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Modern microprocessor architectures rely on impressive nu mbers of transis-

tors (up to a billion) that interact through intricate rules . As a consequence,
the performance of these microprocessors during the execut ion of certain pro-
grams displays complex non-repetitive variations that cha llenge traditional anal-

ysis. Yet, comparable complex behaviors are observed in man y other systems
ranging from physics to biology and social sciences and have been successfully
described using nonlinear and chaotic data analysis. In thi S paper, we apply
these methods to analyze modern microprocessor performanc es. We collect

several measures characterizing the architectural state a nd performance during

the execution of several prototypical programs and apply cu rrent techniques of
nonlinear analysis to the resulting time-varying signals. Our results show that
for several programs, the complex and highly variable dynam ics observed result
from deterministic chaos. This suggests that detailed pred ictions of microproces-
sor performance is unlikely with these programs. Taken toge ther, these results
show that the instantaneous performances during program ex ecutions on mod-
ern microprocessor architectures form a byzantine system t hat should bene't
from analysis with modern tools of nonlinear and complexity science.

. INTRODUCTION

Modern computer architectures result from a rapidly growig evolution that can be traced
back to the 1960's, when Moore observed that the number of taistors per integrated cir-
cuit displayed an exponential growth and predicted that thé trend would continue [[L]. The
so-called Moore's Law has indeed been maintained during thest 40 years, as transistor
density doubled approximately every 18 months. Consequéyt today computer proces-
sors rely on amazingly high numbers of transistors: the widpread Intelr Pentiumr 4
contains 42 million transistors but the more recent Itaniunt 2 possesses 410 million of
them. Furthermore, a constant of this evolution is that proessor speed (especially, its clock
rate) by far outperforms memory operations. Hence, most rect advances in the eld have
mainly aimed at hiding memory latencies using engineeringlsitions (parallel executions,
pipelining, cache memory systems). But this necessarily o@ with further increases of the

processor complexity.



As a consequence, predicting the precise performance of mjprocessors (the number of in-
structions executed each second) during execution of pragns running on modern computer
architectures has become increasingly di cult. For instage, one e cient way to optimize
computer performance for a given program consists in ne-tung the compiler options to
adapt the compiler work to the considered architecture. Yethe complexity of modern
architectures is such that rational optimizations, guidedoy a thorough knowledge of the
architecture, are now less e cient, up to the point that more systematic automated search
methods based on machine-learning] [2], genetic algorithri] or iterative trial-and-error
techniques [[4] are being investigated as possible replaesns.

Hence, on the basis of the high number of their components deated to performance
improvement and the intricacy of their interactions, the irstantaneous performance of mod-
ern microprocessors may be viewed as a complex system. As aseguence, performance
recordings during the execution of certain programs can béghly variable [§] and di cult to
predict [B]. Analyzing and predicting performance (i.e. th rate at which the microprocessor
will execute a given program) has proven increasingly di cli.

Early on, computer architects dismissed modeling as inapgpriate because it was too inac-
curate to capture the slight performance di erences betwaetwo architecture mechanisms.
For instance, even modeling of a single non-trivial architture component such as a cache
memory spawned decades of resear¢h [[,[B,[9, 10], and provely partially successful a
few years ago for a range of programs with fairly regular befiar and simplistic architec-
tures [11]. Instead, computer architects have always refiaupon detailed simulators which
describe the architecture behavior on every cyclg J12]. Ascansequence, simulators exe-
cute a program about 10000 times slower than on a real arctitare, and this technique is
now becoming overly time-consuming and inappropriate foromplex processors and future
processors with a large number of cores. Consequently, noapproaches to understanding
and anticipating system behavior are currently sought in ta computer architecture commu-
nity [3].

In the present paper, we study the time-evolution of the pesfrmance during execution of
several prototypical programs on prototypical modern mi@processors. We record several
metrics characterizing execution performance (number afistruction executed at each pro-
cessor cycle) and memory operations (cache misses). Tregtthese traces as time-varying

signals, we analyze them using current techniques from nordar time series analysis. Be-



sides regular periodic behaviors, we evidence highly vdrla performance evolutions for
several programs. More interestingly, we show that, alth@ the high variability displayed
by several programs can be attributed to stochastic-like seces, the evolution of perfor-
mance during the execution of several others displays clearidences of deterministic chaos,
with sensitivities to initial conditions that are comparalde to textbook chaotic systems.
The remaining of the paper is organized as follows. Sectipfj describes the setup and
methodologies used to obtain the time series we analyzed. cd@ase of the interdisciplinary
relevance of this work and considering that we applied a vaty of methods, we present in
section[IT] a rapid overview of the time series analysis tenilques we employed. Section TV]A
illustrates the existence of chaotic performance trace witthe example of the execution of
the program bzip2. Stochastic-like performances are also evidenced in sent[VB| and
the example of the programvpr. Finally, we present for comparison in sectiof IVIC the
performance displayed duringpplu execution, as a prototype of regular periodic evolution.
Section[V discusses possible explanations for the obseni®haviors and present potential

implications in practical applications.

II. PROGRAM TRACES

The time series shown in this article were obtained using a@essorsimulator. A simu-

lator is a large program that implements a detailed descripin of the computer microarchi-
tecture (at the level of a clock cycle and bits), and it is thedol used by computer architects
to design and try out various processor options. The simulat is fed with an instruction
trace, corresponding to a given program executing a giventdaset. And the purpose of the
simulator is to understand how many cycles are necessary tweeute this instruction trace,
as well as to expose the internal operations of the procesgor analysis.
A real processor, such as the Pentium 4, also embeds hardwaceinters that collect some
statistics on its internal operations. However statisticare sampled infrequently (and thus
too coarsely) in order to avoid disrupting normal processasperations, which is not appro-
priate in our case. Also, such counters make it hard to distguish between the multiple
programs (and the operating system) which time-share the pcessor, so that it is not obvi-
ous or just impossible to reconstruct the time series for angjle program.

Still, the simulator we used, called SimpleScalaf J[L2], aesponds to the architecture of a



typical modern superscalar processor (the Pentium 4 is alsosuperscalar processor). It is
currently used in more than 50% of computer architecture rearch articles. It has been val-
idated at 15% accuracy against a fairly recent superscalarqeessor (the HP Alpha 21264)
used in many servers[[14].

On this simulator, we ran the 26 Spec benchmark programs cowging the so-called Spec
suite (we used the Spec2000 version of the benchmark suitd.benchmark is a program
selected as \representative" of an application domain. Anthe Spec benchmark suite is the
most widely used to evaluate and compare the performance aéw computer and proces-
sor architectures. Each benchmark comes with three data setwith two data sets being
voluntarily small and medium size (respectively labeletest and train ). All experiments
in this article were conducted with the third and most realiic data set, calledref (for
\reference"). In some cases (e.gzip2), the ref data set proposes several input data.
During the execution, we collected 3 performance metricshe¢ IPC, the L1 and L2 miss
rates. The IPC stands for the average number dhstructions Per Cycle and is the typical
global performance metric for superscalar processors. LfadalL2 respectively correspond
to the rst-level and second-level cache, small and fast mames used in all processors and
aiming at hiding the main memory latency. The L1 and L2 form a ramory hierarchy, with
the L1 being closer to the processor, and smaller but fastehan the L2. The miss rate is
the percentage of processor requests that cannot be servediiie cache (the request is then
sent to the lower level of the hierarchy), and it thus chara@rizes the cache e ciency. The
cache behavior has a strong impact on performance, so besidlee global IPC metric, the
caches miss rates are key performance metrics.

Running an entire program requires the execution of sevetaillion instructions, so that it is
technically impossible to handle execution traces that wadi both cover the entire program
execution and display the value of the chosen metric farach clock cycle Furthermore,
modern microprocessors rely heavily on speculative exeiom upon encounter of a condi-
tional branching, the microprocessor begins to execute onéthe branch alternative before
the outcome of the conditional branch test is known (i.e. befe the microprocessor knows
which branch should actually be taken). In other words, at aigen clock cycle, the micro-
processor might be executing several instructions that cgmossibly be discarded from the
program ow a moment later. In this framework, measuring pegbrmance is meaningful only

if measurements are time averages. Accordingly, our exeiout traces presentaverages of



the metric over a certain number ,, of consecutively executed instructions (where we have

used 5, = 10%; 10’ or 1 instructions).

.  TIME SERIES METHODS

Nonlinear time series methods are based around dynamicak®ms (continuous-time or-
dinary di erential equations and iterated maps). Hence, tkey can be powerful tools for
analyzing microprocessor behaviors only if they display ¢hsame computation power as
microprocessors. More speci cally, because microproaessare capable of universal com-
puting (they are Turing machines), they should also be univeal. Recent works have clearly
stated that dynamical systems are indeed capable of univatscomputation. For instance,
discrete-time dynamical systems are computationally unérsal, as several of them have been
demonstrated to be able to simulate the computation of a Tung machine. This is the case
of piecewise-linear maps in 2 [[I§], cellular automata [I6], and neural networks (espetia
recurrent networks with rational or real weights and saturted linear [L7] or sigmoid [[18]
activation function). Universal computation has also beervidenced for several continuous-
time dynamical systems, including ordinary di erential eqations [19], partial di erential
equations [2D], and continuous-time Hop eld neural netwds [2]]. Hence, analysis tech-
niques based on dynamical systems, such as nonlinear timeiese methods, are susceptible
to be powerful tools for analyzing microprocessor behavgr
The program traces were analyzed using a variety of methods fnonlinear time series anal-
ysis that we brie y present in this section. Note that for mos of these methods, we used
the TISEAN routine package [2R]73].

Let x(2);x(2);x(3);:::x(N)g be the time series under consideration. Each valugn) of
the time series is the average of the metric over a numbey, of consecutively executed in-
structions (se€[Tl]). In other words,x(n) represents the average value of the metric between
the execution of instruction numbern ,, and that of instruction number (n + 1) ,,. For
this reason, we can reasonably consider that the state-sgaaf our time series is continuous.
Accordingly, the continuous nature of our measurements caeadily be judged from visual
inspection of these time series. Indeed, in every gure of ¢hpaper, we plot the obtained
values as isolated dots, i.ewe do not join successive values with lineslence, the continuous

aspect of the curves plotted on Figurg] 1 A & B, for instance, isot a plotting artifact, but



re ects the continuity of the values adopted by the success values of the time series.

A. Temporal correlations

To study the presence of temporal correlations amongst tinseries, we used two comple-
mentary methods: spectral analysis and detrended uctuabn analysis. Spectral analysis is
based on the Fourier spectrum of the time series. If a sequenitas long-range (power-law)

correlations, its power spectrunS(f ) is related to the frequencyf through a power law
S(f)/ f (1)

where is the spectral exponent. Uncorrelated white noise contanall possible frequen-
cies and is characterized by the exponent = 0. So called "fractal" time series display
strictly positive . For instance, Ef -noise de nes signals with 1 while =2 for Brown
noise [24].

Contrarily to spectral analysis, detrended uctuation andysis (DFA) permits the detection
of long-range correlations in nonstationary data (i.e. sigals that do not display a constant
mean value) and avoids spurious detections of apparent longnge correlations that are pos-
sible with spectral analysis[[25]. The time series is rst tegrated: y(k) = :(=1 [x(i) X],
where x(i) is the ith value of the time series andX its average over the series. The inte-
grated time series is then divided into time windows of equaluration n. In each window,
the least-squares tted line (the local trend) is computed.The y coordinate of the straight
line segments is denoted by, (k). The integrated signaly(k) is next detrended by subtract-
ing the local linear trendy, (k) in each window. The average root-mean-square uctuation

of this integrated and detrended time series is computed as

X

Fm=1 =7 i) ()P @
=1

<

The procedure is repeated over all time scales (window duram) n. Typically for fractal

time series,F (n) increases as a power-law of
F(n)/ n 3)

A value of = 0:5 characterizes an uncorrelated signal, such as a white rgisvhereas

> 05 indicates the presence of long-range positive (persisietemporal correlations.
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Note that periodic signals have =0 for time scales larger than their period of repetition.
These tests are complementary because it has been evidentted, using one of these meth-
ods alone, the presence of long-range correlations may bgfactually detected, while agree-
ment between independently obtained values of and according to theoretically derived

relationships limits the risk of spurious determinationsgg].

B. Embedding

Most dynamical systems possess many degrees of freedom aake tplace in multi-
dimensional phase space. Yet, the vast majority of realdiftime series are single-valued,
and even if multiple simultaneous measurements are availabthey rarely are in su cient
number to cover all the degrees of freedom of the system. Heeethe missing information
can be recovered by reconstructing the original attractorrothe basis of a single-valued time
series. Actually, the evolution of any single variable of ayhamical system is determined
by the other variables with which it interacts. The basic ida of embedding methods for
attractor reconstruction is thus that information about the relevant variables is implicitly
contained in the history of any single variable. A delay reewtruction with delay time
and embedding dimensiorm is obtained by forming a new vector time serieX (t) in an

m-dimensional embedding space according to
X()=(x(@);x(t+ );::ux(t+(m 1)) 4)

Takens' embedding theorem[]27] states that, for su cientlylarge m, the geometry ofX (t)
in the embedding space captures the topological propertie$ the original attractor in its
natural phase-space. Hence, characterization methods ginally dedicated to the original
attractor can identically be applied to the reconstructed ne [Z8].

The determination of "optimal” values for the embedding paameters is a delicate step in
attractor reconstruction because this procedure can amfyinoise in real-life time serieq]29].
There are currently two major methods for estimating the tine delay . The rst consists
in setting as the time necessary to cancel the correlation between twine series values
and thus selecting the rst zero-crossing of the signal autoorrelation function or the time
at which it has dropped to 1 1=eof its initial value [BJ]. An alternative approach sets

as the rst minimum of the time delayed (average) mutual infomation function [E2]. The



question of which of these two methods should be used is stith open problem[[31[32]. In
this paper, we estimated for each data sets both the rst zerorossing of the autocorrelation
function and the rst minimum of the average mutual information. In the rare cases where
the corresponding estimates were not similar, we setto the value given by the latter
method.

The most frequent method for determining the embedding dinmsion m is called thefalse
nearest neighbormethod [22]. Briey, suppose the correct embedding dimemsi is my, i.e.
for m = mg, the reconstructed attractor is a one-to-one image of the iginal one. If one
attempts to embed the time series in an-dimensional space withm < m g, the topology of the
attractor will not be conserved, so that several points wilbe projected into neighborhoods
of other points, to which they would not belong in higher dimesions. Hence, if two points
are found in proximity in the embedding space, this can be dugther to the dynamics that
brought them close, or to an overlap resulting from the progion of the attractor to an
insu cient dimension, in which case these points are refeed to as ‘false neighbors'. By
comparing the Euclidean distance between two points in coesutive embedding dimensions
m and m + 1, it is possible to quantify the percentage of false neigldss at embedding
dimensionm [B3]. The optimal dimension is then de ned as the minimal dimnsion for

which the percentage of false neighbors is zero or at least,cently small.

C. Recurrence plot

Recurrence plots are graphical representations suited tai@itatively assess the presence
of patterns and nonlinearities, even in short and nonstatimary time series [34]. It consists in
computing the distances between all pairs of vectors in thenbedded time series, applying

a threshold to the resulting distance matrix
Rij = ( k X() X@G)k) i;j =1;::55p (5)
wherep is the number of points of the attractor, ( ) is the Heaviside threshold function:

8
<S1x 0

(x)=
- 0x<O0
andk k denotes 2-norm. Recurrence plots are two-dimensional ghagal representations

of this thresholded distance matrix that assign "black" dos to the value one, and "white"
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dots to the zero value. The value of the threshold was estimated according to Zbilutet

al., 2002 [3p]. In the case of a deterministic signal, whenevepaint X (i) is found close to

characterized by recurrence plots with black diagonal liseparallel to the minor diagonal.
Alternatively, stochastic processes manifest as singleolated black points forming more
homogeneous and random patterns. Chaotic signals are debémistic systems with high
sensitivity to initial conditions (see below). Accordingy, their recurrence plots are charac-
terized by broken diagonal lines beside single isolated pts. Plots with fading to the upper

left and lower right corner usually indicate a drift, i.e. nmstationarity in the time series.

D. Poincae sections

The goal of Poincae section is also to detect structures ithe attractor. It consists in
building m  1-dimensional cross-sections transverse to tme-dimensional attractor and
collecting the corresponding successive intersectionscaing to one direction (crossing
from the \bottom" side to the \top" side for example). The corresponding Poincae map
(or rst-return map) is obtained as a plot of each intersecton as a function of the next
one. Alternatively, it is possible to de ne the cross-seatn surface by the zero crossing
of the temporal derivative of the signal, thus collecting m&ma or minima [22]. In the
present paper, Poincae maps were constructed using minan Roughly speaking, Poincae
maps of stochastic systems show homogeneously distributad space lling patterns while

deterministic components form extended low-dimensionalractures.

E. Correlation dimension and entropy

Chaotic trajectories in dissipative systems must overcomeo opposite constraints in the
phase space. In the one hand, dissipation contracts volumkreents under the action of
the dynamics, so that the distance between two neighbors ié phase space must globally
diminish with the dynamics. On the other hand, these systemdisplay a high sensitiv-
ity to initial conditions (see below), meaning that two neidpbor trajectories in the phase

space diverge exponentially with time (at least locally). lEnce, to accommodate these two

10



constraints, most strange attractors present a heavily fded and complex structure, which
is very often self-similar and fractal. The correlation diransionD, is one measure of the
attractor fractality and is usually determined by computing the correlation sum. Briey,

it consists in determining the average probability to nd two data points belonging to the

attractor in a neighborhood of size in the m-dimensional embedding space
2 XX

clm: )= p(p 1)

( kX0 X(@G)k) (6)

i=1 j>i

Note the similarity with the de nition of the recurrence plots (Eqg. B). Indeed, estimation
of correlation dimension and entropy on the basis of recumee plots has recently been
proposed [[3p].

If the time series is characterized by an (possibly strang&gtractor, then for su ciently

small values and wherm >D »,
C(m; ) e mhz D2 7)

Alternatively, stochastic systems form trajectories thatuniformly Il the m-dimensional
embedding space so that in this case, the correlation sum igpected to scale with the
embedding dimensiorC(m; )/ ™. Hence, log-log representations of the correlation sums
C against for increasingm values should display linear zones with saturating slopeg a
high m (scaling region) in the case of chaotic dynamics, or increagly large ones in the
case of stochastic dynamics. A more accurate way to detectee scaling regions is to es-
timate the corresponding local slopes given byln C(m; )=dIn and plot them against the
corresponding values [2PR]. In the case of chaotic dynamics, the correspamgl curves at
various m should collapse onto arm and -independent behavior (in the scaling regions)
that directly yields D,. Such a collapse is not observed with stochastic signals. tlohat an
important precaution in computing the correlation sums is® exclude temporally correlated
points from the pair counting in eq[p [J7] by ignoring all pas of points with time indices
di ering by less than w (the so-called Theiller windowsw). In this paper, we have used
w = 20 million instructions.

Another quanti er of the attractor is the correlation (order-2 Reny) entropy h,, which is ob-
tained through the m-dependence of E{] 7 inside the scaling regime. The corretatientropy

is usually considered as a lower bound of the sum of the posgitiLyapunov exponents[[22].
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F. Largest Lyapunov exponent

Sensitivity to initial conditions is a hallmark of chaotic ystems. Its implies that two
trajectories found in an arbitrary small neighborhood of tke phase (or embedding) space
diverge exponentially with time, thus abolishing predictaility in these systems. Consider
two neighbor pointsX (i) and X (j ) in the embedding space and denote their distancg =k

X (i) X(j) k. After a time t, their distance ; is expected to grow exponentially
t=kX(@i+1) X({+t)k oem! (8)

where .« IS the largest Lyapunov exponent. In general, in an-dimensional space, the
rate of expansion and contraction of the trajectories is desbed for each dimension by a
di erent Lyapunov exponent. However, estimation of the lagest one is both much easier to
compute than the whole spectrum and su cient to decide abouthe presence of deterministic
chaos in the data (i.e. the largest Lyapunov exponent is expied to quickly dominate the

distance growth). To estimate ., Kantz's method [38] consists in selecting a poirX (i)

and searching all the pointsX (j ) present in a neighborhoodJ; of X (i). One then computes

the average quantityS (stretching factor)
* O 1 +

S(;m;t) = |n@1_ X kKX@{i+t) X(+t)kA (9)
' X ()2u;
wherep; is the number of points inU, and its size, andhi indicates averaging over all the
points in the time series. In the case of chaotic dynamics, dopof S( ;m;t) against timet
will yield a linear increase at short times for a reasonableange of and su ciently large m.
The slope of this linear regime can be used as an estimate oé thrgest Lyapunov exponent
max - An alternative method, proposed by Rosensteir [BO], onlynsiders the closest point

X (j) of each reference poinK (i) in Eq B.

G. Surrogate data testing

Surrogate data testing is a method to statistically infer tle presence of nonlinear processes
in time series. The idea is to generate arti cial linear timeseries (surrogates) with the
same power spectrum, the same correlations, and the sametritisition of values than the

series to be tested[[39]. The two time series are then chamgted by a statistics that
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guanti es nonlinearity in time series with a single number.In the present work, we have used
two statistics: a nonlinear (locally constant) predictor eror statistics and a time-reversal
asymmetry (third order) one [3D]. These results are then ud¢o perform a statistical test in

which the null hypothesis states that the series to be testecbuld be generated by a linear

process such as that used to generate the surrogaftg [39].

IV. RESULTS
A. First example: bzip2 time series

Figure [1 displays performance statistics for the prograrbzip2 acting on the source
input of the ref data set (see[]l). We focus here on three statistics that areapticularly
relevant to computer performance: the number of instructio executed at each computer
cycle (IPC), the instantaneous rate of L1 cache miss rate (lL&nd that concerning L2 cache
(L2). For readability, we only display in Figure[1A the traces obtained for the rst 54 billion
executed instructions (i.e. approximately one half of thedatal program execution). The
three traces show two distinct phases: a rst one with highevariability and lower frequency
(up to circa 43 billion instructions), followed by a phase dracterized by higher frequency
and lower variability (from 43 to 54 billion instructions). Note that the second part of the
total execution trace (not presented in Figurd]1l) essentigl consists of a repetition of these
two consecutive phases. In the remaining of this section weeait the entire (110 billion
instruction long) trace as a single entity. Note however thawe have also studied the two
bzip2 execution phases separately (i.e. restraining the time &3 to the rst phase, from
1 to 50 billion instructions, or to the second one, from 50 to4bbillion instructions) and
obtained qualitatively similar results (though sensitivty to initial conditions seems higher
in the second phase).

Although some regularity is readily seen in these time sesiethe two phases clearly dis-
play irregular or noisy dynamics. This is especially visibl from the enlargement displayed
Figure [1B. The dynamics present bounded and somewhat reguiariations together with a
large amount of variability. In particular, this gure evid ences a major period of repetition
of 0.6 10 instructions. Figure [1C and D show projections of these dynacs in the

IPC-L2 and L1-IPC phase plans. The resulting attractor progctions display a characteristic

13



mixture of regular structured zones together with "cloudy"areas, hence con rming the high
variability of the time series.

The observed variability could be imputed to a noise sourcag part of the dynamics itself or
resulting from the sampling method). Alternatively, it cold be a direct result of determin-
istic chaotic dynamics. To discriminate between both podsiities, several tests are available
in the time series analysis literature. These tests are udiyaindividually conclusive when
employed on long and perfect synthetic time series. Real atime series however, usually
incorporate high levels of noise stemming from experimemhtemmeasurements, and are often
much smaller, so that conclusive decisions generally neduetinvestigation of the results
provided by several of these tests. Thus, several convergiapproaches are necessary to
identify nonlinear patterns and avoid spurious determinabns.

We rst sought for long term correlations in the time series bFigure [l using spectral and
detrended uctuation analysis (seq TITA). Figure[1E showshe power spectrumS(f ) vari-
ations with the frequencyf on a log-log scale. First, we note that the power spectrum
has a broadband characteristic, typical of stochastic anchaotic signals. Furthermore, for
the three statistics tested, the power spectrum scales as awer-law of the frequency, for
frequenciesf ' 2 10 ° instruction ! (i.e. for periods lower than the major period of
repetition) with spectral exponent 1:3. Detrended uctuation analysis for the three
time series is presented Figurg 1F. Here again, for time sesllower than the major period
of repetition, we observe for the three time series a powew relationship betweer (n) and
n, with an exponent 1:13. Note that the two independently-obtained exponent vakes
satisfy the relationship = (1+ )=2 [40,[41], which is an indication of the consistency of
these values[[26].

These results rst show thatbzip2 performance statistics display £#f -noise. This reveals
the absence of a characteristic time scale for the duratiomd recurrence of the performance
variations (at least for those variations with time-scaleshorter than the major period of
repetition). Hencebzip2 performance time series display a high level of self-simitg. Fur-
thermore, the value obtained for is greater than 0.5 (and > 1). This is a sign of the
existence of persistent long-range correlations insideethime series i.e. a large (compared
to the average) IPC or cache miss rate value is more likely taelfollowed by a large IPC or
cache miss rate value and vice versa. The presence of theseetations is a rst argument

to exclude the possibility of (noncorrelated) noise as a sae of variability of the traces.
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To study further the dynamics, we reconstructed its attracdr through embedding of the IPC
time series. The embedding parameters (delayand dimensionam se€TlTB) were estimated
to d = 153 million instructions and m = 14. Figure A presents the thresholded recurrence
plot. We rst note that the two consecutive phases displayedby bzip2 (see Figure[JLA) are
clearly recognizable from the recurrence plot, indicatinthat their recurrence rates may be
signi cantly di erent. Interestingly, the plot presents many interrupted diagonal lines be-
side single isolated points. Furthermore, these lines ekiiti some level of periodicity, which
could be a sign that the system contains unstable periodicliits (UPQOs) [A3]. This kind of
structure is typical of chaotic systems[[34]. We also predan Figure PB the rst-return map
of the Poincae section at IPC minima of the reconstructed #ractor. The map is highly
structured, with several mono-dimensional parts, which ianother sign of low dimensional
chaotic dynamics.

Thus, these rst elements plead in favor of a chaotic compongein bzip2 performance time
series. Chaotic dynamics being a manifestation of nonlinreaystems, we next sought the
presence of nonlinearities in this time series using suratgs data (seq 1ITG). Figure[RC
shows a segment of the time series (upper trace) together ithe corresponding surrogate
(lower trace). Visual comparison of these two signals alrép suggests their dissimilarity.
To con rm visual inspection, we performed statistical tess, quantifying nonlinearity with
two di erent statistics. The null hypothesis was that the IPC trace could be generated by
a linear, possibly rescaled, Gaussian random process. Botianti cation statistics yield to
reject the null hypothesis at the 95% level of signi cance, dnce con rming the nonlinear
nature of the IPC execution trace.

To study the reconstructed attractor in more details, we netxcharacterized its geometrical
properties. Figure[BA displays a log-log plot of the correlmn sums C(m; ) obtained for
various dimensiongn, versus the neighborhood size A power-law regime between 0:02
and 0:3 is apparent for highm values. Furthermore, the corresponding slopes in this
regime (the exponents of the power-laws) seem to tend to a her constant value at high
m. This scaling is con rmed in Figure[BB that shows the local spesdIn C(m; )=dIn of
the curves of Figurd BA. For @3/ / 0:3andm' 9, the local slopes collapse to @- and
-independent value of 2:3. The occurrence of such a scaling regime is a strong signttha
the observed variability in the dynamics is not caused by a ralom source, thus con rming

the hypothesis of a chaotic behavior. The value in the scatinregime is an estimation of
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the correlation dimension of the attractor,D, = 2:3 0:3. The correlation dimension is one
measure of the attractor fractality. Thus, its non-integervalue might be an indication that
the attractor for bzip2 performance dynamics is a fractal object, like most of the abtic
strange attractors. However, as is very often the case witleal-life systems, our estimation
of D, is not precise enough to exclude an integer value, so that tlatractor fractality can-
not be asserted in the light of our present results. Howevethe (low) value of D, remains
a strong indication the bzip2 performance displays low-dimensional chaos.

The correlation sums can also be used to estimate the correspling correlation entropy
h,. Figure 3C presents the resulting estimates as a function ofind for m varying from 7 to
25. The value ofh, can be estimated in the scaling regime observed in FigUyie 38t must
be extrapolated at largem. Accordingly, our estimate on the basis of Figurg 3C (dashed
line) yields h,  1:2 bits/billion instructions.

A very strong indication of chaotic dynamics is sensitivityto initial conditions (SCI). To
quantify SCI in our systems, we tried to estimate the largestyapunov exponent from
our reconstructed attractor (Figure [BC) using both Kantz's [38] (top four curves) and
Resenstein's[3P] (bottom curve) methods. The occurrencaf a positive Lyapunov expo-
nent is amongst the strongest indications of chaotic dynawes. Both methods result in
similar curve shapes. Although the data are far from ideal, &near part at short times
can be distinguished in all these curves. The slope of theseelr parts provides us with
an estimate for the largest Lyapunov exponent ax 0:60 bits/billion instructions. Al-
ternatively, the largest Lyapunov exponent can also be mead from the Poincae map.
Our estimations on the basis of Figur¢]2B (data not shown) yig@ a somewhat higher, but
comparable estimate (max  1:22 bits/billion instructions). These estimates can be com-
pared to the correlation entropyh,, which is a lower bound of the sum of all the positive
Lyapunov exponents of the system (sefe ITIE). Hence our estites forh, and .« are
readily comparable, thereby further supporting the consiency of our measurements.

The measurements and analysis presented so far were ess#iytobtained on the basis of a
reconstruction of the attractor using the IPC time series. W also carried out most of these
analyzes using the other two time series (L2 and L1 cache misges) for attractor recon-
struction and varied the averaging window , ( ay = 10°; 10’ or 1(? instructions, se€T]l). All
these conditions yielded comparable values and con rmeddhbzip2 performance dynamics

display low dimensional deterministic chaos. Furthermorenve analyzedbzip2 performance
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dynamics with another data input (namely, theprogram input of the ref data set, see[]l).
Although these dynamics displayed possibly lower SCI (.« 0:5 bits/billion instructions),
all tested indicators con rmed the presence of chaotic dymaics, indicating that their origin
is more probably rooted into the program/architecture inteaction than to be found in a
data-dependent mechanism.

The magnitude of the largest Lyapunov exponent quanti es th attractor's dynamics in
information theoretic terms. As a crude interpretation, it measures the rate at which the
system destroys information. For instance, suppose one kv® the number of instruction
executed per cycle fobzip2 at some initial time to, with good accuracy, say 1% (13 bits).
Because of the intrinsic sensitivity to initial conditions(say, in average, max  0:9 bits/10°
instructions), 0.9 bits of this information will be lost, in average, every billion instructions.
In other words, after 15 billion instructions (i.e. 1=8 of the total program execution
length), the IPC number would be no more predictable. Note leever that the magni-
tudes of the Lyapunov exponents quantifyaverage convergence or divergence rates (over
the phase space), but in fact, the degree of predictabilityan vary considerably throughout
phase space[[43]. Hence it is possible to loose predictépiixponentially fast in some part
of the dynamics, while regaining it later on.

To compare with other chaotic systems, these values must belated to the duration of
an average orbit around the attractor, which is 430 million instructions, yielding a value
ranging from 0.26 to 0.52 bits/average orbit. Although lowethan that of the Lorenz system
( max = 1:36 bits/orbits), this value is comparable to that obtained br the Ressler system
( max = 0:78 bits/orbits) [44], a classical model for deterministic ltaos.

Finally, we note that this kind of dynamics is not restrictedto bzip2. Amongst the tested
Spec benchmarks, we evidenced deterministic chaos with ettprograms includinggalgel

and fma3d and obtained some indications of it (albeit not conclusilg) for gzip and ammp

B. Second example: vpr time series

Evolution of the three studied performance statistics forlie programvpr are shown Fig-
ure 4. As compared tobzip2, the dynamics are much more variable and lack real regular

behaviors. Likewise, the projections onto phase plans diap clouds of points lacking clear
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inner structures. We reconstructed the attractor of the dyamics through embedding of the
IPC time series (with d = 350 million instructions and m = 5).

Figure BA presents the thresholded recurrence plot for thismbedding. In opposition to
the recurrence plot obtained forbzip2 (Figure BA), vpr recurrence plot only displays iso-
lated points (no diagonal lines) that are much more homogeoesly distributed (distribution
structures are not easily visible). Likewise, the Poincarmap presented Figurg] 5B displays a
rather homogeneous scattering of the points over the rst dgonal. The aspect of these two
gures are rst indications that vpr variability is neither periodic, nor the result of chaotic
dynamics. In agreement with these conclusions, we note thagven if the corresponding
surrogates (Figure[bC) are visually similar to the originalPC time series, statistical tests
for the presence of nonlinearities in vpr performance dynaos could not decide between
the presence or the absence of nonlinearity in the originaiaice. This can be considered as
a rst indication that, while not chaotic nor periodic, this time series might neither result
from a really stochastic process.

Figure [ shows the corresponding correlation sums for ranging (from top to bottom) from

1 to 20. Although a regime with power-law behavior is obsergdor each curve, the slopes of
the corresponding linear parts do not seem to saturate to a mstant value with increasing
m. This is con rmed by examination of the respective local sfmes presented Figur¢]6B. In
opposition to the corresponding plot fobzip2 (Figure @B), this gure fails to show any scal-
ing regime, whatever the - or m-range considered. Absence of saturation of the correlatio
sum exponents at highm is another indication that, contrarily to bzip2, the high variability
and irregularity of vpr performance dynamics are not imputable to chaotic dynamic®ut
result from some \high dimensional” non chaotic process.

Amongst the Spec benchmarks we inspected, a similar behaweas also observed foart ,
and suspected for several other programs, such esfty , and (albeit to a lesser extend)

ammypgcc, or gzip .

C. Third example: applu time series

Our last example concerns the prograrapplu, a scienti ¢ computing application. A sim-
ple inspection of the time series is enough to evidence thgudarity of the three performance

statistics (Figure [TA and B). Projections in the phase plangFigure [C and D) provide a
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striking representation of a multiply folded one-dimensiaal attractor, reminiscent of multi-
dimensional limit cycles. These periodic oscillations as® regular that the folded attractors
display an almost null noise level. In agreement with thesebservations the power spectra
for the three statistics (Figure[YE) are typical of periodigatterns, with a major frequency
(f 1.6 10 ?instructions corresponding to a period of 0:6 billion instructions, compare
with Figure [|B) and its harmonics dominating the spectrum.

Taken together, these results unambiguously show the easice of programs with highly
regular performance traces. Besidegpplu, such a behavior was also evidenced for other

Spec benchmark programs such apsi .

V. DISCUSSION
A. Potential sources of seemingly stochastic dynamics

An intriguing result of this paper is that the performance taces of several program are
not periodic nor chaotic, but display a high level of aperiod uctuations (such as vpr),
that appear similar to stochastic dynamics from the point of/iew of the nonlinear methods
we used. This may sound counterintuitive because the undgirhg microprocessor operations
are deterministic by nature. Several sources of aperiodianability in the performances can
be evoked.

First, a potential source of aperiodicity resides in the siolated programs themselves. A
great number of the programs from the SPEC benchmark are sgiec codes and many of
them use pseudo-random numbers. Albeit pseudo-random nuertgenerators are also purely
deterministic routines, their output is hardly distinguishable from truly random numbers.
This could in part be implied in the apparently stochastic bkaviors we observed. Sec-
ond, one must not forget that the metrics we studied are indact measurements of the
microprocessor state. In other words, while the microprossor deterministically processes
the program ow, we only record its performance. It has recély been remarked that the
correlation between the code being executed and the perfante can vary widely [[6]. In
other words, for some programs, performance metrics are hig dependent on the execution
history, so that two executions of the same code piece durirggsingle program can have

performance metrics that vary considerably. This source ofariability could also in part
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explain the behavior of \high dimensional” traces such agpr.

Furthermore, recall that to distinguish between chaotic ad stochastic signals, nonlinear
time series methods usually make use of the fact that, contily to stochastic dynamics,
chaotic ones are \bounded" (their attractor have a nite dimension). In the same way that
these methods could not distinguish purely random numbersoim pseudo-random numbers
generated by modern libraries, thevpr traces could abusively appear stochastic to them.
In fact, even simple deterministic processes can yield bef@rs that appear stochastic to
visual inspections (see for example Chapter 4 ih J45]). Ideintally, we note that the IPC
time series ofvpr is strikingly similar to the apparently stochastic uctuations of the simple
deterministic recursive iteration presented page 130 (btmim trace) in [#3]. Hence, what can
rigorously be said of thevpr case is that it is highly uctuating, and that these uctuati ons

are neither regular (periodic) nor chaotic, but result of a high dimensional” process.

B. Chaotic performance time series and predictability

The other speci ¢ conclusion drawn by this study is that the igh variability in the time-
evolution of the performances during the execution of sewrprograms can be imputed to
deterministic chaos. This result seems important becauseimplies that performance pre-
dictability based on short sampled sequences might be impisdle and because in a more
general perspective, it reveals the high intricacy of the pcesses determining instantaneous
microprocessor performances. However, its interpretationust be handled with great care.
First, the obtained results apply to instantaneous performncesonly and do not imply other
aspects of microprocessor operations. For instance, thegitmer imply that program execu-
tion itself (i.e. the instruction ow handled by the proces®r) is chaotic or unpredictable.
In particular, they do not imply that the program nal result might be variable nor unpre-
dictable.

Chaotic dynamics are known to occur in systems where the vables are in great number
and/or interact through nonlinear relationships. Modern nicroprocessors include a large
number of hardware mechanisms that are dedicated to improygerformance (speculative
execution, branch predictors, prefetchers, memory and imgction caches, pipelines...). As
a result, the precise number of cycles needed to execute aeginstruction sequence depends

on a huge number of internal states of hardware componentsorinstance, the precise num-
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ber of clock cycles needed to execute a simple instructiorggence including at least one
conditional branch and one load/store instruction dependsamong others, on the state of
the branch predictor mechanism (which is usually history-ependent) corresponding to this
branch, on the states of the di erent caches of the memory hi@rchy (presence or absence
of the data), the precise state of all instructions in all stges of the execution pipeline and
in the numerous bu ers included in the processors. Furtherore, these di erent internal
states are usually related through nonlinear relationshgp(for instance, a branch prediction
error can lead to a complete ush of the execution pipeline, mich may, in turn modify this
branch predictor state).

Hence, exact knowledge of the state of the set of performardetermining mechanisms at
a given time is unattainable. This property is so strong thait has recently been used to
build powerful pseudo-random number generators based onetluinpredictability of the in-
ternal microprocessor states [#6]. As a result, two state$ the performance-determining
mechanisms that appear arbitrarily close with respect to th partial information possessed
by the observer, can in fact be di erent. Because performaaccritically depends on the
global state, the performance evolutions starting from these twoesmingly similar states
can be highly di erent. This might account for the observed snsitivity to initial conditions
(i.e. chaos). Note however that further work is needed to umistand why these properties
manifest during the execution of certain programs only, whé it seems not to be prominent

for others.

C. Relevance to practical applications

Finally our results may have some practical importance in # eld of performance model-
ing. To predict the e ect of a given hardware mechanism, comyer architects use detailed
simulations of the microprocessor performance during pn@m execution. Because these
detailed simulations are highly demanding on calculationimne, several methods have been
developed to estimate the average performance on the basfsaosubsample of the entire
execution trace. Our result that several program traces (st as vpr) display dynamics that
are closed to stochastic ones could be useful in this frametuolndeed, this usually means
that the obtained surrogates data are very similar to the coesponding real traces (see g-

ure 5C, for instance). Hence, for these programs, it is pdsk& to consider generating long
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surrogates data (at very low computational costs) from a slbsample of the real trace, and
use these synthetic traces to estimate the average metricvémage ipc, for example) during
a real execution of the program.

Conversely, our results indicate that for those programs edowed with chaotic behaviors
(such as bzip2 or galgel), it might be very delicate to predidhe actual evolution of the
considered performance metric on the basis of extrapolati® from a short sequence of the
real trace. Hence, for these programs, our results suggelsat an e cient strategy for pre-
dicting the actual average value of the metric under considation on the ground of a sample
of its real trace would be to base the estimation on severalmales extracted from the real
trace, even in a random way. Actually this method is used by @nof the most powerful
tool developed for performance predictiof J#7]. Yet, it shidd be recalled that variations on
a strange attractor are bounded so that the existence of thesli culties does not exclude
the possibility to predict accurate averagevalues, which is the aim of most of these meth-
ods [48,[49]. Finally, the necessity to adapt the performaacsimulation/sampling technique
as a function of the program under consideration has receptbeen pointed out []. We

think our results might account for a rationale of this necesty.
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