: Applying the default ARAP interpolation to the simple
example of Figure 5 produces a reasonable initial result, but lacks
control over spacing and trajectories.

by T (t) =V (t)−V0, with V (t) obtained by ARAP interpolation be-
tween V0 and V1 (see Appendix A for details). Similarly, the inverse
lattice transformation is T (t)−1 =V (1− t)−V1.

With this formulation, we obtain results such as in Figure 10,
where embedded strokes are transformed forward and backward
according to T and T−1 respectively. A first limitation of this de-
fault interpolation behavior is that the spacing of interpolated draw-
ings is not readily controlled. We introduce control over spacing in
Section 5.1 through a formalization of the “spacing chart”, which
is ubiquitous in traditional 2D animation. A second limitation is
that trajectories are only defined per embedding, which may lead
to velocity discontinuities across keyframes, or to dissociation of
embeddings between keyframes. We address these issues in Sec-
tion 5.2 by sharing trajectories across embeddings and keyframes.

5.1. Spacing charts

Providing control over spacing through interpolation is cru-
cial to convey motion dynamics. In existing animation software
(e.g., [CAC]), interpolated drawings may be manually positioned
on a per-frame basis, which is inspired by charts in traditional an-
imation [Wil01]. The process may be tedious, even though presets
(e.g., “ease in / ease out”) can help. Furthermore, it does not grant
non-linear control over the animation since it must be redone af-
ter each retiming. Alternatively, animation curves may be directly
edited (e.g., [Ado,Too]), but this looses the intuitive appeal of spac-
ing charts. We keep the best of both worlds by formalizing the spac-
ing chart in a way that preserves editing through ticks, while allow-
ing automatic updates after retiming.

A spacing chart is defined as a monotonically increasing 1D
remapping function S : [f0, f1] → [0,1], where f0 and f1 are natu-
ral numbers locating two contiguous keyframes on the timeline. As
illustrated in Figure 11(a-b), we let users manually adjust each tick
value S(f) for any discrete interpolated frame f ∈ {f0, ..., f1} ⊂ N,
while enforcing S(f−1)< S(f)< S(f+1). In contrast, the spacing
function S is defined over the real range [f0, f1]. In practice, we use
a monotone cubic piecewise function [FC80] for S. It interpolates
the prescribed S(f) at discrete frame values, with tangents automat-
ically computed to ensure smoothness and monotonicity.

The main advantage of this smooth continuous representation
is non-linear editing. When an interval is extended for retiming,
we linearly stretch S over the new [f′0, f

′
1] range to get S′, which

is then evaluated at discrete frame positions f ∈ {f′0, ..., f
′
1} ⊂ N to

yield the new chart ticks S′(f), as demonstrated in Figure 11(b-c).
Other timeline operations, such as those depicted in Figure 4, in-
duce straightforward operations on spacing functions, since these
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Figure 11: We illustrate our spacing function on the green embedding Eg. By default, we use (a) the identity spacing function, resulting in a
linear time parameter t. It may be modified through (b) user-provided ticks in the vertical spacing chart at left, which results in a new spacing
function S (in red). After retiming (c), S is stretched to S′ and new ticks on the spacing chart (in red) are automatically recomputed.

are defined on frame ranges. Splitting an interval merely results in
splitting a spacing function in two functions. Removal of an end
keyframe results in an extension of the embedding which is equiv-
alent to a retiming, whereas removal of a breakdown keyframe re-
sults in the merging of the two neighboring spacing functions.

The spacing function outputs a normalized time value that is
used to compute V (S(f)), the interpolated lattice at frame f. By con-
struction, V (S(f0)) =V0 and V (S(f1)) =V1. Note that even a linear
spacing function may not lead to a transformation that behaves ex-
actly linearly between V0 and V1, even though they are close in
practice. Indeed, lattice corners will not move at constant speed
owing to the global optimization involved in ARAP interpolation.
However, constrained trajectories may be added if a precise local
control over motion speed is required, as explained next.

5.2. Constrained interpolation

Besides spacing, the default ARAP interpolation may be controlled
by linear constraints, CV = D(t) (see Appendix A). The C ma-
trix identifies which point of the embedding should be subject to a
constraint through time. Any point inside the lattice may be used
as a constraint (even away from drawn strokes) as it can be ex-
pressed with barycentric coordinates in a cell. The D(t) matrix pro-
vides trajectories for the identified constraints, hence locally driv-
ing lattice motion. In the formulation of Baxter et al. [BBA08],
these constraints are handled by Lagrange multipliers. ARAP fac-
torization only needs to be recomputed when constraints are added
or removed (through C); whereas trajectory editing (through D(t))
works in real time.

In practice, we choose to represent a constrained trajectory with
a cubic Bézier curve, which permits the reproduction of arc mo-
tions as prescribed in traditional animation guidelines (e.g., [JT95,
Wil01]). We have favored this representation over logarithmic spi-
rals [WNS∗10] for two reasons: it better captures the motion gener-
ated by ARAP interpolation, and it provides intuitive direct controls
through tangents. A Bézier curve is initially fit to the discrete tra-
jectory (position and parameterization) of the selected constrained
point using Schneider’s algorithm [Sch90]. In our system, we al-
ways re-parameterize the Bézier curve uniformly along arc-length
after any edit. This gives a more accurate local temporal control

(a)

(b)

Figure 12: Constrained trajectories help control inbetweening.
In (a), we use one constraint for Eg and one constraint for Er. Tra-
jectories for the same points in Eb are also visualized with dashed
lines. Since each embedding is interpolated separately, we can ob-
serve that trajectories are not G1-continuous (pointed out by ar-
rows). In (b), we activate the same constraint points in Eb and
align the tangent of their trajectory starting points with the ones
in Eg and Er, which restores continuity.

through D(t)=D(S(f)), where f is the current frame and S the spac-
ing function of the embedding. The geometry of the fitted trajectory
may then be edited to drive lattice motion explicitly, as illustrated
in Figure 12(a) on the red and green embeddings of Figure 5. Since
the curve endpoints are fixed, only the tangents of the trajectory
may be modified.

Constrained trajectories may be trivially chained across break-
down keyframes since the lattice topology is maintained through-
out a same embedding. More interestingly, constrained trajectories
may be chained across different embeddings. Consider for instance
a pair of embeddings E0 and E1, and a constrained trajectory D0(t)
that drives the lattice of E0 from its start to its end keyframe. In
the likely case where D0(1) ∈ E1 (assuming E0 and E1 have been
properly matched), a new constrained trajectory D1(t) may be im-
posed on E1, with D1(0) = D0(1) by construction. Note that the
trajectories remain independent, hence removing E0 will not affect
the chained trajectories in E1. Any chain of trajectory constraints
constructed this way can be made G1-continuous at keyframes by
aligning the tangents of adjacent constrained trajectories. This is a
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(a) (b)

Figure 13: Hierarchical constraints maintain spatial relationships
between adjacent embeddings throughout interpolation. In (a), the
arm, forearm and hand embeddings interpenetrate at intermediate
frames, as shown by the dashed trajectories. In (b), by placing two
hierarchical constraints – one (in red) on the arm driving the fore-
arm, and the other (in blue) on the forearm driving the elbow – the
full articulated chain remains properly connected at constrained
points, which follow smooth arc trajectories.

notable feature of our approach, since it provides persistent con-
trol over trajectories while relying on transient embeddings. We
demonstrate that feature in Figure 12(b), where the trajectories of
Eg and Er are chained with G1 continuity to trajectories of Eb. This
produces a visually continuous motion even in the presence of a
topological change, as is best seen in the supplemental demo video
where we use more inbetween frames.

Trajectories might not only be used to “knit” embeddings across
time but also in space. This is a useful feature when two embed-
dings that are visually connected at contiguous keyframes get dis-
connected or interpenetrate during interpolation, as shown in Fig-
ure 13(a). For a shared constraint to be added, lattices in each em-
beddings must overlap. One of the embeddings is identified as the
leader El and the other one as the follower E f . Only the constrained
trajectory of El is edited, while E f follows that same trajectory.
This raises an issue when the spacing functions Sl and S f of the
respective embeddings are different, as El and E f are then driven
by the same trajectory but at different speeds. The issue is trivially
solved by using the spacing function of the leader Sl on the follower
E f , only at the constrained embedding point; S f is retained other-
wise. Such hierarchical constraints bear a resemblance to skeletons
used in cut-out animation systems, as they open up to the control of
articulated structures. In particular, they may be persistent as with
any other constrained trajectory, as shown in Figure 13(b). How-
ever, they may also be deactivated at any keyframe, which is useful
for imposing temporary constraints, such as an object temporarily
attached before being thrown away (see the supplemental results
video for an example).

Constrained trajectories are easily updated after each of the time-
line operations of Figure 4. When an embedding is split at a frame
fsplit, the lattice positions Vsplit =V (S(fsplit)) are used for the break-
down keyframe and a new ARAP interpolation is recomputed on
each new interval, i.e., from V0 to Vsplit and from Vsplit to V1. Bézier
trajectories are split as well, and the tangents at the split points re-
computed, for instance using De Casteljau’s algorithm. In all our
tests, we have observed that motion before and after splitting are
visually identical, even though we could not find a proof of the

transitivity of ARAP interpolation. When removing a breakdown
keyframe, the associated transformation and trajectories must be re-
moved as well, which potentially leads to a simpler motion. In prac-
tice, we keep all active constraints, and fit new trajectories from the
default ARAP interpolation on the new interval to preserve artistic
inputs as much as possible.

6. Implementation details

Strokes & lattices. In our system, strokes are represented by poly-
lines with stylus pressure recorded at vertices when available. As
mentioned in previous sections, embeddings may apply to subsets
of strokes, which consist of stroke segments. Moreover, since em-
beddings are transient, different subsets of strokes may be manipu-
lated at different keyframes, as demonstrated in the last interval of
Figure 17. Each new lattice is enforced to be connected and auto-
matically initialized in an axis-aligned manner. We make only one
exception: when converting a breakdown keyframe into a new em-
bedding (see Figure 4(a)), we keep the previously transformed lat-
tice to retain its target transformation T ⋆. This is a small limitation
of the current implementation that could be solved by transferring
T ⋆ to a new axis-aligned lattice. We provide an additional tool to
add contiguous empty cells inside an embedding, which is particu-
larly useful to fill in lattices (enforcing their rigidity through inter-
polation), or to provide support for constraints away from strokes.
The size of lattice cells may also be adjusted to capture fine details.

Vector registration. The registration problem consists in finding
a transformation T ⋆ that aligns the strokes in an embedding (the
source) with a given subset of stroke segments in the next keyframe
(the destination). Our solution relies on the image registration tech-
nique of Sýkora et al. [SDC09], which works in two phases that are
iterated until convergence: a “push” phase that moves lattice cor-
ners towards locations where the source and destination are similar;
and a “regularize” phase that reintroduces local rigidity.

In our approach, we adapt the push phase to work on vec-
tor strokes, while the regularize phase is left unchanged, as il-
lustrated in Figure 14. In our push phase, we compute the opti-
mal rigid transformations that minimizes the sum of squared dis-
tances between the stroke points in the source and their nearest-
neighbors in the destination, using the closed-form solution of
Schaefer et al. [SMW06]. This process results in a set of discon-
nected transformed cells (step 1 in Figure 14). The lattice connec-
tivity is then restored by averaging lattice corner positions (step 2).
The regularize phase is similar, except we compute optimal rigid
transformations that aligns the source cells with the lattice obtained
at the end of the push phase (step 3), before restoring connectivity
(step 4). The regularize phase is repeated Nr times, with greater
values of Nr increasing rigidity of the lattice (we use Nr = 10 by
default). Repetitions are crucial to prevent the lattice from collaps-
ing due to the naive initial nearest-neighbor correspondences.

An alternative solution would have been to use the block match-
ing approach of Sýkora et al. [SDC09] applied to rasterized strokes,
or their distance transform, similarly to Noris et al. [NSC∗11]. We
have found in practice that a vectorial solution is much more ef-
ficient since it provides direct initial correspondences. As a result,
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Figure 14: Our vector registration algorithm matches a source
drawing (bottom strokes) with a destination drawing (top strokes)
in two phases. During the push phase, lattice cells are (1) indepen-
dently rigidly transformed to match the closest destination stroke
points (red arrows), after which (2) the lattice connectivity is re-
stored through averaging. During the regularize phase (repeated
Nr times), the shape of the source lattice is partly restored by (3)
finding independent rigid cell transformations that match the cur-
rent target lattice before (4) restoring connectivity.

there is no need to iterate over the sequence of push and regular-
ize phases as in the raster version: both phases are only applied
once, and our vectorial registration achieves real-time performance.
Thanks to its efficiency, vectorial registration may be used interac-
tively in a semi-automatic fashion. For instance, our system allows
the user to deform the lattice using the tools mentioned in Sec-
tion 4.1 and to start the registration from this deformed configura-
tion, hence allowing plastic deformations of the lattice. Registra-
tion might even be run continuously during the deformation so that
the source strokes glide over the destination. Please see the supple-
mental demo video for a live illustration.

Spacing & trajectories. The analytic spacing function S may be
controlled by adjusting the position of each individual tick. For in-
tervals holding many frames, this may be tedious; hence we provide
several interface tools to control multiple ticks at once. As shown
in the supplemental demo video, we provide typical “ease-in/ease-
out” controls, as well as options to place ticks on “halves”, as rou-
tinely done by 2D artists when creating spacing charts [Wil01]. To
facilitate constrained trajectory editing, besides tangents manipu-
lation, we have implemented a sketching technique that linearly
transforms a curve drawn by the user such that its endpoints match
the constrained positions at keyframes, and then fit a cubic Bézier
curve with uniform arc-length parameterization to the result. This
is also demonstrated in the supplemental demo video.

Cross-fading. Each interpolated frame is the result of cross-fading
forward and backward transformed strokes. To limit ghosting ar-
tifacts, we apply cross-fading to control the thickness of forward

Matching 10.22 ms↰

Push phase 8.41ms↰

Regularize phase 1.81ms
Interpolation 6.67 ms↰

Factorization 5.55ms↰

Solve 0.90ms
Stroke rendering 0.22ms

Total 16.89 ms

Table 1: Performance of our single-threaded implementation in a
worst-case scenario, recorded on a i7-4790K 4GHz CPU and a
Nvidia GeForce GTX 980Ti GPU. We report timings for the second
keyframe of the fish animation (Figure 19), holding 284 strokes in a
lattice of 753 cells. We use Nr = 10 for regularization, while solve
and stroke rendering timings correspond to 10 rendered frames.

strokes, using a function c(t) : [0,1]→ [0,1]:

c(t) =

{
(1− (2(t − 1

2 )
2)2 if t ∈ [0, 1

2 ],

1 otherwise.

For backward strokes we simply use c(1− t). Hence at any time
t, there is always one set of strokes (forward or backward) that
is displayed at full thickness. Note that cross-fading is also sub-
jected to spacing since t = S(f) for a frame f. By default, we de-
activate cross-fading for embeddings whose end keyframe does not
store any stroke, so as to keep forward propagated strokes displayed
over the full interval. Cross-fading is reactivated whenever the end
keyframe is populated with strokes, or the embedding is tagged as
fading in or out. Yet, we use linear cross-fading in the latter case to
make strokes appear or disappear at the same rate as interpolation.

Performance. Our system is implemented in C++, using the Qt li-
brary for the GUI and an OpenGL Geometry Shader for the final
stroke rendering. We use the sparse LU solver of Eigen [GJ∗10] to
efficiently factorize and solve the linear system involved in ARAP
interpolation (Appendix A). Table 1 reports the performance of
our implementation recorded for the second keyframe of Figure 19
that uses the largest lattice from all our examples, and relies on
the more demanding pose-to-pose workflow with semi-automatic
(and thus interactive) registration. Interpolation times are also re-
ported since we display the interpolated results during matching
via an “onion skin” visualization. We obtain real-time performance
in such a worst-case scenario, as well as in all our experiments.

7. Results

In this section and the supplemental video we present complex re-
sults obtained using our animation system. Note that the video does
not merely show final inbetweened results, but first and foremost
the ability of our system to enable a fast and flexible creative pro-
cess to get to those results.

Figure 1 shows the particularly complex example of a special ef-
fect animation traced from Gilland’s book [Gil09], featuring mul-
tiple topological changes made possible by the use of several tran-
sient embeddings. Figure 13 demonstrates a first Articulated arm
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(a) (b) (c)

Figure 15: Starting from the same first extreme key drawing (in
gray), three ball drop animations are produced with a different se-
quence of breakdowns (in black) using a shift-and-trace workflow.
In (a), the ball is slightly deformed in the direction of motion and
acceleration is conveyed through an ease-in/ease-out spacing, with
a high rebound conveying a light object. In (b), the ball is acceler-
ated, with no deformation on contact and a low rebound, all effects
conveying a heavier object. In (c), we apply a large “squash-and-
stretch” deformation to the ball before and after it hits the ground,
giving it an elastic and cartoony look-and-feel.

animation exercise taken from Williams’ guide [Wil01], showcas-
ing arc motions controlled through hierarchical trajectories. In Fig-
ure 15 through 18, we reproduce three other classic animation ex-
ercises. Details are provided in figure captions; we summarize the
main demonstrated features below:

Ball drop (Figure 15): different impressions of weight are con-
veyed through variations in breakdowns and spacing;

Walk cycle (Figure 16): breakdown keyframes are used to produce
drastically different animations, starting from the same pair of
extreme key drawings;

Flour sack jump (Figure 17): plausible motion dynamics are ob-
tained by adding anticipation and follow-through via a combina-
tion of breakdowns, deformations and spacing;

Head turn (Figure 18): 3D-like rotation is conveyed through sev-
eral embeddings, some being tagged as fading in or out.

Note that even a simple ball drop animation (Figure 15) would
require many trials-and-errors for novice 2D animators to produce
a first result. Exploring alternate results afterwards would require a
significant amount of work (tens of minutes, perhaps hours) since
all inbetween frames must be redrawn. In contrast, our system al-
lows the exploration of different alternatives instantly while retain-
ing a plausible rough hand-drawn animation style.

The Head turn example (Figure 18) reveals the main limitation
of our approach (see Section 8.3): even with a special treatment
of the occluded embeddings (such as the ears), our system is not
yet designed to let parts of embeddings appear or disappear be-
hind other embeddings, as it would require to interpolate topologi-
cal changes. The method of Zhu et al. [ZPBK17] is able to produce
such inbetween frames, but the user must specify correspondences
for cuts, openings and boundaries on every key drawing, and com-
patible embeddings must then be computed throughout the anima-
tion with a prohibitively expensive optimization.

(a) (b)

Figure 16: Starting from the same two extreme key drawings (in
gray) traced over an animation exercise by Williams [Wil01] and
using the same decomposition into four embeddings throughout
(see inset image), we produce (a) a “normal” walk cycle by adding
three breakdowns (in black) at, and around, the passing posi-
tion, and (b) a very different animation with a single breakdown
keyframe and a constrained trajectory (red curve) to make the char-
acter bow down inbetween steps.

8. Discussion

Our animation system relies on the concept of transient embed-
dings. In Section 8.1, we justify this choice, comparing it to an al-
ternative stroke-level animation system. We then discuss practical
limitations and future work in Sections 8.2 and 8.3.

8.1. Comparison with stroke-level inbetweening

Xing et al. [XWSY15] present an interactive 2D animation system
that aims at assisting in both the drawing of new keyframes and
the matching of drawings across keyframes. In their approach, the
user provides guiding strokes that are used by the system to predict
a new drawing based on past spatial and temporal repetitions. The
user may then either directly reuse the suggested drawing or instead
rely on guide strokes, either case yielding strokes matched between
the current and next keyframes. In effect, this amounts to a different
kind of workflow that works at the stroke level and couples drawing
with matching, alternating between shift and trace steps.

Since strokes are only matched from one keyframe to the next,
the representation may be considered transient, like ours. However,
unlike our method, the embedded deformation model [SSP07] is
carried by the strokes themselves, at a coarse sampling rate. To
generate inbetween frames, the parameters of this model – an affine
transformation per sample – are interpolated in time, and the full-
resolution strokes are reconstructed by spatial diffusion.

We reproduce one of their animations with our system in Fig-
ure 19(a), achieving a very similar result using a pose-to-pose
workflow. The comparison is not intended to show the superior-
ity of one workflow over another. Indeed, we believe that their
auto-completion algorithm – which is the core contribution of their
work – could be adapted to compute lattice transformations in our
system as well, providing an additional matching solution to artists.
Instead, we want to stress the implications of choosing to work at
the stroke level. First, coupling matching with drawing of strokes
has the undesired property that when strokes are erased, matching
is lost in the process. This is obviously not the case with our sys-
tem, since matching is done on embedding lattices. Second, it is
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Figure 17: For this flour sack jump animation, we start from three
initial keyframes (in black and red/blue), which are registered in
a pose-to-pose approach using a single embedding for the whole
drawing. We then add a breakdown (in dark gray) to produce an
anticipation effect, then two additional breakdowns (in light gray)
to refine animation. For follow-through, the last key drawing is di-
vided into two embeddings: the red one is held fixed on screen while
the blue one is slightly deformed through a shift step.

unclear how the diffusion-based interpolation could be adapted to
provide control over trajectories and motion smoothness, whereas
such control is direct in our system as demonstrated in Figure 19(b)
and the supplemental results video.

8.2. Practical limitations

Our implementation is intended as a proof-of-concept prototype
demonstrating the potential of transient embeddings. Yet our cur-
rent animation system could be improved in several ways.

On the matching side, we could improve the registration tool
with an automatic global non-rigid registration prior to our more
local ARAP registration; or we could give artists the option to pin
some correspondences to guide that global alignment process. Such
pinned points should be related to interpolation constraints (any
constraint should be a pin), but they should not be equivalent since
artists may not need to control the trajectory of all pinned points.
As mentioned in Section 8.1, we would also like to adapt stroke
auto-completion [XWSY15] to guide the matching of embeddings.
Working with lattices may allow us to alleviate the influence of
drawing order on prediction, which may prove especially problem-
atic for rough drawings.

On the interpolation side, we have identified three directions of
improvements. First, we would like to explicitly model the rigid
component of a transform T through a pivot transform, such that
the non-rigid component may be handled by ARAP interpolation
relative to that pivot. This would simplify the control of a whole
embedding motion through the trajectory of its pivot (e.g., a bounc-
ing ball moving along an arc), which could exhibit interesting de-
fault behaviors (e.g., logarithmic spirals [WNS∗10]). Second, our
trajectory constraints only allow to enforce G1 continuity across
keyframes due to potential discontinuities of the spacing functions
S. We would like to investigate ways to ensure full C1 continu-
ity by giving the option to adjust S on both sides of abutting con-
straints. Finally, we have focused on hard constraints for the control

of trajectories; but other solutions could be devised. Soft constraints
could be introduced [BBA08] to mimic exterior forces (such as
wind); or constraints may be allowed to slide inside an embedding
to precisely control motion at articulations. This latter improvement
should be more computationally-demanding as it would a priori re-
quire a new ARAP factorization at each interpolated frame.

8.3. Future work

We have chosen to rely on ARAP interpolation to implement trans-
formations between embeddings, as it produces natural results by
default, and may be further controlled efficiently through con-
strained trajectories. However, it does not appear to be the most
suitable solution in some cases. For instance, ARAP interpolation
is not well adapted to animations that are expected to follow an un-
derlying path, such as roots growing in a soil as shown in the sup-
plemental results video. More generally, 3D-like motions (e.g., ro-
tations out of the canvas plane) remain hard to reproduce with our
approach. A solution might be again to rely on an underlying guide
during interpolation, this time a 3D proxy surface.

3D-like animations raise another, more difficult problem: the
handling of occlusions. As shown in Figure 18, occluded embed-
dings simply fade in or out during interpolation in our current sys-
tem. Even though cross-fading is enough in most cases, it is in-
adequate in the case of occlusions: parts of strokes should be re-
vealed or hidden during interpolation, which requires the handling
of depth order relationships between embeddings and the interpo-
lation of topological changes at interactive rates with minimal user
intervention. Extending our system to handle occlusions while re-
taining non-linear editing abilities is a challenging and exciting di-
rection of future work.
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Appendix A: Controllable ARAP interpolation

The original ARAP formulations of Alexa et al. [ACOL00] and
Xu et al. [XZWB05] do not offer any control over motion trajecto-
ries. Baxter et al. [BBA08] introduce such controls through linear
constraints thanks to their reformulation of the problem in terms
of normal equations. Katji et al. [KHS∗12] present an even more
generic mathematical framework, but since we do not need such
a generalization, we choose the method of Baxter et al. [BBA08]
whose implementation is simpler and very efficient.

More precisely, to compute the interpolated positions of the lat-
tice corners at time t ∈ [0,1], we use Equation 5 in their paper:

V (t) =
[

P⊤WP C
C 0

]−1 [
P⊤WA(t)

D(t)

]
,

where the sparse matrix P encodes the triangulated lattice connec-
tivity, the matrix A(t) stores the target affine triangle deformations,
the diagonal matrix W allows to specify a weight per triangle (we
use its area), the matrix C expresses hard linear constraints defined
on lattice vertices, and the matrix D(t) stores the constrained driven
positions. When no constraint is provided by the user, we com-
pel the mean position of the lattice to follow a linear and uniform
trajectory in order to have a unique solution. This implies setting
C = [1/N . . . 1/N], with N the number of lattice triangles, and set
D(t) to the linearly interpolated position of the lattice barycenter.
Otherwise, each constrained point p maps to a row Cp in C with
four non-zero values, one for each barycentric coordinate relative
to its cell corners. Denoting {i, j,k, l} the indices of these corners,
enumerated in clockwise order starting from top-left, yields:

Cp =
[ i j k l
. . . (1−u)(1− v) . . . u(1− v) . . . uv . . . (1−u)v . . .

]
,

with (u,v) the coordinates of p in the quad cell obtained by in-
verse bilinear interpolation [Qui10]. The corresponding row in D(t)
stores the position along the trajectory curve evaluated at t.

Note that matrix inversion, which is the most computationally
expensive part of the method, needs to be performed in only two
cases: when a lattice is created or its topology changed, since P is
modified; or when a linear constraint is added to C. The matrix A(t)
is updated whenever matching is modified, whereas D(t) is updated
whenever a constrained trajectory is edited.

With this formulation, the inverse lattice transformation
T (t)−1 =V (1− t)−V1 might result in a non-symmetric behavior,
which is obviously problematic for strokes cross-fading. We thus
use the symmetric formulation of Baxter et al. [BBA08] which is
slightly more complex but equally fast to compute. We refer the
interested reader to their paper for details.

submitted to EUROGRAPHICS 2023.

https://doi.org/10.1007/s11390-019-1963-3
https://doi.org/10.1007/s11390-019-1963-3
https://doi.org/10.1111/cgf.13518
https://doi.org/10.1145/3414685.3417784
https://doi.org/10.1145/3414685.3417784
https://doi.org/10.1109/TVCG.2011.111
https://doi.org/10.1145/2897824.2925872
https://doi.org/10.1145/2897824.2925872
https://doi.org/10.1145/3130800.3130820
https://doi.org/10.1145/3130800.3130820

