F. Assous, P. , C. Jr, and J. Segrè, Numerical Solution to the Time-Dependent Maxwell Equations in Two-Dimensional Singular Domains: The Singular Complement Method, Journal of Computational Physics, vol.161, issue.1, pp.218-249, 2000.
DOI : 10.1006/jcph.2000.6499

URL : https://hal.archives-ouvertes.fr/hal-01010725

F. Assous, P. , C. Jr, and E. Sonnendrücker, Resolution of the Maxwell equations in a domain with reentrant corners, ESAIM: Mathematical Modelling and Numerical Analysis, vol.32, issue.3, pp.359-389, 1998.
DOI : 10.1051/m2an/1998320303591

URL : https://hal.archives-ouvertes.fr/hal-01010426

M. Sh, M. Z. Birman, and . Solomyak, L 2 -theory of the Maxwell operator in arbitrary domains, Russian Math. Surveys, vol.42, issue.6, pp.75-96, 1987.

D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia, Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation, SIAM Journal on Numerical Analysis, vol.36, issue.4, pp.1264-1290, 1999.
DOI : 10.1137/S003614299731853X

A. Bonnet-ben-dhia, C. Hazard, and S. Lohrengel, A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains, SIAM Journal on Applied Mathematics, vol.59, issue.6, pp.2028-2044, 1999.
DOI : 10.1137/S0036139997323383

D. Braess, Finite element, 1992.

P. G. Ciarlet, The finite element method for elliptic problems, 1978.

M. Costabel and M. Dauge, Singularities of Electromagnetic Fields??in Polyhedral Domains, Archive for Rational Mechanics and Analysis, vol.151, issue.3, pp.221-276, 2000.
DOI : 10.1007/s002050050197

M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains, Numerische Mathematik, vol.93, issue.2, pp.239-277, 2002.
DOI : 10.1007/s002110100388

M. Dauge, Elliptic boundary value problems on corner domains, Lect. Notes in Math, vol.1341, 1988.
DOI : 10.1007/BFb0086682

R. Dautray and J. Lions, Numerical analysis and numerical methods for science and technology, 1999.

J. , D. Jr, J. E. Santos, and D. Sheen, A nonconforming mixed finite element method for Maxwell's equations, Mathematical Models and Methods in Applied Sciences, vol.10, issue.4, pp.593-613, 2000.

G. Fichera, Existence Theorems in Elasticity, pp.347-424, 1972.

V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, 1986.
DOI : 10.1007/978-3-642-61623-5

P. Grisvard, Singularities in boundary value problems, 1992.

P. Grisvard, Elliptic problems in nonsmooth domains, 1985.
DOI : 10.1137/1.9781611972030

C. Hazard and S. Lohrengel, A Singular Field Method for Maxwell's Equations: Numerical Aspects for 2D Magnetostatics, SIAM Journal on Numerical Analysis, vol.40, issue.3, pp.1021-1040, 2002.
DOI : 10.1137/S0036142900375761

B. Heinrich, Singularity functions at axisymmetric edges and their representation by Fourier series, Mathematical Methods in the Applied Sciences, vol.8, issue.12, pp.837-854, 1993.
DOI : 10.1002/mma.1670161202

V. A. Kondrat-'ev, Singularities of solutions of the Derichlet problem for an elliptic equation of second order in the neighbourhood of an edge (Russian). Diff. Urav. 13 English transl, Differential equations 13, pp.2026-2032, 1977.

R. Leis, Initial boundary value problems in mathematical physics, 1986.
DOI : 10.1007/978-3-663-10649-4

V. G. Maz-'ya and B. A. Plamenevskii, L p -Estimates of the solutions of elliptic boundary value problems in domains with edges, Trudy Moscov. Mat. ObvaEngl. Trans.) Moscow Math. Soc, vol.37, issue.1, pp.49-97, 1978.

V. G. Maz-'ya and J. Rossmann, Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung der Kanten, Math. Nachr, vol.138, pp.27-53, 1988.

V. G. Maz-'ya and J. Rossmann, On the behaviour of solutions to the Dirichlet Problem for second order elliptic equations near edges and polyhedral vertices with critical angles, ZAA, vol.13, pp.19-47, 1994.

M. Moussaoui, Espaces H(div, rot, ?) dans un polygon plan, C. R. Acad. Sci. Paris, t, vol.322, pp.225-229, 1996.

S. A. Nazarov and B. A. Plamenevsky, On the Neumann problem in domains with edges Analysis on manifolds with singularities, Symposium Breitenbrunn, pp.144-157, 1990.

J. Ne?acasne?acas and I. Hlavá?ek, Mathematical theory of elastic and elasto-plastic bodies. An introduction, 1981.

J. C. Nédélec, Mixed finite elements in ?3, Numerische Mathematik, vol.12, issue.3, pp.315-341, 1980.
DOI : 10.1007/BF01396415

B. Nkemzi, Numerische Analysis der Fourier-Finite-Elemente-Methode für die Gleichungen der Elastizitätstheorie, 1997.

L. Unité-de-recherche-inria-lorraine, Technopôle de Nancy-Brabois -Campus scientifique 615, rue du Jardin Botanique -BP 101 -54602 Villers-lès-Nancy Cedex (France) Unité de recherche INRIA Futurs : Parc Club Orsay Université -ZAC des Vignes 4

I. Unité-de-recherche and . Rennes, IRISA, Campus universitaire de Beaulieu -35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe -38334 Montbonnot Saint-Ismier (France) Unité de recherche INRIA Rocquencourt : Domaine de Voluceau -Rocquencourt -BP 105 -78153 Le Chesnay Cedex (France) Unité de recherche, 2004.

I. De-voluceau-rocquencourt, BP 105 -78153 Le Chesnay Cedex (France) http://www.inria.fr ISSN, pp.249-6399