
HAL Id: inria-00000130
https://hal.inria.fr/inria-00000130

Submitted on 24 Jun 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards High Performance CORBA and MPI
Middlewares for Grid Computing

Alexandre Denis, Christian Pérez, Thierry Priol

To cite this version:
Alexandre Denis, Christian Pérez, Thierry Priol. Towards High Performance CORBA and MPI Mid-
dlewares for Grid Computing. 2nd International Workshop on Grid Computing, Nov 2001, Den-
ver/USA, United States. pp.14-25. �inria-00000130�

https://hal.inria.fr/inria-00000130
https://hal.archives-ouvertes.fr


Towards High Performance CORBA and MPIMiddlewares for Grid ComputingAlexandre Denis1, Christian Pérez2, and Thierry Priol21IRISA/IFSIC, 2IRISA/INRIA,Campus de Beaulieu - 35042 Rennes Cedex, France{Alexandre.Denis,Christian.Perez,Thierry.Priol}@irisa.frAbstract. Due to the high level of heterogeneity in a computation-al Grid, designing a runtime system for such computing infrastructureis extremely challenging, for example regarding the ability to exploittransparently and e�ciently various networking technologies. Program-ming a computational Grid often requires the use of several commu-nication paradigms (RPC, RMI, DSM, Message passing) that have toshare these networking resources. This paper presents the �rst step to-wards a runtime system that allows e�cient communication for variouscommunication-oriented middlewares. We introduce a CORBA imple-mentation that reaches 240 MB/s, which is as far as we know the bestCORBA performance. Thus, CORBA can be as e�cient as MPI on highperformance networks. Moreover, we show that di�erent communicationmiddlewares, like CORBA and MPI, can e�ciently co-habit within thesame runtime system taking full bene�t of various networking resources(SAN to WAN).1 Programming the GridDue to the high level of heterogeneity in a computational Grid, designing aruntime system for such computing infrastructure is extremely challenging. Inthis paper we focus on a particular facet that a grid runtime has to tackle:managing various communication resources and hiding them so that middlewarescan use them transparently and e�ciently.Beside various communication technologies, the design of grid applicationsrequires di�erent middlewares allowing programmers to use programming mod-els that are most suitable for their applications. Although �rst implementa-tions of Grid infrastructures, such as Globus[8], support mainly the executionof message-based applications, it is foreseen that future grid applications willrequire much more advanced programming models based on either distributedobjects or components. Among such grid applications, multi-physics applica-tions are good examples. They are made of several high-performance simulationcodes coupled together to simulate several physics behaviors. Each phenomenonis simulated by a parallel simulation code. This kind of application appears wellsuited for the Grid because many of its codes need either a parallel machine or



a vector supercomputer to run in order to keep the computation time withinreasonable bounds. The codes that compose a coupling application are generallyindependently developed. It appears very constraining to require that all codesare based on the same communication paradigm, like for example MPI to beable to run on a computational grid. We advocate an approach that lets the ap-plication designer choose the most suitable communication paradigm. Within aparallel code, it may be MPI, PVM, a distributed shared memory system (DSM),a parallel language like OpenMP[7], etc. The coupling of the simulation codescould be carried out through the use of a Remote Method Invocation mechanism(Java RMI or CORBA) to transfer the control between the simulation codes.Such an approach requires several communication middlewares to exploit var-ious networking technologies. Depending on the computing resource availability,several simulation codes could be mapped onto a WAN or onto the same parallelmachine. In the later case, the RMI mechanism should be able to exploit theunderlying network of a parallel machine. Current implementations of existingRMIs (Java RMI or CORBA) do not support such speci�c network so that thecoupling application cannot fully exploit the communication resources.In this paper, we advocate the choice of the CORBA technology to cou-ple simulation codes. CORBA has some very interesting features. It has beendesigned for distributed communication. So, it harnesses adequately the hetero-geneity of the di�erent computers. Moreover, it o�ers an object oriented frame-work. Last, it o�ers binding for most languages1. CORBA has to ful�ll twoimportant requirements: e�ciency on high speed networks, and interconnect t-wo parallel codes. This paper aims at giving a positive answer to the performanceof CORBA on high speed networks.The answer to the second requirement is twofold. First, the OMG2 has issuedan RFP[14] (Request For Proposal) that solicits proposals to extend CORBAfunctionality to conveniently and e�ciently support parallel processing applica-tions. A response[13] was submitted by a consortium of several industrial com-panies and a supporting organization. The proposed approach shares some simi-larities with previous works [10, 16]. Second, we are working on providing similarfunctionalities � i.e. CORBA support for parallel applications � but based onstandard CORBA 2 [6]. Our motivation is that normalization is a long processand it is not clear whether most ORB will implement it.The remainder of this paper is divided as follows. Section 2 presents thechallenges that our approach has to face. In section 3, the �rst challenge, a highperformance CORBA, is overcome. Our second challenge, concurrent support ofseveral middlewares, is the subject of section 4. All these results are gathered ina coherent platform Padico which is sketched in section 5. Then we conclude insection 6.1 The mapping to FORTRAN9x is not o�cial but a study that has been carried outwithin the Esprit PACHA project has shown that such a mapping is possible2 Object Management Group � the consortium that de�nes CORBA



2 Communication Issues in a Grid Environment2.1 Grid InfrastructuresGrid computing infrastructures cover a wide range of machines, going from su-percomputer to cluster of workstations. While the former is still a platform ofchoice for computing-intensive applications, the success of the latter is alwaysgrowing due to their competitive performance/price ratio. A grid computingmiddleware must be portable enough to run on every machine of the grid.The Grid is composed of several kinds of networks: SAN on clusters of work-stations (eg. Myrinet, SCI, VIA), dedicated interconnection networks on super-computers, and WAN. Multi-threading is more and more required by middle-wares like MPI or CORBA. Also, it is an e�cient paradigm to support con-currently several middlewares. So, it is challenging to design a grid computingruntime system that is both portable and e�cient.2.2 CORBAAs CORBA is a corner stone of our approach, it is critical to have a high per-formance CORBA implementation (ORB) able to exploit various networkingtechnologies (from dedicated networks within supercomputers to SAN). Howev-er, such an implementation must overcome some challenges.A high performance CORBA implementation will typically utilize SAN witha dedicated high-performance protocol. It needs to be interoperable with otherstandard ORBs, and thus should implement both high-speed protocol for SANand standard IIOP (Internet Inter-Orb Protocol) for interconnecting with otherORBs over TCP/IP. From the application, the high-speed ORB must behave asany other ORB. We aim at using standard CORBA applications on our high-performance ORB. Network adapter selection, protocol selection and addressresolution must be automatic and fully hidden.There is a network model discrepancy between the �distributed world� (eg.CORBA) and the �parallel world� (eg. MPI). Communication layers dedicated toparallelism typically use a static topology3: nodes cannot be inserted or removedinto the communicator while a session is active. On the other hand, CORBAhas a distributed approach: servers may be dynamically started, clients maydynamically contact servers. The network topology is dynamic. It is challengingto map the distributed communication model onto SAN that are biased towardthe parallel communication model.2.3 Supporting Several Middlewares at the Same TimeSupporting CORBA and MPI, both running simultaneously, is not not as s-traightforward as it may seem. Several access con�icts for networking resources3 PVM and MPI2 address this problem but do not allow network management on alink-per-link basis.



may arise. For example, only one application at a time can use Myrinet throughBIP [17]. If both CORBA and MPI try to use it without being aware of eachother, there are access con�icts and reentrance issues. If each middleware (eg.CORBA, MPI, a DSM, etc.) has its own thread dedicated to communication-s, with its own policy, communication performance is likely to be sub-optimal.In a more general manner, resource access should be cooperative rather thancompetitive.2.4 Madeleine and MarcelTo face the heterogeneity of the Grid, a portability layer for network and multi-threading management should be adopted. At �rst look, it may seem attractiveto use a combination of MPI and PosixThreads as foundation. However, [4]shows that this solution has drawbacks. To deal with portability as well as lowlevel issues, we choose the Madeleine communication layer [2] and the Marcelmulti-threading library [5]. The Madeleine communication layer was designedto bridge the gap between low-level communication interfaces (such as BIP [17],SBP or UNET) and middlewares. It provides an interface optimized for RPC-like operations that allows zero-copy data transmissions on high-speed networkssuch as Myrinet or SCI. Marcel is a multi-threading library in user space. Itimplements an N:M thread scheduling on SMP architectures. When used inconjunction with Marcel, Madeleine is able to guarantee a good reactivity of theapplication to network I/O.3 High Performance CORBA3.1 Related WorksPrevious works have already be done about high performance CORBA. TAO [11](the ACE ORB) focuses on high performance and real-time aspects. Its mainconcern is predictability. It may utilize TCP or ATM networks, but it is nottargeted to high performance network protocols found on clusters of PCs suchas BIP or SISCI. OmniORB2 had been adapted to ATM and SCI networks. Sincethe code is not publicly available, we only report published results. On ATM,there is a gap of bandwidth between raw bytes and structured data types [15].The bandwidth can be as low as 0.75 MB/s for structured types. On SCI, resultsare quite good [12] (156 �s, 37.5 MB/s) for messages of raw bytes; �gures forstructured types on SCI are not published. CrispORB [9], developed by Fujitsulabs, is targeted to VIA in general and Syn�nity-0 networks in particular. Itslatency is noticeably better, up to 25 % than with standard IIOP.OmniORB2 was developed in 1998. In the next version, OmniORB3, thereis only TCP support. Support of high-speed networks did not seem promisingand thus had been discontinued. CrispORB is interesting but restricted to VIA.TAO is targeted to predictability and quality of service. As far as we know ithas not been deployed on high speed networks.



3.2 CORBA Performance AnalysisThis section analyzes the performance of available CORBA implementations soas to understand where are the overheads. Copy limitations are also validatedthanks to two prototypes on top of high speed networks.We will �rst analyze a remote method invocation. The steps are: a) build andsend a header to notify to the remote object it has to invoke a method. This is theinvocation latency, t1. b) marshal and send the in parameters of the method.This is described by the bandwidth, Bin. c) execute the remote method withduration texec. d) marshal and send the out parameters, with bandwidth Bout.e) notify to the caller that the remote invocation is �nished. The terminationnoti�cation is t2.Our measurements are RTT = t1 + t2 (round trip time), which is the timeneeded for the remote invocation of an empty method, and the bandwidth B.If a method takes parameters of size S bytes and is invoked in time T , thenT = RTT + SB , and then B = T�RTTS .Coupled codes of numerical simulation handle huge amounts of data. Thebandwidth is thus an important performance factor. It is determined by twofactors: the marshaling/demarshaling speed and the network bandwidth.Marshaling/demarshaling is the action of encoding/decoding data into aninteroperable format called CDR � Common Data Representation � in order toput it into GIOP requests. Some ORBs use a straightforward approach; theyassemble and disassemble requests by making an explicit copy of all the param-eters. Some ORBs use a zero-copy strategy. Depending on the memory band-width/network bandwidth ratio, the copy can be a negligible or a very coste�ective operation. The overall bandwidth B is given by the formula:B = 11Bmarshal + 1Bnet + 1BdemarshalWe realized a minimal, not-fully functional porting of two open-source COR-BA implementation on top of Madeleine : MICO [18] and OmniORB3 [1]. Wewere then able to measure the performance we could get from a complete im-plementation. We ran benchmarks on our dual-Pentium II 450 based PC clusterwith Ethernet-100, SCI, and Myrinet network adapters.Table 1 shows the peak bandwidth analysis of MICO. On high-speed networkssuch as SCI and Myrinet, 1Bmarshal and 1Bdemarshal become dominant. Thus, be-Table 1. MICO's peak bandwidth analysis in MB/snetwork Bmarshal Bdemarshal Bnet B Bmeasured Bmeasured=BnetEthernet-100 129 80 12 9.6 9.4 78%SCI 129 80 86 31 27.7 32%Myrinet 113 72 99 30.4 26.2 26%



VSock

TCP/IP
Madeleine

SCI Myrinet

socket interface

VSock interface
high speed ORB

TCP

standard ORB

Fig. 1. Porting scheme overviewcause of the high overhead introduced by copies, the overall bandwidth B is onlyabout 30% of the network bandwidth Bnet.OmniORB3 does not always copy on marshaling/demarshaling. It imple-ments a �zero-copy� transfer mode and pre-allocated bu�ers as often as possible.Thanks to this strategy, it can achieve a higher bandwidth, even if theoreticallythe more complex marshaling methods cause a higher latency. Our OmniOR-B/Madeleine reaches 86 MB/s on SCI and 91 MB/s on Myrinet. Bmarshall andBdemarshall do not make sense in zero-copy strategy. Overall performance resultsare given in Section 3.4.3.3 Porting OmniORB on Top of MadeleineThe previous section has shown that OmniORB3 is well suited for high perfor-mance thanks to its e�cient marshaling/demarshaling strategy. In this section,we present a complete port of OmniORB3 on top of Madeleine, our approach isto modify OmniORB as little as possible to be able to follow its next versionswith virtually no supplementary work. We only modi�ed OmniORB transportand threads layer. Porting the OmniORB thread system on top of Marcel isstraightforward since Marcel implements the subset of PosixThreads API thatOmniORB needs. For the transport layer, our approach relies on the conceptof virtual socket, or VSock, as shown on Figure 1. VSock implements a sub-set of the standard socket functions on top of Madeleine, for achieving high-performance (ie. only datagram, no streaming). It performs zero-copy datagramtransfer with a socket-like connection handshake mechanism using standard IPaddresses. Then, porting OmniORB on top of VSock is straightforward. We re-alized a fully-functional porting of OmniORB on top of VSock.Interoperability Interoperability is one of our main concerns. We need ourhigh-speed ORB to be interoperable with other �non-Madeleine aware� ORBs.This implies the VSock module to be transparent in three ways:Protocol auto-selection. The CORBA application built on top of the ORBis a standard application. It does not have to know that there are severalunderlying network protocols. Thus, VSock should automatically select theadequate protocol to use according to the available hardware.



IIOP pass-thru. For interoperability issues, our ORB must be able to com-municate with the outside world using the CORBA standard IIOP proto-col. VSock should determine itself whether an object may be reached usingMadeleine or if it should revert to standard TCP.Address mapping. Since we do not modify much the ORB, and for compat-ibility reasons, contact strings are always IP addresses. VSock translates,when needed, IP addresses into Madeleine logical node number using a re-verse address resolution table.VSock's strategy for managing both TCP and Madeleine is the following:when a client tries to connect to a server, it resolves the provided IP addressinto a Madeleine address. If it fails, then the object is outside the cluster, andit reverts to standard IIOP/TCP. If it succeeds, then it asks the server if thisparticular object is handled by Madeleine � a machine being in a VSock clusterdoes not imply that all its CORBA servants are VSock-enabled! This is performedby comparing the corresponding TCP port numbers.Dynamicity. The network topology of CORBA is dynamic, client-server ori-ented. The network topology of Madeleine (like most communication library forSAN) is static. A solution is to use a unique bootstrap binary that is started oneach node. Thus, it satis�es the �SPMD� approach of the communication library.Then, this bootstrap process dynamically loads the actual application binariesstored into dynamically loadable libraries. Thanks to this mechanism, di�erentbinaries can dynamically be loaded into the di�erent nodes of a grid system.3.4 PerformanceThe bandwidth of our high-performance CORBA implementation is shown onFigure 2. We ran our benchmark on �old� dual-Pentium II 450 machines, withEthernet-100, SCI and Myrinet 1, and �up to date� dual-Pentium III 1GHz withMyrinet-2000. The benchmark consists in a remote invocation of a method whichtakes an inout parameter of variable size. The peak bandwidth is 86 MB/s onSCI, 101 MB/s on Myrinet 1 (not shown on �gure), and 240 MB/s on Myrinet-2000. This performance is very good. We reach 99 % of the maximum achievablebandwidth with Madeleine.Figure 2 shows a comparison of the bandwidth of MPI/Madeleine [3] andour OmniORB/Madeleine. For small messages, CORBA is a little slower thanMPI, because of the software overhead introduced by the ORB. For larger mes-sages, our CORBA implementation outperforms MPI on SCI and has the sameperformance than MPI on Myrinet. The overall performance of CORBA is thuscomparable to MPI. This validates our approach of using both MPI and CORBAfor a better structuration of the applications without performance loss.On the �old� machines (Pentium II 450, SCI or Myrinet 1), the latency of ourCORBA is around 55 �s. It is a good point when compared to the 160 �s latencyof the ORB over TCP/Ethernet-100. However, MPI/Madeleine latency is 23 �s.On the �up to date� machines (Pentium III 1GHz, Myrinet-2000), the latency



0

50

100

150

200

250

32 1KB 32KB 1MB

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

CORBA/Myrinet
MPI/Myrinet
CORBA/SCI

MPI/SCI
TCP/Ethernet-100 (reference)

Fig. 2. Bandwidth (in MB/s) of OmniORB and MPICH over SCI and Myrinet-2000of CORBA is 20 �s where MPI gets 11 �s. This high-performance CORBA usesthe GIOP protocol. GIOP is very time-consuming and is not needed inside ahomogeneous part of a grid system. CORBA enables us to write other protocolsthan GIOP, called ESIOP. Thus, to lower the latency, it is possible to write ahigh performance network ESIOP. However, �gures show that the increase ofthe CPU power narrows the latency gap between CORBA and MPI.4 Concurrent Support of CORBA and MPI4.1 Problem OverviewThis section exposes the problem of concurrently supporting both CORBA andMPI interface active. An ORB or a MPI implementation, and in a more generalway every networkable middleware, takes an exclusive access on the resources.For example, the ORB uses the Myrinet network with the BIP protocol andMarcel threads. It is correct as a standalone package. Assume that MPI uses theMyrinet network with BIP, and Posix threads; it is �ne as a standalone package.But, if this ORB and this MPI are used together, several problems arise:� cluster-oriented protocols (BIP on Myrinet, SISCI on SCI) are most of thetime single-user. They cannot be used concurrently by several packages thatare not aware of the others;� an application runs into trouble when mixing several kinds of threads;� if ever we are lucky enough and there is no resource con�ict, there is probablya more e�cient way than putting side by side pieces of software that do notsee each other and that act in an �egoistic� fashion.We aim at making it work in a coherent rather than competitive way. The mainpoints are: network multiplexing and common thread management.



Application

JVM CORBA

MPI DSM

Marcel
Madeleine

Myrinet SCI
TCP

VSock

ThreadManager

Task Manager

NetAccess

multiplexed Madeleine interface

standard Madeleine interface

VSock interface

Fig. 3. Concurrent access to resources through a Task Manager4.2 Network AccessThere is a need for a multiplexing method. If both the ORB and MPI accessthe network resources without being aware they do not have exclusive access,there will be con�icts. The ORB is our VSock-based OmniORB; as an MPIimplementation, we choose the Madeleine-based port of MPICH [3] for its goodoverall performance and its portability. We manage two level of multiplexing asshown on Figure 3:� low-level multiplexing, provided by the Task Manager on top of Madeleine.It enables several modules to use Madeleine native communications;� high-level multiplexing, provided by VSock. It enables several modules touse virtual socket on top of Madeleine. VSock itself is a module that useslow-level multiplexed Madeleine communications.Multiplexing on top of Madeleine is performed by adding a tag into headers.We centralize the global operations such as initialization and channel manage-ment. Very few changes have to be done to existing Madeleine-based modulesto obtain multiplexed Madeleine modules. As for the VSock porting, this can beautomated with a script acting on the source code.4.3 Threads ManagementWhen it comes to multi-threading, every standalone package has its own library,compatibility layer, and policy. When we put side by side such packages thatare not aware of each other, some problems arise: at best, the e�ciency is sub-optimal; at worst, incompatibilities appear at run-time or compile-time.We propose that the Task Manager centralizes threads execution, and inparticular threads dedicated to communications. We chose Marcel threads fortheir e�ciency and good integration with Madeleine. Then, we are able to havea uni�ed thread policy:



� If every module (ORB, MPI) has its own communication thread, resourcesare wasted. Latency is increased because of the thread scheduler overhead.The Task Manager runs a polling thread. Each module may register its pollingaction that will be called by the Task Manager. There are, for example,Madeleine callbacks for Madeleine multiplexing.� Since the Task Manager knows every polling function, it is able to decide ona coherent polling policy. It interleaves the several actions in a coherent way.It adapts the polling frequency to the network performance. For example,control channels are polled less often so that they do not interfere with time-critical data channels. TCP sockets are polled less often than SCI or Myrinetchannels since their polling is more time-consuming.Performance The result of this coherent concurrent support of both CORBAand MPI has a good overall performance. Every level of interface (multiplexedMadeleine, VSock) is zero-copy, thus the bandwidth remains unchanged at anylevel of multiplexing. Thanks to header piggy-backing, multiplexing does notincrease latency. We are able to keep CORBA and MPI at the same performancelevel as when they were standalone packages as described in Section 3.4.5 PadicoPadico is our research platform for parallel and distributed computing. In par-ticular, it targets code coupling applications based on the concept of parallelCORBA objects [6]. The runtime environment is called Padico Task Manager,shortened in PadicoTM. The role of PadicoTM is to provide a high performanceinfrastructure to plug in middlewares like CORBA, MPI, JVM, DSM, etc. Ito�ers a framework that deals with communication and threads issues, allowingdi�erent middlewares to e�ciently share the same process. Its strength is to o�erthe same interface to very di�erent networks.The design of Padico, derived from the software component technology, isvery modular. Every module is represented as a component: a description �le isattached to the binary (in a dynamically loadable library form) that describesit. PadicoTM implements the techniques described in Section 4, namely networkmultiplexing, provided by the Padico NetAccess module and thread manage-ment, provided by the Padico ThreadManager module. Padico NetAccess andPadico ThreadManager, built on top of Madeleine and Marcel, are the core ofPadicoTM. Then, services are plugged in PadicoTM core. These services are: a)the virtual socket module VSock, used by CORBA. It may be used by severalother modules at the same time; b) the CORBA module, based on OmniORB3,on top of VSock as described in Section 3; c) the MPI module, derived fromMPICH/Madeleine [3]; d) a basic CORBA gatekeeper that allows the user todynamically load modules upon CORBA requests.Currently, we have a functional prototype with all these modules available.Its performance is reported in Section 3.4. Padico is just in its beginning phase.Several important issues like security, deployment and fault tolerance are notyet addressed.



6 ConclusionThe Grid o�ers an heterogeneous environment, in particular with respect tocommunication protocols. At the programming level, it is not realistic to con-sider all links as similar as they are not. A better solution seems to keep thestructure of the applications to have some knowledge about the performancerequirement of the links. For example, a parallel MPI code expects low latencyand high bandwidth communications while a code coupling communication donot expect to be so e�cient. Targeting code coupling applications, our choiceis not to constraint the communication paradigm used inside parallel code andto use CORBA for coupling communications. As coupling communications canbe mapped on high performance networks, it is important that CORBA coulde�ciently exploit them. Also, as applications may simultaneously use for exam-ple MPI for its internal communications and CORBA for coupling, it is alsomandatory that both middlewares e�ciently co-habit. This paper shows thatboth requirements can be ful�lled.First, this paper has shown that CORBA can be as e�cient on high perfor-mance network as MPI. We measure 240 MB/s bandwidth for CORBA on topof Myrinet-2000. This is the same bandwidth than MPI. The latency is less thantwice the MPI latency. This is mainly due to GIOP related overhead. Secondthis paper shows that di�erent middlewares can e�ciently co-habit in a highperformance environment. This paper has given some insight on the di�erent in-teractions, mainly related to network access and thread issues. This co-habitationhas been obtained without loss of e�ciency neither for CORBA nor for MPI.These contributions have been integrated into an operational research platform,called Padico.These works have several perspectives. The �rst direction is related to COR-BA. In order to reduce the latency of CORBA requests, customized CORBA pro-tocol based on ESIOP should be studied. This can be directly be done by portingTAO on top of PadicoTM. The other direction is to plug other middlewares ontop of PadicoTM as applications may want other middlewares than MPI. Thisalso allows us to evaluate whether the concepts handled by the PadicoTM layerare adequate to DSM middleware or to Java Virtual Machine middleware. Last,we plan to use Padico as a experimental platform for parallel CORBA objects.Acknowledgments We would like to thank the PM2 developer team for theire�cient support of Madeleine and Marcel.References1. AT&T Laboratories Cambridge. OmniORB Home Page. http://www.omniorb.org.2. O. Aumage, L. Bougé, J.-F. Méhaut, and R. Namyst. Madeleine II: A portable ande�cient communication library for high-performance cluster computing. ParallelComputing, March 2001. To appear.



3. O. Aumage, G. Mercier, and R. Namyst. MPICH/Madeleine: a true multi-protocolMPI for high-performance networks. In Proc. 15th International Parallel and Dis-tributed Processing Symposium (IPDPS 2001), San Francisco, April 2001. IEEE.To appear.4. L. Bougé, J.-F. Méhaut, and R. Namyst. E�cient communications in multithread-ed runtime systems. In Parallel and Distributed Processing. Proc. 3rd Workshopon Runtime Systems for Parallel Programming (RTSPP '99), volume 1586 of Lect.Notes in Comp. Science, pages 468�482, San Juan, Puerto Rico, April 1999. Inconj. with IPPS/SPDP 1999. IEEE TCPP and ACM SIGARCH, Springer-Verlag.5. V. Danjean, R. Namyst, and R. Russell. Integrating kernel activations in a multi-threaded runtime system on Linux. In Parallel and Distributed Processing. Proc.4th Workshop on Runtime Systems for Parallel Programming (RTSPP '00), vol-ume 1800 of Lect. Notes in Comp. Science, pages 1160�1167, Cancun, Mexico, May2000. In conjunction with IPDPS 2000. IEEE TCPP and ACM, Springer-Verlag.6. A. Denis, C. Pérez, and T. Priol. Portable parallel corba objects: an approach tocombine parallel and distributed programming for grid computing. In Proc. of theIntl. Euro-Par'01 conf., Manchester, UK, 2001. To appear.7. The OpenMP Forum. OpenMP fortran application program interface, version 1.1,November 1999. available from www.openmp.org.8. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.The International Journal of Supercomputer Applications and High PerformanceComputing, 11(2):115�128, Summer 1997.9. Yuji Imai, Toshiaki Saeki, Tooru Ishizaki, and Mitsushiro Kishimoto. CrispORB:High performance CORBA for system area network. In Proceedings of the EighthIEEE International Symposium on High Performance Distributed Computing,pages 11�18, 1999.10. K. Keahey and D. Gannon. PARDIS: A Parallel Approach to CORBA. In Super-computing'97. ACM/IEEE, November 1997.11. F. Kuhns, D. Schmidt, and D. Levine. The design and performance of a real-time I/O subsystem. In Proceedings of the 5th IEEE Real-Time Technology andApplicati ons Symposium (RTAS99), Vancouver, Canada, June 1999.12. Sai-Lai Lo and S. Pope. The implementation of a high performance ORB overmultiple network transports. Technical report, Olivetti & Oracle Laboratory, Cam-bridge, March 1998.13. Mercury Computer Systems, Inc. and Objective Interface Systems, Inc. and MPISoftware Technology, Inc. and Los Alamos National Laboratory. Data ParallelCORBA - Initial Submission, August 2000.14. Object Management Group. Request For Proposal: Data Parallel Application Sup-port for CORBA, March 2000.15. S. Pope and Sai-Lai Lo. The implementation of a native ATM transport for a highperformance ORB. Technical report, Olivetti & Oracle Laboratory, Cambridge,June 1998.16. T. Priol and C. René. Cobra: A CORBA-compliant Programming Environmentfor High-Performance Computing. In Euro-Par'98, pages 1114�1122, September1998.17. L. Prylli and B. Tourancheau. Bip: a new protocol designed for high performancenetworking on myrinet. In 1st Workshop on Personal Computer based NetworksOf Workstations (PC-NOW '98), Lect. Notes in Comp. Science, pages 472�485.Springer-Verlag, apr 1998. In conjunction with IPPS/SPDP 1998.18. A. Puder. The MICO CORBA Compliant System. Dr Dobb's Journal, 23(11):44�51, November 1998.


