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Scalable and efficient video coding using 3D
modeling

Raphaele Baltér?, Patrick Gioid, and Luce Morin?

I FRANCE TELECOM R & D, 4 rue du Clos Courtel, 35512 Cesson-Sevigne, France
2 |IRISA-INRIA, Campus de Beaulieu, avenue du General Le¢l85042 Rennes, France

1 Abstract— In this paper we present a 3D model-based video the human face is used to represent the video sequence of the
coding scheme for streaming static scene video in a compactspeaker [2]. However, it is necessary for the scene coredos t
way but also enabling time and spatial scalability accordig to known and that am priori known 3D model is available both

network or terminal capability and providing 3D functional ities. . .
The proposed format is based on encoding the sequence ofdt the coder and the decoder [3]. For a video with unknown

reconstructed models using second generation wavelets, can contents, 3D model-based coding may still be used if theescen
efficiently multiplexing the resulting geometric, topologdcal, tex- is static, i.e. with no moving object inside, and acquiredaby
ture and camera motion binary representations. The wavelet moving camera, by automatically reconstructing the cagatur

decomposition can be adaptive in order to fit to images and soe - 3 apyironment from the video and transmit it as a 3D model,
contents. To ensure time scalability, this representatioris based
a texture and camera parameters.

on a common connectivity for all 3D models, which also allows : - - )
straightforward morphing between successive models ensing Automatic 3D modeling of static scenes from uncalibrated

visual continuity at no additional cost. The method proves ¢ be images and video sequences has been studied for a long
better than previous methods for video encoding of static #mes, time, using computer vision structure-from-motion and-sel
even better than state-of-the-art video coders such as H2G4lso calibration techniques [4] [5] [6] [7]. Most previous work

known as MPEG AVC). Another application of our approach f d i id \vsis f btaini t
is the fast transmission and real-time visualization of vitual ocused on otli-ine video analysis Tor obtaining an acaaira

environments obtained by video capture, for virtual or augnented 3D model_of the scene in order to replace manual modelliqg
reality, free walk-through in photo-realistic 3D environments, and or to provide a precise reference frame for augmented yealit

numerous other image-based applications. [8], but few works have considered the issues of compressing
Index Terms—3D Model-based Coding, Second Generation and streaming the resulting 3D representation.
Wavelets, 3D Reconstruction Such considerations have been mainly addressed for trans-

mitting synthetic 3D models. Several methods have been
proposed for the efficient and scalable coding of the 3D

_ _ o models geometry and connectivity providing a progressice a
With the development of video applications over networkscajaple bitstream [9] [10] [11]. It is assumed that texture

and wireless devices such as cell phones and PDAS, low il pe transmitted as an image using standard fixed image
rate video compression is still a key issue. More preciselypders or as a few parameters in the case of parametricgextur
distant visualization on heterogeneous terminals requideo  However, in the case of 3D models extracted from videos,
coding schemes providing a scalable bitstream adaptablexd@tyre is the most expensive information to be transmitted
multiple and variable terminal resources. and it is also a major factor in the final visual quality. With
State-of-the art video coders rely on pixel-based presticti sich input data, an effective 3D model coding and streaming
correction paradigms and they provide very efficient cosprescheme should take into account the geometry, connectivity
sion algorithms for generic contents video sequences irda Wing texture. In the context of multi view-point acquisition
range of bitrates. Indeed, this type of compression scha&se Bs studied in the MPEG-3DAV consortium [12], real-time
been optimized to reach its best performances in the |at§ﬁ1eaming of 3D point-based representation has been pedpos
standard video coder H264 ITU/MPEG-AVC [1]. assuming fixed and calibrated cameras [13]. Other apprsache
Exploiting particularities of the encoded content can dagm geek to compress image-based rendering view-sets of Virtua
ically improve compression efficiency by using specific e@di enyironment [14]. 3D information can be used to compensate
schemes. Typically, 3D model-based video coding explbés tgisparity between between images [15]. However all those
fact that the scene contains known objects for which a SpeCilfépresentations are often limited to small objects or mequi
or generic 3D model is available and can be transmitt%plparticu|ar capture system.
together with texture and animation parameters. This netho | order to benefit from the compactness and from the
produces very efficient compression and it is particularlw fynctionalities of 3D model-based coding in the case of un-
adapted to the video-conference field where a 3D model own scene contents and uncontrolled acquisition praegdu
we propose a video coding scheme based on a set of successive
3D models extracted from sub-sections of the video, instead
LArticle submitted to IEEE Transactions on multimedia of a unique one containing all the information viewed in the

I. INTRODUCTION



entire video sequence, as in previous automatic shape-framthen expressed as wavelets coefficients ¢n Fig. 1) using
motion schemes [7]. This choice has several advantages: a second generation wavelet transform. Scale coefficiegts (

. Global consistency of extracted 3D information is no®n Fig. 1) represent the geometry of the base mBsi;.
required. This allows us to simplify estimation and us&uccessive 3D models in the stream are encoded differgntial

inaccurate camera parameters. with coefficientsd;’.

« The set of 3D models directly provides a streaming To ensure time consistency of the wavelets coefficients for
format. successive models, wavelet decomposition is applied based

« Global illumination changes along time are modeled arfisingle connectivity mesh (SCM), possibly evolving in time
reconstructed. and gathering the connectivities of each base mesh model.

« Sequences of arbitrary size can be processed with on-the-
fly estimation and streaming of the 3D models.

« Camera motion is unconstrained as long as it is not P
Qegen.e.rated (e.g a pure rgtatic_m) and as its amplitude g vodels
is sufficient to allow self-calibration.

Our first experiments validated this approach for low bétrat oo e e
coding [16]. This scheme still allows 3D functionalitiesialy
provided by classical 3D model-based video coding, such as
illumination changes, object insertion, stereoscopicaliza-
tion or virtual viewpoints generation [17].

However, the previously proposed scheme does not provide %),%,---ES,\
full scalability, which is a key point for targeted applicats
such as distant and interactive visualization. In pardicul  Single Conectivity Mesh
mesh geometry has fixed resolution. It involves, furtheemnor S s
a complex and computationally expensive morphing and re-
meshing process at the decoder side to ensure smooth visual
transition between successive 3D models [16][18]. Fig. 1. Proposed representation based on a 3D model strednsemond

. . . . eneration wavelets.

In both image coding and synthetic 3D models codlng,

wavelets [19] have been effectively used to achieve sdajabi This representation induces several media streams, such as

in an elegant and efficient way. Second generation wavelets L .
[20] provide hierarchical representations for arbitraaynpled ?opology (the connectivity of the single base mesh), gegymet

. avelet coefficients and incremental model represemtgtio
data and they are the current most effective tool for scala .
. and texture. These streams are closely interrelated apcthe
representation of 3D models [21].

: . multiplexed in order to produce a single streamable format.
Therefore we propose a scalable video coding scheme base : : . .
n the following sections we describe the main components

on wavelet decomposition of avolving modetepresented by
a consistent 3D models stream. It provides low bit rate cg)dir?nd the stream types they generate further.
as well as time and spatial scalability and 3D functionaditi
Targeted applications include impact simulation, and leip [1l. 3D MODELS GENERATION
geo-positioning or virtual tourism.

In the following study, we firstly give an overview of the
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The 3D models stream is automatically extracted from

proposed method, then we briefly describe the extraction Z(?F Input v.|deo sequence using shape from mot|.on methods
. : . . . developed in computer vision [5] . Each 3D model is extracted
3D models in section Il and explain the proposed hieraihic

: . ; and used for a restricted portion of the video sequencedctcalle
representation more thoroughly in section V. We then prtesea GOF. Two successive GOFs share one image (cf. Fig. 2).

inter-relations between media flows and we explain the q:pdiq.hese border images are usually calleyframesKeyframes
and decoding schemes in section V. Finally the results dn rea 9 y Y

. . . are automatically selected according to video contentseda
video sequences are finally shown and discussed. 2 o X .
on several criteria. These criteria mainly depend on motion
percentage of outgoing points in images and 3D reconstructi
Il. OVERVIEW OF THE METHOD feasibility and stability [17]. On average a GOF contaks
The proposed representation is based on 3D informatitrames.
extracted with the Galpin reconstruction algorithm. Foctea Disparity estimation is performed by a dense mesh-based
subsection of the sequence calleG®F (Group of Frames) affine motion estimator using multi-grid and multi-resabat
it provides a dense depth map and camera positions for eagiproaches [22]. This robust algorithm minimizes the EQM
frame in the GOF. The behavior of the coder is then as followasnd allows to estimate large disparities with lighting =ari
The first step is to transform each depth map into téons, thanks to mesh deformation. The motion field is then
hierarchical 3D triangular mesh. We define these mesh readjusted under epipolar geometry constraint. The camera
denotedB M, as the mesh related to GOfat coarser level intrinsic parameters are either estimated using selbraion
and thefine mesh denotedF' M, as the dense mesh related t@r set to approximate values. Extrinsic parameters define
GOFk£ at finer level. The refinement from coarser to finer levalamera 3D motion during the acquisition. They are computed



B. Single connectivity mesh and global indexing

- : Using a stream of 3D models instead of a unique one for the
whole sequence provides several benefits that were medtione
previously. However, it also has the drawback of indepetigen
and arbitrarily sampling each 3D model. As a consequence,
the vertices of two successive models are not matching goint
whereas the models usually represent largely overlap@ng p
of the scene. Applying hierarchical wavelet decompositian
such independently sampled models leads to high residual
information and sub-optimal coding efficiency. Moreoveicts
independent sampling prevents smooth swapping between
3D models at visualization stage. Therefore we propose to
using classical self-calibration methods and an adapted bbuild a consistent sampling for all 3D models with vertices
dle adjustment algorithm [17] allowing readjustment betwe corresponding to identical physical points. This is done by
models that is necessary for virtual reality applicatiofise separating connectivity and geometry; a planar graph, téeino
dense motion field from the first to the last image of thas single connectivity mesh (SCMjathers the connectivity
GOF and camera parameters for these two images allow thtormation of every base mesh in the sequence, regardless
reconstruction of a dense depth map for the first image of thétheir geometry. This mesh evolves during time in order to
GOF. Fig. 3 shows an example of such a depth map extractelde into account outgoing and incoming points. The SCM
from the Streetvideo sequence. Camera extrinsic parameteégscomputed starting from the connectivity information bét
are then retrieved for each image in the video sequence usiiigt base mesh, and updated with the connectivity inforomati
a pose estimation algorithm. associated with new points appearing from one base mesh to
another. The SCM computation and update is based on the
base meshes construction described in section IV-C. A globa
indexing system provides a unique index for each vertexen th
SCM, thus implicitly defining matching between base meshes
vertices. The SCM is described as a list of triangles express
in the new global indexing system. The SCM also provide a
€ unique index for each face in the SCM.
Fig. 3. An example of a depth map (b) extracted from Steeetvideo Wavelet decomposition based on the SCM is consistent for
sequence, the associated vrml model (c) and the corresppitdage in the all models and leads to compact coding. Moreover, smooth
sequence (a). swapping at visualization can then be achieved by direct
. . morphing between vertices without ghost effect due to a
The 3D reconstruction step thus provides for each GOF:fadir?g [197] nor morphing additional cor?]puting cost [16]J18
« the 3D model geometry: a dense depth map of the SCéAis can be done at each level of subdivision thanks to the
viewed from the first image in the GOF consistent connectivity of all base meshes and the globakin
« the 3D model texture: the first image in the GOF system. Indeed thanks to base mesh faces global index, a
- camera parameters for each frame in the GOF. unique index can be computed for all vertices at each level
using his barycentrical coordinates in base face. At each
IV. HIERARCHICAL 3D MODELS level i, smooth transition between modeld; and M;_,
We now explain how the hierarchical 3D triangular mesh isan be achieved by linear interpolation between correspgnd
constructed from the dense depth map. vertices:

Fig. 2. Reconstruction of the original sequence

” ttk+1 - ttc

A. Notations M.=ax M+ (1 —a)« M, Witha:ﬁ’
” trt1 tr ”

The following notations will be used in the rest of the paper:

« M;!is the 3D model related to GOF at resolution:

« K} is the keyframe for GOF (i.e. the first image in
GOF k, also used as texture imadg for M}").

o C} is the camera position related to keyfraig. Cy, is
defined by a translatiofy, and a rotationR;, .

« C M, is the corresponding mesh; it denotes the 3D mode}l Base meshes construction
associated with GOE whose vertices match vertices in Base meshes use non-uniform triangu|ati0n in order to

the precedent modél/*\.—, that are still visible fromCy,  ensure global connectivity consistency and smooth triansit
and the related faces. between models. Furthermore to better represent the video
« We denote as’r(M, T, C) the image issued from per-content, the base mesh must also to fit features of the scene.
spective projection of 3D modéel/ textured with image  For the first GOF, the adaptive triangular mesh is based
T onto the viewpoint related to camefa on feature points computed on the first frame in the GOF

where M. denotes the interpolated model for current time
t. andt;_, t;, andt;  , denote translation vectors defining
camera position for the current frame, keyfrakig and Ky, 1
respectively.



il [ transform allows very efficient reconstruction and trarssmi
"” El IE] sion, possibly in real-time [24].

— Since we describe geometric deformations, first generation
- z wavelets do not apply. Indeed, these parameterizations are
oo o x m‘# o defined over topological spaces (typically base medhas,
To-% ’"[ I Got o B of Fig. 1) which are not linear spaces. Thus, wavelets them-
- - selves have to be defined according to the base domain, its
pasenoaets (> @ subdivisions and geometric irregularities.

RM, R,

In the context of Subdivision Surfaces [20], wavelets can be
defined starting from a low pass reconstruction il This
Fig. 4. Principle of the Wavelet Decomposition for the 3D Mb&tream filter operates over a global topological subdivision cstiisg
in facets quadrisections, similarly as interval dichotesnin

the classical wavelet setting. Filt&’ transforms coefficients
(keyframe), using a block-based Harris corner detecto}. [23t level j — 1 into a prediction at levej:

The size of block used for Harris detection fixes the number of
the base mesh vertices (e.g. 200 vertices for our experghent G+ = pig 1)
A 2D Delaunay triangulation of these points under the con-
straint of image borders provides the base mesh conngctivit The resulting coefficients are an approximation, without
In order to avoid texture stretching near image borders,dee aadding any information, which coincides with the refinement
vertices on image borders. The 3D base m&sH, is then operator in the case of Subdivision Surfaces. The wavelet
derived by elevation of this 2D mesh using 3D informatioBetting can be seen as "completing” the representation by
provided by the depth map. adding details through a high pass reconstruction filpér

In order to build the SCM, each base mesh is forced fhis filter has to satisfy an exact reconstruction criterion
contain the correspondents of the previous base meshe&rtigvhich implies that matrix P/ Q7) is invertible.
if they are still visible in the GOF. To meet the SCM consttain  Scaling functions(qﬁf)l- and wavelets{z/){),» are directly de-
triangles of these correspondents, whose set is denotedfiiigd by these filters, so that the parameterization to tcamsf

CMk, are included in the base mes{ﬁMk C BM;,. can be expressed as

When adding vertices on the border of the model, the new ‘
triangulation has to preserve the connectivity derivednftbe S = Z Z di! + Z Y. (2)
preceding GOF without edge crossing. This is achieved by J>0 i i

2D Delaunay triangulation constrained by image borders and

correspondent mest'M. borders. These new triandles are In our case, we use continuous piecewise linear wavelets,
P k ' 9 Which implies that matrix?/ has the formP = (I P')! where
added to the SCM.

I denotes identity and®’ a canonical averaging matrix. As

In the next section, we describe the wavelet analysis schepa? matrix Q, it is chosen so that the resulting wavelets are
applied on the base meshes in order to provide a mulglt— '

Ui labl tation f h 3D model able and provide good compression. This is achieved by the
resolution scalable representation for eac model. requirement of vanishing moments through the lifting sckem

[25].
D. Wavelet decomposition For encoding depth maps, we start by defining a geometrical

The goal of wavelet decomposition is to decorrelate geg_eformanon as illustrated on Fig. 6. The transform is ezpee

metric information so as to proceed to the first step towardS & Scalar in terms of distance to the observer: the scalar
compression. In addition, the multi-resolution aspecttu$ t unctionp: M B~ > R maps a point: on the base mesh to

the offsetp betweenz and M1 N (Cyz).

i+1

Munm —

i [ .

’ MI'In MM edge at resolution i
M:ni : vertex at resolutioni+1

C

x camera position

Ck

Fig. 6. Estimation of the depth to encode with wavelets

We then process the wavelet transform by applying
(PIQ7)~1 for everyj:

Fig. 5: SuccessiV(_e models for tﬁ'@aborsequenceMn_(c), My, 4+1(d) and cJ: _ (Pj Qj)_lch (3)
associated texture imadg, (a), T, +1(b) (lateral translation of the camera) d? - :



The representation to encode is shown on Fig. 1. Figeordinates for vertex location (3D coordinates) and 2 for
models FM; are represented by base mesh@a/; and texture (2D coordinates). If the camera positions are known
wavelet coefficients”]. Scale coefficiente! expressing the on the decoder side only three parameters instead of five are
geometry of base meshes are gathered and indexed by réguired. Indeed 2D texture coordinates can be retrieved by
SCM. reprojecting 3D vertices//; on camera position of the GOF

In classical decomposition all faces are subdivided at they frame viewpoint. As the key frame is also the texture
same fixed level at the encoding stage . However all the fadesage, the coordinates of the resulting projectiop are the
of the mesh do not need to be subdivided at the same letestture coordinates for vertek/;. These parameters can be
depending on the size on the face and on the part of the scéme exact positions of 3D vertice®/; or texture coordinates
they represent. Therefore we introduce an adaptive wavelej and the associated depthif the 3D model is an elevation
decomposition. The level a face is decomposed at is given tmap. This is represented on Fig. 9 by the arrow (1).
the size of the 3D face in order to gather two criteria; the Furthermore since 3D models represent overlapping parts of
depth gradient and the area of the 2D face of the image. Fige scene, the related textures include redundant infasmat
7 gives examples of meshes given by classical and adapfiee exploit this redundant information compressing texture
decomposition foiThaborsequence. images using a classical scheme IPP where the first image
is in Intra mode and the others are in Predicted mode is
useful. Using 1D and 3D information predicted images can be
estimated thanks to the reprojection of the precedent testu
model onto associated camera (cf. Fig. 8). This is repredent
by the arrows (2) on Fig. 9.

a (13765 vertices) b (10783 vertices)

Fig. 7. Example for sequence Thaboprogressive meshes reconstructed
with classical (a) and with adaptive (c) wavelet decompasit

. . . . Fig. 8.  Thabor sequence: Predicted images. Image 107 from original
At this stage, we have obtained a set of multl-resolunogfquence (a) and asgociated predicted imag% (). 9 9

meshes based on non-uniform triangulation, with corredpon
ing vertices. This representation has several advantages)g In the same way, 3D models geometry share common
which are: information. This redundancy can be reduced by using an IPP
« vertex positions can be adapted to scene contents; scheme for 3D information. Predicted models are given by the
« vertex to vertex correspondence between successive medmmon part of the precedent model. This is represented on
els is implicitly provided by the mesh structure andFig. 9 by the arrow (3). These inter-relations are summérize
therefore does not need to be transmitted or estimatedoat Fig. 9. To taking into account those interrelations aow
the decoder side. It allows to smooth transitions betweém dramatically reduce the bitrate [26].
3D models through implicit morphing using a simple

linear interpolation between vertices. S
This 3D representation for videos induces several media

streams, such as topology (the connectivity of the singeba Mesh | 3D encoder
mesh), geometry (wavelet coefficients and incremental inode Geometry &

. 3D connectivity (2)
representation), and texture as well as camera parameters §, ,

. . : ; Video (1) Bitstream
each frame. Efficient coding of these streams is described-tr— 2D encoder Mux
the next section. Reconstruction "eXure
V. COMPRESSION OF THE REPRESENTATION
1D encoder

A. Inter-relations between different media Camera positions

A key observation is that the information streams to b&g 9. Inter-relations between the media in 3D model-bassing
transmitted are not independent and an efficient coding al-
gorithm should take into account this redundancy for both Depending on the envisioned applications, texture or geom-
compression rate and quality of the reconstructed sequencetry has to be favored. For instance, texture is very importa
Here is the description of inter-relations occurring withiin video broadcasting applications, because human vison i
3D model-based coding that we use in our coder. very sensitive to texture. In virtual reality applicatio(fsee
First of all camera positions can help the transmissionewpoint generation or addition of objects for exampld), 3
of 3D models. Indeed, for each vertex of the non-uniformpeometry has to be more accurate. With a unique stream
meshed model five coordinates have to be transmitted: thiestead of several ones we can update on the fly the rate



associated to each medium whose particular encoders are VI. RESULTS AND DISCUSSION

presented in the next section. We show results on two sequences, illustrating the com-
pression rates reached by comparison to Galpins and H264
B. Camera encoding encoders at low and very low bitrates on both constrained and

. . ) free navigation.
. Key fra_lme camera positions are dlff_erenually _encod_ed andeor the wavelet decomposition we use the classical midpoint
intermediate camera positions are retrieved by linearpte bi-orthogonal analysis performing a sub-sampling [25].
lation between key positions:

. t —t i
Co=axCy+(1—a)xChy with a = | the1 —te || A \Asyal quallty.and PSNR |
| tesr — e | While PSNR is appropriate for measuring block based
errors, it has however, little meaning when it comes to geo-
C. Texture encoding metric distortion. Global distortion on reconstructed gesa is

produced both by texture (texture image compression atfa
gad geometric distortions (from 3D model estimation errors

model on the current key position as described in Section V—ind depth compression artefacts). Geometric distortieatty

Padding is used in areas where prediction does not apply %t?_cr_eases PSNR Wh_en It may h‘.”“’e little |mpa(_:t on V|s_ual
Fig. 8: uality. A demonstrative example is the geometric disborti

defined by a one pixel translation.
This is shown by comparing visual quality and PSNR of
Fine granularity scalability for the texture images iswibnl t€xture images and reconstructed images, as in Fig. 10. The
by EBCOT coder. The use of the IPP scheme hinder decodfﬁ‘@fture image PSNR is the PSNR obtained with texture distor-
scalability. Therefore we add a low bandwidth for texturion alone, and without geometric distortion. It is draroally
transmission. At the coding stage, the image used in orderfich larger than the eventual PSNR value on reconstructed
get the prediction is the precedent image, but decoded gt vipage, but visual quality is equivalent for both images.

low bitrate. Refinements are transmitted in the error image. 1hus, low PSNR values of reconstructed images are essen-
tially due to geometric distortion, but they do not reflectual

quality, which is more related to texture accuracy.

An IPP scheme is used where predicted imdgd1)

P(Ki41) = Pr(M;’, Ty, Cry1).

D. Connectivity and 3D Geometry encoding

3D information encoding is based on the base mBsly
and a set of wavelet coefficients for refinements.
2D texture coordinates are not encoded, as explained in
section V-A since they can be retrieved by reprojecting the
3D model on the related key position. =
The base meshes are encoded using TS (Topological =" YV ' e
Surgery) encoder [10] for geometry and connectivity. We can (@) 29.6603 (b) 26.2669
rapidly identify vertices having a correspondent in thetnexig. 10. Thabor sequence: texture image (a) and reconstructed image (b).
model by re-projecting vertices of the current model on th#&hile its PSNR is much lower the visual quality of the reconsted image
key image of the next GOF. In this way, we retrieve thi§ Smilar to the texture image visual quality.

common information between two models at the decodin . . .
gWe thus show PSNR values in an informative way and

stage without transmitting additional information. Thelugl th I isual t of th tructed i
indexing system introduced in Section IV helps to implicitl rather rely on visual assessment of e reconstructed snage
ticular in the case of free view point generation foickh

encode correspondences between successive base mesh P . .

order to avoid numerical errors a stage of robust selectfon oS has little meaning.

base mesh vertices is added to Harris corner selection. _
After the wavelet transform, we get some sets of wavelB¢ Compression results

coefficients(r!)! with low first order entropy. This represen- We show compression results for a sequence of 110 frames

tation is then binarized using a zero-tree algorithm suited of the Thaborsequence for low and very low bitrates on Fig.

the geometric setting [21][27]. To this end, a special higmt 11 and 12. No comparison can be made with H264 if such a

is setup on the mesh, ordering vertices instead of facets. Tlow rate cannot be reached at 25Hz.

SPIHT algorithm can be applied directly onto this hierarchy In Galpin's method depth maps were encoded as an image

similarly to the 2D case. The use of this adaptation of theith EBCOT. The number of vertices in the uniform mesh

SPIHT zero-tree encoder adds bitplane scalability. is then reduced to be competitive with the rate achieved by
Note that the SPIHT algorithm does not contain any entrour progressive coder (15kb for 2400 vertices against 28kb f

coding stage. It is possible to take advantage of such a godir600 vertices for Galpin’s coding for the stairs sequentkis

in a post-process, but this may not be desirable in the cgwefits allows to allocate more bitrate for texture inforiaat

of adaptive decoding or bitstream degradation, since itamakin order to better preserve texture details (as shown onlZg.

real-time decoding slower. on the wall on the right or in the background on the image).




= — 1

(d) 24.25 (d) 21.6238

Fig. 11. Thaborsequence: Image 127 from original sequence (CIF, 25HZ)ig- 14. Thabor sequence: spatial scalability Image 71 from the original
(a) and reconstructed images at 125kb/s with H264 coderw(ith, Galpin  sequence (CIF, 25Hz) (a) and reconstructed images at 12%Bkbdifferent
coder (c) and with our coder (d) level of wavelet decomposition 0 (b), 2 (c) and 3 (d).

D. Virtual navigation results

Including inter-relations into the coder not only dramaliiz
decreases compression rates but it also increases thd visua
quality of the reconstructed sequence by linking up diff¢ére
models together.

Fig. 15 shows successive images around a transition be-
Fig. 12. Thaborsequence: Reconstructed images 71 at 30kb/s with Galpfween two GOFs, the last of the preceding GOF and the first
coder (a) and with our coder (b) . . Co

of the following. One can see the discontinuity between two
successive frames of the video on these images with the right
Since texture information is prominent over geometry fav lo hand ed'ge blank due to missing |qformat|on for appearing
bitrates, this profit is particularly useful in order to aefs areas. Fig. 15 shows also the same images reconstructed ywth
very Iov;/ bitrate our method. The artefacts are gr'eatly reduced by the magphin
' enabled by model vertex matching.

—— ———

C. Scalability Results

Here we show some results of the scalability obtained with
our coder. We show PSNR values even if it does not allow
the evaluation of the quality of the reconstructed sequence
because of geometric distortion.

The table of the Fig. 13 shows the number of vertices and
the associated rate depending on the level of the wavelet
decomposition. Fig. 14 shows reconstructed images asedcia
with these levels of decomposition. The size of the binary
representation increases with the wavelet decomposition
level, and so does the quality of the reconstructed images.
This is particularly visible on the steps of the stairs. Hust

sequence the choice of level 2 seems to be a good rate / ) o o
distortion trade-off Fig. 15. Thaborsequence: Reconstruction of original path around a tiansit
: between two successive models. Successive reconstruttages without
post-treatment (no morphing nos fading) (a) and (b). Ssieeseconstructed

images with our coder (c) and (d).

Level | Number of Vertices| size (bits)

0 148 7744 Galpin 3D fading [17] allows to reduce artefacts near model
1 565 10869 transitions but it also produces ghost effects on images of
2 2185 17155

3 3 5508 the middle of the GOF and on images associated to free
viewpoints. The implicit morphing strongly contributesttee
Fig. 13.  Number of vertices and associated rate functiohefi¢vel of the  visual quality of the scene, avoiding these ghost effectiewh
wavelet decomposition . .
smoothing transitions between models.
Fig. 16 shows reconstruction results during free navigatio




i.e. when the viewer is not restricted to the camera path él@fin [5] M. Pollefeys, M. Vergauwen, F. Verbiest, K. Cornelis,dah. V. Gool,

during capture. In a similar way results on the original path
visual quality of reconstructed images is increased byielim

“From image sequences to 3d models,Tihird International Workshop
on Automatic Extraction of Man-made Objects from Aerial &8phce
Images 2001.

nating artefacts of ghost effects even though some geametis] A. Zisserman, A. Fitzgibbon, and G. Cross, “Vhs to vrmit graphical

distortions are visible near the upper image border, du®to n

uniform triangulation.

Fig. 16. Street sequence: Reconstruction on virtual path @&alpin (a) and [11]

with proposed method (b).

Our algorithm is however limited by occlusions and by 3&5}
informations and camera parameters precision. Our approac
do not require an accurate geometry and therefore the modeg}
can not be used to generate a free viewpoint far from the

original camera.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a new model-based coding scheme for
static video with fine-grain scalability, allowing conteadap- [17]
tation over a very wide spectrum of terminals and networks.
This scheme takes advantage of specific video content,
a fixed scene acquired with a moving camera, to build a
representation which allows better performances and aeehn[19]
functionalities. In particular, 3D can be streamed adapbtiv
in applications of free navigation over networks. The codgpg)
showing better compression results and finer scalabiligy th
previous schemes, exploits all the power of second geoeratj
wavelets and implicit morphing thanks to the design of a co
nectivity mesh gathering each GOF connectivity informatio [22]

To further improve this scheme it would be interesting to
express the temporal increments in a wavelet basis theassely,g;

models from video sequences,” IEEE International Conference on
Multimedia Computing and Systewol. 1, June 1999, pp. 51-57.

D. Nister, “Reconstruction from uncalibrated sequenagth a hierarchy
of trifocal tensors,” inProc. of the 5th European Conference on
Computer Vision ECCV’2000, Dublin, Irelan@000.

K. Cornelis, M. Pollefeys, M. Vergauwen, and L. V. GooAudgmented
reality using uncalibrated video sequences,’Pioc. Second Workshop
on Structure fromMultiple Images of Large Scale Environise2000.

P. Alliez and C. Gotsman, “Recent advances in compressib 3d
meshes,” inProc. of the Symposium on Multiresolution in Geometric
Modeling 2003.

G. Taubin and J. Rossignac, “Geometric compressiooutyit topolog-
ical surgery,”ACM Trans. Graph.vol. 17, no. 2, pp. 84-115, 1998.

J. Rossignac, “Edgebreaker: Connectivity compressfor triangle
meshes,"[EEE Transactions on Visualization and Computer Graphics
pp. 47-61, 1999.

I. JTC1/SC29/WG11, “Applications and requirements 3dav,” 2003.

E. Lamboray, S. Wurmlin, and M. Gross, “Real-time atréng of point-
based 3d video,” ifProc. of the IEEE Virtual Reality conferenc2004,
pp. 91-98.

?M. Magnor, P. Ramanathan, and B.Girod, “Multi-view augl for

image based rendering using 3d scene geomefBEE Transactions
on Circuits and Systems for Video Technolog§03.

P. Ramanathan and B. Girod, “Random access for comgutebght
fields using multiple representations,” Froc. of the Conference on
Computer Vision and Pattern Recognitja2004.

F. Galpin, R. Balter, L. Morin, and K. Deguchi, “3d modetoding and
morphing for efficient video compression,” Proc. of the Conference
on Computer Vision and Pattern Recogniti@004.

F. Galpin and L. Morin, “Sliding adjustment for 3d videgpresentation,”
Eurasip Journal ASP, special issue on Signal Processin@fbmaging
and Virtual reality, 2002.

B. L. Guen, R. Balter, L. Morin, and P. Alliez, “Morphinde modeles
3d estimes,” inJournes d'tudes et d’changes CORESA'200i 2004.
|. DaubechiesTen lectures on waveletsociety for industrial and applied
mathematics ed. Philadelphia, PA: CBMS-NSF regional ceafies in
appl. math., 1992, vol. 61.

M. Lounsbery, T. D. DeRose, and J. Warren, “Multiresimo analysis
for surfaces of arbitrary topological typeRCM Transactions on Graph-
ics, vol. 16, no. 1, pp. 34-73, Jan. 1997, iISSN 0730-0301.

A. Khodakovsky, P. Schroder, and W. Sweldens, “Progjvesgeometry
compression,” iNSIGGRAPH 2000 Conference Proceeding800.

S. Pateux, G. Marquant, and D. Chavira-Martinez, “@bjmosaicking
via meshes and crack-lines technique. application to Idwabé video
coding,” in Proc. of Picture Coding Symposiyra001.

C. Harris and M. Stephens, “A combined corner and eddecttar,” in

Furthermore, reconstructed images have shown the need for a Proc. 4th Alvey Vision Conf1988.

suitable error metric for reconstructed images taking ate
count the geometric distortion to meet visual quality measu
Finally whereas encoding/decoding the representationbean[25]

done on-line, non-linear optmizations for disparity estiion

or bundle adjustment harm complexity of the 3D extractien al
gorithm. It could be interesting to try new graphics process [27]
to accelerate treatments to reach real-time applicatiooh s

as video-conferencing.
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