S. Abdennadher and C. Rigotti, Automatic generation of rule-based constraint solvers over finite domains, ACM Transactions on Computational Logic, vol.5, issue.2, 2004.
DOI : 10.1145/976706.976707

M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and M. Milano, A CHR-based implementation of known arc-consistency, Theory and Practice of Logic Programming
DOI : 10.1017/S147106840500236X

K. R. Apt, The essence of constraint propagation, Theoretical Computer Science, vol.221, issue.1-2, pp.179-210, 1999.
DOI : 10.1016/S0304-3975(99)00032-8

K. R. Apt and E. Monfroy, Automatic Generation of Constraint Propagation Algorithms for Small Finite Domains, International Conference on Principles and Practice of Constraint Programming, pp.58-72, 1999.
DOI : 10.1007/978-3-540-48085-3_5

C. Bessière, R. Coletta, E. C. Freuder, O. Barry, and . Sullivan, Leveraging the Learning Power of Examples in Automated Constraint Acquisition, Principles and Practice of Constraint Programming, pp.123-137, 2004.
DOI : 10.1007/978-3-540-30201-8_12

C. Bessière, E. Hebrard, B. Hnich, and T. Walsh, The complexity of global constraints, National Conference on Artificial Intelligence, pp.112-117, 2004.

C. Bessière and J. Régin, Arcconsistency for general constraint networks : preliminary results, International Joint Conference on Artificial Intelligence, pp.398-404, 1997.

R. Coletta, C. Bessière, B. O-'sullivan, E. C. Freuder, S. O. Connell et al., Semi-automatic modeling by constraint acquisition, International Conference on Principles and Practice of Constraint Programming, number 2833 in LNCS, pp.812-816, 2003.
URL : https://hal.archives-ouvertes.fr/lirmm-00269537

A. Davenport, E. Tsang, C. Wang, and K. Zhu, GENET : A connectionist architecture for solving constraint satisfaction problems by iterative improvement, National Conference on Artificial Intelligence, pp.325-330, 1994.

B. Faltings and S. Macho-gonzalez, Open Constraint Satisfaction, International Conference on Principles and Practice of Constraint Programming, pp.356-370, 2002.
DOI : 10.1007/3-540-46135-3_24

Y. Freund and R. Shapire, A short introduction to boosting, Journal of Japanese Society for Artificial Intelligence, vol.14, issue.5, pp.771-780, 1999.

A. Lallouet, T. Dao, A. Legtchenko, and A. Ed-dbali, Finite domain constraint solver learning, International Joint Conference on Artificial Intelligence, pp.1379-1380, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00144947

M. Tom and . Mitchell, Machine Learning, 1997.

R. E. Moore, Interval Analysis, 1966.

J. Quinlan, C4.5 : Programs for Machine Learning, 1993.

F. Rossi and A. Sperduti, Acquiring Both Constraint and Solution Preferences in Interactive Constraint Systems, Constraints, vol.9, issue.4, 2004.
DOI : 10.1023/B:CONS.0000049206.43218.5f

R. Research, See5 : An informal tutorial, 2004.

P. Van-hentenryck, V. Saraswat, and Y. Deville, Constraint processing in cc(fd). draft, 1991.

V. N. Vapnik, The Nature of Statistical Learning Theory, 1995.

N. Yorke, -. Smith, and C. Gervet, Certainty closure : A framework for reliable constraint reasoning with uncertainty, 9th International Conference on Principles and Practice of Constraint Programming, number 2833 in LNCS, pp.769-783, 2003.