Skip to Main content Skip to Navigation
Journal articles

Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence

Abdel Berkaoui 1 Mireille Bossy 2, 3 Awa Diop 2, 3
INRIA Lorraine, CRISAM - Inria Sophia Antipolis - Méditerranée , UHP - Université Henri Poincaré - Nancy 1, Université Nancy 2, INPL - Institut National Polytechnique de Lorraine, CNRS - Centre National de la Recherche Scientifique : UMR7502
Abstract : We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form |x|^a, a in [1/2,1). In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
Complete list of metadata
Contributor : Mireille Bossy <>
Submitted on : Tuesday, January 10, 2006 - 11:01:47 AM
Last modification on : Thursday, February 25, 2021 - 10:54:06 AM
Long-term archiving on: : Monday, September 20, 2010 - 1:58:22 PM


  • HAL Id : inria-00000176, version 2



Abdel Berkaoui, Mireille Bossy, Awa Diop. Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence. ESAIM: Probability and Statistics, EDP Sciences, 2008, 12, pp.15. ⟨inria-00000176v2⟩



Record views


Files downloads