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Abstract: This report shows how to use IBR methods to make possible the rendering of
complex scenes on a mobile terminal, such as a PDA, while using a client /server architecture.
The PDA represents the client of a server which computes a very small set of key images
(to avoid latency time that would affect interactivity) of a complex 3D scene and transmits
them on demand to the client across a low bandwidth network. The client utilizes these
images to use a warping technique to compute new images as seen by intermediate cameras
(using an IBR technique) whose positions and directions are chosen interactively by the
user by moving the stylus of a PDA. The most difficult problem is how to place the cameras
(capturing the key images) which allow an efficient warping avoiding artifacts, such as holes,
due to occlusions and exposures. Providing a general solution to the problem of camera
placement is a hard task. In this report we address only the case of urban scenes.
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Une Approche Client/Serveur pour le Rendu Basé Image
sur Terminaux Mobiles

Résumeé : Ce rapport montre qu’il est possible d’utiliser des méthodes IBR (rendu basé
image) pour effectuer le rendu de scénes complexes sur un terminal mobile, tel quun PDA,
dans le cas d’une architecture client/serveur. Le PDA représente le client d’un serveur
qui calcule un ensemble restreint d’images clés (pour éviter un temps de latence important
qui pourrait dégrader 'interactivité) d’une scéne 3D complexe et les transmet & travers
un réseau bas débit sur demande. Le client utilise ces images clés pour en déduire par
interpolation (en utilisant donc des méthodes IBR) de nouvelles images intermédiaires vues
par des caméras dont l'orientation et la position sont choisies par l'utilisateur de maniére
interactive en déplagant un stylet. Un probléme délicat est celui du placement des caméras
pour éviter apparition de trous dus aux problémes d’occlusion et d’apparition de nouveaux
objets lorsqu’on effectue l'interpolation. Concevoir une solution générale a ce probléme est
une tache trés difficile. Dans ce rapport nous proposons une solution de placement de caméra,
dans le cas de scénes urbaines.

Mots-clés : client/serveur, Scénes 3D, Rendu, Interpolation, Rendu Basé Image, Réseau
Bas Débit, PDA, Placement de Caméra
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1 Introduction

PDAs (Personal Digital Assistants) are handheld computers that are increasingly widespread
since the last decade. Many applications already run on PDAs but complete high quality
rendering of 3D models still remain beyond their capabilities. To make rendering on PDAs
possible, one solution is to rely on a client/server architecture in which the server computes
images of a 3D scene then sends them to a client, say a PDA, which visualizes them on
its small screen. As this solution is highly demanding in terms of network bandwith, a
preferable solution is to distribute rendering among the server and the client. Indeed, the
server computes a set of key images that are sent to a client which computes in-between
images using IBR techniques (Image Based Rendering).

While traditional rendering methods need data representing the geometry and the pho-
tometry of the objects making up a 3D scene, IBR methods take as input a set of images
(synthetic or real) sometimes augmented with depth maps. When rendering complex scenes,
the computation cost of traditional rendering is proportional to the number of objects within
a scene, while it is only proportional to the image resolution for IBR methods. IBR tech-
niques proved that they are fast and easy to implement. They only consist in calculating,
for intermediate camera positions, in-between frames from key frames and depth-maps.

This paper shows how to use IBR methods to make possible the rendering of complex
scenes on a PDA in the framework a client/server architecture. The PDA represents the
client of a server which computes a very small set of key images (to avoid latency time
that would affect interactivity) of a complex 3D scene and transmits them on demand to
the client across a low bandwidth network. The client utilizes these images to compute
new images as seen by intermediate cameras (using an IBR technique) whose positions and
directions are chosen interactively by the user by moving the stylus of a PDA.

Image-Based-Rendering seems a good compromise between classical 3D rendering on a
PDA and streaming images that are all computed on the server side. In other words, IBR
is a good compromise between processing time on a PDA and time of data transmission
through a low bandwidth network such as GPRS or wireless networks (Wifi or others).

Another advantage of IBR techniques is the possibility to interact with a 3D scene while
it is hardly possible when streaming images from the server to the client. Warping key
images to compute in-between ones gives the user the feeling of navigating through a 3D
scene.

The most difficult problem is how to place the cameras (capturing the key images) which
allow an efficient warping avoiding artifacts, such as holes, due to occlusions and exposures.
Providing a general solution to the problem of camera placement is a hard task. In this
report we address only the case of urban scenes.

This report is organized as follows. Section 2 presents some related works regarding
rendering and image-based rendering on PDAs as well as solutions to the camera placement
problem. Our Client/Server architecture is described in section 3. Section 4 presents in
detail our solution to the camera placement problem in the case of urban scenes only. Some
implementation details and results are given in section 5. Finally we conclude in section 6.

INRIA
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2 Related works

In this section we report first on 3D rendering methods on PDAs, then on IBR techniques
while focusing on the solutions relevant to our method. Next, we address the problem of key
image selection. This problem can be stated as a camera placement problem. The solution
we propose to this problem is only valid for urban scenes.

2.1 3D rendering on PDA

Rendering complex 3D scenes on PDAs cannot be straightforwardly performed by reusing
existing software packages running on Personal Computers because the PDAs are not yet
supplied with floating point units and dedicated graphics accelerators have just been avail-
able. Moreover, even if external memory cards of 256 Mega bytes can be used on these
devices, access times are still too high.

However, 3D rendering of small scenes is possible on PDAs. A new generation of PDAs
based on the novel Intel XScal PXA 250 processor with a 400 Mhz clock speed providing
dedicated support for multimedia and 3D graphics applications has appeared. Some 3D
APIs dedicated to programming on PDA already exist. One of these tools is a 3D graphics
library similar to OpenGL [I5, 22]. To render larger scenes, methods relying on simplified
geometry based on levels of details [27] or Non-Photorealistic-Modeling [9] can be used.
However, these methods provide images that do not seem realistic and the scene complexity
is still very limited.

To overcome the limitations of PDAs and to make possible rendering of complex scenes on
these devices, one can make use of a client /server architecture. Martin [T9] has classified into
three major categories the methods for rendering 3D models in client-server environments.
The first category is called client-side methods [12]. The methods of this category do not
involve any rendering on the part of the server. The geometry as well as the textures are
downloaded to each client that requests them and the client is responsible for rendering
it. Such methods are not well suited for PDAs. When using the methods of the second
category, called server-side methods, the 3D model is fully rendered on the server side and
the resulting images are sent to the clients [6, 2]. In [6], the sever generates the frames,
encodes and transmits them to the client. The encoded frames are transmitted as a video
stream to the client which decodes the stream and displays it. In [2], each client uses previous
views of the scene to predict next view using image-based rendering techniques. The server
performs the same prediction and sends only the difference between the predicted and the
actual views. Compressed difference images require less bandwidth than the compressed
images of each frame. Such methods get interesting when the clients have limited resources
and limited graphics performances, which is the case of PDAs. As for the third category,
called hybrid-side methods|T7|, parts of the 3D model are rendered on the server and the other
parts are downloaded and rendered on the client side. Such methods have the advantage of
reducing the geometric complexity of the data to be transmitted by replacing parts of the
geometry with images. However, deciding which part of a model should be rendered on the
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6 Bouatouch and Point and Thomas

server or on the client is not a trivial task. One possibility is that the server could render
high and low resolution versions of a 3D model and send the residual error image and the
low-resolution geometry to the client [I7]. In this case, the role of the client is to render
the coarse model and to add the residual image to restore a full quality rendering. Such
methods are not suited for PDAs, because for complex scenes, a lot of geometry (even coarse
models), textures as well as residual images have to be transmitted to the PDAs.

As seen above, a server-side method has to be used for rendering complex scenes on a
PDA. Recall that this kind of method is based on streaming images to the client. Streaming
images can offer realism and is well studied to rendering on PDAs [3] [6, 6, 4]. Even with
a high bandwidth network, streaming is not the perfect solution. A lot of time is spent by
the client to download and render images [T6], which dramatically reduce the frame rate on
the client side. Moreover, when walkthrough is the targeted task of streaming applications,
the problem of interactivity is not efficiently dealt with. Note that in the case of NPR (Non
Photorealistic Rendering) some works have been done on streaming silhouettes, creases and
feature lines (rather than images) to a PDA [9, [T2)]. In our opinion, when realistic rendering
is targeted, streaming has to be combined with IBR techniques as already done in [16, .

The drawbacks of 3D rendering (small scenes, no realism) and streaming (bottleneck for
images transmission and lack of interactivity) led us to propose the use of IBR methods for
rendering complex 3D environments on mobile terminals such as PDAs.

2.2 Image-Based-Rendering

Image-Based-Rendering (called IBR from now on) is based on the assumption that there is
a slight difference between two successive images when walking through a 3D environment.
Indeed, rendering at a current position and an orientation can be performed using IBR tech-
niques which consist in warping nearby pre-rendered images (called key images or reference
images). IBR techniques are used in two main applications: 3D walkthrough and 3D object
reconstruction from images [, 21].

A famous IBR walkthrough system is QuickTime VR [B] which allows a rendering yielding
360-degrees cylindrical panoramic images. When using this method the degrees of freedom
of navigation are rotations, around the up axes, and zooms (in and out). This limitation in
degrees of freedom for navigation is due to the way the intermediate images are computed,
say affine transforms of panoramic images [13]. Warping techniques overcome this drawback
using 3D information.

The pixels of the warped image are computed by re-projection of the pixels of key images
(see figure[ll). Warping is only possible if depth information is available for each pixel of the
key images [20], [I8]. Equation [ is the general equation of 3D warping, where image 1 is
the key image and image 2 the wrapped one.

C, and C, are the centers of projection of the 2 images, P; and P, are the inverse
projection matrices. These matrices define the intrisic parameters of the camera (see figure

m).

INRIA
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Figure 1: 3D warping of a point X and intrisic parameters of the camera P,

In the equation [ 6(u) is the disparity of pixel u. é(u) = g, where S is the focal length

and z the depth of the pixel. During re-projection on image 2, several 3D points can repro-
ject onto the same pixel. To solve this visibility problem without using a Z-Buffer, McMillan
[20] proposes to warp each image in occlusion compatible order.
Warping generates exposure errors. Exposure errors occur when the motion of the view-
point reveals regions of the model that were not seen in the reference images. To solve this
problem, the use of several and well chosen reference images is necessary (camera place-
ment). Layered Depth Images (LDI) combine together a number of reference images [25]
[23]. Multiple pairs (color, depth) are associated whith each pixel of an LDI. Advantages
of LDIs are that they naturally avoid redundancy between reference images, they can be
warped in occlusion compatible order and are capable of reducing the number of exposure
errors. The main drawback of LDIs methods is that they are demanding in memory size.
Interesting strategies aiming at choosing pertinent reference images have also been proposed
in [T0]. There are described in section
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8 Bouatouch and Point and Thomas

The closest related work is by Hudson and Mark [T4] who also propose to use IBR tech-
niques in the case of a client / server approach. They propose an algorithm for reference
camera placement. This fundamental problem as well as related works are discussed in sec-
tion

2.3 Camera placement: Determining reference images

Camera placement consists in covering every visible surface with a minimum number of cam-
eras to avoid exposures and occlusions when using IBR. This problem can also be regarded
as an extension of the Art Gallery Problem. The formal solution to this problem is the
aspect graphs [24] that store all the visibility relations between all the objects in the scene.
An aspect graph contains all the visual events (exposures, occlusions) that occur in a scene
and that can therefore be used to pre-render images from cameras whose locations depend
on the visual events.

The solutions to the problem of camera placement depend on the applications. When the
application is 3D-recontruction a huge set of images are captured by for example turning a
camera around the 3D object [2I] or using few significant images [[d. When the application
is navigation, the cameras that produce the reference images can be placed at certain pre-
defined positions [I8] [T4] or the reference images can be once for all pre-computed according
to a certain strategy [I0], [I.

In [T4] three sets of depth images are used. Each set contains four images that form the
faces of a cube. These faces are the image planes of four cameras positioned at the cube’s
center. The current navigation camera lies within a triangle whose vertices are the centers
of three reference cubes. This allows to efficiently warp the current navigation camera. The
targeted application of [I4] is walkthrough of indoors environments. Unlike this method, our
objective is walkthrough of city models. With this aim in view, we propose a new camera
placement strategy well suited to urban scenes.

Our method is inspired by Fleishman’s work [I{]]. The scene is divided into viewing areas.
In each viewing area, a small (not necessary minimal) set of cameras samples is chosen. Our
camera placement algorithm takes two considerations into account: (i) every polygon should
be covered (say, seen by at least one reference camera), (ii) every covered polygon should
be covered at a sufficient coverage rate. A coverage rate of a polygon is the ratio between
its area and that of its projection onto the image plane of the reference camera that sees
this polygon. To avoid redundancy, only one camera is associated with a given polygon in
the scene. While in [I0] cameras are placed on the boundary of arbitrary walking zones,
we place reference cameras on the urban street network. The placed reference cameras will
capture images similar to those a pedestrian could see while walking along a street.

INRIA
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3 Overall client-server architecture

The overall client-server architecture and the global algorithm of our system is described
in figure @1 The server owns the 3D environment and runs a camera placement algorithm
capable of determining pertinent reference cameras that capture reference images of the
environment, used for image-based rendering. The camera placement algorithm as well as
the associated data structures are described in the next section. The reference images, once
computed by the server, are sent to the client that warps them to compute new intermediate
images.

2.4 update = Update_Referencelmages({IRefi},Mc) 2.1. Update_NavigationCamerat()

7N

server 1. Send_Init(IRef0) client 2.2 Produce()
" images
4| —Renders 3D scenes 2.3 Send_NavigationCamera(Mc) — Navigator
— Produces Reference Images — Warps between reference images

2.5 [update] Send_Referencelmages({IRefi})

‘ 2. Navigate(theta, d)

7

user

Figure 2: Overview of the rendering architecture

Here is a more detailed description of the figure

1. The IBR process is initialized when the server sends the client an initial reference image
together with its corresponding camera parameters (1.Send_Init (IRef0)). From now
on, IRef represents a reference image and its corresponding camera parameters.

2. On the client side, the user can navigate through the 3D environment by changing the
orientation and the position of the camera (2.Navigate(theta,d)). In the present
application, navigation is performed in a urban environment. The position of the cam-
era is constrained to lie on a horizontal plane. Sudden changes of camera orientation
are not allowed. These few degrees of freedom of the camera limit changes between
two successive images to make the IBR approach possible. These limitations are also
coherent with the way people walk in a city.

3. Whenever the user moves the navigation camera, the client computes a new image by
warping some of the available reference images (2.1.Update_NavigationCamera(),
2.2.Produce()). The available reference images are not always appropriate for warp-
ing, that is to say the reference cameras that produced the available reference images
can be too far from the current navigation camera, which may cause the appearance

RR n°® 5447
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of holes on the warped image. These holes are due to sub-sampling or exposures. For
the sake of simplicity of implementation and rapidity of execution, we use adaptive
blurring filters to fill the appeared holes.

4. To maintain an appropriate set of reference images on the client side, the client trans-
mits the parameters of the new current navigation camera to the server whenever
the user moves the camera (2.3.Send_NavigationCamera(Mc)). The set of reference
images, available on the client side, is appropriate if each reference image of this set
significantly contributes to the construction of the warped image. The contribution of
a reference image is measured as the percentage of pixels of the reference image that
re-project onto the warped image.

5. The server owns the 3D urban scene and a set of edges that define the geometry of
the street network. Depending on the current navigation camera Mc on the client side
and on the reference images previously sent IRefi, the server is able to determine
whether the reference images, available on the client side, have to be updated or
not (2.4.update=Update_ReferenceImages({IRefi})). A reference image has to be
replaced (hence there is a need for updating the available set of reference images) on the
client side when it is not appropriate, say when it does not significantly contribute to
the construction of the warped image. If some updates are necessary, the server sends
the client new reference images (2.5. [update]Send_ReferenceImages({IRefil})).
The way the cameras are positioned in the environment and the way the server selects
them to compute reference images are provided by the camera placement algorithm.
This latter is described in detail in section Hl

Communication protocol In a client/server architecture, the data transmission time as
well as the synchronization between a client and the server are crucial when the objective is
to maintain a satisfactory interactivity on the client side.

While navigating through the virtual world, the client (PDA) continuously sends the
server the position and the orientation of the new current navigation camera. According
to the camera placement algorithm, the server decides if the client needs new reference
images, then sends them to it if necessary. In order to prevent blocking communications,
each process is divided into two threads as depicted on figure

e The client sends the position and the orientation of the new current camera to the
server.

e The server receives the current position and orientation of the new current navigation
camera from the PDA, then wakes up its camera placement thread.

e If the camera placement algorithm decides that the client needs new reference images,
then it sends them to it.

e The PDA receives the set of newly rendered reference images.
Since it may receive images at any time, the thread downloading reference images from

INRIA
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the server and the thread, in charge of rendering and warping, share two sets of images;
when the reception of the reference images is completed the two sets are swapped. In
this way, the rendering and warping process is not blocked when new reference images
are being downloaded..

Thread R Thread W image set 1
Reads protocol commands/positions,orientation Sends protocol commands and
commands and position and orientation of

position and orientation the current camera
of the current camera Warps images

&wakes up

Network

Thread W Thread R
Sends protocol

Reads protocol commands and
commands and

) commands ges ) -
reference images sets of images image set 2

Server PDA

Figure 3: Client and server communications are handled by two threads.

The reference images are the main bottleneck of communications between the PDA and
the server. In order to reduce the time of image transfer, the color and depth data of the
reference images are compressed using the z1ib library[26]. Each reference image requires
300kb for a standard 320x240 resolution; the use of z1ib reduces the image size from 60 to
80 %.
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4 Selecting the reference images on the server side

A common solution to camera placement (to compute reference cameras), in the context
of IBR, is to place a set of reference cameras around the current navigation camera. The
reference cameras can produce a cube of images centered at the position of the current
navigation camera or can be positioned on a predefined view trajectory. These solutions
do not take into account the topology of the environment. In our particular case of an
urban environment, the topology is represented by the street network. To visually cover all
polygons with a sufficient coverage rate, we position cameras on the street network which
corresponds to viewing areas. A street network can be recovered from building footprints
using Voronoi graph [8]. Once the street network is found, cameras can be positioned and
oriented on it in order to visually sample the scene (see section EE2)). During navigation, the
server selects reference cameras on the streets network to compute reference images required
by the client for warping (see section E3]).

The method, we propose to select reference cameras on the street network, offers two main
advantages: (i) limitation of redundancies between reference images, (ii) limitation of the
number of reference images. When the user walks in a street (for example between two
buildings), only two reference cameras are necessary. These advantages allow to limit the
amount of data transmitted from the server to the client and offer a greater autonomy to
the client.

4.1 Streets network extraction

The algorithm that extracts the street network from building footprints is similar to Dé-
coret’s one [§]. Since the navigation environment is a city characterized by its building
footprints, our method operates on a 2D horizontal plane that contains the buildings foot-
prints. Each building footprint is a convex polygon composed of a set of edges (see in figure
B). In figure @ the building footprint By [ is composed of four edges E1, F2, F3 and Ey .
The geometry of the street network consists of a set of street fragments (edges) delimited
by building edges. In figure Bl a street fragment sf! has been found between edges E; and
E5. As described in [8], these street fragments are obtained from the Voronoi diagram of
the Delaunay triangulation of the sampled building edges.

4.2 Camera placement

Once the street network has been extracted, it is used to place the reference cameras.
Because not all the building edges lie along a street we consider two kinds of reference
camera;

1. Free cameras. Free cameras are not linked to any street. When a building’s edge is
not bordered by a street we consider that there is enough space in front of it to position
a camera that looks toward it (see second picture in figure E). In this configuration

Ifor language convenience we will write building instead of building footprint

INRIA
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Figure 4: Street network extraction from buildings footprints

the visual coverage rate (quality measure inspired by the notion of coverage quality
described in [I0]) is high. When the building is totally isolated, cameras can be
positioned all around it.

2. Street cameras. When a building is close to a street, cameras are placed on the
street axes and oriented parallel to the street direction. In this configuration the
visual coverage of the building edges that border the street is not optimal but the view
is coherent with the view of a walker that navigates through streets (see in figure H).

1. Street camera 2. Free camera

=7 -
Tproj=07-

Iproj =

Visual coverage of edge part Ei : 10 % Visual coverage of edge part Ei :
Figure 5: Visual coverage rate for a street camera and a free camera
The visual coverage rate vc of an edge is the ratio between the length [ of the edge as
seen by a camera and the length of its perspective projection ly.o; (ve = M) Figure
seen by a came he lengt 's perspective project proj = ; . Figure

illustrates this concept when visualizing the same edge from two different positions and
orientations of a camera: the visual coverage of a street camera is lower than the visual

RR n° 5447



14 Bouatouch and Point and Thomas

coverage of a free camera. In figure Bl the visual coverage rate of the street camera is
%7100 = 10%, while the visual coverage of the free camera is 25190 = 28, 56%.

Reference cameras can be positioned either on a street fragment or in a free region. The
selection process will be described in the next section. We describe here the placement
process.

Preliminary definitions. Because our approach operates on a horizontal plane, the cam-
eras are linear and their view frustum is defined with edges instead of planes for a 3D camera
(see figure[d). As illustrated in figure[d, a camera Cam; is defined by its center of projection
C;, its look-at direction at, its aperture 6, its focal distance f., its near edge Eyeqr and its
far edge Efqr. The projection plane (edge) coincides with the near edge. The length of the
near edge is [, while that of the far edge is l.

E far

E near

Figure 6: Linear camera definition

_ A street fragment s f is defined by a direction dy. A building edge is defined by a normal
d). and a length [..

Placing street cameras on a street fragment. Street cameras are placed along street
fragments (at a certain height corresponding to that of a human eye) so that they can see
the maximum of building facades that border the streets.

The center of projection (COP) C; of a reference camera is placed onto the street frag-
ment sf (see figure ).
In Figure [ the navigation (or warping) camera C, B sees the edge E; from point P; to
point P,. By construction, we designate P; as the closest to Cy. The reference camera
Cam, is positioned so that it sees the edge [Py, P»]. The reference camera look-at direction

2For convenience, we often designate a camera by its center of projection

INRIA
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at is d_; if the dot product between Png and d_; is positive, to —d_; otherwise. Let P;s be the
projection of P, on sf. In fact, P, helps positioning a reference camera. In the simplest
case, the COP of the camera Cam; can be positioned at : C; = P;s — at % fe- This equation
is valid if the aperture angle # of the camera is wide enough, if not (see figure[[), the camera

has to be moved backward to see the point Py: C; = Pis — at f’. The new distance between
I[P, Pes ]l
tari(G;Q) '

the point P, to be seen and the camera COP is f/ =

Figure 7: Street camera placement on a street line

In figure [, the edge Fs is also seen by C,, from point P3 to point Py. Another reference
camera C;41 will also be placed. The management of this set of cameras is described in the
next section.

Free camera placement Some building edges are not associated with any street. In
this case, the strategy of camera placement is similar to that used for street fragment. The
difference is that the viewing direction of the reference camera is perpendicular to the edge
building as seen by the navigation camera and passes through its middle point. The figure
illustrates three distinct configurations for the placement of free cameras :
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Figure 8: Free camera placement around a building B;

1. The length [, of the building edge to be seen is smaller than I (length of the far edge

of the camera view frustum). Only one camera is necessary to see this edge. This
camera looks perpendicularly to this edge and its view direction passes through the
middle of this edge. On figure B the camera C.o sees the whole edge F; of building
B;.

. The length [. of the building edge to be seen is greater than /. The building edge

is divided into nb regular parts, with nb = f—; 4+ 1. On figure B the edge Fs is first
divided into two parts and the camera C¢; sees the first part of edge Fs.

. There is an occluder between the desired position of the camera’s COP and the edge

to be seen. In this case, the edge to be seen is subdivided again. This process is
recursively repeated until there is no occlusion problem between the placed cameras
and the considered edge. On figure B the cross symbolizes a desired position of a
camera that was occluded by the building Bs. The cameras C.2 and C,.3 have been
determined after having sudivided the lower part of edge Es.
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Replacing free cameras by street cameras. Even if free cameras offer some best visual
coverage rates than street cameras, the drawback is that more cameras are necessary to see
the same area. For example in figure B three cameras are necessary to visually cover the
edge Es whereas only one street camera positioned along this edge would be sufficient.
We then propose to construct virtual streets around isolated edges. This solution allows
to manipulate only one kind of camera and facilitates the process of camera selection (see

section EL3)).

ds

Figure 9: Positioning street cameras around isolated buildings

Indeed, in figure @ we want the edge F; of the building By be seen with street cameras
rather than with free cameras. To this end, a street line [, parallel to the edge F, is created.
The distance wg between the line [ and the edge £ depends on the focal f. and the aperture
0 of the camera. As for street cameras placement, a point to be seen P, gives the relative
position of the camera’s COP on the line | (C. = Pis — ds ;fc) The distance w, between
the line and the edge is calculated so that the camera sees vy (first vertex of Fj) on its
projection plane. This gives the following expression for ws: ws = tan(0/2) * fe.

4.3 Selection of reference cameras during navigation

The navigation (or warping) camera Cam,, is controlled on the client side by the user.
Whenever this camera is moved, a new image is produced on the client side by warping
available reference images. Reference cameras are placed on the server side which uses them
to compute reference images. The server uses the set of street fragments to place reference
cameras on it. For each navigation camera C,, the reference cameras C; are placed so as to
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see at least what C,, sees.

Here is the algorithm for the determination of the set of reference cameras C; that
correspond to a given camera navigation C,,:

1. Determination of V, the set of visible edges. To determine the portions of edges
{E;, P;, Pi11} (F; is one edge and P;P;;1 one portion) that are seen by C,,, rays are
drawn from its COP to find intersections with building edges. For example in figure
[ the edge E5 is totally seen by C,,; the triplet {Es2, Ps, P4} is inserted into the
visible set. The edge E; is partially seen; {E1, Pi, P>} is inserted into the visible set
of Cam,,. The edge Ej is partially seen ; {E3, P5, P5} is inserted into the visible set.

2. Determination of S the set of street cameras. For each visible edge within the
set V), a street camera is constructed as described in the previous section. In figure
[ C, is placed so as to see the edge [Py, P] on Ej. Cj also sees all the portions of
edges as seen by C,, and is therefore a good candidate, it will be chosen as a reference
camera. In the example of figure three street cameras will be placed so as to see
the portions of the edges F1, E2 and E3. There are not all drawn on the figure for the
sake of clarity.

3. Reduction of S. If all the portions of edges {E;, P;, P,+1} € V seen from one camera
C; € S have been already seen by another camera C; € S, the camera C; is removed
from S. In the example illustrated in figure [, the camera C; will be removed from
the set because it only sees { Fs, P3, P,} which is already seen by Cy. The camera that
sees the portion of edge F3 will also be removed. The final set of reference cameras S
will only contain the camera Cj.

For each new warping camera it receives (see message event 2.3.Send_camera(Mc) on
figure B), the server checks if the set of reference images he previously sent to the client
is appropriate (see 2.4.update=Update_ReferenceImages({IRefi}) on figure ). Recall
that a reference image is appropriate if it significantly contributes to the production of the
warped image on the client side. If the portions of edges seen by the current warping cam-
era are not seen by previous reference cameras, they are updated, say the server sends new
images to the client.

5 Implementation and results

In this section we give more details about the implementation of the server. Some aspects
of the implementation on the client side are discussed in section
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Figure 10: Selection of reference cameras.

5.1 Server data structures

When the server receives the position and the orientation of the current navigation camera
from the client, it performs several tasks :

1. It computes the set of building edges which are visible from the received current
navigation camera (section BTTI).

2. It determines if the previously sent reference images are sufficient to view all these
visible edges within this set; if yes then the server does nothing else (section BT2).

3. If no, then, as explained in the previous sections, the server assigns each building edge
a camera with an ad-hoc position and orientation (section H).

4. Finally at most four reference cameras are selected and the associated reference images
are computed and sent to the client. In order to limit the network bandwidth as well
as the computations required on the client side, we restrict the number of reference
images. We use an empiric (but relatively natural) criterion to select the reference

cameras (section (LT3).

5.1.1 Visible building edges

Given a camera we need to compute the visible building edges of the urban environment.
Each building of the environment defines a footprint which is encoded by a list of 2D edges.
To determine which edges are visible from a given camera we use a quadtree (as depicted

on figure [ITI).
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Figure 11: A quadtree used to compute visible edges of building edges

Each leaf of the quadtree contains one edge vertex and the list of building edges sharing
it. In order to determine the set of visible edges, the view frustum is sampled by shooting
rays. Recall that we are using linear cameras. The projection edge (or image edge) is
subdivided into linear pixels. Rays originate at the COP of the camera and pass through
the pixels. For each ray we compute the leaves of the tree that it crosses. Then, starting
from the leaf containing the camera COP, we look for the closest edge intersecting the ray.

Each edge is parameterized by P = Py + tP;, where t € [0,1] and Py and P; are the
vertices (endpoints) of the edge. Each intersection point P, between a ray and an edge,
is represented by its associated ¢t value. An edge may be intersected by several rays, then
yielding intersection points whose associated t values range from tmin to tmax. For each
intersected edge we store its associated tmin and tmax values which represent the visible
portion of the edge. Since the projection edge of the camera is discretized into pixels,

consecutive rays (for example the two rays intersect different edges) then the parameter ¢ is
set to its extremal value 0 or 1 (w.r.t the concerned endpoint of the edge).

5.1.2 Camera update checking

At any time the server knows the camera parameters corresponding to the most recent
reference images already sent to the client, say the PDA. When the server gets the position
and orientation of the new current navigation camera C, it determines if it is necessary
to send new reference images to the client. To this end, it computes the edges visible to
C. Then it checks if all these edges are seen by the reference cameras (for which reference
images have been computed) already stored on the PDA.

This test is achieved by computing, for each stored reference camera Cj, its set of visible
edges. Tt consists in checking, for each edge whose portion [tmin,tmax] is visible to C, if
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computed tmin and tmax
actual tmin and tmax B

Figure 12: Intersection of rays with building edges. On the left : the sampling of the
projection edge and the intersection of rays with buildings. On the right : edge endpoints
are missed by the rays.

there exists at least one camera C; that sees the portion [tmin’,tmaz’] of the same edge
such that [tmin, tmax] C [tmin/, tmaz']

If there exists an edge whose portion [tmin, tmax] is not entirely seen by a camera C;
then a new set of cameras is computed for C' (see section H).

5.1.3 Contribution of a camera

Our algorithm computes one reference camera for each visible building edge. As explained
in section @l we check redundancies existing between cameras; this allows to remove useless
redundant cameras. Unfortunately, this process does not prevent from determining too
many cameras.

In order to limit the network bandwidth required as well as computations on the client
side we restrict the number of reference cameras to 4. The criterion used to select reference
cameras is their contribution to the construction of the warped image on the client side.
The contribution of a reference camera is estimated as the sum of the lengths of building
edges that it sees. Once the contributions are computed we keep the four cameras of highest
values.

5.2 Results
5.2.1 Our client/server application

The figure I3 shows our client and server application. The upper-left window belongs to the
server and shows reference images sent to the client. The lower-right window is also part
of the server; it shows the footprints of the urban environment, street fragments attached
to footprints and the position of cameras. One can see several cameras: the white camera
is the current navigation camera, the green cameras are those sent to the client and the
red cameras are those rejected by our algorithm (see Hl and BEI3)). The upper-right window
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shows the warped image computed by the client. The PDA and the server communicate
through a WIFI wireless network.

Figure 13: The client/server application : the upper part of the upper-left window shows
the 3 reference images computed by the server and sent to the client; the lower part shows
the positions of reference cameras (in red) and the position of the current navigation camera
(in white) to be warped. The reference cameras are also shown in the urban environment on
the lower right window; the frustums are shown using green color. Finally the upper-right
window shows the result on the client side.

5.2.2 Test scenes

Our algorithm has been evaluated using three types of scene :

1. The first model is generated using a simple program. No texture is used. The scene
represents a grid 100x 100 of square units; several cubes have been added regularly on
the floor. Some pictures of these scene are given in the figure[[dl This model has been
used to evaluate the warping algorithms.
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2. The second type of scene is a VRML model generated with a procedural method
written in Java. This procedural method generates simple buildings from 2D footprints
and assigns a texture to each facade. We have generated several models of varying
number of buildings. One can find pictures of such a model on the figure The
textures used in these models have a small resolution (249x281) and correspond to
photographs taken from streets of Bordeaux (a city of France). This model has been
used to evaluate the camera placement algorithm.

3. The third scene is a 3D model automatically generated from the cadaster of Bordeaux
[IT]. The generated model represents a surface of 4 km? containing 8712 buildings.
With additional hand-made objects the model is composed of 108040 polygons. Tex-
tures are some photos taken from streets of Bordeaux. This model has been used to
evaluate the warping algorithms.

5.2.3 Some remarks about floating-point and fixed-point arithmetics

We have implemented two warping algorithms. The first one uses floating-point encoding
while the second uses fixed-point encoding. The latter has been implemented because a
PDA is not supplied with a floating point unit (FPU).

The two main drawbacks of using fixed-point encoding are the following :

e In order to optimize the algorithm, some coefficients of the matrix used to backward
and forward project pixels are partially precomputed with some camera parameters
known in advance. These parameters are chosen in such a way the operations fit within
the fixed-point precision allowed.

The matrix used by our algorithm is the result of M = (PgMng_lPl_l) where P; are
the projection matrix and M; the view matrix of the navigation camera and of the
reference camera. To warp a pixel from an image to another we must add scaling S
and S at both ends of the M transformation. So, M and .S; depend on :

— The camera position and orientation;

— The camera frustum : near, far, left, right, bottom and top planes;

— The image size : width and height.

So, we have twenty parameters (10 for the two cameras). To optimize the algorithm
we assume that :

— The user moves only on a plane; so only 2 dimensions are taken into account for
the position of cameras.

— The reference and resulting images have the same size and are generated with
the same camera frustum.

By fixing the frustum parameters (in an empirical way w.r.t to the scale of the model)
and the image size (which is the size of screen of the PDA), the warping matrix
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depends only on the position/orientation of the navigation camera and on the posi-
tion/orientation of reference camera. Using Maple one can easily simulate the warping
operations then estimate (coarsely) the bounds of each coefficient of the matrix and
their ability to fit into our 16 bits fixed-point encoding.

e The 3D model must be chosen in order to fit into the fixed-point precision. In the
previous point we saw that the warping matrix depends on the scale of the frustum,
the position and the orientation of the cameras. These parameters partially depend
on the scale and precision of the 3D model (e.g. the near and far plane).

5.2.4 Quality of the rendering

The quality of the warped images depends mainly on three parameters :

1. The difference between the position and orientation of the current navigation camera
and those of the reference cameras. These differences strongly depend on the algorithm
used for camera placement.

2. The number of reference cameras and the space they cover.

3. The algorithm used to fill, in the resulting warped image, the holes due to subsampling
or exposure. We use a blurring filter.

Of course the two last parameters have a significant impact on the frame rate on the
client side.

The figures [[4 and I3 exhibit some problems concerning the quality of the rendering.
The figure [[4 shows that the quality of the result becomes unacceptable when a blurring
filter is not applied to the warped image. The degradation of the resulting warped image is
noticeable while the reference cameras lies close to the current navigation camera.

The figure [[3 shows the influence of camera placement on the behavior of the fixed-point
based warping algorithm. On this figure we used four reference cameras, two of them are
perpendicular to the view direction of the current navigation camera. We can notice that
artifacts appear on the resulting image. While these artifacts remain acceptable without
blurring filter, they have a detrimental side-effect when applying a blurring filter.

5.2.5 Frame rate

The PDA used for our experiments is a Toshiba e800 (Intel PXA263 400 MHz, 128 Mo
RAM) with an integrated WiFi antenna. We used the 320%x240 resolution of its 4 inches
TFT screen.

When using fixed-point arithmetic and 4 reference images, the best frame rate we ob-
tained on the PDA is less than 4 fps (frames per second). Note that this result is totally
independent of the 3D model considered.

When the server application and the client application are executed on two different PCs
running under Linux and communicate through a local area network, the best frame rate

INRIA



IBR on PDAs 25

t St warped image after 2 steps without blur after 8 steps without blur

Position of reference cameras after 2 steps with blur after 8 steps with blur
(red) compared to the first
position of the user (white)

Figure 14: Image warping with or without blur filters

we obtained is around 20 fps. This result is obtained when the client application warps
only one reference image. This frame rate falls to 8 fps when four reference images are
used. These results correspond to average frame rates computed after multiple experiments.
It is easy to conclude that the higher number of reference images used for warping, the
lower values of the obtained frame rates. In other words, the warping of multiple reference
images slows down our image-based rendering application. For this reason, the objective
of our camera placement algorithm is to reduce the number of reference images, needed for

RR n°® 5447



26

Bouatouch and Point and Thomas

Position of reference cameras
(red) compared to the first point arithmetic and no blur- point arithmetic and blurring

1st 1st

warped image using fixed- warped image using fixed-

position of the current navi- ring filter filter
gation camera (white)

1St 1St

warped image using warped image using
floating-point arithmetic and floating-point arithmetic and

no blurring filter blurring filter

Figure 15: Image warping using fixed or floating point operations.

warping, to meet the constraint of interactivity while providing high quality warped images.
After multiple experiments, an average of 3 reference cameras (providing 3 reference images)
are needed for warping.
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6 Conclusion

In this paper, we have shown that remote rendering of complex scenes is possible on a PDA.
As the current PDAs are not equipped with FPUs we have resorted to fixed point arithmetic
to speed up the warping algorithm running on the PDA. But as explained in section 23]
the use of fixed point arithmetic limits the type of scene one can consider. In other words,
it is difficult to encode a scene with a large disparity in the coordinates of the 3D objects
making the scene. Our experience has shown that the presence of FPU in a PDA is crucial
when one wants to remotely render outdoor and indoor scenes. We think that this problem
will be solved in the near future with the advent of more powerful PDA supplied with FPUs
(Floating Point Unit).

Another contribution of our work is our camera placement algorithm. It has proved its
efficiency since it limits the number of reference images needed and allows warping without
artifacts due to occlusions or exposures thanks to the judicious placement of reference cam-
eras. Unfortunately, the obtained frame rates are still low because of the warping algorithm
which is time consuming especially when the number of reference cameras needed gets high.
This affects, unfortunately, interactivity which is our main goal. We are working on a faster
version of the warping algorithm. We are sure that the constraint of interactivity will be
met with PDA equipped with FPUs and with a faster version of the warping algorithm.
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