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Abstract

Modern computer microprocessors are composed of hundreds of millions of transistors that in-

teract through intricate protocols. Their performance dur ing program execution may be highly

variable and present aperiodic oscillations. In this paper, we apply current nonlinear time series

analysis techniques to the performances of modern microprocessors during the execution of proto-

typical programs. Our results present pieces of evidence strongly supporting that the high variabil-

ity of the performance dynamics during the execution of several programs display low-dimensional

deterministic chaos, with sensitivity to initial conditio ns comparable to textbook models. Taken

together, these results show that the instantaneous performances of modern microprocessors con-

stitute a complex (or at least complicated) system and wouldbene�t from analysis with modern

tools of nonlinear and complexity science.
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Modern microprocessor architectures rely on impressive nu mbers of transis-

tors (up to a billion) that interact through intricate rules . As a consequence,

the performance of these microprocessors during the execut ion of certain pro-

grams displays complex non-repetitive variations that cha llenge traditional anal-

ysis. Yet, comparable complex behaviors are observed in man y other systems

ranging from physics to biology and social sciences and have been successfully

described using nonlinear and chaotic data analysis. In thi s paper, we apply

these methods to analyze modern microprocessor performanc es. We collect

several measures characterizing the architectural state a nd performance during

the execution of several prototypical programs and apply cu rrent techniques of

nonlinear analysis to the resulting time-varying signals. Our results show that

for several programs, the complex and highly variable dynam ics observed result

from deterministic chaos. This suggests that detailed pred ictions of microproces-

sor performance is unlikely with these programs. Taken toge ther, these results

show that the instantaneous performances during program ex ecutions on mod-

ern microprocessor architectures form a byzantine system t hat should bene�t

from analysis with modern tools of nonlinear and complexity science.

I. INTRODUCTION

Modern computer architectures result from a rapidly growing evolution that can be traced

back to the 1960's, when Moore observed that the number of transistors per integrated cir-

cuit displayed an exponential growth and predicted that this trend would continue [1]. The

so-called Moore's Law has indeed been maintained during thelast 40 years, as transistor

density doubled approximately every 18 months. Consequently, today computer proces-

sors rely on amazingly high numbers of transistors: the widespread Intelr
 Pentium r
 4

contains 42 million transistors but the more recent Itaniumr
 2 possesses 410 million of

them. Furthermore, a constant of this evolution is that processor speed (especially, its clock

rate) by far outperforms memory operations. Hence, most recent advances in the �eld have

mainly aimed at hiding memory latencies using engineering solutions (parallel executions,

pipelining, cache memory systems). But this necessarily came with further increases of the

processor complexity.
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As a consequence, predicting the precise performance of microprocessors (the number of in-

structions executed each second) during execution of programs running on modern computer

architectures has become increasingly di�cult. For instance, one e�cient way to optimize

computer performance for a given program consists in �ne-tuning the compiler options to

adapt the compiler work to the considered architecture. Yetthe complexity of modern

architectures is such that rational optimizations, guidedby a thorough knowledge of the

architecture, are now less e�cient, up to the point that moresystematic automated search

methods based on machine-learning [2], genetic algorithms[3] or iterative trial-and-error

techniques [4] are being investigated as possible replacements.

Hence, on the basis of the high number of their components dedicated to performance

improvement and the intricacy of their interactions, the instantaneous performance of mod-

ern microprocessors may be viewed as a complex system. As a consequence, performance

recordings during the execution of certain programs can be highly variable [5] and di�cult to

predict [6]. Analyzing and predicting performance (i.e. the rate at which the microprocessor

will execute a given program) has proven increasingly di�cult.

Early on, computer architects dismissed modeling as inappropriate because it was too inac-

curate to capture the slight performance di�erences between two architecture mechanisms.

For instance, even modeling of a single non-trivial architecture component such as a cache

memory spawned decades of research [7, 8, 9, 10], and proved only partially successful a

few years ago for a range of programs with fairly regular behavior and simplistic architec-

tures [11]. Instead, computer architects have always relied upon detailed simulators which

describe the architecture behavior on every cycle [12]. As aconsequence, simulators exe-

cute a program about 10000 times slower than on a real architecture, and this technique is

now becoming overly time-consuming and inappropriate for complex processors and future

processors with a large number of cores. Consequently, novel approaches to understanding

and anticipating system behavior are currently sought in the computer architecture commu-

nity [13].

In the present paper, we study the time-evolution of the performance during execution of

several prototypical programs on prototypical modern microprocessors. We record several

metrics characterizing execution performance (number of instruction executed at each pro-

cessor cycle) and memory operations (cache misses). Treating these traces as time-varying

signals, we analyze them using current techniques from nonlinear time series analysis. Be-
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sides regular periodic behaviors, we evidence highly variable performance evolutions for

several programs. More interestingly, we show that, although the high variability displayed

by several programs can be attributed to stochastic-like sources, the evolution of perfor-

mance during the execution of several others displays clearevidences of deterministic chaos,

with sensitivities to initial conditions that are comparable to textbook chaotic systems.

The remaining of the paper is organized as follows. Section II describes the setup and

methodologies used to obtain the time series we analyzed. Because of the interdisciplinary

relevance of this work and considering that we applied a variety of methods, we present in

section III a rapid overview of the time series analysis techniques we employed. Section IV A

illustrates the existence of chaotic performance trace with the example of the execution of

the program bzip2 . Stochastic-like performances are also evidenced in section IV B and

the example of the programvpr . Finally, we present for comparison in section IV C the

performance displayed duringapplu execution, as a prototype of regular periodic evolution.

Section V discusses possible explanations for the observedbehaviors and present potential

implications in practical applications.

II. PROGRAM TRACES

The time series shown in this article were obtained using a processorsimulator. A simu-

lator is a large program that implements a detailed description of the computer microarchi-

tecture (at the level of a clock cycle and bits), and it is the tool used by computer architects

to design and try out various processor options. The simulator is fed with an instruction

trace, corresponding to a given program executing a given data set. And the purpose of the

simulator is to understand how many cycles are necessary to execute this instruction trace,

as well as to expose the internal operations of the processorfor analysis.

A real processor, such as the Pentium 4, also embeds hardwarecounters that collect some

statistics on its internal operations. However statisticsare sampled infrequently (and thus

too coarsely) in order to avoid disrupting normal processoroperations, which is not appro-

priate in our case. Also, such counters make it hard to distinguish between the multiple

programs (and the operating system) which time-share the processor, so that it is not obvi-

ous or just impossible to reconstruct the time series for a single program.

Still, the simulator we used, called SimpleScalar [12], corresponds to the architecture of a
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typical modern superscalar processor (the Pentium 4 is alsoa superscalar processor). It is

currently used in more than 50% of computer architecture research articles. It has been val-

idated at 15% accuracy against a fairly recent superscalar processor (the HP Alpha 21264)

used in many servers [14].

On this simulator, we ran the 26 Spec benchmark programs composing the so-called Spec

suite (we used the Spec2000 version of the benchmark suite).A benchmark is a program

selected as \representative" of an application domain. Andthe Spec benchmark suite is the

most widely used to evaluate and compare the performance of new computer and proces-

sor architectures. Each benchmark comes with three data sets, with two data sets being

voluntarily small and medium size (respectively labeledtest and train ). All experiments

in this article were conducted with the third and most realistic data set, called ref (for

\reference"). In some cases (e.g.bzip2 ), the ref data set proposes several input data.

During the execution, we collected 3 performance metrics: the IPC, the L1 and L2 miss

rates. The IPC stands for the average number ofInstructions Per Cycle and is the typical

global performance metric for superscalar processors. L1 and L2 respectively correspond

to the �rst-level and second-level cache, small and fast memories used in all processors and

aiming at hiding the main memory latency. The L1 and L2 form a memory hierarchy, with

the L1 being closer to the processor, and smaller but faster than the L2. The miss rate is

the percentage of processor requests that cannot be served by the cache (the request is then

sent to the lower level of the hierarchy), and it thus characterizes the cache e�ciency. The

cache behavior has a strong impact on performance, so besides the global IPC metric, the

caches miss rates are key performance metrics.

Running an entire program requires the execution of severalbillion instructions, so that it is

technically impossible to handle execution traces that would both cover the entire program

execution and display the value of the chosen metric foreach clock cycle. Furthermore,

modern microprocessors rely heavily on speculative execution: upon encounter of a condi-

tional branching, the microprocessor begins to execute oneof the branch alternative before

the outcome of the conditional branch test is known (i.e. before the microprocessor knows

which branch should actually be taken). In other words, at a given clock cycle, the micro-

processor might be executing several instructions that canpossibly be discarded from the

program 
ow a moment later. In this framework, measuring performance is meaningful only

if measurements are time averages. Accordingly, our execution traces presentaverages of
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the metric over a certain number� av of consecutively executed instructions (where we have

used� av = 106; 107 or 108 instructions).

III. TIME SERIES METHODS

Nonlinear time series methods are based around dynamical systems (continuous-time or-

dinary di�erential equations and iterated maps). Hence, they can be powerful tools for

analyzing microprocessor behaviors only if they display the same computation power as

microprocessors. More speci�cally, because microprocessors are capable of universal com-

puting (they are Turing machines), they should also be universal. Recent works have clearly

stated that dynamical systems are indeed capable of universal computation. For instance,

discrete-time dynamical systems are computationally universal, as several of them have been

demonstrated to be able to simulate the computation of a Turing machine. This is the case

of piecewise-linear maps inR

2 [15], cellular automata [16], and neural networks (especially

recurrent networks with rational or real weights and saturated linear [17] or sigmoid [18]

activation function). Universal computation has also beenevidenced for several continuous-

time dynamical systems, including ordinary di�erential equations [19], partial di�erential

equations [20], and continuous-time Hop�eld neural networks [21]. Hence, analysis tech-

niques based on dynamical systems, such as nonlinear time series methods, are susceptible

to be powerful tools for analyzing microprocessor behaviors.

The program traces were analyzed using a variety of methods for nonlinear time series anal-

ysis that we brie
y present in this section. Note that for most of these methods, we used

the TISEAN routine package [22, 23].

Let f x(1); x(2); x(3); : : : x(N )g be the time series under consideration. Each valuex(n) of

the time series is the average of the metric over a number� av of consecutively executed in-

structions (see III). In other words,x(n) represents the average value of the metric between

the execution of instruction numbern� av and that of instruction number (n + 1) � av . For

this reason, we can reasonably consider that the state-space of our time series is continuous.

Accordingly, the continuous nature of our measurements canreadily be judged from visual

inspection of these time series. Indeed, in every �gure of the paper, we plot the obtained

values as isolated dots, i.e.we do not join successive values with lines. Hence, the continuous

aspect of the curves plotted on Figure 1 A & B, for instance, isnot a plotting artifact, but
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re
ects the continuity of the values adopted by the successive values of the time series.

A. Temporal correlations

To study the presence of temporal correlations amongst timeseries, we used two comple-

mentary methods: spectral analysis and detrended 
uctuation analysis. Spectral analysis is

based on the Fourier spectrum of the time series. If a sequence has long-range (power-law)

correlations, its power spectrumS(f ) is related to the frequencyf through a power law

S(f ) / f � � (1)

where � is the spectral exponent. Uncorrelated white noise contains all possible frequen-

cies and is characterized by the exponent� = 0. So called "fractal" time series display

strictly positive � . For instance, 1=f -noise de�nes signals with� � 1 while � = 2 for Brown

noise [24].

Contrarily to spectral analysis, detrended 
uctuation analysis (DFA) permits the detection

of long-range correlations in nonstationary data (i.e. signals that do not display a constant

mean value) and avoids spurious detections of apparent long-range correlations that are pos-

sible with spectral analysis [25]. The time series is �rst integrated: y(k) =
P k

i =1 [x(i ) � x],

where x(i ) is the i th value of the time series andx its average over the series. The inte-

grated time series is then divided into time windows of equalduration n. In each window,

the least-squares �tted line (the local trend) is computed.The y coordinate of the straight

line segments is denoted byyn(k). The integrated signaly(k) is next detrended by subtract-

ing the local linear trend yn(k) in each window. The average root-mean-square 
uctuation

of this integrated and detrended time series is computed as

F (n) =

vu
u
t 1

N

NX

i =1

[y(i ) � yn (i )]2 (2)

The procedure is repeated over all time scales (window duration) n. Typically for fractal

time series,F (n) increases as a power-law ofn

F (n) / n� (3)

A value of � = 0:5 characterizes an uncorrelated signal, such as a white noise, whereas

� > 0:5 indicates the presence of long-range positive (persistent) temporal correlations.
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Note that periodic signals have� = 0 for time scales larger than their period of repetition.

These tests are complementary because it has been evidencedthat, using one of these meth-

ods alone, the presence of long-range correlations may be artifactually detected, while agree-

ment between independently obtained values of� and � according to theoretically derived

relationships limits the risk of spurious determinations [26].

B. Embedding

Most dynamical systems possess many degrees of freedom and take place in multi-

dimensional phase space. Yet, the vast majority of real-life time series are single-valued,

and even if multiple simultaneous measurements are available, they rarely are in su�cient

number to cover all the degrees of freedom of the system. However the missing information

can be recovered by reconstructing the original attractor on the basis of a single-valued time

series. Actually, the evolution of any single variable of a dynamical system is determined

by the other variables with which it interacts. The basic idea of embedding methods for

attractor reconstruction is thus that information about the relevant variables is implicitly

contained in the history of any single variable. A delay reconstruction with delay time �

and embedding dimensionm is obtained by forming a new vector time seriesX (t) in an

m-dimensional embedding space according to

X (t) = ( x(t); x(t + � ); : : : ; x(t + ( m � 1)� )) (4)

Takens' embedding theorem [27] states that, for su�cientlylarge m, the geometry ofX (t)

in the embedding space captures the topological propertiesof the original attractor in its

natural phase-space. Hence, characterization methods originally dedicated to the original

attractor can identically be applied to the reconstructed one [28].

The determination of "optimal" values for the embedding parameters is a delicate step in

attractor reconstruction because this procedure can amplify noise in real-life time series [29].

There are currently two major methods for estimating the time delay� . The �rst consists

in setting � as the time necessary to cancel the correlation between two time series values

and thus selecting the �rst zero-crossing of the signal auto-correlation function or the time

at which it has dropped to 1� 1=e of its initial value [30]. An alternative approach sets�

as the �rst minimum of the time delayed (average) mutual information function [22]. The
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question of which of these two methods should be used is stillan open problem [31, 32]. In

this paper, we estimated for each data sets both the �rst zero-crossing of the autocorrelation

function and the �rst minimum of the average mutual information. In the rare cases where

the corresponding estimates were not similar, we set� to the value given by the latter

method.

The most frequent method for determining the embedding dimension m is called thefalse

nearest neighbormethod [22]. Brie
y, suppose the correct embedding dimension is m0, i.e.

for m = m0, the reconstructed attractor is a one-to-one image of the original one. If one

attempts to embed the time series in am-dimensional space withm < m 0, the topology of the

attractor will not be conserved, so that several points willbe projected into neighborhoods

of other points, to which they would not belong in higher dimensions. Hence, if two points

are found in proximity in the embedding space, this can be dueeither to the dynamics that

brought them close, or to an overlap resulting from the projection of the attractor to an

insu�cient dimension, in which case these points are referred to as `false neighbors'. By

comparing the Euclidean distance between two points in consecutive embedding dimensions

m and m + 1, it is possible to quantify the percentage of false neighbors at embedding

dimension m [33]. The optimal dimension is then de�ned as the minimal dimension for

which the percentage of false neighbors is zero or at least, su�ciently small.

C. Recurrence plot

Recurrence plots are graphical representations suited to qualitatively assess the presence

of patterns and nonlinearities, even in short and nonstationary time series [34]. It consists in

computing the distances between all pairs of vectors in the embedded time series, applying

a threshold � to the resulting distance matrix

R i;j = � ( � � k X (i ) � X (j ) k) i; j = 1; : : : ; p (5)

wherep is the number of points of the attractor, �( � � � ) is the Heaviside threshold function:

�( x) =

8
<

:
1 x � 0

0 x < 0

and k � � � k denotes 2-norm. Recurrence plots are two-dimensional graphical representations

of this thresholded distance matrix that assign "black" dots to the value one, and "white"
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dots to the zero value. The value of the threshold� was estimated according to Zbilutet

al., 2002 [35]. In the case of a deterministic signal, whenever apoint X (i ) is found close to

another point X (j ) in the embedding space, then the pointsX (i + 1) ; X (i + 2) ; : : : ; X (i + k)

will likely be close to X (j + 1) ; X (j + 2) ; : : : ; X (j + k). Hence, deterministic signals are

characterized by recurrence plots with black diagonal lines parallel to the minor diagonal.

Alternatively, stochastic processes manifest as single isolated black points forming more

homogeneous and random patterns. Chaotic signals are deterministic systems with high

sensitivity to initial conditions (see below). Accordingly, their recurrence plots are charac-

terized by broken diagonal lines beside single isolated points. Plots with fading to the upper

left and lower right corner usually indicate a drift, i.e. nonstationarity in the time series.

D. Poincar�e sections

The goal of Poincar�e section is also to detect structures inthe attractor. It consists in

building m � 1-dimensional cross-sections transverse to them-dimensional attractor and

collecting the corresponding successive intersections according to one direction (crossing

from the \bottom" side to the \top" side for example). The corresponding Poincar�e map

(or �rst-return map) is obtained as a plot of each intersection as a function of the next

one. Alternatively, it is possible to de�ne the cross-section surface by the zero crossing

of the temporal derivative of the signal, thus collecting maxima or minima [22]. In the

present paper, Poincar�e maps were constructed using minima. Roughly speaking, Poincar�e

maps of stochastic systems show homogeneously distributedand space �lling patterns while

deterministic components form extended low-dimensional structures.

E. Correlation dimension and entropy

Chaotic trajectories in dissipative systems must overcometwo opposite constraints in the

phase space. In the one hand, dissipation contracts volume elements under the action of

the dynamics, so that the distance between two neighbors in the phase space must globally

diminish with the dynamics. On the other hand, these systemsdisplay a high sensitiv-

ity to initial conditions (see below), meaning that two neighbor trajectories in the phase

space diverge exponentially with time (at least locally). Hence, to accommodate these two
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constraints, most strange attractors present a heavily folded and complex structure, which

is very often self-similar and fractal. The correlation dimensionD2 is one measure of the

attractor fractality and is usually determined by computing the correlation sum. Brie
y,

it consists in determining the average probability to �nd two data points belonging to the

attractor in a neighborhood of size� in the m-dimensional embedding space

C(m; � ) =
2

p(p � 1)

nX

i =1

nX

j>i

� ( � � k X (i ) � X (j ) k) (6)

Note the similarity with the de�nition of the recurrence plots (Eq. 5). Indeed, estimation

of correlation dimension and entropy on the basis of recurrence plots has recently been

proposed [36].

If the time series is characterized by an (possibly strange)attractor, then for su�ciently

small � values and whenm > D 2

C(m; � ) � e� mh 2 � D 2 (7)

Alternatively, stochastic systems form trajectories thatuniformly �ll the m-dimensional

embedding space so that in this case, the correlation sum is expected to scale with the

embedding dimensionC(m; � ) / � m . Hence, log-log representations of the correlation sums

C against � for increasingm values should display linear zones with saturating slopes at

high m (scaling region) in the case of chaotic dynamics, or increasingly large ones in the

case of stochastic dynamics. A more accurate way to detect these scaling regions is to es-

timate the corresponding local slopes given byd ln C(m; � )=dln � and plot them against the

corresponding� values [22]. In the case of chaotic dynamics, the corresponding curves at

various m should collapse onto anm and � -independent behavior (in the scaling regions)

that directly yields D2. Such a collapse is not observed with stochastic signals. Note that an

important precaution in computing the correlation sums is to exclude temporally correlated

points from the pair counting in eq.6 [37] by ignoring all pairs of points with time indices

di�ering by less than w (the so-called Theiller windowsw). In this paper, we have used

w = 20 million instructions.

Another quanti�er of the attractor is the correlation (order-2 R�eny) entropy h2, which is ob-

tained through the m-dependence of Eq 7 inside the scaling regime. The correlation entropy

is usually considered as a lower bound of the sum of the positive Lyapunov exponents [22].
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F. Largest Lyapunov exponent

Sensitivity to initial conditions is a hallmark of chaotic systems. Its implies that two

trajectories found in an arbitrary small neighborhood of the phase (or embedding) space

diverge exponentially with time, thus abolishing predictability in these systems. Consider

two neighbor pointsX (i ) and X (j ) in the embedding space and denote their distance� 0 = k

X (i ) � X (j ) k. After a time t, their distance � t is expected to grow exponentially

� t = k X (i + t) � X (j + t) k� � 0e� max t (8)

where � max is the largest Lyapunov exponent. In general, in am-dimensional space, the

rate of expansion and contraction of the trajectories is described for each dimension by a

di�erent Lyapunov exponent. However, estimation of the largest one is both much easier to

compute than the whole spectrum and su�cient to decide aboutthe presence of deterministic

chaos in the data (i.e. the largest Lyapunov exponent is expected to quickly dominate the

distance growth). To estimate� max , Kantz's method [38] consists in selecting a pointX (i )

and searching all the pointsX (j ) present in a neighborhoodUi of X (i ). One then computes

the average quantityS (stretching factor)

S (�; m; t ) =

*

ln

0

@1
pi

X

X (j )2U i

k X (i + t) � X (j + t) k

1

A

+

(9)

wherepi is the number of points inUi and � its size, andhi indicates averaging over all the

points in the time series. In the case of chaotic dynamics, a plot of S (�; m; t ) against time t

will yield a linear increase at short times for a reasonable range of� and su�ciently large m.

The slope of this linear regime can be used as an estimate of the largest Lyapunov exponent

� max . An alternative method, proposed by Rosenstein [30], only considers the closest point

X (j ) of each reference pointX (i ) in Eq 9.

G. Surrogate data testing

Surrogate data testing is a method to statistically infer the presence of nonlinear processes

in time series. The idea is to generate arti�cial linear timeseries (surrogates) with the

same power spectrum, the same correlations, and the same distribution of values than the

series to be tested [39]. The two time series are then characterized by a statistics that
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quanti�es nonlinearity in time series with a single number.In the present work, we have used

two statistics: a nonlinear (locally constant) predictor error statistics and a time-reversal

asymmetry (third order) one [39]. These results are then used to perform a statistical test in

which the null hypothesis states that the series to be testedcould be generated by a linear

process such as that used to generate the surrogate [39].

IV. RESULTS

A. First example: bzip2 time series

Figure 1 displays performance statistics for the programbzip2 acting on the source

input of the ref data set (see II). We focus here on three statistics that are particularly

relevant to computer performance: the number of instruction executed at each computer

cycle (IPC), the instantaneous rate of L1 cache miss rate (L1) and that concerning L2 cache

(L2). For readability, we only display in Figure 1A the traces obtained for the �rst 54 billion

executed instructions (i.e. approximately one half of the total program execution). The

three traces show two distinct phases: a �rst one with highervariability and lower frequency

(up to circa 43 billion instructions), followed by a phase characterized by higher frequency

and lower variability (from 43 to 54 billion instructions). Note that the second part of the

total execution trace (not presented in Figure 1) essentially consists of a repetition of these

two consecutive phases. In the remaining of this section we treat the entire (� 110 billion

instruction long) trace as a single entity. Note however that we have also studied the two

bzip2 execution phases separately (i.e. restraining the time series to the �rst phase, from

1 to 50 billion instructions, or to the second one, from 50 to 54 billion instructions) and

obtained qualitatively similar results (though sensitivity to initial conditions seems higher

in the second phase).

Although some regularity is readily seen in these time series, the two phases clearly dis-

play irregular or noisy dynamics. This is especially visible from the enlargement displayed

Figure 1B. The dynamics present bounded and somewhat regular variations together with a

large amount of variability. In particular, this �gure evid ences a major period of repetition

of � 0:6 � 109 instructions. Figure 1C and D show projections of these dynamics in the

IPC-L2 and L1-IPC phase plans. The resulting attractor projections display a characteristic
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mixture of regular structured zones together with "cloudy"areas, hence con�rming the high

variability of the time series.

The observed variability could be imputed to a noise source (as part of the dynamics itself or

resulting from the sampling method). Alternatively, it could be a direct result of determin-

istic chaotic dynamics. To discriminate between both possibilities, several tests are available

in the time series analysis literature. These tests are usually individually conclusive when

employed on long and perfect synthetic time series. Real world time series however, usually

incorporate high levels of noise stemming from experimental measurements, and are often

much smaller, so that conclusive decisions generally need the investigation of the results

provided by several of these tests. Thus, several converging approaches are necessary to

identify nonlinear patterns and avoid spurious determinations.

We �rst sought for long term correlations in the time series of Figure 1 using spectral and

detrended 
uctuation analysis (see III A). Figure 1E shows the power spectrumS(f ) vari-

ations with the frequency f on a log-log scale. First, we note that the power spectrum

has a broadband characteristic, typical of stochastic and chaotic signals. Furthermore, for

the three statistics tested, the power spectrum scales as a power-law of the frequency, for

frequenciesf ' 2 � 10� 9 instruction � 1 (i.e. for periods lower than the major period of

repetition) with spectral exponent � � 1:3. Detrended 
uctuation analysis for the three

time series is presented Figure 1F. Here again, for time scales lower than the major period

of repetition, we observe for the three time series a power-law relationship betweenF (n) and

n, with an exponent � � 1:13. Note that the two independently-obtained exponent values

satisfy the relationship � = (1 + � )=2 [40, 41], which is an indication of the consistency of

these values [26].

These results �rst show that bzip2 performance statistics display 1=f � -noise. This reveals

the absence of a characteristic time scale for the duration and recurrence of the performance

variations (at least for those variations with time-scalesshorter than the major period of

repetition). Hencebzip2 performance time series display a high level of self-similarity. Fur-

thermore, the value obtained for� is greater than 0.5 (and� > 1). This is a sign of the

existence of persistent long-range correlations inside the time series i.e. a large (compared

to the average) IPC or cache miss rate value is more likely to be followed by a large IPC or

cache miss rate value and vice versa. The presence of these correlations is a �rst argument

to exclude the possibility of (noncorrelated) noise as a source of variability of the traces.
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To study further the dynamics, we reconstructed its attractor through embedding of the IPC

time series. The embedding parameters (delayd and dimensionsm see III B) were estimated

to d = 153 million instructions and m = 14. Figure 2A presents the thresholded recurrence

plot. We �rst note that the two consecutive phases displayedby bzip2 (see Figure 1A) are

clearly recognizable from the recurrence plot, indicatingthat their recurrence rates may be

signi�cantly di�erent. Interestingly, the plot presents m any interrupted diagonal lines be-

side single isolated points. Furthermore, these lines exhibit some level of periodicity, which

could be a sign that the system contains unstable periodic orbits (UPOs) [42]. This kind of

structure is typical of chaotic systems [34]. We also present in Figure 2B the �rst-return map

of the Poincar�e section at IPC minima of the reconstructed attractor. The map is highly

structured, with several mono-dimensional parts, which isanother sign of low dimensional

chaotic dynamics.

Thus, these �rst elements plead in favor of a chaotic component in bzip2 performance time

series. Chaotic dynamics being a manifestation of nonlinear systems, we next sought the

presence of nonlinearities in this time series using surrogates data (see III G). Figure 2C

shows a segment of the time series (upper trace) together with the corresponding surrogate

(lower trace). Visual comparison of these two signals already suggests their dissimilarity.

To con�rm visual inspection, we performed statistical tests, quantifying nonlinearity with

two di�erent statistics. The null hypothesis was that the IPC trace could be generated by

a linear, possibly rescaled, Gaussian random process. Bothquanti�cation statistics yield to

reject the null hypothesis at the 95% level of signi�cance, hence con�rming the nonlinear

nature of the IPC execution trace.

To study the reconstructed attractor in more details, we next characterized its geometrical

properties. Figure 3A displays a log-log plot of the correlation sums C(m; � ) obtained for

various dimensionsm, versus the neighborhood size� . A power-law regime between� � 0:02

and � � 0:3 is apparent for highm values. Furthermore, the corresponding slopes in this

regime (the exponents of the power-laws) seem to tend to a rather constant value at high

m. This scaling is con�rmed in Figure 3B that shows the local slopesd ln C(m; � )=dln � of

the curves of Figure 3A. For 0:03 / � / 0:3 andm ' 9, the local slopes collapse to am- and

� -independent value of� 2:3. The occurrence of such a scaling regime is a strong sign that

the observed variability in the dynamics is not caused by a random source, thus con�rming

the hypothesis of a chaotic behavior. The value in the scaling regime is an estimation of
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the correlation dimension of the attractor,D2 = 2:3� 0:3. The correlation dimension is one

measure of the attractor fractality. Thus, its non-integervalue might be an indication that

the attractor for bzip2 performance dynamics is a fractal object, like most of the chaotic

strange attractors. However, as is very often the case with real-life systems, our estimation

of D2 is not precise enough to exclude an integer value, so that theattractor fractality can-

not be asserted in the light of our present results. However,the (low) value of D2 remains

a strong indication the bzip2 performance displays low-dimensional chaos.

The correlation sums can also be used to estimate the corresponding correlation entropy

h2. Figure 3C presents the resulting estimates as a function of� and for m varying from 7 to

25. The value ofh2 can be estimated in the scaling regime observed in Figure 3B,but must

be extrapolated at largem. Accordingly, our estimate on the basis of Figure 3C (dashed

line) yields h2 � 1:2 bits/billion instructions.

A very strong indication of chaotic dynamics is sensitivityto initial conditions (SCI). To

quantify SCI in our systems, we tried to estimate the largestLyapunov exponent from

our reconstructed attractor (Figure 3C) using both Kantz's [38] (top four curves) and

R•osenstein's[30] (bottom curve) methods. The occurrenceof a positive Lyapunov expo-

nent is amongst the strongest indications of chaotic dynamics. Both methods result in

similar curve shapes. Although the data are far from ideal, alinear part at short times

can be distinguished in all these curves. The slope of these linear parts provides us with

an estimate for the largest Lyapunov exponent� max � 0:60 bits/billion instructions. Al-

ternatively, the largest Lyapunov exponent can also be measured from the Poincar�e map.

Our estimations on the basis of Figure 2B (data not shown) yield a somewhat higher, but

comparable estimate (� max � 1:22 bits/billion instructions). These estimates can be com-

pared to the correlation entropyh2, which is a lower bound of the sum of all the positive

Lyapunov exponents of the system (see III E). Hence our estimates for h2 and � max are

readily comparable, thereby further supporting the consistency of our measurements.

The measurements and analysis presented so far were essentially obtained on the basis of a

reconstruction of the attractor using the IPC time series. We also carried out most of these

analyzes using the other two time series (L2 and L1 cache missrates) for attractor recon-

struction and varied the averaging window� av (� av = 106; 107 or 108 instructions, see II). All

these conditions yielded comparable values and con�rmed that bzip2 performance dynamics

display low dimensional deterministic chaos. Furthermore, we analyzedbzip2 performance
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dynamics with another data input (namely, theprogram input of the ref data set, see II).

Although these dynamics displayed possibly lower SCI (� max � 0:5 bits/billion instructions),

all tested indicators con�rmed the presence of chaotic dynamics, indicating that their origin

is more probably rooted into the program/architecture interaction than to be found in a

data-dependent mechanism.

The magnitude of the largest Lyapunov exponent quanti�es the attractor's dynamics in

information theoretic terms. As a crude interpretation, it measures the rate at which the

system destroys information. For instance, suppose one knows the number of instruction

executed per cycle forbzip2 at some initial time t0 with good accuracy, say 0:01% (13 bits).

Because of the intrinsic sensitivity to initial conditions(say, in average,� max � 0:9 bits/109

instructions), 0.9 bits of this information will be lost, in average, every billion instructions.

In other words, after 15 billion instructions (i.e. � 1=8 of the total program execution

length), the IPC number would be no more predictable. Note however that the magni-

tudes of the Lyapunov exponents quantifyaverageconvergence or divergence rates (over

the phase space), but in fact, the degree of predictability can vary considerably throughout

phase space [43]. Hence it is possible to loose predictability exponentially fast in some part

of the dynamics, while regaining it later on.

To compare with other chaotic systems, these values must be related to the duration of

an average orbit around the attractor, which is� 430 million instructions, yielding a value

ranging from 0.26 to 0.52 bits/average orbit. Although lower than that of the Lorenz system

(� max = 1:36 bits/orbits), this value is comparable to that obtained for the R•ossler system

(� max = 0:78 bits/orbits) [44], a classical model for deterministic chaos.

Finally, we note that this kind of dynamics is not restrictedto bzip2 . Amongst the tested

Spec benchmarks, we evidenced deterministic chaos with other programs includinggalgel

and fma3d, and obtained some indications of it (albeit not conclusively) for gzip and ammp.

B. Second example: vpr time series

Evolution of the three studied performance statistics for the programvpr are shown Fig-

ure 4. As compared tobzip2 , the dynamics are much more variable and lack real regular

behaviors. Likewise, the projections onto phase plans display clouds of points lacking clear
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inner structures. We reconstructed the attractor of the dynamics through embedding of the

IPC time series (with d = 350 million instructions and m = 5).

Figure 5A presents the thresholded recurrence plot for thisembedding. In opposition to

the recurrence plot obtained forbzip2 (Figure 2A), vpr recurrence plot only displays iso-

lated points (no diagonal lines) that are much more homogeneously distributed (distribution

structures are not easily visible). Likewise, the Poincar�e map presented Figure 5B displays a

rather homogeneous scattering of the points over the �rst diagonal. The aspect of these two

�gures are �rst indications that vpr variability is neither periodic, nor the result of chaotic

dynamics. In agreement with these conclusions, we note that, even if the corresponding

surrogates (Figure 5C) are visually similar to the originalIPC time series, statistical tests

for the presence of nonlinearities in vpr performance dynamics could not decide between

the presence or the absence of nonlinearity in the original trace. This can be considered as

a �rst indication that, while not chaotic nor periodic, this time series might neither result

from a really stochastic process.

Figure 6 shows the corresponding correlation sums form ranging (from top to bottom) from

1 to 20. Although a regime with power-law behavior is observed for each curve, the slopes of

the corresponding linear parts do not seem to saturate to a constant value with increasing

m. This is con�rmed by examination of the respective local slopes presented Figure 6B. In

opposition to the corresponding plot forbzip2 (Figure 3B), this �gure fails to show any scal-

ing regime, whatever the� - or m-range considered. Absence of saturation of the correlation

sum exponents at highm is another indication that, contrarily to bzip2 , the high variability

and irregularity of vpr performance dynamics are not imputable to chaotic dynamics, but

result from some \high dimensional" non chaotic process.

Amongst the Spec benchmarks we inspected, a similar behavior was also observed forart ,

and suspected for several other programs, such ascrafty , and (albeit to a lesser extend)

ammp, gcc, or gzip .

C. Third example: applu time series

Our last example concerns the programapplu , a scienti�c computing application. A sim-

ple inspection of the time series is enough to evidence the regularity of the three performance

statistics (Figure 7A and B). Projections in the phase plans(Figure 7C and D) provide a
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striking representation of a multiply folded one-dimensional attractor, reminiscent of multi-

dimensional limit cycles. These periodic oscillations areso regular that the folded attractors

display an almost null noise level. In agreement with these observations the power spectra

for the three statistics (Figure 7E) are typical of periodicpatterns, with a major frequency

(f � 1:6� 10� 9 instructions corresponding to a period of� 0:6 billion instructions, compare

with Figure 7B) and its harmonics dominating the spectrum.

Taken together, these results unambiguously show the existence of programs with highly

regular performance traces. Besidesapplu , such a behavior was also evidenced for other

Spec benchmark programs such asapsi .

V. DISCUSSION

A. Potential sources of seemingly stochastic dynamics

An intriguing result of this paper is that the performance traces of several program are

not periodic nor chaotic, but display a high level of aperiodic 
uctuations (such as vpr ),

that appear similar to stochastic dynamics from the point ofview of the nonlinear methods

we used. This may sound counterintuitive because the underlying microprocessor operations

are deterministic by nature. Several sources of aperiodic variability in the performances can

be evoked.

First, a potential source of aperiodicity resides in the simulated programs themselves. A

great number of the programs from the SPEC benchmark are scienti�c codes and many of

them use pseudo-random numbers. Albeit pseudo-random number generators are also purely

deterministic routines, their output is hardly distinguishable from truly random numbers.

This could in part be implied in the apparently stochastic behaviors we observed. Sec-

ond, one must not forget that the metrics we studied are indirect measurements of the

microprocessor state. In other words, while the microprocessor deterministically processes

the program 
ow, we only record its performance. It has recently been remarked that the

correlation between the code being executed and the performance can vary widely [6]. In

other words, for some programs, performance metrics are highly dependent on the execution

history, so that two executions of the same code piece duringa single program can have

performance metrics that vary considerably. This source ofvariability could also in part
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explain the behavior of \high dimensional" traces such asvpr .

Furthermore, recall that to distinguish between chaotic and stochastic signals, nonlinear

time series methods usually make use of the fact that, contrarily to stochastic dynamics,

chaotic ones are \bounded" (their attractor have a �nite dimension). In the same way that

these methods could not distinguish purely random numbers from pseudo-random numbers

generated by modern libraries, thevpr traces could abusively appear stochastic to them.

In fact, even simple deterministic processes can yield behaviors that appear stochastic to

visual inspections (see for example Chapter 4 in [45]). Incidentally, we note that the IPC

time series ofvpr is strikingly similar to the apparently stochastic 
uctuat ions of the simple

deterministic recursive iteration presented page 130 (bottom trace) in [45]. Hence, what can

rigorously be said of thevpr case is that it is highly 
uctuating, and that these 
uctuati ons

are neither regular (periodic) nor chaotic, but result of a \high dimensional" process.

B. Chaotic performance time series and predictability

The other speci�c conclusion drawn by this study is that the high variability in the time-

evolution of the performances during the execution of several programs can be imputed to

deterministic chaos. This result seems important because it implies that performance pre-

dictability based on short sampled sequences might be impossible and because in a more

general perspective, it reveals the high intricacy of the processes determining instantaneous

microprocessor performances. However, its interpretation must be handled with great care.

First, the obtained results apply to instantaneous performancesonly and do not imply other

aspects of microprocessor operations. For instance, they neither imply that program execu-

tion itself (i.e. the instruction 
ow handled by the processor) is chaotic or unpredictable.

In particular, they do not imply that the program �nal result might be variable nor unpre-

dictable.

Chaotic dynamics are known to occur in systems where the variables are in great number

and/or interact through nonlinear relationships. Modern microprocessors include a large

number of hardware mechanisms that are dedicated to improveperformance (speculative

execution, branch predictors, prefetchers, memory and instruction caches, pipelines...). As

a result, the precise number of cycles needed to execute a given instruction sequence depends

on a huge number of internal states of hardware components. For instance, the precise num-
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ber of clock cycles needed to execute a simple instruction sequence including at least one

conditional branch and one load/store instruction depends, among others, on the state of

the branch predictor mechanism (which is usually history-dependent) corresponding to this

branch, on the states of the di�erent caches of the memory hierarchy (presence or absence

of the data), the precise state of all instructions in all stages of the execution pipeline and

in the numerous bu�ers included in the processors. Furthermore, these di�erent internal

states are usually related through nonlinear relationships (for instance, a branch prediction

error can lead to a complete 
ush of the execution pipeline, which may, in turn modify this

branch predictor state).

Hence, exact knowledge of the state of the set of performance-determining mechanisms at

a given time is unattainable. This property is so strong thatit has recently been used to

build powerful pseudo-random number generators based on the unpredictability of the in-

ternal microprocessor states [46]. As a result, two states of the performance-determining

mechanisms that appear arbitrarily close with respect to the partial information possessed

by the observer, can in fact be di�erent. Because performance critically depends on the

global state, the performance evolutions starting from these two seemingly similar states

can be highly di�erent. This might account for the observed sensitivity to initial conditions

(i.e. chaos). Note however that further work is needed to understand why these properties

manifest during the execution of certain programs only, while it seems not to be prominent

for others.

C. Relevance to practical applications

Finally our results may have some practical importance in the �eld of performance model-

ing. To predict the e�ect of a given hardware mechanism, computer architects use detailed

simulations of the microprocessor performance during program execution. Because these

detailed simulations are highly demanding on calculation time, several methods have been

developed to estimate the average performance on the basis of a subsample of the entire

execution trace. Our result that several program traces (such as vpr) display dynamics that

are closed to stochastic ones could be useful in this framework. Indeed, this usually means

that the obtained surrogates data are very similar to the corresponding real traces (see �g-

ure 5C, for instance). Hence, for these programs, it is possible to consider generating long
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surrogates data (at very low computational costs) from a short sample of the real trace, and

use these synthetic traces to estimate the average metric (average ipc, for example) during

a real execution of the program.

Conversely, our results indicate that for those programs endowed with chaotic behaviors

(such as bzip2 or galgel), it might be very delicate to predict the actual evolution of the

considered performance metric on the basis of extrapolations from a short sequence of the

real trace. Hence, for these programs, our results suggest that an e�cient strategy for pre-

dicting the actual average value of the metric under consideration on the ground of a sample

of its real trace would be to base the estimation on several samples extracted from the real

trace, even in a random way. Actually this method is used by one of the most powerful

tool developed for performance prediction [47]. Yet, it should be recalled that variations on

a strange attractor are bounded so that the existence of these di�culties does not exclude

the possibility to predict accurateaveragevalues, which is the aim of most of these meth-

ods [48, 49]. Finally, the necessity to adapt the performance simulation/sampling technique

as a function of the program under consideration has recently been pointed out [6]. We

think our results might account for a rationale of this necessity.
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