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Belenios with cast as intended

Véronique Cortier, Alexandre Debant, Pierrick Gaudry, Stéphane Glondu

Université de Lorraine, CNRS, INRIA, LORIA

Abstract. We propose the BeleniosCaI protocol, a variant of Belenios
which brings the cast-as-intended property, in addition to other existing
security properties. Our approach is based on a 2-part checksum that the
voting device commits to, before being challenged to reveal one of them
chosen at random by the voter. It requires only one device on the voter’s
side and does not rely on previously sent data like with return codes.
Compared to the classical Benaloh audit-or-cast approach, we still have
cast-as-intended with only some probability, but the voter’s journey is
more linear, and the audited ballot is really the one that is cast. We
formally prove the security of BeleniosCaI w.r.t. end-to-end verifiability
and privacy in a symbolic model, using the ProVerif tool.

1 Introduction

Electronic voting systems aim at guaranteeing simultaneously vote privacy (no
one should know what/whom I voted for) and verifiability (my vote should be
properly counted). These properties come with trust and distrust assumptions on
the involved parties such as the voting server, the voting devices, the decryption
authorities, or external auditors. A long-standing issue is the so-called cast-as-
intended property: a voter should be able to control that their vote has been
properly encoded and cast with their proper intention, even if their voting device
tries to send a different vote.

A simple and appealing approach has been proposed by Benaloh [4] about 15
years ago. When a voter selects a vote v, their device produces a ballot b and the
voter is given the choice to either cast the ballot or audit it. In the latter case, the
device must produce the randomness used to form the ballot. The randomness
as well as the ballot b are then sent to a second device or a third trusted party
to control that b indeed encrypts v. This procedure is repeated an unpredictable
number of times until the voter is convinced that their voting device behaves
as expected. This approach is simple and versatile. However, user studies have
shown that it is hard to use and understand in practice [25]. As a consequence, a
few voters audit in real elections. Moreover, this mechanism may even threaten
privacy in case voters are not properly instructed to audit ballots that contain
votes that are independent of their real intention. For the Benaloh’s mechanism
to be truly secure, voters need to first roll a dice to decide whether they will
vote or audit, and in the latter case, roll a dice to decide which candidate to use.
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Our contribution. We propose an audit mechanism that is part of the voter’s
journey (no need to choose) and in which the audited ballot is the one actually
cast. Our approach works as follows. When a voter selects a vote v, an integer a is
chosen at random (between 1 and µ, a positive integer larger than the number of
possible values for v) and the voter is given v, a, and b such that b = v+a mod µ.
The corresponding ballot bal is formed of the respective encryption of v, a,
and b, together with a zero-knowledge proof zkp that guarantees that the three
ciphertexts encrypt values x, y, z such that z = x+ y mod µ.

bal = enc(v), enc(a), enc(b), zkp

The voting device commits to bal on the bulletin board. Then the voter asks their
device to open either the second or the third encryption (chosen at random), by
revealing the randomness used to produce the ciphertext. In order to modify v,
the voting device needs to modify either a or b. Hence the voter will detect a
malicious device with probability 1/2. This audit mechanism does not leak any
information on v since a and b (considered separately) are perfectly random.

We integrate this mechanism into the Belenios protocol [12], yielding Be-
leniosCaI. Belenios is an evolution of Helios [2] that additionally provides el-
igibility verifiability. Belenios is used each year in about 2000 elections, that
include a German political party and some EU institutions [13]. We believe that
our approach could be used to add cast-as-intended to other protocols as well.
Interestingly, the computation overhead remains affordable. We show that we
can encode the zero-knowledge proofs of modular equality into a standard proof
of set membership. Overall, the computational cost and the size of ballots are
about 2-3 times bigger than their counterparts in Belenios.

We formally prove that BeleniosCaI guarantees verifiability against a com-
promised voting device. We also show that BeleniosCaI preserves vote secrecy
(assuming an honest voting device). Specifically, we provide a formal model of
BeleniosCaI using the ProVerif tool [5], a well established tool for analyzing the
security of protocols. This required to reflect the theory of modular arithmetic
in ProVerif, which is typically out of range of this tool. Fortunately, we could
re-use the model developed in [7]. Verifiability is shown by excluding traces that
do not satisfy some of the properties of modular arithmetic, using restrictions, a
feature recently introduced in ProVerif [6]. Vote privacy is more involved since
it is expressed as an equivalence property where the attacker tries to distinguish
between different voting choices. Considering sufficient conditions is no longer
appropriate. Instead, we show (in ProVerif) lemmas on traces that then allow
us to conclude thanks to a theorem of [7].

Related work. The idea of using a two-checksum a and b with b = v+a mod µ
has been firstly developed by Neff in [27] for the specific subcase µ = 2. Then,
the general case has been sketched in [10] and more thoroughly introduced in [7]
in the context of on-site voting. The proposed system involves printed papers
with scratch-off parts, smartcards, and local observers. We adapt this idea to
Internet voting, using the Belenios protocol, with many simplifications (e.g. we
no longer request a and b to be of different parity).



Many Internet voting protocols have been proposed for cast-as-intended. We
refer the reader to [26] for a nice and comprehensive survey. This survey splits
existing protocols into five categories: audit-or-cast, tracking data, verification
devices, code sheets, delegation. Interestingly, our approach introduced a novel
category that could be called audit-and-cast. We only review here the main
families. In the code sheet approach, voters obtain printed code sheets during
the setup, with one code assigned to each candidate. When voting for a candidate
v, the voter receives a code and checks on their sheet that it indeed corresponds
to v. This is the approach followed in Switzerland with CHVote [19], as well as
the protocol developed by SwissPost [1] or previously by Scytl [17]. Such systems
require a heavy infrastructure (e.g. a distributed voting server) and assume a
honest printer that is in charge of most of the setup. Other code-sheet based
systems include Demos [23] and Pretty Good Democracy [30].

Some systems assume a (second) verification device. This is for example the
case in Estonia [21] where voters can use a second device and the randomness
of their ballot to check it is well-formed. In Australia [8], voters simply call a
server that opens their ballot and gives the vote in clear (with associated threats
on vote privacy). Intuitively, BeleniosCaI allows to simplify so much the work of
the second device (checking an addition) that it can be discharged on the voter.

Tracking systems include in particular sElect [24], Selene [29] and its succes-
sor Hyperion [28]. They let the voter check that their vote appears on the public
bulletin board, thanks to a voting tracker. The voter may detect a misbehavior
only once the election is over. In Selene and Hyperion, the validity of the tracker
needs to be checked with a second device (which, in return offers some protection
against vote-buying).

2 Protocol description

We describe a voting protocol, BeleniosCaI, where voters have to select between
k1 and k2 candidates among a list of n candidates. A vote can be represented
as a vector (vi)1≤i≤n, where vi = 1 if candidate i has been selected and vi = 0
otherwise; the condition

∑
vi ∈ [k1, k2] must be satisfied. An overview of the

protocol is presented in Figure 1.

2.1 Participants and setup

Voters are identified with their email addresses, that will be used for authen-
tication by the Server. We consider two distinct roles for the Voter and their
Voting device since our protocol is designed to protect against a malicious
Voting device (w.r.t. verifiability).

During the setup phase, the Registrar sends a private credential cred (a
signing key) to each voter. It also sends the list of corresponding public verifica-
tion keys to the Server. The k Decryption authorities set up the public key
of the election pkE such that a threshold t of them can decrypt any message
encrypted with pkE .



We assume a Public board that can be accessed at any time by all the
participants. How to realize a public board in practice is out of the scope of
this paper and is discussed for example in [22]. We also assume that at least
one honest Auditor checks the validity of the ballots and all the cryptographic
material that appears on the public board.

2.2 Voting phase

Ballot. Given a vote v = (vi)1≤i≤n and a credential cred, a ballot bal = (M, zkp, σ)
is formed of an encrypted matrix M , a zero-knowledge proof zkp and a signature
σ defined as follows. First, a vector of audit codes (ai)1≤i≤n is chosen uniformly
at random, where 0 ≤ ai < µ, that is, each ai is a small integer (smaller than a
“modulus” µ than can be thought as 2 or 10).

– The encrypted matrix M =

V1 A1 B1...
Vn An Bn

 contains n lines. Each line is

formed of Vi, Ai, Bi where Vi = enc(vi, pkE) encrypts the choice vi, Ai =
enc(ai, pkE) encrypts the audit code ai, while Bi ties Vi and Ai together.
Namely, Bi = enc(bi, pkE) where bi = vi + ai mod µ.

– The zero-knowledge proof zkp is formed of several zero-knowledge proofs
that guarantee that:
• each Vi encrypts either 0 or 1;
• the Vi’s encrypt values vi such that k1 ≤ Σn

i=1vi ≤ k2.
• for each 1 ≤ i ≤ n, Vi, Ai, Bi encrypt some values vi, ai, bi such that
bi = vi + ai mod µ.

– Finally, σ is the signature of M and zkp with the credential cred.

Voter experience. The voter selects their vote v on their voting device, that
computes a ballot bal as described above. The voting device displays the vote
v and h = hash(bal) to the voter, where h will be used as a tracking number.
This step is illustrated in Figure 2a. The voter confirms their vote, and then the
device sends the ballot bal to the voting server. The voter waits for an email from
the server, that contains a confirmation challenge chal (used for authentication)
and their tracking number h. If the tracking number is correct, they enter chal
to their voting device and starts the audit phase, as illustrated in Figure 2b:

– the voting device displays the matrix in clear

m =

v1 + a1 = b1...
vn + an = bn


– the voter reviews the matrix m and checks that the sums are correct (taking
µ = 10 can make this step easier);

– for each line, they select either ai or bi, yielding a bit δi, where δi = 0 if ai
is selected and 1 otherwise.



Voter Voting device Voting server Public board

Makes a choice v

Checks v′ = v

Checks h′ = h

Checks (bi = vi + ai mod µ)1≤i≤n

Picks mask
Deduces (δ1, . . . , δn)

Checks h′′ = h and
mask = mask′

Builds ballot:

bal =

V1 A1 B1

...
Vn An Bn

 , π, σ

h = hash(bal)

For 1 ≤ i ≤ k, recover ri used
in Ai or Bi according to δi

Checks validity of bal
Picks challenge chal

Checks chal = chal′′

Computes mask′

from random

v, cred

v′, h

ok

bal

h′, chal

chal′
chal′′

audit codes (ai, bi)1≤i≤n

(δ1, . . . , δn)

(δi, ri)1≤i≤n

bal, mask′,
(δi, ri)1≤i≤n

h′′, mask′

Sent by email

Sent via keyboard/mouse/screen

Public channel

Fig. 1: Description of the voting phase of the BeleniosCaI protocol
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(a) Confirmation step.

Alice

Bob

Charlie

Selected?

1

0

1

+

+

+

Audit codes

5

3

9

=

=

=

6

3

10

Check that the additions are correct

(b) Mask selection step.

Fig. 2: Two steps of the voter’s journey.

For each i, the voting device must reveal the randomness ri used to encrypt
either ai or bi according to the selection of the voter. The voting device sends
to the server the selection (δi)1≤i≤n as well as the corresponding randomness
(ri)1≤i≤n. For each line i, the server decrypts Ai or Bi, according to δi, thanks
to the randomness ri and reveals on the public board the corresponding ai or
bi. Finally, the voter checks on the public board that their tracking number
h appears, as well as their selection (δi)1≤i≤n and the corresponding chosen
integers. External auditors check that the decryptions of audit codes are valid,
as well as the zero-knowledge proofs and signatures.

Intuitively, even if the voting device is malicious, it must commit to values
vi, ai, bi such that bi = vi+ai mod µ. Hence if the voting device wishes to change
the vote vi of the voter, it must also modify ai or bi. This will be detected
with probability 1/2 by the voter since they chose to see either ai or bi at
random. Therefore, while a few votes may be modified without being detected,
the attacker has a probability of 1/2k to change k votes without being detected.
This does not diminish vote privacy since only a random mask (either ai or bi)
is revealed. We provide a formal security analysis in the next section.

Server. As in Belenios, the Server only accepts well-formed ballots, that is, bal-
lots such that the zero-knowledge proofs are valid and the signature corresponds
to a valid public verification key. Moreover, the Server ensures that a voter al-
ways uses the same credential (in case of a revote) and that no two voters use
the same credential.

2.3 Tally phase

As in Helios and Belenios, the encrypted votes (Vi)1≤i≤n can be combined ho-
momorphically in order to obtain an encrypted vector that corresponds to the
total number of votes per candidates. The vector is decrypted by the Decryption
authorities, who also provide a zero-knowledge proof of correct decryption.



2.4 Usability considerations

In theory, the modulus µ can be as small as 2. This is enough to perfectly
mask a bit. However, we do not expect typical voters to be familiar with binary
arithmetic. We suggest to use µ = 10, so that voters can do a classical addition,
and are instructed to consider the units digit only, e.g. if the sum is 10, then we
forget the 1 and get 0. Printing the 1 in gray can help as depicted in Figure 2b.

Choosing a random mask could be difficult since we expect the voters to be
bad random generators in case there are many candidates. Assuming that voters
can better pick numbers at random, one option is to ask voters to enter an at
least 4-digit number (or maybe longer, if there are more than 13 candidates)
instead of directly selecting the mask, and convert it to a mask using a prede-
fined deterministic function. The server must then print both the mask and the
number, so that the voter can check them.

3 Security Analysis

We conduct a security analysis of the BeleniosCaI protocol using the tool ProVerif.

3.1 ProVerif

ProVerif [5,6] is a state-of-the-art, automatic verification tool to prove the se-
curity of cryptographic protocols, including industrial-scale protocols such as
TLS or Signal. ProVerif proves the security of protocols thanks to a (sound)
transformation into first order logic. It (often) reports an attack trace when the
proof fails. We recall here its main specificities and we present an overview of
our model of BeleniosCaI. The full models are available the supplementary ma-
terial accompanying this HAL document. A detailed description of the syntax
and semantics of ProVerif can be found in [6].

Messages ProVerif is based on the notion of a Dolev-Yao attacker model [16]
in which messages are abstracted by terms which are either an atomic data
(e.g., a key, an unguessable random number, etc) or a function symbol applied
to other terms. The semantics of a message is then provided by an equational
theory and/or a rewriting system. For instance, a randomized asymmetric en-
cryption scheme is modeled by a function symbol aenc of arity 3, a symbol
adec of arity 2, and a symbol pk of arity 1. The possibility to decrypt an en-
crypted message using the correct secret key is then modeled by the rewriting
rule: adec(y, aenc(pk(y), x, r)) → x where x is the plaintext message, y the se-
cret key corresponding to the public key pk(y), and r the randomness used for
encryption. Most cryptographic primitives can be modeled similarly (e.g., sig-
nature, hash function, zero knowledge proof).

Roles The different roles of the protocol are modeled through a process al-
gebra inspired by the applied pi-calculus which includes the commands P |Q to



model that the processes P and Q execute in parallel, and !P to model that an
arbitrary number of process P can be executed in parallel. Moreover, communi-
cations on a (public or private) channel c are represented by actions in(c, x) and
out(c,m) which respectively model that an agent is waiting for a message x on
channel c, and an agent is sending a message m on c. In addition, the process
may contain event actions that are used to identify specific steps in the process
and to express some security properties. Finally, there are standard actions to
model fresh unguessable name generations, conditionals, declarations, etc. For
sake of simplicity, ProVerif supports the syntax in(c,=m);P as a shortcut for
in(c, x); if x = m then P else 0. This notation will be used in Figure 3.

All the processes are executed using an operational semantics presented in [6].
For instance, it formally defines that a message u can be received through an
input in(c, x) as soon as there exists an action out(c, u) to execute, or if the
channel c is public and the attacker is able to deduce the message u from its
knowledge. Roughly speaking, the semantics formalizes the intuitive execution
of the processes that the reader might think of.

Example 1. Figure 3 presents as a concrete example the process used to model
the voter role. We assume that the voter securely receives their secret signing
key and knows their id and the channel they will use to communicate with their
device (e.g. monitor, keyboard, mouse, etc). Finally, we assume a public channel
c that will be used to communicate with the environment (i.e. the attacker).

The process then corresponds to the voter experience described in Section 2.2.
First (l. 2-4), the voter sends their choice to their device. Second (l. 6-7), the voter
reads on their device the ballot tracker and reviews their choice before confirming
their vote. Third (l. 9-11), the voter receives an email from the server that
contains a ballot tracker and a challenge. The ballot tracker must correspond to
the one displayed on the reader. If this is the case, the voter enters their challenge
in the device. Fourth (l. 13-18) the audit phase starts: the device displays the
ballot and the corresponding audit codes, the voter checks the well-formedness
of the ballot (i.e. b = x+a). The event isSum(xB , v, xA) is executed to model the
check of the sum. The voter ends this phase by randomly choosing which code
will be audited. Finally, (l. 20-29), the voter reads on the public bulletin board
and look for an entry that matches their ballot tracker, and the expected audit
codes. If everything is correct, then the voter is “happy” and can be sure that
their vote will be counted, and that the ballot contains their intended choice.

The other roles of the protocol (i.e. voting device, server, tally) are modeled
in a similar way.

Security properties ProVerif supports two main classes of security properties:
trace properties and equivalence properties.

The trace properties express that specific bad states cannot be reached during
the execution of the protocol. These are expressed using correspondence queries
of the form ∧

i∈{1,...,n}

Ei ⇒
∨

i∈{1,...,m}

∧
j∈{1,...,p}

Fi,j



1 Voter(id, c_device, ssk_id) =
2 in(c, v); (* voter’s choice chosen by attacker, to consider all cases *)
3 event HasInitiatedVote(id,v);
4 out(c_device, (v,ssk_id));
5

6 in(c_device, (=v, x_ballot_tracker));
7 out(c_device, OK);
8

9 in(c_mail(id), (=x_ballot_tracker, x_chal));
10 event Voted(id,x_ballot_tracker,x_v);
11 out(c_device, x_chal);
12

13 in(c_device, x_ballot_plaintext);
14 let (=v, x_A, x_B) = x_ballot_plaintext in
15 if x_A <> blind_code && x_B <> blind_code then
16 event isSum(x_B,v,x_A);
17 in(c, audit_choice); (* audit choice chosen attacker, to consider all cases *)
18 out(c_device, audit_choice);
19

20 in(cell_BB, (x_vk, x_ballot, x_ballot_tracker_bb, x_rands, x_codes));
21 if audit_choice = 0 then (
22 if x_ballot_tracker_bb = x_ballot_tracker && x_codes = (x_A,blind_code) then (
23 event HappyVoter(id_voter,x_ballot_tracker,v); 0
24 ) else out(c_error, ERROR)
25 ) else if audit_choice = 1 then (
26 if x_ballot_tracker_bb = x_ballot_tracker && x_codes = (blind_code,x_B) then (
27 event HappyVoter(id_voter,x_ballot_tracker,v); 0
28 ) else out(c_error, ERROR)
29 ) else out(c, ERROR)

Fig. 3: ProVerif process modeling the voter actions.

which models that whenever the events E1, . . ., En are executed during an
execution then there must exist i0 ∈ {1, . . . ,m} such that all the facts (i.e. events,
equalities, disequalities, etc) Fi0,1, . . ., Fi0,p hold too. This type of queries are
used to express for instance authentication, confidentiality, or integrity. In the
context of our security analysis it will be used to express verifiability properties.

The equivalence properties model that two processes P and Q cannot be
distinguished by an attacker interacting with them, denoted P ≈ Q. For sake of
simplicity, we intentionally decide to not recall here the formal definition of the
notion of equivalence that ProVerif verifies (see [6] for details). In our context,
this notion of equivalence properties will be useful to model vote secrecy.

3.2 How to overcome ProVerif ’s limitations?

The underlying symbolic model of the ProVerif tool has two main limitations to
model the BeleniosCaI protocol. First, it does not allow to model associative and
commutative operators which prevents an accurate modeling of the arithmetic
operations in Z/µZ. Second, it does not model probabilistic actions that would
be necessary to faithfully describe the audit mechanism of BeleniosCaI. To over-
come these limitations, we leverage techniques developed in [7]. We recall here
an overview of them but a detailed description and a proof of their correctness
is available in the original paper.



Arithmetic operations To model the sum in Z/µZ, we assume that an
event isSum(x, a, b) is executed each time an agent verifies that x = a+b mod µ.
These events records all the equalities that must hold. Based on these events, two
approaches are developed in [7] depending on the security property under study:
first, for trace properties, it models the subset of properties which are relevant
to make the audit mechanism secure. Specifically, it restricts the analysis to
execution traces that satisfy these properties using restrictions. For example,
we model that ”for all a, b ∈ Z/µZ there exists a unique x ∈ Z/µZ such that
x = a+ b mod µ” using the restriction

isSum(x, a, b) ∧ isSum(x, a, b′)⇒ b = b′.
Other properties are modeled in the same way. These properties are trivially
satisfied by the modular arithmetic, and actually sufficient for our verifiability
properties.

Second, for equivalence properties, [7] proposes an approach based on relation
preservation between the traces of the two processes P and Q we want to prove
equivalent. Note that the previous approach, based on an over-approximation of
the sum relation in Z/µZ would be unsound for equivalence properties. Hence,
[7] proposes to prove equivalence of processes P and Q as follows: (1) show that
for any trace trP of P there exists an indistinguishable trace trQ of Q, and (2)
if an event isSum(x, a, b) is executed in P then the same event is executed in
trQ. The first item corresponds to the standard trace equivalence property that
can be proved as usual in ProVerif, and the second item is the relation preserva-
tion property. It can be proved in ProVerif too by defining a specific lemma. An
immediate consequence of item (2) is that, if the relation induced by the events
isSum(x, a, b) models the sum in Z/µZ in trP then it remains true in trQ. A
detailed description of this approach and its soundness is provided in [7].

Probabilistic actions ProVerif does not handle probabilistic actions, and
thus cannot faithfully model the random choice done by the voter to perform
the audit. Like [7], to be able to conduct the security analysis, we decided to
make the following reasoning on top of the modeling: because an attacker cannot
know in advance which code the voter is about to audit, the attacker must be
able to provide data that make the audits valid for both codes. Therefore, we
model that the voter audits both codes for verifiability when it is necessary to
avoid false attacks. Concretely, this means that, regarding Figure 3, a third case
is added for audit:

1 if audit_choice = 2 then (
2 if x_ballot_tracker_bb = x_ballot_tracker && x_codes = (x_A,x_B) then (
3 event HappyVoter(id_voter,x_ballot_tracker,v); 0
4 ) else out(c, ERROR)

3.3 Security analysis and result

We proved the security of the BeleniosCaI protocol regarding vote secrecy and
verifiability. Following the approach developed in [11,3], we consider 3 sub-
properties to model E2E verifiability: cast-as-intended to model that the voter
can verify their ballot contains their intended vote, no clash attack to model that



two voters should not agree on the same ballot, and recorded-as-cast to model
that an attacker cannot create nor modify a ballot in the name of an honest
voter. In this security analysis, we deliberately omit the eligibility property be-
cause it remains exactly the same as the current version of the Belenios protocol
(eligibility is performed by both the registrar and the server).

To formalize these security properties, we define the following events:

– onBoard(vk, h, b, r,X) is executed each time a ballot b is added to the public
bulletin board. vk is the public key associated to the signature occurring in
b, h is the ballot tracker associated to b (i.e. h = hash(b)) and (r,X) is the
data published to conduct the audit.

– Honest(id, vk) is executed each time an honest voter id is registered with
the public signing key vk.

– HasInitiatedVote(id, vk) is executed when the voter id with the public
signing key vk has initiated a vote.

– Voted(id, vk, h) is executed when the voter id with the public signing key
vk has confirmed their vote using the ballot tracker h.

– HappyV(X, id, h, v) is executed when voter id has completed the audit us-
ing the ballot tracker h and intended to vote for v. X ∈ {L,R, LR} records
whether the voter audited the Left, the Right, or both (for modeling) codes.

Vote secrecy. As usual in the symbolic analyses, we consider the vote secrecy
definition proposed by Kremer et al. [14]: an e-voting protocol ensure vote secrecy
if an attacker is not able to distinguish whether Alice voted for 0 and Bob for
1, or conversely. Formally, we note Alice(x) (resp. Bob(x)) the process modeling
the role of Alice (resp. Bob) when voting x, and P the process modeling all the
other roles involved in the protocol then we want to prove that:

P |Alice(0)|Bob(1) ≈ P |Alice(1)|Bob(0).

Cast-as-intended. A protocol ensures cast-as-intended if the voter is able to
verify that their ballot will be counted and contains their intended vote. We
consider the following correspondence property to model cast-as-intended:

HappyV(LR, id, h, v) ∧ Honest(id, vk)⇒
onBoard(vk′, b, h, r,X) ∧ (b encrypts candidate v).

No clash attack. A protocol protects against clash attacks if two voters cannot
agree on the same ballot. When honest devices are used, they generate ballots
with different randomness, which ensure the no-clash property. This is no longer
true if the voting devices are malicious and collude: they may use the same ran-
domness and make Alice and Bob believe they own the same ballot. Interestingly,
the no-clash property still holds in BeleniosCaI thanks to the fact that voters
randomly choose whether they audit the left or the right code. We therefore
model the no-clash property for voters that audit differently:

HappyV(L, id, h, v) ∧ HappyV(R, id′, h, v′)⇒ false.



Note that this property is weaker than the original no-clash property, that
does not need to make assumptions on voter’s (audit) choices.

Recorded-as-intended. A protocol ensures recorded-as-intended if an attacker is
not able to forge a ballot in the name of an honest voter. This corresponds to
the following correspondence property1:

onBoard(vk, h, b, r,X) ∧ Honest(id, vk)⇒ Voted(id′, vk, h). (1)

Unfortunately, this property is not satisfied by BeleniosCaI when the voting de-
vice and the server are compromised. Indeed, as soon as the voter initiates a
vote, they reveal their credential which lets the attacker completely impersonate
them. We thus define a weaker property, that says that an attacker is not able
to forge a ballot in the name of an honest voter, unless the voter has started a
voting session:

onBoard(vk, h, b, r,X) ∧ Honest(id, vk)⇒ HasInitiatedVote(id′, vk). (2)

Remark 1. Regarding the literature, it seems that protocols known to be verifi-
able assuming a compromised voting device guarantee only Property 2. This is
the case, for instance, of Helios [2] or Selene [29]. Still, other protocols such as
the Swiss Post [1] or BeleniosVS [11] ensure Property 1. Hence, we considered
interesting to analyze the security of BeleniosCaI w.r.t. these two properties, as
presented in Table 1 and 2. Recorded-as-intended corresponds to Property 2 and
recorded-as-intended (strong) to Property 1.

Results Table 1 presents the main results of the security analysis: BeleniosCaI
is as secure as Belenios if we assume that the voting device is honest, i.e. it
requires that either the registrar or the server is honest to ensure verifiability
and that the decryption authorities are honest for vote secrecy. Moreover, it still
provides verifiability when considering a malicious voting device: if the server
is honest then it meets the same verifiability property as Belenios (strong E2E
verifiability), while if the registrar is honest, then it ensures (only) the E2E
verifiability. From the vote secrecy point of view, BeleniosCaI and Belenios are
both secure as soon as enough decryption authorities are honest.

In summary, these results demonstrate that BeleniosCaI provides strictly
better security guarantees than Belenios.

For interested readers, Table 2 presents the detailed results of the security
analysis conducted in ProVerif. The ProVerif files are available in the supplemen-
tary material accompanying this HAL document. This table details the weakest
trust assumptions in which each security property is ensured by BeleniosCaI: the
less trustworthy agents there are, the more secure the protocol is. For instance,
line 4 shows that the strong notion of recorded-as-cast is ensured as soon as the
server is honest (i.e. even if the voting device or the registrar are compromised).

1 This correspondence property identifies voters by their public signing key. This as-
sumption is valid as long as the registrar is honest. Otherwise, when the server is
honest, they can be identified by their id and a similar property is defined. This
distinction corresponds to the approach developed in [11].



Trusted components
VD ∧ (R ∨ S) S R

[T] [VD ∧ T] [VD ∧ T] [VD ∧ T]

E2E verifiability (strong)
" " % %

(including cast-as-intended)

E2E verifiability
" " " %

(including cast-as-intended)

Vote secrecy " " " "

"= proved secure VD=voting device, R=registrar, S=server, T=dec. auth.,

% = attack [.]= extra trust assumption for vote secrecy only

Table 1: Security analysis of BeleniosCaI: minimal trust assumption.

Indeed, if the server is honest then the attacker will not be able to learn the
challenge code sent by mail to the voter, and thus will not be able to confirm a
maliciously created ballot in the name of the voter.

Voter Voting device Server Registrar Dec. auth.

Cast-as-intended

No clash

Recorded-as-cast (strong)

Recorded-as-cast

Vote secrecy

= trustworthy = compromised

Table 2: Minimal trust assumptions for each security property.

4 Efficiency considerations

A ballot in Belenios or Helios essentially costs one ciphertext and zero-knowledge
(individual) proof per candidate, plus one zero-knowledge (overall) proof that
controls the number of selected candidates. BeleniosCaI requires two extra ci-
phertexts and a proof of modular equality for each candidate. This essentially
adds a factor between 2 and 3 to compute the ballot, as we detail now.

The zero-knowledge proofs required for forming the ballots can all be ex-
pressed as statements of the form “The cleartext of this ciphertext belongs to
this finite set of possible values”.



– Individual proofs. Each vi belongs to {0, 1} is already in this form. This is
therefore a list of 0/1 proofs. The basic approach requires 5 exponentiations.
See [20,15] for ways to optimize them.

– Overall proof. The sum of all the vi’s is between k1 and k2. Due to the
homomorphic property of ElGamal encryption, anyone can compute the ci-
phertext of this quantity, from the list of the Vi’s, so that we are indeed in
the claimed setting. Proving the property is then classically done as in Helios
or Belenios, by rewriting it as belonging to a set of integers, with a cost that
is linear in k2−k1. Techniques exist to do this at a cost in O(log(k2−k1)) [9].

– Arithmetic proofs. The fact that Vi, Ai, Bi encrypt some values vi, ai, bi
such that bi = vi + ai mod µ can be rewritten as follows. First, by the
homomorphic property, anyone can build the ciphertext that encrypts vi +
ai−bi (without the modulo µ, that can not be computed homomorphically).
By construction, if the ballot is correctly formed, this value must be equal
to 0 or to µ. Therefore, this arithmetic proof can be rewritten as a proof
of membership in a set of two elements, which is almost the same as the
classical 0/1 proof. It therefore requires 5 exponentiations.

In Belenios, there is the possibility to have a special candidate representing
a blank vote, and this comes with a zero-knowledge proof that either the blank
vote is chosen and all the vi’s are zero, or the blank vote is not chosen, and then
the sum of the vi’s is in [k1, k2] (see [18]). Our method supports this setting: it
is enough to add an arithmetic proof for this additional encrypted bit.

We also mention that in the security analysis, there is no need to have zero-
knowledge proofs of the facts that the ai’s and the bi’s are in [0, µ−1]. If, for some
practical reasons, the server needs to detect early invalid ballots, these proofs
can be added. They are of the same nature as the overall proof. However, they
can be costly for the voting device of the voters, if there are many candidates.

To sum-up, compared to Belenios, for the voting device, the additional cost
of forming a ballot is, for each candidate, to compute two ElGamal encryptions
Ai and Bi, and to compute the arithmetic proof for them. This amounts to 9
additional exponentiations per candidate. Techniques like in [15] can be used
to reduce this cost. As a rule of thumb, we can say that this will multiply the
running time of forming a complete ballot by a factor between 2 and 3, the
exact number depending on the number of candidates and the value of k2 − k1.
For elections for which there are no more than a few dozens of candidates, this
remains affordable with a Javascript/WebAssembly implementation running in
a standard browser, and there is no need to have a native implementation (which
would raise many issues, since this usually requires to install specific software).
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