
HAL Id: inria-00000198
https://inria.hal.science/inria-00000198v1
Submitted on 7 Sep 2005 (v1), last revised 25 Apr 2008 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tralics, a LaTeX to XML translator; Part I
José Grimm

To cite this version:

José Grimm. Tralics, a LaTeX to XML translator; Part I. [Technical Report] 2005. �inria-00000198v1�

https://inria.hal.science/inria-00000198v1
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

08
03

ap por t

 t e ch n i qu e

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Tralics, a LATEX to XML translator
Part I

José Grimm

N° 309

September 2005

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Tralics, a LATEX to XML translator

Part I

José Grimm∗

Thème NUM — Systèmes numériques

Projet Apics

Rapport technique n° 309 — September 2005 — 232 pages

Abstract: In this paper we describe Tralics, a LATEX to XML translator. A previous version of
the software (written in Perl) was used to obtain the Pdf version of Inria’s “Rapport d’Activité”
for year 2001. The current version of the software (written in C++) is used for both the HTML
and Pdf version for the year 2002: the XML generated by Tralics is conforming to a local DTD,
similar to the TEI; it was converted to Pdf via pdfTEX and the xmltex package, and the HTML
via a xslt processor.

We explain here the philosophy of the software, its usage, its limitations, and how to customize
it. All commands defined by Tralics are explained in this document, for most of them, we give an
example of use. The index lists all commmands, environments, and options.

Key-words: Latex, XML, HTML, MathML, Perl, PostScript, Pdf

∗ Email: Jose.Grimm@sophia.inria.fr

Tralics, un traducteur de LATEX vers XML

Partie I

Résumé : Dans cet article nous décrivons le logiciel Tralics, un traducteur de LATEX vers XML.
Une version antérieure de ce logiciel, écrite en Perl, a été utilisée pour générer la version Pdf du
Rapport d’activité de l’Inria en 2001. La version actuelle du logiciel, écrite en C++, a été utilisée
pour obtenir à la fois le HTML et le Pdf de la version 2002 : nous avons utilisé une DTD locale,
similaire à la TEI, et pdfTEX plus xmltex pour obtenir le Pdf.

Nous expliquons ici la philosophie de Tralics, son usage, ses limitations, et comment paramétrer
le logiciel. Toutes les commandes définies par Tralics, sont expliquées, pour la plupart d’entre elles
on donne un exemple d’utilisation. Un index regroupe l’ensemble des commmandes, environne-
ments et options.

Mots-clés : Latex, XML, HTML, MathML, Perl, PostScript, Pdf

Tralics, a LATEX to XML translator Part I 3

Chapter 1

Introduction

The Tralics software was designed as a tool for the Raweb. In this chapter, we explain some of our
motivations. In the next chapter, we study some TEX commands and explain how they are handled
in the same fashion by Tralics. Following chapters explain some differences, merely because XML
is not dvi. In a final chapter, we explain how to configurate Tralics. There is a second part, that
explains how the XML files can be used, converted into Pdf or HTML; it describes also the Raweb
DTD.

1.1 A short history of the Raweb

A short history of the Raweb may be found on the Inria internal web site1. The question concerns
Inria’s Annual Activity Report, also known as “Rapport d’activité”, or “Annexe technique” to the
RA or “annexes scientifiques” to the RA. This is a document, written by the research teams, at
the end of the year N (October, November), and published in March of year N + 1.

Until the 1993 edition (published in 1994), only a paper version existed. A LATEX model was
used since 1987, designed by Jacques André then Martin Jourdan. See the reference [5], by Louarn
in the first Cahiers Gutenberg.

In 1993, contacts were made with the Grif S.A. society, for the design of a SGML DTD and a
LATEX-to-SGML converter 2. As a result, Philippe Louarn was able to put on the web the RA (year
1994) in its HTML version3. But this converter was judged too complicated (rules were too strict)
and for several years, the HTML was directly produced from the LATEX source, using latex2html.

In 1996, a working group (conducted by Albert Benveniste) gave new specifications: inde-
pendent modules, grouped into ten sections, etc. A technical group was created (conducted by
Gérard Paget), whose objective was to find a company that could sell a software (maybe using
XML as intermediate language). None was found, but the design of modules (in LATEX syntax)
was well-defined by Laurent Pierron and José Grimm with the aid of Marie-Pierre Durollet and
Jean-Claude Le Moal. For the Ra98, a Perl script did some preprocessing, splitting the LATEX
source into modules (one module per HTML page). The author wishes to thank all these people
(including A. Quadrat), who gave him the idea to work on LATEX and write a translator.

In 1999, the Scientific Annexes to Inria’s Annual Report were renamed RAWEB, to emphasize
the role played by the Web (it is available as a CD-Rom, but no more printed by Inria).

1See http://www.inria.fr/interne/disc/apropos/chantiers/raweb-xml/histoire.html
2Grif stands for ‘GRenoble Interactive Formatter’; further developments of this editor by the Opera team led to

the Amaya software.
3See http://www.inria.fr/rapportsactivite/RA94/RA94.html

RT n° 309

4 José Grimm

LATEX

XML

HTML

PDF

PS

xmlfo

Tralics

xsltproc

xsltproc

pdflatex

latex

em

D4
rawebfo.xsl

rawebhtml.xsl

Figure 1.1: A diagram that explains how the Raweb operates. Rectangular boxes contain tools,
diamond-shape boxes are style sheets, and circles contain language names. The name XML is in
a double circle, it is the central object; the arrow labeled ‘D4’ that connects it to itself indicates
conversion from one DTD to the other, used in 2004. The box containing ‘em’ represents the Perl
script extract-math.pl that handles the math formulas; it uses tools borrowed from latex2html.
The diagram is written in ‘pgf’, a format that Tralics cannot interpret yet.

In 2001, the Perl scripts mentioned above evolved into a LATEX-to-XML converter (some ideas
were borrowed from latex2html, which is also a Perl script). The main trouble was conversion
from XML to Pdf, and we used tools from the TEX community (by S. Rahtz and D. Carlisle [1]) and
pdfLATEX. On the other hand, the images in the HTML files were converted by latex. Additional
software (for creation on a global index, etc.) was written/used by Marie-Pierre Durollet.

This gave a complicated object: a Perl script, that converts a LATEX file into XML (using
Omega as a subprocess for the math) followed by another Perl script that extracts the math,
calls latex, then dvips, then pstoimg (a Perl script that calls ppmquant, pnmcrop, and so forth,
whose job is to produce a png image for the math formula), and finally an XSLT processor for the
effective conversion. This became even more complicated in 2004, where a new DTD was introduced
(designed by Bruno Marmol and people mentioned above), hence a XML-to-XML translator. See
Figure 1.1.

1.2 Birth of Tralics

The big Perl script was rewritten as a C++ translator, renamed Tralics, and got (for version 1.6)
a first IDDN4 number in December 2002. This software was still able to produce a LATEX preview
of the Raweb: The source is read, the syntax is tested, a LATEX file is written for each module,
latex and bibtex are called, the resulting dvi is converted to PostScript. But the same Tralics
can be used in a different way: the source is read, the syntax is tested, an XML file is created, an

4InterDepositDigitalNumber = IDDN.FR.001.510030.000.S.P.2002.000.31235

INRIA

Tralics, a LATEX to XML translator Part I 5

XSLT processor is called to generate the XSL/Format, and pdflatex generates the Pdf (you can
also generate an HTML version).

Since 2003, there are a few people writing their RA directly in XML. As a consequence, the
new Tralics, that is used in 2004, does only the bare minimum: it converts the LATEX code into
XML code. There is a Perl script that does everything else (calling external programs like latex,
xsltproc, etc). A non-obvious point concerns the math and the images. For the math, see above;
for the images, a Perl script (the same as above) is used for conversion from PostScript to png. In
some cases, the image already exists in png format and it is unwise to re-create it.

1.3 Main objectives

The main objectives of Tralics are described in [3]. Recall that we want a program that converts
from one language to another, such that

• the result is easily analyzable,

• the structure is preserved.

• the translation is univocal.

By the very choice of the XML language as target, the first objective is automatically satisfied.
The only little problem concerns spaces: in which cases are spaces used as delimiter or as text?
The translation of ‘\par x{ } { }x\par’ is ‘<p>x x</p>’, and this is often interpreted in the
same fashion as a single space.

The third item has the following meaning: the translation of ‘\foo’ and ‘\bar’ should be
different in case these objects have different meanings in LATEX, but should be the same otherwise.
One could argue that some tokens could be translated more than once in a different context
(remember the \texorpdfstring command). We could imagine special rules for the bibliography;
in fact, in math mode you must use a different function to add attributes to an element. On
the other hand, we have an application where ‘\tt’ and ‘\bf’ are treated alike: in fact, all font
information is removed, by redefining element names.

The important point is preservation of the structure. This means of course that the initial
document has some structure and the target has one also. Clearly the structure of an XML
document is given by its DTD, but this is completely ignored by Tralics. The first version of the
program was very strict; nowadays, in your document, you can omit the ‘\documentclass’, the
‘\begin{document}’, or the ‘\end{document}’.5

There are some implicit rules, for instance that ‘\section’ terminates a ‘\subsection’, the
occurrence of a character in vertical mode triggers the start of a <p> element, etc.

In [3], we wrote that the document should satisfy three kinds of of assumptions: some technical
assumptions (like: there is no ‘\0’ in the document), some validity assumptions (the document can
be compiled by LATEX without errors, it respects the rules of the Raweb as given on the web pages),
and more general, unwritten, rules. The current translator is more flexible: there is no restriction
on the syntax of commands, except that null characters are not allowed, plain TEX documents
are translated (for instance the file xii.tex by D. Carlisle that starts with \let~\catcode~‘76
and ends with Yer.W,:jbye), and we have an application where only one part of the document is
translated: only code before ‘\maketitle’ is used. In this document we shall explain these things.

5Put ‘Hello, word!’ in a tex file, compile, and admire the result!

RT n° 309

6 José Grimm

1.4 An example

Let’s consider the following piece of code.

$\left [1=2\right\}$ est une \emph{formule de mathématiques}~!

You would expect this to be understood by LATEX as ‘[1 = 2} est une formule de mathématiques !’
but the result is ‘Hello, word!’, since we have preceded it by this (curious) list of commands

\catcode‘\$=\active\def$#1~{\catcode‘\$=3 Hello, word} %$emacs

In TEX, translation depends on a great number of tables, that assign values to numeric or symbolic
quantities. For instance, each character (a number between 0 and 255) in each font (for instance
\OT1/cmr/m/it/10) is associated to its dimensions, ligature informations, etc. Our example (with
a normal dollar sign) uses three fonts: a math font, an italic font and an upright font. Often, these
tables are read only by TEX, in some other cases a user might look at them, and sometimes they
are designed to be modified. For instance, the slant value of the current font is in general ignored
(except by commands like ‘\emph’). A very important table holds the meaning of commands: they
may be predefined (like ‘\left’), defined in a format (like ‘\emph’), or defined by the user (there
are a great number of mathematicians that define a command named ‘\RR’ for the set of real
numbers).

An important table is the table of category codes. Each character has a category code, an
integer betwen 0 and 15. For instance, ‘e’ has category letter, ‘é’ has category active (so that it is
equivalent to ‘\’e’), backslash, open brace, close brace and dollar sign are of category 0, 1, 2, and
3 respectively. A command like ‘\left’ is formed by an introducer (any character of category 0,
its value is irrelevant) and a sequence of letters (in the example, the space that follows is not part
of the command, since its category code is 5; this space will be read again, and ignored, unless
its category code changes; such a change can be triggered by the evaluation of the command);
while a command like ‘\}’ or ‘\$’ is formed of an introducer and a single non-letter character
(when followed by spaces, these spaces do not disappear). Writing a TEX scanner is easy, the only
difficulty is that category codes can change (for instance, in verbatim mode). In the example, the
tokens are the following: $3 left [12 112 =12 right { , etc, s11 }2 ~13 !12. Note that a closing
brace, with default category code is shown as ‘}2’, while a command whose name is formed of a
closing brace is shown as } . If you say \let\foo\bar, and ask Tralics for the meaning of \foo,
as in \show\foo, it knows the name ‘foo’ of the token and its value (this is a command code) and
gets the name ‘bar’ from a lookup table, and adds the current value of the escape character in
front. If this is the plus sign, you will see +foo=+bar.

Parsing an expression means finding for each command its arguments. In the example, the two
active characters é and ~ take no argument. The \active command takes no argument either. The
\emph command takes one argument6: a token, or a token list delimited by braces (i.e. characters
with category codes 1 and 2), these braces are not part of the argument. The two commands
\left and \right are special: they want a delimiter, in reality a pointer into a special slot in
the current math font; the argument cannot be delimited by braces. The syntax of \catcode
is more complicated. In fact, it is an instance of 〈codename〉7, and 〈codename〉〈8-bit number〉
is something that can follow \the or be used as 〈internal integer〉, while a 〈code assignment〉 is
〈codename〉〈8-bit number〉〈equals〉〈number〉. We shall explain this in details later; the idea is that,
depending on the context, the \catcode command returns a value stored in a table or modifies it.
In the case of

\catcode‘\$=\active
the 〈8-bit number〉 is the internal internal code of the dollar sign, expressed in the form ‘‘\$’,

6Since \emph is robust, it takes no argument, but the non-robust command associated to it reads the argument.
In any case an argument is read.

7We use angle brackets for the formal syntax of TEX as explained in the TEXbook, [4].

INRIA

Tralics, a LATEX to XML translator Part I 7

and the 〈number〉 is another character code8. Expanding a command means (roughly speaking)
reading its arguments, and replacing it with the body of the command (where special markers like
‘#1’ have been substituted by the value of the arguments). In some cases, internal tables may
be consulted, but they are never modified. Evaluating a command implies modification of some
internal state variables (for instance, a character can be added to the current character list, or a
complete paragraph split into lines, or a register modified). In this example, the dollar character
becomes magically active: a dollar character is no more read as $3 but as $13.

The syntax of \def and friends is 〈def〉〈control sequence〉〈definition text〉 where 〈definition text〉
is 〈parameter text〉〈left brace〉〈balanced text〉〈right brace〉. In the case of

\def$#1~{\catcode‘\$=3 Hello, word}
the 〈control sequence〉 is the dollar sign (the object to be defined, a command or, as in this example,
an active character), the 〈parameter text〉 is everything before the open brace, here ‘#1~’, and the
〈balanced text〉 is everything between the braces. Evaluation of ‘\def’ consists in storing in a table
the 〈parameter text〉 and the 〈balanced text〉 (TEX stores also a special marker representing the
〈left brace〉). What happens now when TEX sees a dollar sign? since this character is active, the
definition given above applies. The 〈parameter text〉 explains how to read arguments. In this case,
‘#1~’ means that there is one argument, everything up to (but not including) a tilde character. In
the case of ‘$\left....$...}~!’, all characters are read (except the exclamation point). They are
replaced by the body (no substitution is needed). After that, TEX sees \catcode and evaluates it
as before, so that the dollar sign becomes a math shift character again. The space after the digit 3
disappears, and we are left with ‘Hello, word!’. Note: the example is given in French, first in order
to show how 8-bit characters can be used, and also because, in English, there is no tilde before
an exclamation point. In general, when a macro reads a delimited argument and sees an empty
line instead of the delimiter, it signals an error of the form Runaway argument? Paragraph ended
before $ was complete.

Translation difficulties. There are different kinds of LATEX to HTML/XML translators. Some,
like gellmu9 use a syntax of their own; others, like tex4ht use TEX as preprocessor, thus understand
the full syntax; there are translators like tth or hévéa that use a fixed (and efficient parser), or
like latex2html (written in Perl) that use pattern matching, and global substitutions instead of
sequential evaluation. Neither of these is perfect. We explain in this paper how Tralics deals with
a certain number of problems.

1.5 Some remarks on the Translation

In LATEX, commands can be defined in five places:

1. In the Pascal source. In this case, the command is a primitive, for instance ‘\def’ or ‘\left’.
No equivalent might exist in the target language (for instance, you cannot define anything in
a XML document, the result of ‘\left’ is an attribute of the <mfenced> element that results
of the translation of the group implied by \left. And what about \dump?)

2. In the format file. In this case, the command is defined in a file (for instance latex.ltx),
analyzed by TEX and stored on disk using a fast retrieval method. For instance, plain TEX,
LATEX, ConTEXt have their own format file. Both plain TEX and LATEX define a command
named ‘\item’, in a different way, for the same purpose (the LATEX command must be used
inside a special environment, the plain TEX one can be used everywhere).

3. In a class file. A class file defines markup commands for a generic purpose (a book, an article,
a presentation). For a book, you have a frontmatter, for an article, you can have a title page,

8In fact, you should use \active only in the scope of a \catcode, so you can forget that ‘\active’ typesets as ‘‚’ !
9Generalized Extensible LATEX-Like Markup

RT n° 309

8 José Grimm

in both you have sections, etc. The class defines also the current font, together with a lot of
dimensions.

4. In a package. The difference between a class and a package was introduced by LATEX 2ε.
Each document uses a single class, and lots of packages (this document uses the ‘report’
class, and the ‘RR’ package for the look; it uses ‘hyperref’ for hyper-links, ‘amsmath’ for
the mathematical examples, ‘fancyvrb’ for the verbatim examples, etc.). Note that the plain
TEX format provides a macro \proclaim for theorems, while the amsmath package provides
a command \newtheorem for defining theorems.

5. In the TEX source, or files included via \input. The TEX source may redefine commands
defined earlier; a package may redefine commands from the class, but should not redefine
commands from other packages (i.e., the order in which packages are loaded should have no
importance).

If one is to design a translator, the question is: which commands to translate? and how? Our idea
is that all TEX primitives should be understood (the difference between ‘\dump’ and ‘\mydump’ is
that you get either an Unimplemented or Undefined command error), as well as all standard LATEX
commands; of course all user-defined commands are expanded. Concerning classes and packages,
our model (the Raweb) looks like a report. We are planning to add support for PhD thesis. We
are also interested in a class for slides (like beamer, but this one seems complicated). Other classes
are not handled. Some LATEX packages are standard; these are taken into account. There are too
many packages for implementing them all.

Let’s assume that \foo is a command defined in one of these files. Should it be translated by
Tralics? and how? Notice first that a user command is always expandable, and has to be expanded;
only the input stream is affected by this operation that consists in reading arguments and replacing
them by an instantiated body. On the other hand, evaluation may modify or use internal tables,
which can be implemented differently in our translator than in TEX (for instance, in pdfTEX, there
is a way to re-use an image). Whenever a command is defined in a style file10, we could use the
LATEX source. In some cases, for efficiency reasons, we implemented them in C++ (for instance, the
whole fp package has been re-written).

A typical example is the \it command. This is a non official LATEX command (see [2], or [6,
section 7.3.6]): “it is legitimate for you to redefine them in a package or in the preamble according to
your personal taste”. In Tralics, there is no difference between ‘\it’ and ‘\normalfont\itshape’.
What these commands do in LATEX is rather complex: essentially, some variables are set and
‘\selectfont’ is called. These commands are robust: if you use ‘\it’ in a chapter title, the toc
file will contain the name of the command, not the result of the expansion. Since Tralics does not
write anything in a toc file, this feature is not implemented (using font changes in a title is not
recommended; look at the table of contents for this section).

Consider now a command like \motscle. This is defined by the Raweb as an environment (you
can use it in Tralics only as an environment) and it expands to something like ‘{\bf mots clés}~’.
We do not want Tralics to use this expansion. One reason can be that the post-processor might
prefer something like ‘\textbf{Mots clefs}~:’ (i.e., use an alternate spelling, use an initial cap-
ital, add punctuation, etc). Another reason is that, since 2003, the Raweb is in English, and the
translation should be an English word. For this reason, the translation of \motcles is <keywords>.
The raweb class file contains commands that should not be translated: for instance, there is a com-
mand \ra@finpart whose purpose is to add a period after the last keyword. This should not be
done by the translator, but by the program that will typeset the XML result.

Some TEX primitives are hard to translate. For instance the \’ command is assumed to put
an acute accent over a character. It is defined (via an indirection through font encoding tables) in

10Sometimes packages are called style files, because this was the original term, and the extension is .sty.

INRIA

Tralics, a LATEX to XML translator Part I 9

terms of the \accent primitive. We could translate \’ into a Unicode combining character (U+301,
to be placed after the character, see [7, paragraph 7.7]). But in general, we have a construction like
\’e which is defined in iso-latin1, this is the Unicode character “latin small letter e with acute”. In
the same fashion ‘\k a’ translates to ‘ą’, this could produce ‘ą’, but the actual translation
by Tralics is ‘ą’. In a previous version of Tralics, a construction like \’\^ was illegal. In the
current version, we use a double indirection table. You can typeset the name Hàn Thế Thành of
the author of pdfTEX, the input is Th\’{\^e}, the Tralics output is Thế. If you know the
Unicode character value, you can enter it (in Tralics as Th^^^^1ebf or as Th\char1EBF).

A construction like ‘\font\myfont=cmt10 at 13pt’ defines a command \myfont that can be
used as {\myfont \char217w}. The effect of this command is to pick up two characters from the
font cmt10, scaled by some ratio (it depends on the “at” size of the font), and typeset them. Note
that the font could specify a ligature, so that the result could be a single character. In any case,
the result might look very different from ‘Ùw’ (for instance LATEX provides a font containing only
lines or circles). In the current version of Tralics, translation does not depend on the current font.
The only interest of changing the current font with \font is that you can access or modify the
internal tables of the font (but no metric file is read at all by Tralics).

1.6 Category codes and characters

A category code is an integer between 0 and 16, as explained in the TEXbook. The codes are
defined according to the following table.

0. A character of category code 0 is used to create a command like \foo or \\; the associated
token is foo or \ ; the value of the character is irrelevant. By default, there is only one
character of category 0, the backslash.

1. A character of category code 1 serves as group delimiter (opening character), as well as
delimiter for macros and token lists. It is a 〈left brace〉 as used in the rules explained above.
By default, the left brace character ‘{’ is the only one with category 1.

2. A character of category code 2 serves as group delimiter (closing character), as well as
delimiter for macros and token lists. It is a 〈right brace〉 as used in the rules explained
above. By default, the right brace character ‘}’ is the only one with category 2. The end of
verbatim environment is handled by the following piece of code, that shows how to change
the category codes of the three characters mentioned above, and use alternate characters for
the same purpose.

\begingroup \catcode ‘|=0 \catcode ‘[= 1
\catcode‘]=2 \catcode ‘\{=12 \catcode ‘\}=12
\catcode‘\\=12 |gdef|@xverbatim#1\end{verbatim}[#1|end[verbatim]]
|endgroup

3. A character of category 3 serves a math shift character. By default the dollar character ‘$’
is the only character in this category. The same character can be used to start and end a
formula. Two consecutive character of category code 3 are used to start or end display math;
the characters need not be the same.

4. A character of category code 4 is used as delimiter in arrays; it indicates the end of a cell.
A typical row in a LATEX array is a&b&c\\; in plain TEX, it would finish with \cr or \crcr.
The & character is the only one of category code 4.

5. A character of category 5 is a end-of-line character. When such a character is seen, all
remaining characters on the current line are ignored. After that, the reader behaves as if

RT n° 309

10 José Grimm

it had seen nothing, a space, or a \par token. In some cases, the \par token is invalid. In
Tralics, this space character is special, in that it may print as a new line character, in TEX,
it is a normal space. By default, only the carriage return character is of category code 5
(this character is inserted at the end of every line, instead of the line feed, carriage return,
or both, that marks the end-of-line on the file).

6. A character of category 6 can be used as delimiter in a command, or a table preamble.
By default, there is one character of this category, the ‘#’. A typical array preamble is
‘\indent#\hfil&\quad#\hfil\cr’ (this is the first example of \halign in the TEXbook.
We shall not describe TEX arrays here).

7. A character of category code 7 is a superscript character; by default, it is the hat character.
Do not confuse it with \^ that produces an accent. Such a character can be used only in
math mode. There is also the double hat construction, explained later in section 5.1: two
identical characters of category code 7 can be used to read any 8bit character as in ^^ab; in
Tralics, a 16 bit character can be read using 4 such characters.

8. A character of category code 8 (by default the underscore character) can be used as subscript
character; as in the case of superscript characters, you can use it only in math mode.

9. A character of category code 9 is ignored. Tralics ignores no character by default. On the
other hand, it cannot put a null character in a string, so that the null character will not
appear in the XML output (note: the same holds for \char0 and ^^00).

10. A character of category 10 behaves like a space. By default, space, tabulation, character 160
behave like this (note that the character 160 is non-break space, it should be equivalent to ~).

11. A character of category code 11 is a letter. By default, only characters in the range ‘a’ to ‘z’
and ‘A’ to ‘Z’ are of category 11.

12. A character of category 12 is an ‘Other character’. All characters not listed here are of
category 12, including all digits.

13. A character of category 13 is an active character. Currently, there is only one active character,
the ~. An error is signaled in the case where an active character is used, and undefined. Tralics
defines _, # and &, to be the same as _, \# and \&.

14. A character of category code 14, is a comment character: all characters remaining on the
current line are discarded. By default ‘%’ is a comment character.

15. A character of category code 15 is invalid. By default, all characters are valid.

16. A character of category code 16 is a ‘short verb’ character. This is a feature that does not
exist in TEX. If you use \DefineShortVerb to make it a short verb, you should undefine the
character before changing its category code.

If a TEX file contains the following lines,

\show{ \show} \show$ \show& \show# \show^ \show_ %$
\expandafter\show\space \show a \show 1 %
\def\foo+{}
\foo{ \foo} \foo$ \foo& \foo# \foo^ \foo_ \foo a \foo1

then Tralics will print:

begin-group character {.
end-group character }.
math shift character $.

INRIA

Tralics, a LATEX to XML translator Part I 11

alignment tab character &.
macro parameter character #.
superscript character ^.
subscript character _.
blank space .
the letter a.
the character 1.

In any case, we have a prefix that depends on the category code, then the value of the character. All
calls to the command \foo are wrong and signal an error. We show here the first error message,
followed by the “got” part of the other error messages. It is important to remember that the
command has to be followed by a the right character with the right category code.

Error signaled at line 20 of file txt6.tex:
Use of \foo doesn’t match its definition;

got {Character { of catcode 1}
expected {Character + of catcode 12}.
got {Character } of catcode 2}
got {Character $ of catcode 3}
got {Character & of catcode 4}
got {Character # of catcode 6}
got {Character ^ of catcode 7}
got {Character _ of catcode 8}
got a
got {Character 1 of catcode 12}

1.7 Considerations about mathematics

Translating mathematical formulas is rather difficult: this is because mathematics are complex in
both TEX and MathML. Basically, you start with kernels, add some decoration, and connect these
things. Kernels can be letters like x, y, z or A, B, C, but you see very often Greek letters like α,
β, Γ, ∆, Hebraic characters like ℵ, old German, like ℘. Decoration can be, like in xy , a second
kernel on the left, the right, above, below. People use also bars, dots, rings, arrows, etc. There are
different types of connectors: for instance you can say x = y or x‖y, using parallel bars, or x × y,
x + y using crossing bars. Amstex was designed by Spivak for easy typesetting of tensors of the
form T i1i2...in

j1j2...jm
.

The first difficulty consists in representing all these symbols. In TEX, you use commands like
\alpha, defined as \mathchar"10B, whose effect is to chose a character from a font (depending
on the packages used; a big difficulty is to chose math fonts that go well with the main text
font of the document). Some characters exist in bold version, or in italics version. A non trivial
question is how to put everything in bold: you could use commands like \boldx \boldequals
\boldalpha. It would be simpler to say \bold{$x=\alpha$}. One solution is to say ‘\boldmath’11,
or equivalently ‘\mathversion{bold}’ before starting a math formula; the effect is to use a bold
version of everything (in fact, of all characters that use one of the math families, but the number
of families is so small that not all symbols use this mechanism). You can say ‘\mathbf{x}’ or
‘\bm{x}’ in a math formula. Only \mathbf is implemented in Tralics, it provides a bold upright
font; on the other hand, the \bm command is defined in the bm package; provided that fonts are
available, it should use a bold version of everything (at least for all characters for which a bold
typeface exists).

11An example of bold math is when typesetting the LATEX 2ε logo, see page 20.

RT n° 309

12 José Grimm

Traditionally, uppercase letters were upright, lowercase letters were italics. This is the default
for Greek letters, but TEX uses italics for Roman letters (digits are by default upright uppercase,
but lower case digits. alos known as “oldstyle numbers” can also be used). There are some
exceptions to these rules: an operator like \sin is typeset using upright font. As said above,
\mathbf produces upright characters. The so-called “black board” or “double-struck” characters
obtained by \mathbb are upright, for instance R. An interesting point: lots of people prefer R,
using \mathbbm. Some people fake it as IR, using $I\!\!R$. You can always use \mathrm for
an upright character, as in $\mathrm{E}=mc^2$. Some packages provide italic uppercase Greek
letters, and upright lowercase. Then you can apply the Laplace operator to the Delta function like
this: ∆∆.

In MathML, characters should not be used directly. For instance, you should use <mn>125</mn>
for a number <mi>Foo</mi> for the variable Foo and <mo>sin</mo> for the operator sin. These
elements have a mathvariant attribute, which indicates which variant to use. In the case <mo>, the
default is upright; in the case <mi>, the MathML norms says: “The default mathvariant would
(typically) be normal (non-slanted) unless the content is a single character, in which case it would
be italic.” So we could translated \mathbb{R} as an \mi element containing a normal R with
a mathvariant attribute of value doublestruck. An alternate solution consists in using a double
struck character R, and no mathvariant attribute. Here are all the possible variants, and for the
character A its Unicode value: normal, bold (1D400), italic (1D434), bold-italic (1D468), double-
struck (1D358), bold-fraktur (1D56C), script (1D49C), bold-script (1D4D0), fraktur (1D504), sans-
serif (1D5A0), bold-sans-serif (1D5D4), sans-serif-italic (1D608), sans-serif-bold-italic (1D63C),
monospace (1D670). In the case of Greek letters, Unicode knows the following variants: bold,
italic, bold italic, sans-serif bold, and sans-serif bold italic. And in the case of digits: bold, double-
struck, sans-serif, sans-serif bold, monospace.

Note: there are some holes in the table, starting at 1D400. For instance the Laplace sym-
bol (U+2112) looks like L , but the the translation of \mathcal (that TEX shows as L), is not
1D49C+11 (this character does no exists). Another special case: there are some variants of the
Greek letters ǫ and ε; which one is the default is unclear.

There are two complementary views of MathML: presentation and content. This is how you
would convert a = b using content markup: <reln> <eq/> <ci> a </ci> <ci> b </ci> </reln>.
And this is how Tralics converts the same using presentation <mrow> <mi>a</mi> <mo>=</mo>
<mi>b</mi> </mrow>. A more complex example, in presentation mode:

<apply>
<int/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><in/><ci>x</ci><ci type="set">C</ci></apply>

</condition>
<apply><sin/><ci>x</ci></apply>

</apply>

You can clearly see that we apply the <int> operation to some quantity (in which <sin> is applied
to x), subject to some condition (in which <in> is applied to x and some set). If you consider the
expression $\int_0^\infty \sin(x)dx$, it is translated by Tralics as

<msubsup><mo>∫</mo> <mn>0</mn> <mi>∞</mi> </msubsup>
<mrow>
<mo form=’prefix’>sin</mo>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
<mi>d</mi>

INRIA

Tralics, a LATEX to XML translator Part I 13

<mi>x</mi>
</mrow>

Forget about the <mrow> element, this is added by Tralics using some heuristic rules that do not
always work; their effect is to isolate the parentheses from the integral sign: the height of the
parentheses should be normal. In the expression, one can see that the integral sign is a character
considered as an operator (but there no <int> element here); it has an exponent and an index. In
the same fashion, \sin is translated as a <mo> element (with an attribute that says it precedes its
argument). Nothing in the formula says that the argument is x.12 Nothing says that that ‘dx’ is
not the product of d and x, but a conventional way of indicating that x is the bound variable (the
<bvar> above). In fact, Tralics cannot guess the use of the tokens, it knows only the layout: for
instance, is Γk

ij a Christoffel symbol with three indices or a randomly Greek letter, with two indices
raised to some power? And what about 3He or this footnote?13 Note that such expressions are
not part of content markup: in both cases, these things look like tensors and are to be produced
with <mmultiscripts>. In what follows, we shall speak only of the presentation part of MathML.

Some features are difficult to implement. For instance, it is possible to group some equations
in a single mathematical formula, and put a label (with a reference like 17) to the whole, as well as
a label for each subequations (referenced as 17.a, 17.b, etc). It is also possible to split an equation
on more than one line, with a single number for it:

ζ(s) = 1/1s + 1/2s + 1/3s + 1/4s . . .

= 1/1s + 1/3s + . . . + 1/2s + 1/4s + . . .
(1.17)

It is possible to add some lines of text between two equations

X = 1/2s + 1/4s + 1/6s + 1/8s + 1/10s + 1/12s + 1/14s + 1/16s + . . . (1.18)

as in this example (equals signs are aligned)

=
1

2s
(1/1s + 1/2s + 1/3s + . . .) (1.19)

Horizontal spacing in math formulas in managed intelligently by TEX. In the case of a + b or
a = b, there is some space on each side of the operator, and this space disappears when the formula
becomes an exponent or an index. Here is an example.

a + b

a = b
, xa+b

a=b

Each operator has a type, and the value of horizontal spacing depends on the type of the tokens
on the left and the right. Traditionally, parentheses are removed around the arguments of sine and
cosine, and you say: sine squared of X instead of sine of X, the whole squared. Example:

sin2 x + sin(x)2.

In TEX, you can consider every expression (a simple atom, or a list in braces) as an operator,
provided that it is preceded by its type. Types Over, Under, Acc, Rad, Vcent are obtained by con-
struction (overline, underline, adding an accent, constructing a radical, vertical centering). Types
Ord, Op, Bin, Rel, Open, Close, Punct, Inner are obtained by defining characters via \mathchar, or
using the following commands \mathord, \mathop, \mathbin, \mathrel, \mathopen, \mathclose,
\mathpunct, \mathinner. These commands are understood by Tralics, but in general ignored. In

12Apart from the kludge mentioned above, Tralics make no difference between the letter x and the parentheses
around it; since parentheses are often omitted in the case of the sine function, the argument could as well be a
parenthesized x.

13Guess: in the previous formula, was the H in or out of the math formula.

RT n° 309

14 José Grimm

the case of an inline expression, a line break can only appear after an operator (like plus or equal),
provided it is the main operator (in particular, if you put the whole expression in braces, no line
break will occur). This is ignored by Tralics. Hence something like f(xa+b) cannot be broken (but
Netscape does not hesitate to break after the plus sign, in the case of <sup>).

Note that exponents and indices use a smaller font size, and exponents in exponents use an even

smaller one: compare xyǫ

ε with . The image was obtained by converting the math formula
into XML, then in a png image (such kind of images will be put into HTML pages, because there
are few HTML browsers that understand MathML. We used anti-aliasing, because this is supposed
to increase readability). There are three sizes, and four styles (\displaystyle, \textstyle,
\scriptstyle, and \scriptscriptstyle). The first two styles in the list have the same size (in
MathML, there is an attribute scriptlevel that controls the size of the expression, and another
one displaystyle that says if the expression is in displaystyle or not). In fact, TEX has two
substyles, cramped or not. Consider carefully the placement of exponents in the following example

a2 + x
2

a2 + x
2

=
x

2

3

x
2

3

.

One problem (for a translator like Tralics) deals with the placement of arguments versus oper-
ators. For instance, if you want to put a dot over a letter, you can say $\dot x$ (compare the
math version ẋ and the text version ẋ ; in text mode, slants are taken into account). The MathML
equivalent is an <msup> whose first element is the identifier x. If you want to put a prime after a
letter you say x’, or x^{\prime}. If you want to put an arrow over x prime, you have the choice
between ~x′ and ~x′. With the fonts used in this example, the first solution looks horrible. You can
say x_2^3 or x^3_2: the result is the same: a math item, formed of a nucleus, a superscript and
a subscript. If you want something like 2

3x, you have to use two items, the first one has an empty
nucleus, the second has no scripts. You can say Ri

j
kl, using three items. The MathML translation

should consist in a single <mmultiscripts> element. It is possible to enclose a formula by braces,
brackets, etc, provided that the font contains the machinery needed for it. You can either use \big
and its variants, if you know the height of the formula, or \left and \right, or as in the example
that follows, use an environment like matrix that uses whatever is best.

(

a b
c d

)

The \over command (and friends) are discouraged by amstex: you get a message of the form
Package amsmath Warning: Foreign command \over; \frac or \genfrac should be used instead. In
fact the command takes two arguments, one before and one after. Example
x=\left(a+b \over c+d\right)^2+1 gives

x =

(

a + b

c + d

)2

+ 1

The trouble is the following: Assume that we have a command \myfrac that typesets its arguments
as a/b if the current style is script or scriptscript, and a

b otherwise. In an expression as above,
the current style cannot be known before the \over is seen. For this reason, TEX introduced a
command \mathchoice that takes four arguments, one for each style; after TEX has completely
read the math expression, it takes, in a second pass, the relevant token list. This is complicated.
This mechanism is partially implemented in the current version of Tralics.

INRIA

Tralics, a LATEX to XML translator Part I 15

1.8 Some subleties of TEX

Assume that we have a number, say ‘1.3’, and want to convert this to a dimension, say ‘1.3pt’. If
the number is in a command \foo, we can say \dimen0=\foo pt. On the other hand, how can
we get 1.3 given that \dimen0 holds 1.3pt? We may use \the\dimen0, and remove the last two
characters. Hence we say \expandafter\rem@pt\the\dimens0. One trouble is that the category
codes of the characters ‘pt’ are 12, not 11, so that a definition like

\def\rem@pt#1pt{#1}

does not work. You could try to change the category codes of p and t in the definition, but these
letters are part of the name of the command. Some black magic has to be used. The code shown
here converts also ‘12.0pt’ to ‘12’.

\begingroup
\catcode‘P=12
\catcode‘T=12
\lowercase{
\def\x{\def\rem@pt##1.##2PT{##1\ifnum##2>\z@.##2\fi}}}

\expandafter\endgroup\x

Implementing such a construction in a Perl script is not obvious. Consider then the following
example:

\def\foo#1{#1x#1}\def\xbar#1{ $#1$}
\expandafter\foo\xbar y
\foo\xbar y

Consider line 2. After \expandafter has read the two tokens \foo and \xbar, current state is S,
and a space and the character ‘y’ are not yet read. Expansion of \xbar reads an argument y; the
space before it is ignored. The expansion is then foo 5 $3 y11 $3. Hence the argument of \foo
is the dollar sign, expanding it gives $3 x11 $3 y11 $3. Note that this gives an odd number of dollar
signs.

Consider now the third line. Here the argument of \foo is \xbar. The expansion is xbar
x11 xbar , and a space an ‘y’ have to be read. The expansion of \xbar is 5 $3 x11 $3. The
second \xbar reads a space and ‘y’ as its argument. The expansion is 5 $3 y11 $3. Note that
latex2html complains with: Unknown commands: xbarx, because the string is rescanned, adn a
space should have been added. In the second version of our translator, which was a Perl script as
latex2html, we solved this problem as follows. The commands \\ and \! are replaced by \00!
and \01!, special characters are replaced by \3#!, \3&!, \3<!, \3>!, and \3~!. A command like
\foo is replaced by \1foo!, spaces after cmdfoo are removed. Using such a mechanism, we can
handle spaces correctly, as long as the category codes do not change. In the current version of
Tralics, a token \foo is represented as foo , i.e., a pointer into the hash table, or like $3, i.e., a
paitr of two numbers category code, character value.

The behavior of a token is determined by its command code: the command code of $3 is 3.
The command code of foo depends on the current value of \foo. For instance, the default value
of \count is (1,90,0). Here the first integer is the definition level, (1 is the bottom level), 90 is the
command code and 0 is the subcode. Remember that, in the case of \the\count0, the \count
command is evaluated for a value; in all other cases it is evaluated for side effects. In particluar
for a case like \global\count3=17. Assume that you say \count3=17; in such a case a number is
read, namely 3, and checked for out-of-range. After that, the subtype is looked at (the commands
\count, \dimen \skip, or \muskip have the same command code, but different subtypes, they
read something and store it somewhere). Note: if you say \countdef\foo3, then \foo has some
command code, and its subcode is 3. The action is exactly the same as \count, after 3 has been
read. Said otherwise, \foo=17, and \count3=\17 read a number 17. This number will be stored
somewhere in the eqtb table; the location is 3 slots after the start of the \count table. This slot

RT n° 309

16 José Grimm

contains (L,V), for instance (4,23). The first number is the definition level, and the second is the
value. In the case L=0, this means that the object is undefined (in the case of a counter, this
means zero). Otherwise this is the level. In the case A{B{C}}, A is at level 1, B at level 2, and C
at level 3. The quantity L is never greater than the current level, In the case where the assignment
is global, (L,V) is instantiated to (1,17). In the case whre the current level is L, then V in (L,V)
is replaced by 17. Otherwise, the old value is saved on the stack, and (L,V) is replaced by (l,17)
(where l is the current level). When the group is closed, the old value is restored.

Note the following trick. Assume that \A increases some counter and puts the value in \foo,
\B does the same, but changes globally \foo. Assume that you say {\A\A\B\B\A\A...}. The first
\A sets \foo to 1 and saves (0,undef). The second \A sets \foo to 2. The first \B sets \foo to 3
at level 1, the second \B sets \foo to 4 at level. The next \A saves the old value of \foo and sets
\foo to 5, etc. As a consequence: every \A preceded by a \B will put an item on the save stack.
When the stack is restored, the value to restore will be (L, V) and the current value (L′, V ′). If L′

is 1, nothing happens. Otherwise, (L′, V ′) is replaced by (L, V). As a consequence the value after
the group is the value of the last \B. This results in a waste of the save stack. For this reason,
Knuth says: all assignments to the scratch registers whose numbers are 1, 3, 5, 7 and 9 should be
\global; all assignments to the other scratch registers (0, 2, 4, 6, 8, 255) should be non-\global.

A silly question is: what happens if you say {\let \endgraf \par \gdef\par{} \edef \foo
{\endgraf} \Foo \def \endgraf {} \Bar }. In the current version of \Tralics, but this is
also true for TEX, when you say \def\foo, the command code of \foo is changed to be used-
defined, and the subcode is an address to a table containing the token list of the body. On the
other hand, \let \foo \bar will use the command code and subcode of \bar, and copy this in
\foo. In the original version of Tralics, the Perl version, we had two tables: the list of predefined
commands, with their internal number, and the list of user defined commands with their body. In
the code above, when \Foo is executed, then \foo is a user defined command, whose body contains
\endgraf, whose meaning is the original \par. When \Bar is seen, the meaning of this token has
changed. The essential reason why Tralics was re-written in C++ is to make this piece of code
work.

1.9 Language options

Most TEX formats (plain, LATEX, amstex) have been written by American people; nowadays, major
developments are done in Europe (including the conTEXt format, and the hyperref package).
However, lots of people use basic primitives for their French publications, and the situation is not
simplified by the fact that there are two package for writing French documents (one by B. Gaulle,
and one by D. Flipo).

In the original version of TEX you had to say ‘\’e’ for an e acute, and you had to say ‘\c c’
or \c{c}’ for a c cedilla (which form being the best is in general unknown). For homogeneity
reasons, Lamport recommends \’{e}. Because some accents are redefined by tables, or tabular
environments, the solution that always works is \a’{e}. This is something strange, but a translator
like Tralics has to cope with it (for instance, some authors of the Raweb use bibtex files that
are generated automatically from a data-basis, and this software systematically produces \a for
accents). This makes texts rather uneasy to read, and not every spell-checker understands this
(Ispell for instance allows José or Jos\’e, but not both). By default (i.e. on Linux machine)
LATEX understands iso-8859-1. This means that all characters used in France are recognized (except,
œŒŸ, these characters cause also problems in HTML). Recently, another character was introduced,
namely €. Nobody knows how to use it (according to [6, paragraph 7.8.7], published in april 2004,
\texteuro is the official LATEX way). In case of doubt, you should use ‘euro’.

In order to emphasize words, you can underline them, use a different font, or mark them
with quotes. In English, you would use quotes “like these” or ‘like these’, but never like "this".

INRIA

Tralics, a LATEX to XML translator Part I 17

In France, guillemets « are used like this ». Note that the spacing is different from English, but
the package should take case of everything. The forever question is: how to enter these funny
characters in my keyboard made in Mexico14. One solution consists of typing two < in a row
and hope for the best (we have either an active character, or a ligature). Note that Tralics
translates \verb+<<-->>+ as <hi rend=’tt’><​<​-​-​
>​>​</hi> the funny characters have as only purpose to inhibit ligatures
in the resulting XML. The result might also be : ¡¡ and ¿¿. Depending on the packages, you should
perhaps use \guillemotleft, \guillemotright or \og, \fg. Which method is the best is still
unclear to me.

14or Thailand; it has an international layout, with a W. logo which is a registered trademark of M.C.

RT n° 309

18 José Grimm

INRIA

Tralics, a LATEX to XML translator Part I 19

Chapter 2

Expansion

One part of the work of TEX is to replace all user defined tokens by primitives; this is the main
objective of the ‘expansion’ process. In this respect, there is little difference between TEX and
Tralics. In this chapter, we review some constructions.

2.1 Defining new commands

A definition is typically of the form

\def\fooi{foo}
\def\fooii#1#2{#2#1}
\def\fooiii+#1.#2=#3#{Seen#1#2#3.}

You may wonder why the commands are not called ‘\foo1’, ‘\foo2’ and ‘\foo3’. The reason is that,
if digits have standard category codes, they are not of type letter, so that ‘\2foo’ is the command
\2, followed by the letters ‘foo’ (the tokens are 2 f11 o11 o11) and ‘\foo2’ is the command \foo
followed by the digit 2 (the tokens are foo 212). It is possible to create the token foo2 via
\csname foo2\endcsname, and it is also possible to change the category code of 2. This is in
general a bad idea: If you say \setlength{\parindent}{\foo2+2cm}, it is impossible to design
the \setlength command so that ‘\foo2’ is read as a command and ‘2cm’ as a dimension. On
the other hand, if you say \def\foo2#1#2{#2#1}, TEX expects, after the second #, the character
2 with category code 12; if not it complains with: Parameters must be numbered consecutively.
In Tralics, the message is a bit different, it says Error while scanning definition of \foo2 expecting
#2; got #{Character 2 of catcode 11}.) Note how 211 is printed.

Before \def, you can put a prefix: it can be \long, indicating that the command accepts whole
paragraphs as arguments; it can be \outer, indicating that the command cannot be the argument
of another command; it can be \global. This last prefix can be put before any assignment, it
says that the assignment is global (unless \globaldefs is non-zero). The order of the prefixes
is irrelevant. After the \def comes the object to define (this is either an active character, or a
command name), then what TEX calls 〈parameter text〉, and this is followed by the body. The
body starts with the first opening brace (any character of category code 1) and ends with the first
closing brace (any character with category code 2) that makes the body balanced against braces.
These braces are not part of the body. The parameter text is an arbitrary sequence of tokens, but
cannot contain braces. If it contains a # (in fact, any character of category code 6), it has to be
the final character of the sequence, or be followed by the digits 1, 2, 3, up to 9, in order. If there is
some text between #3 and #4 (or between #3 and the start of the body), this imposes a constraint
on the third argument. If there is some text before #1, this imposes a constraint on the command
itself. In the body you can use ##, this will be replaced by a #; you can also use #1, #2, etc., this

RT n° 309

20 José Grimm

will be replaced by the value of the first, second, etc., argument. As above, the # is any character
of category 6, the digits are of category 12, you cannot access the second argument if only one is
available. If you define \foo2 as above, TEX will signal a second error: Illegal parameter number
in definition of \foo2.

Once you have defined the commands, you can use them. We give here an example, and the
translation by Tralics

\fooi\fooii12\fooiii+ok. {\itshape 3} =xyz{}!
foo21Seenok <hi rend=’it’>3</hi> xyz.!

and also by LATEX ‘foo21Seenok 3 xyz.!’ Some explanations. The first command takes no argument,
thus is easy to understand. The second command takes two arguments, its body is ‘#2#1’ so that
the expansion is the token list formed by the tokens of the second argument followed by the tokens
of the first argument. In the case of ‘\foo12’, the arguments are ‘1’ and ‘2’ (a list of length one).
In the case of ‘\fooii {AB} {CD}’, the arguments are ‘AB’ and ‘CD’, a list of length two. This is
because TEX ignores initial spaces when reading undelimited arguments; in any case, an argument
is well-balanced against braces (same definition as above for the body of a command). The shortest
possible sequence of tokens is read (in the case of an undelimited argument, this sequence is never
empty). If the result starts with an open brace and ends with a closing braces, these are removed,
provided that the remaining token list is well-balanced; for instance, in the case ‘\fooii{}a’, the
first argument is empty. If the command is not \long, then \par token are forbidden in the
argument. In any case tokens that are defined to be \outer are forbidden in a parameter.

In the case of \fooiii, the situation is a bit more complicated. Fetching the argument is more
involved than in the general case. The specification is: plus sign, argument, dot, argument, equals
sign, argument, sharp sign. Note first that the ‘+’ sign is not part of the command name, but is
required after it whenever used. The first argument here is the shortest sequence (possibly empty)
of tokens, that is a balanced list, and this is followed by the required token list (here, a single dot).
Here it is ‘ {\it 3} ’; a pair of initial and final braces disappear, if possible. The ‘#{’ after ‘#3’
says that the third argument is delimited by an open brace. This brace is left unread. Such a
construction is rare: it occurs only four times in the LATEX sources, an example will be given later.

Consider the following example: ‘\def\opt[#1]{}’. If you say ‘\opt[foo]’ or ‘\opt[{foo}]’,
the argument is ‘foo’. If you say ‘\opt[{[foo]}]’, it is ‘[foo]’. It is important to know that braces
are required if you want a closing bracket in the argument. In the case of ‘\item[{\it foo}]’,
the braces are useless; the scope of the \it command is limited to ‘foo’ because an additional
pair of braces is added somewhere in the body of the \item command. The following example is
non-trivial:

\def\@car#1#2\@nil{#1}
\if b\expandafter\@car\f@series\@nil\boldmath\fi

The command \@car takes two arguments, the first one is undelimited, the second one is delimited
by \@nil, it is ignored. Let’s assume that \f@series expands to a non-empty list, for instance ‘mc’
(this means that the current font has medium weight and is condensed). Then ‘\@car md\@nil’
expands to ‘m’. The second line of our example uses \@car to get the first character of \f@series,
and compares it to ‘b’ (the result is true if the current font is bold, extra bold, bold condensed, etc).
This code is used for typesetting the LATEX 2ε logo in bold version as LATEX 2ε. The commands
\if and \expandafter will be explained later. For the case where \f@series could be empty, it
could be wise to insert a character like ‘B’ before \@nil (very often, you will see \@empty, because
it typesets to nothing; here we want the full expansion of everything between ‘b’ and ‘\boldmath’
to be a single token; using \@car produces a single token; if this token expands to nothing we lose).

The following example is from the TEXbook:

\def\cs AB#1#2C$#3\$ {#3ab#1 c##\x #2}
\cs AB{\Look}C${And\$ }{look}\$ 5

INRIA

Tralics, a LATEX to XML translator Part I 21

If you feed this to Tralics1, you will get three errors (one because of the ‘##’, and two undefined
commands). In verbose mode, the transcript file of Tralics will contain the following

\cs AB#1#2C$#3\$ ->#3ab#1 c##\x #2
#1<-\Look
#2<-
#3<-{And\$ }{look}

One question is: should arguments be in braces or not? As seen elsewhere, some commands have
a special syntax, and cannot be followed by braces (for instance, in the case of ‘\catcode‘\$’ the
argument is the backtick followed by the dollar). In a case like $a \over b+c$, there are two argu-
ments, one before and one after the command. An expression like $a\over b\over c$ is a error.
The error message says to add some braces, but they are used only for grouping. A similar error
message is issued if you say a^b^c. But compare ‘$a^{b^c}d$’ and ‘$a\over {b\over c}d$’:
the translation is abc

d and a
b

c
d
.

It is sometimes important to know which braces disappear or remain. As an example, you can
say ‘\def\ap{a’}’ in order to get a′; but if you say this ‘$x_\ap\not=x_{\ap}$’, you get x′

a 6= xa′ .
In fact, you cannot say that ‘\ap’ is the argument of the underscore command; this is because TEX
expands everything; in one case, it sees that the underscore is followed by the letter a, in the second
case by a brace, hence a delimiter for a math list.

In general, you will be faced with the following problem: you say ‘\def\foo#1{\xbar#1}’ and
‘\def\xbar#1{{\itshape #1}}’. Note the double braces: the outer braces delimit the argument
(of \def, i.e., the body of \xbar), the inner braces delimit the scope of \itshape. When you say
‘\foo{12}’ only the first letter is in italics, another level of braces is needed. This is what you can
see in the transcript file of Tralics:

\foo #1->\xbar #1
#1<-12
\xbar #1->{\itshape #1}
#1<-1
{begin-group character {}
+stack: level + 3 for brace
{\itshape}
{font change \itshape}
...

In this example, braces are missing in \foo, a remedy is to add a pair of braces in the argument,
like ‘\foo{{12}}’.

It is possible to define commands inside commands. For instance, you can say

\def\foov#1{\def\xbar##1{#1##1###1####1}}

When the scanner reads a token list, it handles ‘#’ signs (in fact, any character of category 6) in a
special manner inside a definition. The token list of the previous line is def foov #23 {1 def
xbar #6 112 {1 125 #6 112 #6 125 #6 #6 112 }2 }2. As you can see, there are three possibilities for a
sharp sign: before the brace that defines the body, it is #23, and the digit that follows is omitted2,
it is 125, 225, in the body when followed by 1, 2, etc3. It is #6 when followed by a sharp sign.
Said otherwise, a double sharp sign in a definition is equivalent to a normal one outside. Note the
following trick.

\catcode‘\^6
\def\foo#1^2{#1^1## #^ ^# ^^}
\show\foo

1The last character on the line is not read
2TEX uses #13, because no confusion with an active character can occur.
3TEX uses 15, because no confusion with a character of category 5 can occur (See TEXbook, exercise 7.3).

RT n° 309

22 José Grimm

A quantity like 125 is shown as ^1, because the hat character appears as ^2 (i.e., the token ^25) in the
〈parameter text〉 part of the definition. Hence TEX prints \foo=macro: #1^2->^1^1## ^^ ## ^^.
On the other hand, Tralics uses a different mechanism for macros: it remembers the number of
arguments and the items between them, hence does not make the difference with a macro defined
as ‘\def\xbar^1#2{...}’4. The printed result is \foo=macro: #1#2->#1#1## ^^ ## ^^.

Assume now that you say ‘\foov{17}’. The result of the expansion is the token list shown above,
with 125 replaced by 112 712. When \xbar is defined the #6 will read the character that follows, in
this case 112. The situation is as if you had said ‘\def\xbar#1{17#1#17##1}’. Evaluating \xbar
may signal an error, because of the ‘##’ (no error is signaled in case the argument of \xbar is
‘\gee’, a command that ignores its first and third argument). If you call \foo with ‘25’ instead of
‘17’ as argument, you will get the following error Illegal parameter number in definition of \xbar5.

2.2 Defining commands in LATEX

You can say

\newcommand*{\fooi}{foo}
\newcommand*{\fooii}[2]{#2#1}
\newcommand\fooiv[3][bar]{Seen#1#2#3}

The first two lines define the same commands as in the start of section 2.1. It is not possible to
define \fooiii. However, you can define \fooiv, a command that takes an optional argument. In
fact, you call it like this ‘\fooiv[X]YZ’; the expansion will be ‘SeenXYZ’. You can put a pair of
braces around the arguments, like ‘\fooiv[{X}]{Y}{Z}’, the result is the same. Braces are needed
for the first argument in case you want a closing bracket in it. If the first argument is ‘bar’, you
can omit the ‘[bar]’: for this reason, the argument is called optional. In LATEX, \fooiv expands
to \@protected@testopt, which is a command to make \fooiv robust (i.e., in some cases, the
test for an optional argument is delayed); it then expands to \\fooiv, which is a command that
takes three arguments. In Tralics, no auxiliary command is used. If you say ‘\show\fooiv’, Tralics
will print the following on the transcript file.

\fooiv=opt \long macro: bar#2#3->Seen#1#2#3.

Commands defined by \newcommand are \long unless a star is used (they accept paragraphs as
arguments.) The ‘opt’ before it shows that the command takes an optional argument. We show
the value of this argument instead of #1 before the ->. The following is printed by LATEX

> \fooiv=macro:
->\@protected@testopt \fooiv \\fooiv {bar}.

Since being \long deals with reading parameters, in LATEX, it is the auxiliary command \\fooiv
which is \long. This shows how to ask LATEX for the meaning of the auxiliary command and its
answer:

\expandafter\show\csname\string\fooiv\endcsname
> \\fooiv=\long macro:
[#1]#2#3->Seen#1#2#3.

The philosophy of LATEX is that a user should not randomly redefine commands. For this reason,
you must use \newcommand (for an undefined command) or \renewcommand (for overwriting an
existing command). In the same fashion, \renewenvironment is used to redefine an environment;
we shall see later that an environment ‘foo’ is defined by two commands: \foo and \endfoo. You
should never define \endfoo. This explains error messages of the form: LaTeX Error: Command

4Said otherwise \ifx\foo\xbar produces different results in TEX and in Tralics; these two commands take two
arguments, and have the same body, the only difference is in the introducing character.

5This was accepted by Tralics until version 2.3: if a command takes one argument, the value of the second
argument is the empty list.

INRIA

Tralics, a LATEX to XML translator Part I 23

\endfoobar already defined. Or name \end... illegal, see p.192 of the manual. In Tralics, we do not
check that the command starts with ‘end’; the error message is \newcommand: cannot define \foo;
token is already defined. You can use \providecommand, the syntax is the same. In this case, the
definition is silently ignored if the command already exists. You can use \DeclareRobustCommand,
this is defined by Tralics to be the same as \providecommand although the LATEX behavior is
different. You can say ‘\global\def\foo{}’, this is the same as ‘\gdef\foo{}, it defines \foo
globally. You cannot use the \global prefix for LATEX commands.

It is now time to explain that braces have two different purposes: as a delimiter for an argument
list, and also for grouping: in the same fashion that the formula z(x + y) can be considered as z
applied to x + y or the product of z and x + y. In the case of ‘\textit{12}’, the braces delimit
the arguments, in the case of ‘{\itshsape 12}’, the braces are used for grouping. In both cases,
all characters up to the closing brace are in italics, but this property depends on the semantics
of the operator, not the syntax. There is a big difference between these two use of braces: the
tokenizer produces token lists that are always balanced (there are as many opening delimiters as
closing delimiters, where delimiters are characters of category code 1 and 2). On the other hand, if
you say ‘\let\bgroup={’, the \bgroup has the same meaning as an opening brace, hence triggers
the start of a new group; but it is not an explicit character (such things are called “implicit
characters” in the TEXbook). When you say ‘\hbox...’ the opening brace can be implicit or
explicit (in this case, braces are used both as delimiters and for grouping). Groups can also be
defined by math shift characters (if you like empty lines in the source of a math formula, you can
say ‘$\let\par\relax ...$’), or implicitly for a cell in a table, or via \left and \right in a
math formula, or via \begingroup and \endgroup (they define a “semi-simple group”).

One difference between plain TEX and LATEX is the existence of named groups: instead of saying
‘\beginfoo’ and ‘\endfoo’, you say ‘\begin{foo}’ and ‘\end{foo}’. This is interpreted by LATEX
as

1. When \begin{foo} is seen,

(a) A test is made to see if ‘\foo’ exists. If it does not exist, an error is signaled and steps
(1c) and (1d) are skipped (via a call to \expandafter).

(b) The command \begingroup is executed (with space hacking).

(c) The name ‘foo’ is stored in \@currenvir.

(d) The command \foo is executed.

2. When \end{foo} is seen,

(a) The command \endfoo is executed.

(b) The name ‘foo’ is compared with \@currenvir, an error is signaled in case of mismatch.

(c) The command \endgroup is executed (with more space hacking).

This mechanism is not symmetric. It is implemented in Tralics in a similar manner (but there
are some differences that can be analyzed by a malicious user). The first remark is the following:
on entry, you may get a message that says LaTeX Error: Environment unknown undefined, on
exit you would get LaTeX Error: \begin{document} ended by \end{unknown}. The trick is that
the \endfoo token (created by \csname) is never undefined (its default action is \relax). One
important point is that the command used in step (1d) is \foo, not \beginfoo. In [6, example
7-3-1], there is an example of ‘bfseries’ as an environment; there is no command \endbfseries.
Note that in step (1d), the token that comes after \foo is the token after ‘\begin{foo}’, and
this means that \foo can grab its arguments; on the other hand the token after \endfoo in step
(2a) is the start of the sequence that checks the environment name: thus \endfoo cannot read its
argument (we shall see in a minute why steps (2a) and (2b) cannot be swapped). In the current
version of Tralics, the “space hacking” is not implemented; we shall not discuss it here.

RT n° 309

24 José Grimm

This is how you can define new environments:

\newenvironment{x}[2]{#1BY\begin{y}#2AY} {by\end{y}ay}
\newenvironment{y}{Z}{z}
\begin{x}a b c \end{x}

This typesets as aBYZbAY c byzay. The \begin part reads two arguments. The \end part takes
no argument; it could use the first argument of the \begin, provided that this one saves it in a
command. In verbose mode, the following is printed by Tralics in the transcript file. We have
removed all lines with ‘Character sequence’ and ‘Text’.

1 [61] \begin{x}a b c \end{x}
2 {\begin}
3 {\begin x}
4 +stack: level + 3 for environment
5 \x #1#2->#1BY\begin {y}#2AY
6 #1<-a
7 #2<-b
8 {\begin}
9 {\begin y}

10 +stack: level + 4 for environment
11 \y ->Z
12 {\end}
13 {\end x}
14 \endx ->by\end {y}ay
15 {\end}
16 {\end y}
17 \endy ->z
18 {\endgroup (for env)}
19 +stack: ending environment y; resuming x.
20 +stack: level - 4 for environment
21 {\endgroup (for env)}
22 +stack: ending environment x; resuming document.
23 +stack: level - 3 for environment

At lines 4, 10, 20 and 23, you can see that the current “level” changes (this is what TEX calls
the “semantic level”). The default level is level one, our example was done at level two, the first
environment is at level three, the second at level four. When you see ‘level + 4’, it is because the
level has just incremented; if you see ‘level - 4’ it means that the level will decrease. At lines 18
and 21, you see that Tralics uses a special ‘\endgroup’ token. Look closely at lines 13 and 19:
when Tralics sees ‘\end{x}’, the current environment is y, it is only after evaluation of \endx that
the environment is ‘x’ again; this example shows that steps (2a) and (2b) cannot be swapped. In
Tralics the name of the environment cannot be modified by the user.

Because of the \begingroup command, everything, until the \endgroup, is local to this group;
in particular \@currenvir will be restored. If you say something like

\begin{zfoo}\renewcommand\endzfoo{A}\end{zfoo}

the command associated to \end{zfoo} is locally redefined. In some cases, this is a big mistake:
in Tralics, the start command can assume that the corresponding end command is executed or an
error is signaled. In fact, the meaning of \endzfoo is stored on a special stack, and restored by
\end{zfoo}. There is a big hack in LATEX (and also in Tralics): since no text should follow the end
of the document, there is no need to store on the stack every definition given between the start
and end of the document; thus \document executes a \endgroup; logically, \enddocument should
insert a \begingroup token; in LATEX, this is not needed because step (2c) is never executed. In

INRIA

Tralics, a LATEX to XML translator Part I 25

Tralics this cannot be done, because we have to typeset the bibliography. Moreover, action cannot
be completely trivial, because we have to re-insert all tokens saved by \AtEndDocument. We show
here the transcript file, assuming that only one token has been saved, namely \empty. You can see
the stack increase and decrease; you can see the \endinput that closes the current file; you can
also see a second \enddocument command whose action is to pop the XML stack.

[490] \end{document}
{\end}
{\end document}
+stack: level + 2 for environment
{\enddocument}
{\endinput}
\empty ->
{\enddocument}
{Pop (module) 0: document_v}
{\endgroup (for env)}
+stack: ending environment document; resuming document.
+stack: level - 2 for environment

Clearly, you cannot use a document environment in a document; if you try, LATEX com-
plains with LaTeX Error: Can be used only in preamble (the preamble is everything before
\begin{document}). The error message of Tralics is a bit more explicit: Two environments named
document. If you put \begin{it} before \begin{document}, LATEX does not complain. The trou-
ble is at the end: you will get an error of the form LaTeX Error: \begin{it} on input line 9 ended
by \end{document}, followed by a TEX warning : (\end occurred inside a group at level 1). In
Tralics, an error is signaled at the start: \begin{document} not at level 0. On page 161, you see
statistics of the form ‘Save stack +1582 -1582’; this means that the semantic stack pointer has
increased 1582 times, it has decreased the same number of times, so that the end of the document
has been seen at level zero, no warning is issued in the case the two numbers are not the same.

2.3 Some small examples

Remember that \foo and \; are two commands who differ only in the following behavior: when
the tokenizer sees a backslash followed by a semi colon (whose category code is not letter), it
constructs a command whose name is formed by that character (and sets the internal state to a
mode in which spaces are not ignored). On the other hand, if backslash is followed by a letter,
all letters are read (and the state is set such that following spaces will be ignored). By space, we
mean here every character that has the category code of a space. A space after \verb is never
ignored, but it is unwise to use this space as delimiter. In the case of \foo, the tokenizer allocates
a slot on the hash table (unless \foo already exists). The possibility to change category codes
dynamically is interesting (however, the implementation of \verb in Tralics uses no category code
changes, and is more efficient). The two commands \makeatletter and \makeatother change the
category codes of the at sign character @, to letter and other. For instance

\makeatletter
\def\foo@val{}
\def\foo#1{\def\foo@val{#1}\check@foo}
\def\usefoo{\foo@val}

\makeatother

In this example, we have two user commands: \foo that defines a variable, and \usefoo that uses
it. The variable \foo@val has a reserved name; there is a command \check@foo that makes sure
that the argument is correct. The default category code of @ is 12; in most of the examples, we

RT n° 309

26 José Grimm

shall assume that it is 11, because these examples come from the LATEX kernel or style files where
the default category code is 11.

As explained above, ‘\catcode‘\$=3’ changes the category code of the dollar sign. What
follows has to be a character code (a number between 0 and 255) followed by an optional equals
sign, followed by a valid category code (an integer between 0 and 15). Assume that you say
\def\A{25}, followed by ‘\catcode\A7.’. In the case where standard category codes are in effect
this is tokenised as catcode A 712 .12. But when a number is read, all tokens are expanded,
until the end of the number is found (in the case where the number is formed by digits, one space
character after the number will be read, if possible). In this case, TEX reads the digits 2, 5 and
7. It stops reading at the dot. This is an error (signaled by Tralics as Bad character code replaced
by 0: 257. Then TEX reads an optional equals sign (there is none) and an integer (there is none).
Hence you get a second error (Missing number, treated as zero). The result is that you have
changed the category code of the null character to zero (like backslash). If you want to put 7 in
the category code of the character defined by the command \A, you should say ‘\catcode\A=7~’.6

It is possible to make \A a reference to the character number 25, by using \chardef. Thus you
can say ‘\chardef\A25~’ and ‘\catcode\A7~’. Note that, in the context of routines like scanint,
a character number is a valid number; so that \A can be used as the number 25, wherever a
number is required. In the sources of LATEX you can see ‘\chardef\active=13’. You will also
see ‘\mathchardef\@cclvi=256’ ; there is no difference between \chardef and \mathchardef,
except that a character is in the range 0-255, while a math char can take larger values (less than
215). You can use \countdef\B26 (this will make \B as a reference to count register number 26),
\dimendef\C27 (this will make \C as a reference to dimension register number 27), \skipdef\D28
(this will make \D as a reference to skip register number 28), \muskipdef\E29 (this will make \E
as a reference to muskip register number 29, and \toksdef\F30 (this will make \F as a reference to
token register number 30). There is no ‘\boxdef’. The reason is that, if you want to copy the value
of counter 1 into counter 0, you say \count0=\count1. If you say \count@=\B this will put the
value of the counter 26 into \count@ (this is the counter 255). However, you say \setbox0=\copy1
if you want to copy the content of box 1 into box 0: the syntax is not the same. When you use
\chardef, a line will be added to the transcript file, see section 6.12.

Commands can be defined via ‘\let’. You say \let\A=\B, where \A is a token that can be
defined (active characters or commands; TEX does not care if the token is defined or not). It is
followed by 〈equals〉〈one optional space〉. This means that TEX reads all space tokens; if the first
unread token is an equals sign, it is read as well as the next token, provided that it is a space.
If the equals sign is followed by two space tokens, only one is read. Instead of \B, you can put
any token. After that, the current meaning of \A will be the current meaning of \B. For instance,
if you say \let\foo\bar\show\foo you will get \foo=macro:->\mathaccent "7016\relax. In
plain TEX, you would see a space instead of \relax (both a space and a \relax indicate the end of
the number). In Tralics, you would see \foo=\bar, this is because \bar is a primitive, instead of a
user defined command. If you let \let\A=+, then \A will behave like a + character (of category 12).
In fact, this is called an implicit character, and sometimes an explicit character is required. For
instance in the case \parindent=-3.4pt, the minus sign, the digits, the dot, and the two letters
pt must be explicit characters. However, after

\let\bgroup={ \let\egroup=} \let\sp=^ \let\sb=_

there is no difference between $x\sp\bgroup a+b\egroup$ and x^{a+b}. A token list has to be
well balanced against explicit braces. For instance

\def\foo{{\catcode‘}=0\egroup}

satisfies the requirements. The body of the command consists in {1 catcode ‘12 }2 =12 012

egroup . If you evaluate \foo, the \catcode command will read the four tokens that follow; it

6Here, and in the lines that follow, you should replace the tilde by anything that stops scanning the number.

INRIA

Tralics, a LATEX to XML translator Part I 27

will modify the category code of the opening brace. All this happens inside a group opened by {1

and closed by egroup , so that this is harmless. One use of \let is the following:

\def\fooA{a very long command}
\def\fooB{another very long command}
\def\xbar#1{\ifx 0#1\let\foo\fooA \else \let\foo\fooB\fi}

Here we use the fact that \let just moves a pointer.7 This is faster than copying a list. In
particular, consider

\def\xbar#1{\ifx 0#1\fooA \else \fooB\fi}
\def\xbar#1{\ifx 0#1\let\foo\fooA \else \let\foo\fooB\fi\foo}

The first line executes conditionally one of \fooA and \fooB. However, this command cannot read
an argument (because \fooA is followed by \else and \fooB by \fi). In the second case, we define
\foo conditionally, and it can read its arguments without problem.

You can use the following construct

\def\addtofoo#1{\let\oldfoo\foo\def\foo{#1\oldfoo}}
% example of use
\def\foo{A}\foo
\addtofoo{B}\foo

This typesets as ABA. Beware: the \addtofoo command can be used only once (the old value of
\oldfoo has to be saved...). We shall see later how to replace in the definition above the \oldfoo
by its value, using either tokens lists or \edef, using a method where \oldfoo is a temporary.
This is another example:

\def\double#1#2{\let#1#2\def#2{#1#1}}
% example
\def\B{\C}\def\C{to}\double\tmp\B

Here ‘\B’ typesets as ‘toto’. In fact \B is defined as ‘\tmp\tmp’, where \tmp is the old definition
of \B, namely a command that expands to ‘\C’. It you say \def\C{ti}\B, you will get ‘titi’. If in
\double the \let is replaced by a \def as \def#1{#2}, the expansion of \tmp would have been
\B, and \B would have been the same as \B\B. You see the problem? This could provoke a stack
overflow, a parameter stack overflow, or even a program crash.

Let’s mention the existence of \futurelet\A\B\C. It is the same as \let\A\C\B\C. The
usefulness of such a construct will be explained later.

You can say \expandafter\A\B. In such a case, TEX reads the first token, saves it somewhere,
calls expand if possible, re-inserts the saved token. Nothing special happens if the second token
(here \B) cannot be expanded, because it is a non-active character, or a command like \par or
\relax. But assume that \A is a command that uses one argument (for instance \textit) and
\B expands to ‘foo’. If you use \expandafter, only the first letter will be in italics. Assume
that \foo expands to a dollar sign. Then $\foo is an empty math formula because \foo is not
expanded, but \expandafter$\foo.$$ is a display math formula with a dot. The main reason
why tokens are not expanded after a dollar sign (when TEX looks for an other dollar sign) is that a
test $\ifmmode true\fi$ should evaluate to true. You can use \expandafter if you want the test
to be executed outside math mode. Note: if a table contains a template of the form ‘$#$’, if the
cell starts with \ifmmode, then the test is expanded (i.e. evaluated) before math mode is entered,
because TEX is looking for an \omit token. As a consequence you should always put ‘\relax’
before a test (this is not needed if a command is made “Robust”).

Look carefully at the following lines:

1 \def\toto{\titi!}\def\titi{\tata}\def\tata{\tutu}
2 \expandafter\expandafter\expandafter\def\toto{5}

7The reference count of the token list of the body of \fooA or \fooB must also be increased.

RT n° 309

28 José Grimm

3 \let\E\expandafter \E\E\E\def\toto{6}
4 \def\E{\expandafter} \E\E\E\def\toto{7}
5 \expandafter\def\toto{8}

On the first line we define three commands \toto, \titi and \tata. As we shall see, lines 2, 3
and 4 do not change the meaning of \toto, so that, on line 5, the expansion of ‘\toto’ is ‘\titi!’.
In this case, the effect of the \expandafter is to replace ‘\toto’ by ‘\titi!’. Hence, line 5 defines
a macro \titi, that has to be followed by an exclamation point, takes no argument, and expands
to 8. Consider now line 2. The first \expandafter puts apart the \expandafter token; it expands
the next token, which is \expandafter, and the expansion of this is: read the token that follows
(here ‘\def’), and expand the token that follows. This is ‘\toto’, that expand to ‘\titi!’. If we
pop back the two tokens, line 2 is equivalent to ‘\expandafter\def\titi!{5}’. This looks like
line 5, so that it is the same as ‘\def\tata!{5}’. There is no difference between lines 2 and 3: the
\E command behaves exactly like \expandafter. Consider now line 4. What TEX does is expand
the first token. It is \E, it expands to ‘\expandafter’. Since the token can be expanded, it will.
Thus TEX reads and remembers the token that follows. It expands the next token (the third ‘\E’).
Its expansion is ‘\expandafter’. Hence, line 4 is equivalent to ‘\E\expandafter\def\toto{7}’.
Now, the \E in this list has as effect to try to expand the second token; it is \def, which cannot be
expanded. Hence this ‘\E’ is useless. Line 4 is equivalent to ‘\expandafter\def\toto{7}’. And
this defines \titi. We give here the trace of Tralics (it is a bit more complete then the trace of
TEX):

\E ->\expandafter

{\expandafter \E \E}

\E ->\expandafter

\E ->\expandafter

{\expandafter \expandafter \def}

{\expandafter \def \toto}

\toto ->\titi !

{\def}

{\def \titi !->7}

A question is : how many commands with two characters can be defined in Tralics? The answer
is 255 squared (all characters but the null character are allowed). Of course, if you say ‘\def\++{}’,
this defines the ‘\+’ command not the ‘\++’. You could imagine to change category codes (but, in a
construction like ‘\def\{}{}’, it is impossible to give a different role to the first and second opening
brace). The solution is given by \csname, you can use it like this ‘\csname1+1=2\endcsname’. Note
that this typesets nothing: when \csname manufactures a new control sequence name, it defines
it as being \relax (the control sequence will exist, until the end of the job). You can hide the
\csname command, like this

\def\nameuse#1{\csname #1\endcsname}
\nameuse{1+1=2}

If you want to define such a beast, you must use \expandafter.

\def\namedef#1{\expandafter\def\csname #1\endcsname}
\namedef{1+1=2}{true}

You can also say \namedef{++}#1{#1+#1} followed by \nameuse{++}{3}. This should give 3+3.
If you want a macro named \{}, you can say \nameuse{\string\{\string\}}, provided that
\escapechar=-1. If you do not like this setting of \escapechar, you can define a command, say
\Lbra, thats expands to {12 (an inactive opening brace character) using whatever method seems
best. For instance

{\escapechar=-1 \xdef\Lbra{\string\{}\xdef\Rbra{\string\}}}
\namedef{\Lbra\Rbra}{Hey}

INRIA

Tralics, a LATEX to XML translator Part I 29

We explained above what happens when three \expandafter come in a row. Thus, it should not
surprise you that the following command defines \foo.

\expandafter\expandafter\expandafter\def\nameuse{foo}{12}

A more realistic example of \csname is

\def\allocate#1{....}
\def\newcount#1{\allocate{ctr}\countdef#1\allocationnumber}
\def\newcounter#1{\expandafter\newcount\csname c@#1\endcsname}

Let’s assume that \allocate takes as argument a type (for counters, dimensions, skip registers,
muskip registers, box registers, token registers, input registers, output register, math families, lan-
guage codes, insertions, etc), associated to \newcount, \newtoks, \newbox, \newdimen, \newskip
(plus some other commands, not implemented in Tralics). It allocates a unique number depending
on the type, and puts it in \allocationnumber. For instance, if you say \newcount\Foo, the
number could be 110, if you say \newskip\Bar, the number could be 46. In the first case, the
result is as if you had said \countdef\Foo110. In the case of \newcounter{foo}, the result is as
\newcount\c@foo111. Note that there are only 256 count registers available in TEX. You can use
registers zero to nine as scratch registers (Do not forget that \count0 contains the current page
number), LATEX uses registers 10 to 21 for its allocation mechanism. In the current version, the
first free counter is 79. Some other counters are allocated by the class, and the package (in the
transcript file, one line is printed for every call to \allocate, for instance: \c@chapter=\count80;
in Tralics, the line looks like {\countdef \c@foo=\count18}).

A very important point is that all tokens between \csname and \endcsname are fully expanded.
It is an error if a non-character token remains. Thus it is important to know which commands
are expanded, and those that cannot be expanded. The exact rules are in the TEXbook, chapter
20. As a rule of thumb, commands that do no typesetting and modify no internal table can be ex-
panded. More precisely: user defined commands, conversions like \string, \number, conditionals
like \fi, marks, and some special commands like \csname, \expandafter, \the can be expanded.
A construction like \csname\char‘A\endcsname is invalid.

If you say \noexpand\foo, the result is \foo, unexpanded. Example:

1 \def\FOO{12}
2 %\csname\noexpand\FOO\endcsname %bad
3 \edef\xbar{\noexpand\FOO}
4 \noexpand\FOO
5 \expandafter\textit\FOO
6 \expandafter\textit\noexpand\FOO
7 \count0=1\FOO
8 \count0=1\noexpand\FOO

Line two is an error: the no-expanded \FOO is not a character. On line 3, the body of \xbar is
‘\FOO’, it will be expanded later. The translation of line 4 is empty (the command \FOO is tem-
porarily seen as \relax, and \relax does nothing). Because of the \expandafter, the argument
of \textit on line 5 is 1, on line 6 it is 12. On line 7, 112 is put in \count0, because \FOO is
expanded. On line 8, 1 is put in the register, and 12 is typeset. On lines 8 and 6, \FOO is expanded
twice, the first expansion being inhibited by the \noexpand.

Some quantities are never expanded, for instance \lowercase (this is black magic), \def (more
generally all assignments), \relax (it does nothing, but stops scanning integers, dimensions, glue,
etc), \hbox, \par8, \left, etc. Be careful with constructs like \csnameé\endcsname: LATEX may
signal an error involving unhbox.

A command can be defined via \edef instead of \def (\xdef is the same as \edef, with an
implicit \global prefix). All tokens in the body of the definition are expanded. Example:

8Unless redefined by LATEX

RT n° 309

30 José Grimm

\def\A{\B\C} \def\C{1}
\def\Bgroup{{\iffalse}\fi}\def\Egroup{\iffalse{\fi}}
{\let\B\relax \global\edef\D\bgroup{\A\noexpand\C\egroup}}
{\let\B\relax \global\edef\E\Bgroup{\A\noexpand\C\Egroup}

In this example, we consider two groups, that define (locally) a command \B and (globally) two
commands \D and \E. The difference between these two commands is that \bgroup is an implicit
character: when evaluated, it behaves like an opening brace, but it cannot be expanded. On the
other hand, \Bgroup expands to an open brace. The \edef expands tokens following an explicit
opening brace. If stops reading after having found an explicit closing brace (resulting from the
expansion of \Egroup, not \egroup). The expansion of ‘\A’ is ‘\B\C’, this is expanded again. Since
\B is relax, it cannot be expanded, and is left unchanged. The expansion of ‘\C’ is ‘1’, so that
the full expansion of ‘\A’ is ‘\B1’. The expansion of ‘\noexpand\C’ is ‘\C’. Thus, the example is
equivalent to

\global\def\D\bgroup{\B1\C\egroup}
\global\E\Bgroup{\B1\C}

You can put three \noexpand in a row followed by some token X. After the first expansion, the
result is \noexpand followed by X, after the second expansion, the result is X. In the example that
follows, the value of \B is \xbar.

\def\xbar{xbar}
\edef\A{\noexpand\noexpand\noexpand\xbar}
\edef\B{\A}

Consider a realistic example like this

\def\add#1#2{\edef#1{#1\do{#2}}}
\def\cons#1#2{\begingroup\let\@elt\relax\xdef#1{#1\@elt #2}\endgroup}

We can say something like

\def\A{}\def\B{} %init
\let\do\relax% just in case
\add\A x, \add\A y, \add\A z,
\cons\B{ab}, \cons\B{cd}, \cons\B{ef}.
\show\A\show\B

This gives two ways to add some tokens to a list. Because both commands use \edef, full expansion
is in use; you have to be very careful if the tokens contain macros that can be expanded. For
the case of \add, we assume that \do does nothing; for the case \cons, the command resets
\@elt to \relax. The body of \A will be \do{x}\do{y}\do{z} and the body of \B will be
\@elt ab\@elt cd\@elt ef. Note the absence of braces: if you really need them, you should add
them to the argument of the \cons command.

The major problem with \edef is that it is not aware of assignments. Assume that \def\@A\B{},
and \def\C{\let\@A\D}, \def\E{\C} have been somehow evaluated. Consider now an \edef con-
taining \E. This implies expansion of \C, hence of ‘\let\@A\D’. The \let command cannot be
expanded. Hence \@A is expanded, and you get the following error: Use of \@A doesn’t match
its definition from inside \C. You have never heard of this command \@A, and never used \C!
For this reason some commands are made robust: for instance \foo expands to ‘\protect\foo ’
(the second command here has a space at the end), and \protect is defined to be \relax, or
\noexpand, and sometimes \string. This mechanism works only if you use \protected@edef
instead of \edef. (Note: \protect behaves like \string inside \protected@write, which is a
variant of \write).

INRIA

Tralics, a LATEX to XML translator Part I 31

2.4 Variables in TEX

By variable, we mean everything that the user can modify or watch changing. For instance, the
current hash table usage is not a variable (it varies, of course, but the value is available only at the
end of the run, in the transcript file). The current vertical list is updated whenever a paragraph
is split into lines; you cannot access this list, however the \output routine gets the part of it
that should be typeset on the current page in the box register 255. There are general purpose
variables, and specialised ones: for instance \spacefactor makes sense only in horizontal mode,
and the height of the material on current page (\pagetotal) can be used only between paragraphs
(in fact, it is updated by TEX whenever a line is added to the page; you can consult, and even
modify, this value at any time). There are variables that you cannot modify (the version number,
for instance) or only once (the magnification), or in the preamble (i.e., LATEX reads some variables
at begin-document, changes done later to these variables are ignored).

Variables can be classified into two categories depending on their use: in some cases you need to
put a prefix before \foo if you want to use it, in other cases, if you want to modify it. For instance,
if \foo is a user-defined command, you say \let\foo, or \def\foo, if you want to change the
value, and simply \foo if you want to use it. In the same fashion \font\tenrm defines a font, and
\tenrm is a use. On the other hand, if you say \pageno=3, this will set the current page number
to 3 (this is plain TEX syntax, the LATEX syntax will be explained later). If you say something
like \hskip-\fontdimen2\font, the \hskip command is a prefix that says that the variable that
follows will be used. In this case, this is some dimension from a font. Note that \fontdimen is
a prefix so that \font does not define a new font, but refers to the current font. The meaning
of the above piece of code is: insert horizontal space, whose amount is the opposite of the second
parameter of the current font (i.e., normal interword space).

The value of a variable can be

• an integer (32bit, signed, with magnitude less than 231). The value can be restricted in some
cases (to 0-255 if it is an index in a table of registers, to 0-255 if it is a character, etc).

• a dimension, often expressed in pt, (an integer number of times the small unit sp). Normally,
the maximum value is 214pt, but TEX does not always check for overflow.

• a glue. Called rubber length in LATEX. It is like a dimension with a strecth part, and a shrink
part.

• a muglue. Like glue, but only one unit of measure is allowed: mu (math unit).

• a token list. This is a list of tokens (as always, well balanced against explicit braces).

• a font.

• a box (a box contains characters, rules, boxes, penalties, glue, whatsit, etc, but no com-
mands). In Tralics a box contains XML stuff.

You can say ‘\afterassignment\foo\count0=3’; in this case, the command \foo is pushed
on a special stack, and popped after assignment is complete. There is only room for one token on
this special stack. For instance, if you write the following:

\def\fooA{\relax}\def\fooB{\relax}\def\fooC{\relax}\def\fooD{\relax}
\afterassignment \fooA\afterassignment\fooB
\fooC\count0=1\fooD

the transcript file of Tralics will contain (in verbose mode)

[9] \afterassignment \fooA\afterassignment\fooB
{\afterassignment}
{\afterassignment: \fooA}
{\afterassignment}
{\afterassignment: \fooB}

RT n° 309

32 José Grimm

At this point, the after assignment stack contains \fooB. The order of evaluation is now the
following: \fooD is expanded; this gives \relax, which terminates scanning of the number; it will
be read again, after evaluation of \fooB:

[10] \fooC\count0=1\fooD
\fooC ->\relax
{\relax}
{\count}
+scanint for \count->0
\fooD ->\relax
+scanint for \count->1
{after assignment: \fooB}
\fooB ->\relax
{\relax}
{\relax}

You can use the \showbox command for displaying the content of a box. This is a little example.
It uses \everyhbox and \afterassignment. Note the order in which these tokens are inserted.

\everyhbox{3}
\def\foo{12}
\afterassignment\foo\setbox0=\hbox{4}
\showbox0

This is what TEX prints in the log file:

> \box0=
\hbox(6.4151+0.0)x19.99512
.\T1/cmr/m/n/10 1
.\T1/cmr/m/n/10 2
.\T1/cmr/m/n/10 3
.\T1/cmr/m/n/10 4

The first line of the trace starts with \hbox or \vbox, followed by the dimensions (height, depth,
width; the unit is ‘pt’ by default), optionnaly followed by ‘shifted 27.1’ if the the box is shifted,
and by ‘glue set 0.19’ if the glue has to be stretched or shrinked. After that, you will see the
content of the box, one line per item (no more than \showboxbreadth lines are printed per box),
each item is preceded by a context (a sequence of N dots at depth N , tokens at depth greater
than \showboxdepth are not shown). In the box, you can see things like ‘\penalty -51’ or
‘\kern 28.45274’ or ‘\glue 3.0 plus 1.0’ or ‘\glue(\baselineskip) 2.28015’ (this last glue is
inserted automatically by TEX, it knows where it comes from, so that the name can be printed),
\special{...}, \write4{\indexentry...}. The interesting point in the last object is that we
have a list of tokens that will be evaluated later (when the page is shipped out). Tralics does not
put \kern, \penalty, neither \glue in a box. The \special command is not implemented; finally
\write is never delayed. In our example, the box contains four items, which are characters (TEX
shows a command that contains the name of the font; in our example, the font is something like
‘ecrm1000’).

In Tralics, you would see the same characters, but no font and no size. On the other hand, you
can say something like

\everyxbox{Test}
\setbox0=\xbox{foo}{1\xbox{bar}{2} %

\AddAttToLast{x}{1}\AddAttToCurrent{y}{2}3}
\showbox0

and you will see

<foo y=’2’>Test1<bar x=’1’>Test2</bar> 3</foo>

INRIA

Tralics, a LATEX to XML translator Part I 33

Note the two commands that were used to add attributes to the current XML elements, and the last
constructed one. We have added another command, \XMLaddatt that takes as optional argument
the id of the element to which the attribute value pair should be added. This is an integer;
if omitted, the current element is used. You can use \XMLlastid or \XMLcurrentid (there are
references to variables, you must use \the if you want the value). If you want to overwite an
existing attribute pair, you must use a star. The previous example can be written like this:

\everyxbox{Test}
\setbox0=\xbox{foo}{1\xbox{bar}{2} %

\XMLaddatt[\the\XMLlastid]{x}{1}\XMLaddatt[\the\XMLcurrentid]{y}{22}%
\XMLaddatt[\the\XMLlastid]{x}{11}\XMLaddatt*{y}{2}3}

\showbox0

If \foo is any command then \show\foo will show its value. Here are some examples

\def\Bar#1#{#1} \show\Bar
\let\foo\par \show\foo
\renewcommand\foo[2][toto]{#1#2} \show\foo
\let\foo=1 \show\foo
\let\foo=_ \show\foo
\let\foo=\undef \show\foo
\show\bgroup

This is what Tralics prints (it differs sligtly from the LATEX output)

\Bar=macro: #1#->#1.
\foo=\par.
\foo=opt \long macro: toto#2->#1#2
\foo=the character 1.
\foo=subscript character _.
\foo=undefined.
\bgroup=begin-group character {.

In the case of a variable, you can say \the\foo, the result is a token list that represents the value
of \foo (if \foo is a token list, \the\foo is the value of \foo, otherwise, it is a list of characters).
The command \showthe will show the value, i.e. print on the terminal the token list returned by
\the. Example

\def\Show#1{\the#1\showthe#1}

\widowpenalty=3 \Show\widowpenalty

\parindent1.5pt \Show\parindent

\leftskip = 1pt plus 2fil minus 4fill \Show\leftskip

\thinmuskip = 3mu plus -2fil minus 4fill \Show\thinmuskip

\count0=17 \Show{\count0}

\dimen0=17pt \Show{\dimen0}

\skip0=17pt plus 1 pt minus 2pt \Show{\skip0}

\muskip0=17mu plus 1 mu minus 2mu \Show{\muskip0}

\Show{\catcode‘\A}

\Show{\lccode‘\B}

\Show\inputlineno

\font\xa=cmr10 at 11truept

\fontdimen6\xa = 11pt \hyphenchar\xa=‘\-

\Show{\fontdimen6\xa}

\Show{\hyphenchar\xa}

\chardef\foo25

\Show\foo

\Show\xa

\toks0={\foo = \foo} \def\foo{foo}

\Show{\toks0}

RT n° 309

34 José Grimm

This is what Tralics prints on the screen. In the case of muglue, the output should use mu
instead of pt.

\show: 3

\show: 1.5pt

\show: 1.0pt plus 2.0fil minus 4.0fill

\show: 3.0pt plus -2.0fil minus 4.0fill

\show: 17

\show: 17.0pt

\show: 17.0pt plus 1.0pt minus 2.0pt

\show: 17.0pt plus 1.0pt minus 2.0pt

\show: 11

\show: 98

\show: 333

\show: 11.0pt

\show: 45

\show: 25

\show: cmr10

\show: \foo = \foo

The typeset result is: 31.5pt0.0pt0.0pt1717.0pt17.0pt plus 1.0pt minus 2.0pt17.0pt plus 1.0pt minus
2.0pt119833411.0pt 45 25cmr10 foo= foo.

In the case of \the\foo, \showthe\foo, \advance\foo, \multiply\foo, \divide\foo, the
token that follows the first command is fully expanded.

2.5 All the variables

All variables (exceptions will be given later) are in the table of equivalents: this table contains the
current meaning of quantities that are saved/restored by the grouping mechanism of TEX. In TEX
this table is divided into six parts; in Tralics, the layout is slightly different, for instance, because
TEX makes a heavy using of glue (each space character produces a glue item), while Tralics ignores
them completely. This big table contains the following objects

1. the current equivalent of single character control sequences (for ~ as well as \~);

2. the hash table (in Tralics, there are two such tables, if the command \foo produces <bar
gee=’true’>, the three strings ‘bar’, ‘gee’ and ‘true’ are in a special table).

3. all glue parameters.

4. all quantities that fit on 16 bits.

5. all integers.

6. all dimensions.

The glue parameters are the following (unused by Tralics, initialised to 0, except \fill).

• \lineskip: interline glue if \baselineskip is infeasible.
• \baselineskip: desired glue between baselines.
• \parskip: extra glue just above a paragraph.
• \abovedisplayskip: extra glue just above displayed math.
• \belowdisplayskip: extra glue just below displayed math.
• \abovedisplayshortskip: glue above displayed math following short lines.
• \belowdisplayshortskip: glue below displayed math following short lines.
• \leftskip: glue at left of justified lines.

INRIA

Tralics, a LATEX to XML translator Part I 35

• \rightskip: glue at right of justified lines. LATEX uses \leftskip and \rightskip for
commands like \centering, \raggedright etc. Unused by Tralics. On the other hand there
is \nocentering, whose effect is the same as setting both leftskip and rightskip to zero.

• \topskip: glue at top of main pages.
• \splittopskip: glue at top of split pages.
• \tabskip: glue between aligned entries.
• \spaceskip: glue between words.
• \xspaceskip: glue after sentences.
• \parfillskip: glue on last line of paragraph.
• \thinmuskip: thin space in math formula.
• \medmuskip: medium space in math formula.
• \thickmuskip: thick space in math formula.
• \itemsep: defined by LATEX. Rubber space between successive items in a list.
• \labelsep: defined by LATEX. The space between the end of the label box and the text of

the item in a list.
• \parsep: defined by LATEX. Rubber space between paragraphs within an item.
• \fill: defined by LATEX. Holds 0pt plus 1fill. You should not modify it.

The token parameters are the following (initialy empty; unused by Tralics unless stated other-
wise):

• \parshape: for funny paragraphs (not really a token list).
• \output: user defined output routine.
• \everypar: tokens inserted by TEX at start of every paragraph.
• \everymath: tokens inserted by TEX and Tralics at the start of every non-display math

formula.
• \everydisplay: tokens inserted by TEX and Tralics at the start of every display math for-

mula.
• \everyhbox: tokens inserted by TEX and Tralics at the start of every \hbox.
• \everyvbox: tokens inserted by TEX and Tralics at the start of every \vbox.
• \everyxbox: tokens inserted by Tralics at the start of every \xbox.
• \everyjob: tokens inserted by TEX and Tralics at the start of every job. This must be

defined by the format (for TEX), otherwise it is useless; in Tralics, you must put everyjob
="\something{like this}" in the configuration file.

• \everycr: tokens inserted by TEX after every \cr or non redondant \crcr.
• \errhelp: tokens that will be printed by TEX in case of user-error.

The integer parameters are the following. These parameters are zero, unless stated otherwise.

• \pretolerance: badness tolerance before hyphenation (initialised to 100 by Tralics).
• \tolerance: badness tolerance after hyphenation (initialised to 200 by Tralics).
• \linepenalty: amount added to the badness of every line in a paragraph.
• \hyphenpenalty: penalty for break after discretionary hyphen.
• \exhyphenpenalty: penalty for break after explicit hyphen.
• \clubpenalty: penalty for creating a club line at a bottom of a page.
• \widowpenalty: penalty for creating a widow line at top of page.
• \displaywidowpenalty: ditto, just before a display.
• \brokenpenalty: penalty for breaking a page at a broken line.
• \binoppenalty: penalty for breaking after a binary operation in a math formula.
• \relpenalty: penalty for breaking after a relation in a math formula.

RT n° 309

36 José Grimm

• \predisplaypenalty: penalty for breaking just before a displayed formula.
• \postdisplaypenalty: penalty for breaking just after a displayed formula.
• \interlinepenalty: additional penalty for a page breal between lines.
• \doublehyphendemerits: demerits for for consecutive broken lines.
• \finalhyphendemerits: demerits for a penultimate broken line.
• \adjdemerits: demerits for adjacent incompatible lines.
• \mag: magnification ratio, times 1000.
• \delimiterfactor: ratio for variable-size delimiters.
• \looseness: change to the number of lines in a paragraph.
• \time: current time of day. Number of minutes since midnight, computed by Tralics at start

of run.
• \day: current day of the month (between 1 and 31).
• \month: current month of the year (between 1 and 12).
• \year: current year of our Lord. The initial values of \time, \day, \month, \year, are

printed in the transcript file by Tralics in the following format: 9/12/2004 19:03:56
• \showboxbreadth: maximum items per level when boxes are shown (when Tralics shows the

content of a box, it always shows everything).
• \showboxdepth: maximum level when boxes are shown (when Tralics shows the content of a

box, it always shows everything).
• \hbadness: hboxes exceeding this badness will be shown.
• \vbadness: vboxes exceeding this badness will be shown.
• \pausing: pause after each line is read from a file. In Tralics there is no interaction with the

user.
• \tracingonline: show diagnostic output on terminal. In verbose mode, this variable, and

some other ones are set to a non-zero value, as explained in section 6.5.
• \tracingmacros: show macros as they are being expanded.
• \tracingstats: show memory usage if TEX knows it.
• \tracingparagraphs: show line-break calculations.
• \tracingpages: show page-break calculations.
• \tracingoutput: show boxes when they are shipped out.
• \tracinglostchars: show characters that aren’t in the font.
• \tracingcommands: show command codes.
• \tracingrestores: show equivalents when they are restored.
• \uchyph: hyphenate words beginning with a capital letter.
• \outputpenalty: penalty found at current page break.
• \maxdeadcycles: bound on consecutive dead cycles of output.
• \hangafter: hanging indentation changes after this many lines.
• \floatingpenalty: penalty for insertions heldover after a split.
• \globaldefs: override \global specifications.
• \fam: current family.
• \escapechar: escape character for token output. Initialised by Tralics to backslash.
• \defaulthyphenchar: value of \hyphenchar when a font is loaded.
• \defaultskewchar: value of \skewchar when a font is loaded.
• \endlinechar: character placed at the right end of the buffer when reading a new line.

Initialised by Tralics to CR (ascii 13).
• \newlinechar: character that prints as a LF. Initialised by Tralics to LF, but not used.
• \language: the current set of hyphenation rules. For Tralics, 0 means english, 1 means

french, 2 means german, and 3 stands for any other language.

INRIA

Tralics, a LATEX to XML translator Part I 37

• \lefthyphenmin: minimum left hyphenation fragment size.
• \righthyphenmin: minimum right hyphenation fragment size.
• \holdinginserts: do not remove insertion nodes from \box255.
• \errorcontextlines: maximum intermediate line pairs shown. In Tralics, the context of an

error is not shown.
• \lastpenalty: read only variable; it contains the value of the current \penalty (always zero

in Tralics).
• \badness: read only variable; it contains the current badness (always zero in Tralics).
• \inputlineno: read only variable; it contains the current input line number.
• \XMLlastid: Read only variable. It contains the unique identifier of the most recently created

XML element.
• \XMLcurrentid: Read only variable. It contains the unique identifier of the current XML

element.
• \FPseed. This is defined only when the FP package is loaded.

The counters defined in Tralics are the following. The counters are not used, but you can say
\renewcommand\thepage{...}, this is not an error.

• page. This is \count0. Tralics initialises it to 1.
• enumi, enumii, enumiii, enumiv: for enumerations.
• part

• subsection

• subsubsection

• paragraph

• subparagraph.

The dimension parameters are the following:

• \parindent: indentation of paragraphs.
• \mathsurround: space around math in text.
• \lineskiplimit: threshold where \baselineskip switches to \lineskip.
• \hsize: line width in horizontal mode.
• \vsize: page height in vertical mode.
• \maxdepth: maximum depth of boxes on main pages.
• \splitmaxdepth: maximum depth of boxes on split pages.
• \boxmaxdepth: maximum depth of explicit vboxes.
• \hfuzz: tolerance for overfull hbox messages.
• \vfuzz: tolerance for overfull vbox messages.
• \delimitershortfall: maximum amount uncovered by variable delimiters.
• \nulldelimiterspace: blank space in null delimiters.
• \scriptspace: extra space after subscript or superscript.
• \predisplaysize: length of text preceding a display.
• \displaywidth: length of line for displayed equation.
• \displayindent: indentation of line for displayed equation.
• \overfullrule: width of rule that identifies overfull hboxes.
• \hangindent: amount of hanging indentation.
• \hoffset: amount of horizontal offset when shipping pages out.
• \voffset: amount of vertical offset when shipping pages out.
• \emergencystretch: reduces badnesses on final pass of line-breaking.
• \z@: You should forget that this is a variable, and use it only as the constant zero.

RT n° 309

38 José Grimm

• \evensidemargin: defined by LATEX, left margin for even pages.
• \oddsidemargin: defined by LATEX, left margin for odd pages.
• \leftmargin: defined by LATEX. Space between the left margin of the page and the left

margin of the text. Depends on the list level.
• \rightmargin: defined by LATEX. Similar to \leftmargin, but for the right margin.
• \leftmargini: defined by LATEX. Value of left margin for a list at level one.
• \leftmarginii: defined by LATEX. Value of left margin for a list at level two.
• \leftmarginiii: defined by LATEX. Value of left margin for a list at level three.
• \leftmarginiv: defined by LATEX. Value of left margin for a list at level four.
• \leftmarginv: defined by LATEX. Value of left margin for a list at level five.
• \leftmarginvi: defined by LATEX. Value of left margin for a list at level six.
• \itemindent: defined by LATEX. Extra indentation added to the horizontal indentation of

the text part of the first line of an item in a list.
• \labelwidth: defined by LATEX. Nominal width of the box containing the label of an item.
• \fboxsep: defined by LATEX. Space left between the edge of the box and its content produced

by \fbox or \framebox.
• \fboxrule: defined by LATEX. Width of line produced by \fbox or \framebox.
• \epsfxsize. Used for including images.
• \epsfysize. Used for including images.
• \unitlength. Used for the picture environment. Initialised by Tralics to 1pt.
• \textwidth. Width of the text. Initialised by Tralics to 427pt. More or less 15cm.
• \textheight. Height of the text. Initialised by Tralics to 570pt. More or less 20cm.
• \columnwidth: this is defined by LATEX as containing the current line width; in a two-column

document this is the half of \textwidth minus \columnsep, otherwise it is \textwidth.
LATEX copies this value in \hsize is some cases (for instance, when switch between one
column and two columns).

• \linewidth: this is defined by LATEX as containing the current line width (typically, this
is \columnwidth minus the margins introduced by list environment). In Tralics, these two
commands are undefined, except that you can use it as a unit of measure inside the optional
argument of \includegraphics for ‘height’ and ‘width’: the value is 15cm.

The registers are the following

• \skip xxx: table of 256 “skip” registers.
• \muskip xxx: table of 256 “muskip” registers.
• \toks xxx: table of 256 token lists.
• \box xxx: table of 256 box registers.
• \wd xxx: Width of box N. If you ask for the value of the width, you will get zero. If you

modify the width, nothing happens.
• \ht xxx: Height of box N.
• \dp xxx: Depth of box N.
• \delcode xxx: table of 256 delimiter code mappings. Unused by Tralics.
• \catcode xxx: table of 256 category codes. In Tralics, \{}$&#^_~% have standard category

codes. All letters have category code 11. Space, tabulation, non-breaking space (character
160) have category 10. All other characters have category 12.

• \lccode xxx: table of 256 lowercase equivalents.
• \uccode xxx: table of 256 uppercase equivalents. In Tralics, iso-8859-1 is assumed. Thus the

lc-code of Î is î, the uc-code of î is Î. More precisely, the lccode of 206 is 238, and vice-versa.
• \sfcode xxx: table of 256 spacefactor mappings. Not used by Tralics.
• \mathcode xxx: table of math mode mappings. Not used by Tralics.

INRIA

Tralics, a LATEX to XML translator Part I 39

2.6 Using the variables

There are three routines defined in Tralics, named scanint, scandimen and scanglue that read
a integer, a dimension and glue. Assume that \count0 is 1, \parindent is 3pt, and you say
\skip\count0=2pt plus \parindent\relax. The transcript file of Tralics will contain

[346] \skip\count0=2pt plus \parindent \relax
{\skip}
+scanint for \count->0
+scanint for \skip->1
+scanint for \skip->2
+scandimen for \skip ->2.0pt
+scandimen for \skip ->3.0pt
{scanglue 2.0pt plus 3.0pt}
{\relax}

The exact rules will be given later. The following happens here: After \skip there is an integer,
an optional equals sign, then glue. After \count there has to be an integer. Thus, scanint reads an
integer for \count, and an other one for \skip. A glue item is formed of a dimension (the natural
width), optionally followed by ‘plus’ and a dimension (the stretch part), optionally followed by
‘minus’ and a dimension (the shrink part). In this case, there is no stretch part, because of \relax.
The second dimension comes from the variable \parindent; the first dimension is explicit: the
integer part of the dimension is read by scanint.

An integer can be explicit or implicit: an implicit integer comes from a command (it can be a
variable like \date, or a constant like \active). In all other cases, the number can be followed by
one optional space. In general, the number will be given as a non-empty sequence of digits, like
01239; you can specify digits in base 16 as "FF, this is 255, in this case, letters between A and F
(uppercase, category 11 or 12) are allowed. You can specify digits in base 8 as ’177, this is 127.
You can also specify a digit as a character: ‘A is 65. You can say ‘\A, this is also 65; note that a
backslash is needed in cases like ‘\%. Only one letter is allowed in the command name, digits and
quotes must have category 12.

An integer or a dimension can be preceded by a sign. This is a sequence of arbitrary length,
formed of spaces or +12 or -12 signs. If the number of minus signs is odd, this changes the sign of
the result. Hence if you say \count0=+-+’77 and \count1=-\count0, this will put 63 in \count1.

A dimension can be implicit or explicit. You can say \count0=\dimen0: in this case the value
of the dimension in sp units is put in the count register. You can say dimen0=\skip0: the shrink
and stretch part of the glue is ignored. You can also say \count0=\skip0 (guess what happens).
It is not possible to convert (directly) an integer to a dimension or glue. An explicit dimension
is formed of a factor and a unit of measure. The factor can be an integer (hence -’77pt is a
valid dimension), or a decimal number (given in base ten, like 1.5, or 1,5). Units can be pt,
pc, in, bp, cm, mm, dd, cc, sp. The case is irrelevant: Pt, pt, PT and pT are valid, the category
code may be anything (it cannot be active, because everything is fully expanded). Units shown
above can be preceded by true (note that Tralics ignores magnification, thus the ‘true’ prefix).
Units can also be em or ex. These values depend on the current font. Tralics always assumes
that the font is a ten point one. A unit of measure can also be an integer, a dimension, or glue.
For instance \dimen0=1\count0 will multiply the value of \count0 by one. This is the dual to
\count0=\dimen0. You can say \parindent=1.2\parindent if you want to increase it by 20%.

A glue is formed of three parts: a dimension, a stretch part, and a shrink part. The stretch
part can be a dimension (it can use special units like ‘fil’, ’fill’ and ’filll’, these are called infinite,
of first, second and third order). You can say \skip0=0pt plus 1fil. For some strange reasons,
after fil you can put a second L, and a third one. As is the case with other units like ex or em,
the case is irrelevant. Spaces are ignored after the L. Moreover, TEX continues scanning for an L

RT n° 309

40 José Grimm

after having found ‘filll’; if found, it signals the following error: Illegal unit of measure (replaced
by filll). In the case of \skip0=2\skip0, the equals sign is followed by a dimension: there is a
factor 2, and a unit (the fixed part of \skip0). As a consequence, this multiplies by two the fixed
part of the glue, and sets the shrink and stretch part to zero (unless the code above is followed by
‘plus’ or ‘minus’).

Note: if you say \chardef\foo=123\foo, then \foo is made equal to 123: the first thing that
\chardef does it to make \foo the same as \relax, so that scanning stops after digit 3. On
the other hand in the case of \count0=3\ifnum... the conditional is evaluated while reading the
number, thus before the assignment is complete. In particular, if the test compares \count0 with
something else, the value might be different from three. Assume that \count0 and \count13
contain the value 7. What happens if you say: \count0=2\ifnum\count0=\count13\fi4 ? It will
put 2 in \count0 and typeset 4. In fact, after the digit 3 is sensed, the \fi token terminates the
\ifnum. It does so by inserting a \relax token, and a second \fi token. The effect of \relax
is to finish reading the number. Thus \ifnum can compare the two values. If these two values
are different, the expansion of the conditional is empty, and 24 is put in \count0. But the test is
true, and TEX reads again the inserted \relax: it has as effect to stop scanning of the number 2.
After that the inserted \fi is read. The transcript file of Tralics might look like this (note the two
\fi3532):

[3506] \count0=2\ifnum\count0=\count13\fi4
{\count}
+scanint for \count->0
+\ifnum3532
+scanint for \count->0
+scanint for \ifnum->7
+\fi3532
+scanint for \count->13
+scanint for \ifnum->7
+iftest3532 true
+scanint for \count->2
{\relax}
+\fi3532
Character sequence: 4 .

A token list is a like a command without arguments. You can say \foo={ABC} if you want to
put something it it, and \the\foo if you want to use the list. The equals sign is optional. You
can insert a \relax between the equals sign and the opening brace. In the example that follows,
you can see that, after the optional equals sign, you can put as many spaces or \relax tokens as
you like; tokens are expanded, as long as no brace is found. The last line of the example shows
that the token that follows \the is expanded (if \the itself is expanded). Thus, the last line adds
some tokens at the end of the list. Note the space in \A: without it, TEX would see something
like \the\toks0\the\toks0, and the second \the is expanded by the scanint routine, so that this
inserts in \toks0 the content of \toks01 followed by a sharp sign.

\def\myrelax{ \relax}
\def\A{\toks0 }
\A=\relax\myrelax{1#}
\A=\expandafter{\the\A \the\A}\showthe\toks0

The \showthe command prints ‘1##\the \A’, but only a single # is in the list.

We have seen on page 30 how to use \cons to add some tokens to a command via \edef. The
code that follows adds tokens to a list. The command is call \addto@hook in LATEX and is long,
but the body is the same.

INRIA

Tralics, a LATEX to XML translator Part I 41

\def\addtohook#1#2{#1\expandafter{\the#1#2}}
\newtoks\foo
\addtohook{\foo}{\do{A}}\addtohook{\foo}{\do{B}}\addtohook{\foo}{\do{C}}

The command \newtoks defines its argument as a reference to a token register, for instance
\toks23. Whenever you use \addtohook with \A as first argument, it is like the assignment
\A=\expandafter{\the\A...} shown in the previous example. Other example

\T\expandafter{\L}
% \xdef\L{...\the\T}
\xdef\L{\catcode\the\count@=\the\catcode\the\count@\relax\the\T}

Let’s assume that \L is a parameterless command, and \T a reference to a token register. The first
line puts the value of \L in \T. The second line explains what we do in the third one. Remember
that \xdef expands everything in the body. All tokens are fully expanded (except that the result
of \the is not expanded). As a result, this will put some tokens in front of \L. Let’s explain which
tokens. We assume that \count@ is a reference to some counter, that the counter contains 65, this
is the ASCII code of the upper case letter A, and we assume that the category code is 11. The first
token is \catcode, it cannot be expanded, it will be left unchanged. The second token is \the.
It can be expanded, the result is the value of the counter, the two characters 65. The equals sign
cannot be expanded. Then comes \the; this expands what follows. The \catcode command reads
a number. Because of \the, it reads two digits 6 and 5, and looks at the \relax. Note: this \the
is useless, this example revealed a bug in Tralics. This is the log of Tralics. The last line indicates
the value of \L:

[18] \xdef\L{\catcode\the\countx=\the\catcode\the\countx\relax\the\T}
{\xdef}
{\the}
{\the \countx}
\the->65.
{\the}
{\the \catcode}
{\the}
{\the \countx}
\the->65.
+scanint for \catcode->65
\the->11.
{\the}
{\the \T}
\the->\catcode 48=12\relax .
{\def \L ->\catcode 65=11\relax \catcode 48=12\relax }

There are some advantages in putting items in a box. For instance, if it takes a long time to
translate a piece of text that will be used several times, it can save some time. A second possibility
is to create a box in a given context and use it in another one (this can be used for instance to
put verbatim material in a section title; not in the toc, because the toc is obtained by reading
characters from a file, but the box can be used for page headings). Finally, one can put some
text in a box, measure the size of the box, and do some action according to the size of the box;
it is not possible to measure a box in Tralics because no typesetting is done. Note that there is
a limited number of boxes (there is a limit on the number of token registers, but you can always
put your token list in a macro; in the same fashion, it is always possible to store integers and
dimensions into token lists, i.e., in commands). Note that, if you want to implement arithmetics
on big numbers, if you represent a number x =

∑

xkBk as a sequence of commands, try to access
to xk via \csname x\the\k\endcsname, and parse this as an integer, then you get something
inefficient. It is much more efficient to say \fontdimen\k\x (there is a TEX file by Denis Roegel
that computes thousands of digits of π using font tables as auxiliary memory).

RT n° 309

42 José Grimm

2.7 Counters

The most useful registers are counters. Rather than saying ‘\count16=0’, at the risk of destroying
variables used by other packages, you should use named counters, together with an allocation
scheme. We have seen that ‘\newcount\foo’ does that. In LATEX, we can do more. If you say
‘\newcounter{foo}[bar]’ then a counter foo is defined that depends on bar. Let’s assume, for
simplicity, that the allocation mechanism allocates count register 17. Then \c@foo is a reference
to ‘\count17’. It is assumed that no package defines a command that starts with c@, or p@ or
cl@, so that \c@foo, \cl@foo, and \p@foo are reserved for the counter foo. In LATEX, there is a
command \value that takes one argument and expands to \csname c@#1\endcsname. The same
command exists in Tralics, but it signals an error in the case where \c@foo is not a reference to
a count register. You can say ‘\value{foo}=10’, this will put 10 into the counter, you can say
‘\the\value{foo}’, this will typeset the value of the counter. You should not use this low-level
TEX syntax. In fact, if you say ‘\value{foo}=10\the\value{foo}’ this will put 103 into the
counter (assuming that it contained 3). Compare this with \parindent=10\parindent where
there is an implicit multiplication.

Assignment should be done via ‘\setcounter{foo}{10}’. This is the same as ‘\global\value
{foo}=10\relax’ (plus a check that ‘foo’ is a counter). The \relax has as effect to stop scanning
the number. The \global makes the assignment global. In the same fashion, ‘\addtocounter
{foo}{4}’ is the same as ‘\global\advance\value{foo}4\relax’. You can say something like
‘\parindent=\value{foo}\xbar’, this puts in \parindent the value of \xbar (let’s assume it is
a dimension) multiplied by the the value of the foo counter. If you want to typeset the value of
the counter, you say ‘\number\value{foo}’. You can also use \romannumeral or \Romannumeral
(this last command is not defined by TEX) instead of \number (it has to be followed by a number,
for instance \value...). The following commands take as argument the name of a counter, and
typeset the value: \arabic (it gives 7), \roman (it gives vii), \Roman (it gives VII), \alph (it gives
g), \Alph (it gives G), \fnsymbol (it gives ∗∗). The following commands: \@arabic, \@roman,
\@Roman, \@alph, \@Alph, \@fnsymbol are used internally by LATEX. They are defined in Tralics
for compatibility reasons. Hence ‘\number\value{foo}’ is the same as ‘\@arabic\c@foo’ and the
same as ‘\arabic{foo}’; using \arabic is the best choice.

Three operations are defined: \advance that increments a counter (or a dimension, or a glue),
\multiply that multiplies it by an integer, and \divide that divides it by an integer. In the case
of integer division, TEX divides the absolute values, and adds the required sign to the quotient (the
remainder is not computed). The following piece of code puts in \count0 the number of hours and
in \count2 the numbers of minutes (quotient of remainder of the division of \time by 60).

\count0\time
\divide\count0 60
\count2=-\count0
\multiply\count2 60
\advance\count2 \time

You can say \newlength\foo. This allocates a new skip register. You can use \setlength and
\addtolength, in the same way as \setcounter and \addtocounter. However, assignments are
local. Using plain TEX syntax, you can say:

\dimen0=2mm\dimen1=0.2cm
\advance\dimen0 by-\dimen1
\count0=\dimen0

Using LATEX syntax

\newcounter{foo}\newlength\lenA\newlength\lenB
\setlength{\lenA}{2mm}
\setlength\lenB{0.2cm}

INRIA

Tralics, a LATEX to XML translator Part I 43

\addtolength\lenA{-\lenB}
\setcounter{foo}{\lenA}

After this operation, the counter foo contains 5. This means that the difference between 2mm and
0.2cm is 5sp (two thousands of a micrometer). Note: Tralics uses exactly the same algorithms as
TEX, hence produces the same results.

Appendix A.3.1 of [6] describes the calc package. It allows to write commands like that:

\newcommand{\printtime}{%
\setcounter{hours}{\time/60}%
\setcounter{minutes}{\time-(\value{hours}*60)}
\thehours h \theminutes min}

\def\today{\ifcase\day\or
1st\or 2nd\or 3rd\or 4th\or 5th\or
6th\or 7th\or 8th\or 9th\or 10th\or
11th\or 12th\or 13th\or 14th\or 15th\or
16th\or 17th\or 18th\or 19th\or 20th\or
21st\or 22nd\or 23rd\or 24th\or 25th\or
26th\or 27th\or 28th\or 29th\or 30th\or
31st\fi~\ifcase\month\or
January\or February\or March\or April\or May\or June\or
July\or August\or September\or October\or November\or
December\fi\space \number\year}

The time is \printtime, \today.

In this case, the result of Tralics could be: ‘The time is 16h 37min, 7th December 2004.’

You can do operations on integers like this:

\newcounter{Ac}
\setcounter{Ac}{(1+2)*(3+4)-20} %% \theAc=1
\addtocounter{Ac}{(1*2)+(3*-4)+(34/7)} %% \theAc=-5

and on dimensions:

\newlength{\Bc}
\setlength{\Bc}{(1cm+2cm)*(3+4)-200mm} %%\the\Bc=28.4526pt
% exact results should be 1.0pt
\setlength\Bc{\the\Bc*\ratio{25.4pt}{722.7pt}} %%\the\Bc=0.99985pt
\Bc=1in \setlength\Bc{\the\Bc * 100 / 7227} %%\the\Bc=0.99998pt
\Bc=1in \setlength\Bc{\the\Bc * \real{ 0.01383700013837}} %%\the\Bc=1.00018pt
\Bc=1cm \setlength\Bc{\the\Bc / \real{28.452755}} %%\the\Bc=0.99985pt
\Bc=1cm \setlength\Bc{\the\Bc * \ratio{254pt}{7227pt}} %%\the\Bc=0.99985pt
\Bc=1in \setlength\Bc{\the\Bc / \ratio{7227pt}{100pt}} %%\the\Bc=1.00018pt
\Bc=1IN \setlength\Bc{\the\Bc / \ratio{7227PT}{100pT}} %%\the\Bc=1.00018pt

In LATEX, there is a command called \stepcounter. Its effect is to increment a counter, and
reset all counters that depend on it (see example below). There is also \refstepcounter whose
purpose is to define the current label. This is not implemented in Tralics (see later for how \label
works). The idea is that, for a counter ‘foo’, the printed value of the label is defined by ‘\p@foo
\thefoo’. Here \thefoo is normally ‘\arabic{foo}’, but the quantity can be redefined. For
instance, the book class has \renewcommand \thesection {\thechapter.\@arabic\c@section}
(the article class has no chapter, and does not redefine \thesection). Both book and article
classes say: \renewcommand \thesubsection {\thesection .\@arabic\c@subsection}.

Here we define some counters, and make them depend on other counters.

\newcounter{toto} \setcounter{toto}{10}
\newcounter{titi}[toto] \setcounter{titi}{20}

RT n° 309

44 José Grimm

\newcounter{tata}[titi] \setcounter{tata}{30}
\newcounter{tutu}[toto] \setcounter{tutu}{40}

Here we call \stepcounter. The typeset result should be 11101=11101.

\stepcounter{toto} % kills titi, tutu
\stepcounter{tata} %%% \thetata=31,
\stepcounter{titi} %% \thetata=0 % titi=1
\stepcounter{tutu}
\thetoto\thetiti\thetata\thetutu=11101

The magic is accomplished by the following command:

\def\@addtoreset#1#2{\expandafter\@cons\csname cl@#2\endcsname {{#1}}}

The first argument is the counter to define (for instance ‘tutu’), and the second argument is the
dependent counter (for instance ‘toto’). The \@cons command is defined like on page 30. It
modifies the command \cl@toto by adding \@elt{tutu}. If you say \stepcounter{toto}, then
LATEX executes ‘\let\@elt\@stpelt \csname cl@#1\endcsname’. Here is a part of the transcript
file of Tralics that shows what happens (you won’t see the \csname, because characters needed for
\c@toto and \cl@toto are read and expanded only once by Tralics.)

[1198] \stepcounter{toto}

\stepcounter->\global \advance \c@toto 1\relax {\let \@elt \@stpelt \cl@toto }

{\global}

{\global\advance}

+scanint for \c@toto->1

{\relax}

{begin-group character {}

+stack: level + 3 for brace

{\let}

{\let \@elt \@stpelt}

\cl@toto ->\@elt {titi}\@elt {tutu}

\@elt->\global \c@titi 0\relax

{\global}

{\global\c@titi}

+scanint for \c@titi->0

{\relax}

\@elt->\global \c@tutu 0\relax

{\global}

{\global\c@tutu}

+scanint for \c@tutu->0

{\relax}

{end-group character }}

+stack: killing \@elt

+stack: level - 3 for brace

[1199] \stepcounter{tata}

\stepcounter->\global \advance \c@tata 1\relax {\let \@elt \@stpelt \cl@tata }

{\global}

{\global\advance}

+scanint for \c@tata->1

{\relax}

{begin-group character {}

+stack: level + 3 for brace

{\let}

{\let \@elt \@stpelt}

\cl@tata ->

{end-group character }}

INRIA

Tralics, a LATEX to XML translator Part I 45

+stack: killing \@elt

+stack: level - 3 for brace

2.8 Fonts

One of the question we can ask is: what does \it do? As explained above, this is an unofficial
command, thus could be implemented to do anything. Let’s assume that it is defined in LATEX2.09
compatibility mode. It is then possible to explain what happens, but it is harder to explain what
Tralics should do. A software like latex2html (that we studied carefully when implementing the
first version of Tralics in Perl) uses a lot of energy in order to translate font changes properly. It
is however very difficult to tell it that \french is a similar command (in fact, what we wanted
is more than just finding the scope of the \french, we also wanted French syntax rules to apply,
we wanted dashes instead of bullets in lists, etc.). In this paragraph, we shall explain all the gory
details concerning fonts (however, look at [6] for what is in a .fd file).

One big table in TEX is the table of fonts: there are N fonts with N characters in them
(currently N = 256, and this is a small limit, in Ω, this value is 216; the dvi format specifies
N = 232). A book like [6] uses lots of fonts indirectly, via inclusion of PostScript files. Note that
metric files designed for Ω cannot be read by TEX. The hyphenation algorithm considers as a word
only sequences of characters from the same font (hence 256 characters per font is a hard limit). A
metric file contains all that it needed for TEX to typeset a character; it does not contain glyphs.
Essentially, it contains three tables, indicating for each character it height, its depth and its width.
There are two other tables, the lig/kern table, and the kern table, that indicate, for instance in the
case VA that some negative space should be used to make the characters narrower, and in the case
of fi to use a single glyph instead of two. There is another table (useful only for math mode) that
explains how to construct, for instance, braces of various size. Finally, there are some parameters.
One parameter is the design size (the design size of a ten point font is 10pt), other parameters are
the slant, the width of a space (this is glue), the two values of ex and em, and extra space. Math
fonts have extra parameters, see [4, appendix G]. A font has two integer parameters: hyphen char,
and skew char. These values are not in the metric file: when the font is loaded TEX uses the values
of \defaulthyphenchar and \defaultskewchar. Note: Tralics does not read TFM files, it sets all
parameters to zero.

You load a font by saying \font\preloaded=cmr7 scaled \magstep4 or \font\foo=cmr10
at 12pt. Such a construction will read a file cmr7.tfm or cmr10.tfm and apply a scale factor (a
factor 2 in the first case, and 1.2, in the second case). A font like ecrm exists in size 5, 6, 7, 8, 9, 10,
10.95 (magstephalf), 12, 14.4, 17.28, 20.74, 24.88 (magstep 1, 2, 3, 4, and 5 respectively), 29.86 and
35.83. There are some slight differences between cmr10 at 12pt and cmr12 (see the TEXbook for
details). You can simply say \font\tenrm=cmr10. After that you use it like this {\tenrm test}.
This gives: test. You can use \fontdimen1\tenrm like any dimension. For instance, using \the
to typeset the value, we get 0.0pt for the slant, 3.33333pt plus 1.66666pt minus 1.11111pt for the
interword space, 4.30554pt for the ex-height, 10.00002pt for the quad,9 1.11111pt for the extra
space. Parameters for the current font are: 0.0pt for the slant, 3.33333pt plus 1.66666pt minus
1.11111pt for the interword space, 4.3055pt for the ex-height, 10.0pt for the quad, 1.11111pt for
the extra space. If you say

\fontencoding{T1}\fontfamily{cmr}\fontseries{m}%
\fontshape{n}\fontsize{10pt}{12pt}
\selectfont

you specify all font parameter, and you switch (from ‘ec-lmr10’) to the default ten point font

with T1 encoding, namely ‘ecrm1000’. The default font in this document uses ‘lmr’ as family.

9This is a bit more than ten points.

RT n° 309

46 José Grimm

The parameters are now: 0.0pt for the slant, 3.33252pt plus 1.66626pt minus 1.11084pt for the

interword space, 4.3045pt for the ex-height, 9.99756pt for the quad, 1.11084pt for the extra space.

As you can see, they are not exactly the same. However, the glyphs are similar. The current font
name can be printed via \fontname\font.

An important characteristic of a font is how glyphs are represented: For TEX, this is irrelevant,
since the dvi file contains only the metrics. However, the reader will see some black and white
pixels (of ink on a sheet of paper, or dots on a screen, or points on a wall projected by a beamer).
The metafont program produces bitmaps; if the resolution of these bitmaps is different from that
required by the printing device, some interpolation, extrapolation is required (this is sometimes
called ‘antialiasing’, it may involve colored pixels insread of black and white). In a PostScript file,
a font can be specified via different formats, Type1, Type3, TrueType etc. The simplest format
is Type3, namely bitmaps. Some software like Acrobat Reader prefer Type1 (a format in which
characters are defined by small programs). There is no direct way to produce a Type1 file from a
metafont file, so that not all TEX fonts exist in Type1. For instance, the computer modern fonts (in
version OT1) have been translated but not the T1 version (said otherwise, cmr10 exists in Type1
format, but not ecrm1000). In this docuemnt, we experiment the Latin Modern font family; it is
very similar to Computer Modern.

In the case of a format like plain TEX, fonts are used according to the following scheme. First
you define fonts like \tenrm, in three sizes (thus, you define \sevenrm, \fiverm), and different
variants (say \teni, \tensy, \tenex, \tensl, \tentt, etc). Then you say \textfont0=\tenrm,
\scriptfont0=..., \scriptscriptfont0=...: this defines family zero. You do the same for
family 1, 2, 3, etc. We shall see later how certain math symbols use a specified family, in other
cases the family specified by the \fam variable is used (there are only 16 families available). The size
of a symbol is defined by the current style (displaystyle, textstyle, scriptstyle, or scriptscriptstyle).
Then you say \def\it{\fam4\tenit}. Thus \it has two effects: one is to switch to \tenit, the
second one is to set \fam to 4. Now, you can define a command \twelvepoint that modifies all the
fonts values, using larger values. Gusee what happens for a definition like \def\it{\temit\fam4}.

In the case of a format like LATEX, the situation is different. There are some high level com-
mands like \large, that are defined like \@setsize \large {14pt}\xiipt\@xiipt (note: infinite
recursion may be possible), and the \xiipt command is like the \twelvepoint command men-
tioned above. This is rather complicated. The situation became worse when people tried to replace
computer modern fonts by other fonts. We shall describe here only the user interface of the NFSS
(new font selection scheme).

We already mentioned that a important characteristic of the font is the encoding: We met OT1
(Original encoding by Knuth) and T1 (“Cork” encoding, similar to latin 1). There is an obsolete
OT2 encoding for cyrillic, and new ones: T2A, T2B, T2C. The companion mentions over twenty
standard font encodings. In the example of \showbox above, TEX told us that the current font
was \T1/cmr/m/n/10. The first two letters indicate the encoding. There are different families of
fonts. Assume that you use Computer Modern fonts (you do this by selecting a package; after
that, your whole document will be in computer modern, unless you use fonts selected via \font
or \selectfont). There are six sub-families: Roman, Sans, Typewriter, Fibonacci, Funny roman,
and Dunhill. The name of these families are: cmr, cmss, cmtt, cmfib, cmfr, cmdh. The default
family in this document is cmr. You can chose another family via the commands \rmfamily,
\ttfamily and \sffamily (no command is provided for the other families). The commands
\textrm, \textsf and \texttt take an argument and typeset it using the family. The commands
\rm, \sf, \tt do the same, but they reset the series to medium, and the shape to normal. The
series of a font can be: bold, bold extended, semibold, etc. In LATEX you have \mdseries and
\bfseries (you have also \textmd and \textbf, which are commands that take an argument; you
have also \bf that selects roman family, bold series, normal shape). The shape can be: normal,
italic, slanted, upright italic, small caps, etc. In LATEX we have \upshape, \itshape, \slshape,
and \scshape (and as, usual, \textup, \textit, \textsl and \textsc; there is also \it, \sl,

INRIA

Tralics, a LATEX to XML translator Part I 47

\sc). There are two commands \em (a declaration) and \emph (that takes an argument) that use
upright shape if the current font has a slant, and italics shape otherwise. These rules explain the
cmr/m/n part in the font. In fact, the ‘cmr’ part comes from the command \rmdefault, but these
commands are not implemented in Tralics.

There are two parameters that define the size of the font. First, document class options indicate
the size used by \normalsize. In our example it is 10pt. There are ten commands that change the
font size. In increasing order they are \tiny, \scriptsize \footnotesize, \small, \normalsize,
\large, \Large, \LARGE, \huge, and \Huge. There is a command \selectfont; its purpose is to
combine everything the result will be \T1/cmr/m/n/10. There is another process that converts
this to the font name ecrm1000, using font definition files.

In math formulas, you see things like α′ and ë, but never ‘á’ and ‘ë’. If you want an acute
accent you use \acute, if you want a double dot accent you say \ddot. In fact, the textfont used
for math is very often a 7bit font, without accented letters. If you want xème you should say
x$^{\grave{e}me}$, or perhaps x$^{\hbox{ème}}$ (this gives xème, letters are too big). A good
solution is xième, xième. In French, you say 1er, 1re, 1ers, 1res, 2e, 3es, etc.,
via 1\ier, 1\iere, 1\iers, 1\ieres, 2\ieme, 3\iemes. In English, you say 1st, 2nd, 3rd, 4th.

2.9 Spaces

In TEX spaces are ignored after a command like \foo, and a sequence of spaces is treated as a
single one. The exact rule is the following. There is a variable whose values can be N (start of
line), or M (middle of line) or S (when spaces are skipped). Whenever a line is read, TEX removes
every space character at the end of the line. It inserts the value of \endlinechar (provided this
is a valid character, an integer between 0 and 255). The state in N. Spaces are ignored if the
state is S or N; if the state is M, a space produces a space token, and the state is changed to S;
in this sentence a “space” is any character whose category code is 10. If TEX sees an end-of-line
character (category 5), it ignores all other characters on the current line. If the state is N (line was
empty), the tokeniser returns a \par token, if the state is M it returns a space token, otherwise
the character is ignored. Note: in Tralics, the space token produced by an end-of-line is a line-feed
character, this is to keep line breaks in the XML translation. If TEX sees a backslash (or any
character of category code 0), it reads a command; the state will be S if the character is a letter
or a space, it will be N otherwise. If TEX sees anything else, the state will be M.

For instance, if you say ‘x { } { } y’ the tokeniser sees 5 spaces. If you say \def\A{ }
and \def\B{ \A \A }, then the body of \A contains a space as well as the body of \B. Full
expansion of \B contains three spaces and x \B y contains four spaces. The command \space is
defined like \A above.

Spaces discarded by the tokeniser do not appear in the translation. However, spaces produced
by the tokeniser can be ignored in some cases. A typical example: a command can take a space
as argument, and ignore the argument. For instance \\ is a command that ignores spaces that
follow it using explicit scanning (i.e. \futurelet). We already mentioned that spaces between
arguments are generally ignored. Spaces can be ignored because you say \ignorespaces: the
effect of this command is to expand what follows, until a non-expandable token is seen. If it is a
space, it is ignored, and the process continues. A space can be ignored because of a syntax rule (for
instance, before an equals sign in an assignment). In LATEX you can see things like that \end{x}
\end{y} \end{z}, each ‘end(xxx)’ being on a line by itself: this produces a space, and the LATEX
environment mechanism is clever enough to remove these spurious spaces. It is also possible to
remove a space from typeset material via \unskip.

Spaces are ignored in math mode. The reason is that spaces are used to separate words, and
there are no words in math formulas. There are operators, and these operators know how much

RT n° 309

48 José Grimm

white space to use. In the case of x + y = z, on each side of the plus sign there is some glue, the
value comes from \medmuskip, it is 2.22 plus 1.11 minus 2.22; on each side of the equals sign there
is \thickmuskip, namely 2.77 plus 2.77 (the unit is pt).10 After the zed, there is a kern of value
0.4398. Note: the plus sign is followed by a penalty of 700, the equals sign by a penalty of 500.
Plain TEX defines

\thinmuskip=3mu
\medmuskip=4mu plus 2mu minus 4mu
\thickmuskip=5mu plus 5mu

In Tralics, constant values are used (expressed in terms of em units; one em is 18mu, in the example
above one em is 10pt). You can say \:, \> and \;. This produces a space (thin, medium, thick)
using the values given above. You can also use \!, this is the negative of thin space. The translation
of $A\:B\>C\;D\!E$ is:

<mrow><mi>A</mi><mspace width=’0.166667em’/>
<mi>B</mi><mspace width=’0.222222em’/>
<mi>C</mi><mspace width=’0.277778em’/>
<mi>D</mi><mspace width=’-0.166667em’/><mi>E</mi></mrow>

The \space command expands to a single space token. It may disappear in all cases where the
syntax says that a space is optional (because in general these rules imply expansion); in a case like
\let\foo\space, tokens are not expanded, and \foo is made equivalent to the current value of
\space. The \ command cannot be expanded. It starts a paragraph (if used in vertical mode).
It inserts some white space whose value is the same as if the current space factor where 1000. You
can use it after an abbreviation like Mr. in order to indicate that the dot is not an end of sentence
marker. You can also use it after a command like \TeX if you want to leave some space. In math
mode, Tralics interprets it as a space of width 6pt. The ~ character is usually active, its expansion
is \nobreakspace. This is defined in Tralics to translate to . You can say \quad or \qquad.
This inserts some space (the width is one or two em)11. If you say \hskip 1cm, this will append
some glue (in Tralics, it will generate a sequence of ~ whose width is more or less 1cm). If you say
\kern1cm this will append a kern (like glue, but the size is fixed). This is ignored by Tralics. A
normal space produces glue (the value of the glue depends on some font parameters; it can also
depend on the current space factor). A glue may disappear at a line break. Kerns will not. In
LATEX, you use \hspace instead of \hskip. You can use \hspace*, in this case, spaces at start of
line are not ignored. Note the syntax \hspace{2cm} vs \hskip2cm\relax.

When TEX wants to split a paragraph into lines of equal width, it will have to stretch and
shrink the glue that appears on the line; it will remove interword glue at break points. An item of
glue has the form x + y − z, where x, y and z are dimensions (y and z can be expressed in terms
of fil, fill and filll), all three values can be positive or negative. We can express this as: we have
a vector of size 9: x0 is the regular part of the glue, x1, x2, x3 and x4 are the stretch component
(in units of pt, fil, fill, and filll, only one of these components can be given), x5, x6, x7 and x8

are the shrink components (in units of pt, fil, fill, and filll, only one of these components can be
given). When two pieces of glue are added, all components are added. The convention is that x2 is
much larger than x1, so that the sum of x1 and x2 is x2 (said otherwise if we add 1pt plus 2pt
and 3pt plus 4fil, the result is 4pt plus 4fil). Such simplifications are not done when TEX
computes the sum of all glue items in a paragraph (as a result, addition is associative). The
command \hfil is equivalent to \hskip0pt plus 1fil, the command \hfill is equivalent to
\hskip 0pt plus 1fill, the command \hfilneg is equivalent to \hskip 0pt plus -1fil, the
command \hss is equivalent to \hskip 0pt plus 1fil. It is an error to use infinite shrinkage, like
\hss, in a paragraph, TEX complains with: Infinite glue shrinkage found in a paragraph. However

10these values were rounded; exact values are 2, 4 and 5 times 10pt/18, and 10pt/18 is a mu.
11The value of the tilde is 3.33pt in math mode, and a \quad is 4 outside math mode since version 2.5(pl6).

INRIA

Tralics, a LATEX to XML translator Part I 49

you can say 123\hbox to1cm{\hss xxxxxxx\hss}456, the result is 123xxxxxxx456, said otherwise,
the text is centered, no overful neither underful box is signaled.

The commands \vfil, \vfill, \vfilneg, \vss, behave in the same fashion, in vertical mode,
adding vertical space. Tralics translates \hfil, \hfill, \hfilneg, and \hss as \leavevmode
followed by an element <hfil>, that has the same name as the command. It translates \vfil,
\vfill, \vfilneg, and \vss in the same fashion, by using \par instead of \leavevmode. The
three commands \bigskip, \medskip and \smallskip are used to insert vertical space between
paragraphs, of size 12pt, 6pt and 3pt respectively (in LATEX, this is some glue that the use can
modify, however, Tralics ignores the shrink and stretch parts of the glue inserted by \hskip, \vskip,
\hspace and \vspace.) These four commands read an argument (in LATEX, \hspace and \vspace
accept an optional star, that translates to an empty vertical or horizontal rule, Tralics ignores the
star). In the case of an horizontal space, \leavevmode is executed, then ~ are produced (one every
4 pt, a negative dimension produces nothing). In the case of a vertical space, the current paragraph
is terminated; if after that the mode is vertical, a new paragraph is started, it has an attribute
spacebefore with as value the dimension. In LATEX, the behavior is different (see appendix A.1.5 of
[6]).

In TEX, there is no command that starts a paragraph. The \leavevmode command is im-
plemented as \unhbox\voidb@x, where \unhbox starts a new paragraph if needed, and produces
nothing, provided that its argument is the void box; the paragraph may contain the current in-
dentation and the value of \everypar. This is a primitive in Tralics, the value of \everypar is
unused. Both commands \indent and \noindent make sure the current mode is horizontal, the
first one inserts the current indentation (an empty box with the width of \parindent). In TEX,
you can use \indent anywhere in a paragraph. In Tralics, the translation of

a\noindent b \indent c
{\centering a\noindent b \indent c\par d}
{\raggedright a\noindent b \par\indent c\par d}

is

<p>a</p>
<p noindent=’true’>b</p>
<p rend=’center’ noindent=’false’>c
a</p>
<p rend=’center’>b</p>
<p rend=’center’>c</p>
<p rend=’center’>d
a</p>
<p noindent=’true’ rend=’flushed-left’>b</p>
<p noindent=’false’ rend=’flushed-left’>c</p>
<p rend=’flushed-left’>d</p>

The rules are the following: if \indent or \noindent appear in an empty paragraph, that is not
centered, and that has no noindent attribute, one is set. Otherwise a new paragraph is started. It
will have a noindent attribute, unless the paragraph is centered. The value of \parindent is never
considered.

The translation of \par is a bit complicated. Nothing happens inside a \hbox, in \term, or
if the current mode is not horizontal. The current XML element should be a <p>. A final space
is removed from it. It will be popped from the stack. This restores the mode to the value of the
previous mode. It restores the current XML element to the parent of the <p>. A newline character
is added to it. There is an exception: in cases like \noindent\par, or \bigskip\par, or \\\par,
the \par command was ignored until version 2.5 (pl7). The behavior is now: if the paragraph is
empty, but there are attributes, then the <p> is removed, and attributes are added to the next <p>
element.

RT n° 309

50 José Grimm

The translation of \\ depends on the context. The command can be followed by an optional
star, and an optional dimension. Inside a cell, this indicates the end of the cell as well as the the
end of the row. You can say \newline, this is like \\ without optional argument and array test. In
vertical mode, LATEX complains with There’s no line here to end, but Tralics ignores the command.
Inside a title, the command is ignored. Otherwise, the behavior is like \noindent; if an optional
argument is given, it behaves like \vskip. For instance, the translation of

a \\b \\[2cm] c \newline[3cm]d \noindent e \vskip 4cm f

is

<p>a</p>
<p noindent=’true’>b</p>
<p noindent=’true’ spacebefore=’56.9055pt’> c</p>
<p noindent=’true’>[3cm]d</p>
<p noindent=’true’>e</p>
<p spacebefore=’113.81102pt’>f</p>

Many people do not know that \\ takes an optional argument, and try to use different tricks in
order to avoid errors triggered by \\\\. We have seen for instance

\def\ligne{\protect{\mbox{}\\\mbox{}\indent}}

Remember that \protect is like \noexpand, it is not a LATEX command that takes an argument!
More strange cases can be found in [3].

The commands \nolinebreak, \nopagebreak, \pagebreak, and \linebreak are defined by
LATEX to take an optional argument, an integer between 0 and 4. They insert some penalty, but
depend on the mode, like \hspace and \vspace. They are ignored in Tralics. The command
\break, \nobreak, and \allowbreak, are defined by LATEX, they insert some penalty(zero, plus or
minus infinity). They are ignored by Tralics. The commands \fillbreak, \goodbreak, \eject,
\smallbreak, \medbreak, \bigbreak are defined by LATEX to terminate a paragraph and insert
some penalty. In Tralics, they behave like \par.

2.10 Conditional expansion

In the previous paragraphs we have shown how to define a macro ‘\foo’ that expands to ‘\bar’
and a macro ‘\bar’ that expands to ‘gee’.12 Can a translator replace all \foo by \bar and all \bar
by gee? the answer is obviously no; first because, if you say ‘\something\bar’, the argument will
be (after expansion) ‘gee’, while in the case of ‘\something gee’ it will be ‘g’; there is a second
problem, that occurs in latex2html: if you replace ‘\bar’ by its value, you get ‘\somethinggee’,
and this is wrong, if you reparse it13; some commands can be randomly redefined (for instance, at
first use) like this:

\def\NFSS{NFSS (New Font Selection Scheme)\global\def\NFSS{NFSS}}

The last reason is conditional expansion. Our original translator (written in Perl) has some troubles
in these cases.

In this paragraph, we shall consider cases where expansion depends on the context. We have
already seen the commands \noexpand for delayed execution and \expandafter that changes the
order of expansion. We shall analyze three commands: \color, \map and \loop. The \loop
command has a weird syntax, it needs a TEX conditional (like \if or \ifnum) and executes some

12It is unwise to say ‘\def\bar’, because \bar is already defined for use in math mode, and who knows which
commands rely on this definition.

13The remedy is to add a space after the command name. The trouble is when the command results from partial
expansion of an active character, case where spaces should be preserved. This is one reason why active characters
cannot be made robust in LATEX.

INRIA

Tralics, a LATEX to XML translator Part I 51

piece of code as long as some condition is true. We are also interested in constructions that take
a list of items, and add commas between them and a period at the end.

The easiest of these commands is ‘\map’: we want to apply some command to a list of arguments,
constructed via techniques defined on page 30. It can be defined as

\def\map{\let\do}

This is a bit unsatisfactory: in some cases the list delimiter is different from \do, an example is
given above: at the start of a chapter, we want to reset all counters that depend on the chapter
counter, in this case \@elt is used as delimiter. We could imagine a map-with-argument macro,
that would take as argument the \do. But this is nothing else than \let! Another example is
given in section 2.12, it is ‘\let\do\@makeother\dospecials’, where the list is the last token.
The command we are designing should be used as ‘\map\cmd\list’, where \cmd is the command
to apply and \list is the list (note: you should not redefine the \list command, because it is
used by environments like ‘itemize’). Let’s assume that our list is defined by

\def\mylist{\do{A}\do{B}\do{C}}

We have already seen how such a list can be created dynamically. The map command can be
implemented as

\def\map#1#2{\let\do#1#2}

This definition is exactly the same as above, with a small difference: since the command takes
an argument, a pair of braces disappear, for instance when you say \map\foo{\do{A}}; a second
difference is that, for the argumentless version, you cannot use braces for the first argument. In
general, you say ‘\map\@makeother\dospecials’, this is irrelevant. An alternate definition could
be

\def\map#1#2{\def\do{#1}#2}

In this case, the first argument #1 can consist in more then one token. For instance, if you say
\def\foo#1#2{ #1#2 } then \map{\foo A}\mylist gives ‘ AA AB AC ’. Note that there are
too many spaces in this example: the last space in \foo is spurious.

The example with ‘\color’ is the following. Assume that we have two commands ‘\enrouge’
and ‘\envert’ that take an argument and typeset it in red and green. We want to define a command
that takes two arguments, a color and text; nothing special should happen if the color is neither
red nor green. We could implement this using a test, but this means that we have to change the
macro if we add a new color (for instance ‘\enbleu’ for blue). The following works

\def\color#1{\csname en#1\endcsname}

The only drawback with this method is that it might produce unexpected results in the case where
the command defined by \csname already exists (try ‘\color{d}{document}’).

We have in mind another example. Consider

% \newcommand{\fooiv}[3][bar]{Seen #1 #2 #3}
\def\fooivaux[#1]#2#3{Seen #1 #2 #3}
\def\fooiv{\@ifnextchar[{\fooivaux}{\fooivaux[bar]}}

The commented line is interpreted by LATEX in the same fashion as the two other lines (except
that the internal name is a bit more complicated than ‘\fooivaux’). We shall explain later how
‘\@ifnextchar’ works14. We are interested here in how LATEX converts the ‘[3]’ into ‘[#1]#2#3’.
Since the number of arguments is between zero and nine, a short sequence of conditionals could
be used. Instead, the following code is used by LATEX:

1 \long \def \@yargdef #1#2#3{%
2 \ifx#2\tw@
3 \def\reserved@b##11{[####1]}%

14The actual code uses \kernel@ifnextchar, because amsmath redefines sometimes \@ifnextchar

RT n° 309

52 José Grimm

4 \else
5 \let\reserved@b\@gobble
6 \fi
7 \expandafter
8 \@yargd@f \expandafter{\number #3}#1%
9 }

10 \long \def \@yargd@f#1#2{%
11 \def \reserved@a ##1#1##2##{%
12 \expandafter\def\expandafter#2\reserved@b ##1#1%
13 }%
14 \l@ngrel@x \reserved@a 0##1##2##3##4##5##6##7##8##9###1%
15 }

In the case of ‘\newcommand\fooiii[3]{foo}’ the \@yargdef command is called with three argu-
ments, the first is \fooiii, the command to be defined, then comes ‘\@ne’ (some randomly chosen
token), then ‘3’ (the number of arguments) and finally ‘{foo}’, the body of the command to be
defined. This argument is not read, but the code relies on the fact that it starts with an opening
brace. The objective is to produce ‘#1#2#3’. In the case of ‘\newcommand\fooi{foo}’, arguments
are the same with 0 as third argument, the objective is to produce the empty string. In the case
of \fooiv, the second argument is ‘\tw@’, this is something different from ‘\@ne’, the objective is
similar, but a bit different: we want ‘[#1]#2#3’

In order to make things easier to understand, we shall proceed to the following simplifications:
let’s forget about the percent signs (their purpose is to suppress unwanted space). Let’s forget
about ‘\long’ (is it really needed?) and ‘\l@ngrel@x’ (this is something that adds conditionally a
‘\long’ token before the definition). Let’s simplify the names: we write ‘\Ra’ and ‘\Rb’ instead of
‘\reserved@a’ and ‘\reserved@b’. We also write ‘\ydef’ and ‘\yaux’ instead of ‘\@yargdef’ and
‘\@yargd@f’. Finally, we replace the arguments by X, Y, Z, and ‘##’ by a simple ‘#’. Hence we get

\def \ydef XYZ{
\ifx Y\tw@
\def\Rb#11{[##1]}

\else
\let\Rb\@gobble

\fi
\expandafter \yaux \expandafter{\number Z}X

}
\def\yaux XY{
\def\Ra #1X#2#{\expandafter\def\expandafter Y\Rb #1X}
\Ra 0#1#2#3#4#5#6#7#8#9#X

}

Let’s start the analysis with the lines 7 and 8. Because of the two ‘\expandafter’ tokens, the
first token to be expanded is ‘\number’. This means that Z is replaced by its numeric value. Said
otherwise, the number of arguments can be ‘03’, or ‘‘\^^C’, or even ‘\value{page}’ if the page
number if not too big. In Tralics, only explicit numbers are allowed (You will get a message like
Only one token allowed; I will assume that the command takes no argument.) In general, lines 7
and 8 are equivalent to \yaux{Z}X.

Let’s now explain lines 2 to 6. We are in a simple case of a conditional (the commands \@ne
and \tw@ are normally equivalent to 1 and 2, they compare unequal), so that line 3 is executed in
case of an optional argument, and line 5 otherwise. In the last case \Rb is a command that takes
an argument and ignores it; otherwise \Rb is a command that takes an argument, delimited by
the character ‘1’, ignores it, and the expansion is ‘[#1]’ (four tokens). Remember that we want
‘[#1]#2#3’, that is a good starting point.

INRIA

Tralics, a LATEX to XML translator Part I 53

Consider now lines 11 and 12. In order to simplify explanations, we replace X by Z and Y by
X (i.e. use the argument names of the outer function). We shall denote by U and V the arguments
of \Ra. Thus \Ra is

\def\Ra UZV{\expandafter\def\expandafter X\Rb UZ}

The question now is what are the values of U and V? In order to answer this question we shall
write line 14 in a different way. Let s(n) be the sequence #1#2....#n#, and S(n) the sequence
#n...#9. The content of line 14

\Ra 0#1#2#3#4#5#6#7#8#9#Z

can be interpreted as \Ra, 0, s(n− 1), n, S(n+1), #Z, whenever n is a digit between 1 and 9. Said
otherwise, whenever Z is a digit between 1 and 9, the first argument U of \Ra is 0s(n − 1) (the
second argument is ignored, it is everything up to the first brace, the one that delimits the body).
Obviously, in the case where Z is the digit 0, U is empty. We leave it as an exercise to the reader
to see what happens in the case where Z is a sharp sign15. In all other cases, U is the sequence
0s(9). The important point is that, whatever Z, TEX will not read beyond the opening brace of
the body.

Assume now that we want to construct a normal command (case \Rb is gobble). It always
gobbles a zero (if Z is zero, U is empty, and Z is gobbled). Thus \Rb UZ expand to: nothing if Z
is 0, s(n− 1)n if Z is a digit between 1 and 9, and #1#2#3#4#5#6#7#8#9#Z otherwise. This yields
an error You already have nine parameters which is adequate in case Z is a number larger than
nine. Consider now the case of an optional argument. Here \Rb is a bit different: it reads the ‘0#1’
part and replaces it by ‘[#1]’. You will get a Runaway argument? error (or some other strange
behavior) in case Z is ‘0’ because pattern matching fails (of course, you should never try to make
optional the first argument of a function that takes none).

We shall in the sequel study the following problem (we shall call it the \sharp problem): we
want a sequence of the form \sharp1\sharp2...\sharpN, where N is an integer between 1 and 9.
After that, we can evaluate the ‘\sharp’ command16, replacing it by ‘#’. One solution is: consider
as above a sequence of length 9, and use pattern matching to reduce the length. We can also
use a loop: the original LATEX code used a loop from N down to Y (with Y = 1 in the case of
normal argument, Y = 2 otherwise17). Here is an example of how this could be done with pattern
matching:

\def\ydef#1#2#3{%
\def\tmp##1#2##20{##1#2}%
\def\sharp{\noexpand\sharp}%
\edef\etmp{\tmp\sharp1\sharp2\sharp3\sharp4\sharp5\sharp6\sharp7%
\sharp8\sharp90}%

\def\sharp{########}% needs 8 #
\edef\etmp{\etmp}%
\expandafter\def\expandafter#1\etmp{#3}}%

\ydef{\acmd}{3}{Args#1and#2and#3}

A silly question is: can we do loops without conditionals? The answer will be given later. We
assume here that our loop will be of the form: while N is not too big, do something and increment
N . This mechanism needs modifying a table (the location of N) hence is not pure expansion. In
our example, we will write ‘\sharp\the\count0’, and hope that this will evaluate to ‘#3’ later on,
assuming that \count0 contains ‘3’ now. How that can be implemented is left as an exercise to
the reader. See also section 2.11. We shall explain later all the silly details concerning conditionals

15Since Z is the result of expansion of \number it starts with a digit or a minus sign, so that this case will not
happen.

16There is a \sharp command, that typesets as ♯, hence be careful.
17This explains the names \@ne and \tw@.

RT n° 309

54 José Grimm

in TEX, all we need to know is that you can test a < b and a > b, but neither a ≤ b nor a ≥ b.
Here is our code:

\def\code{\advance\count0 by 1 \sharp\the\count0}
\def\loop{\ifnum\count0<\count1 \code\loop\fi}

Assume that \count0 holds 0 and \count1 holds 3. In this case the test is true, ‘\code’ is
evaluated, then ‘\loop’. The effect of evaluating ‘\code’ is to increment the counter and produce
‘\sharp1’. The loop terminates after ‘\sharp3’ has been produced. Notice that recursion is not
terminal (but it would be in most computer languages): when the test is found false, there are four
‘\if’ tokens not yet evaluated. This example is atypical, in that the counter is modified before
its use; exchanging the ‘\sharp...’ and the ‘\advance...’ part implies changing initial and final
value (1,4 instead of 0,3).

Our \loop command is not generic, in that the name of the counters are built-in. Thus Knuth
proposes the following:

\def\loop#1\repeat{\def\body{#1}\iterate}
\def\iterate{\body \let\next\iterate \else\let\next\relax\fi \next}
\let\repeat\fi % this makes \loop...\if...\repeat skippable

\loop \ifnum \count0<\count1 \sharp \the\count0 \advance\count0 by 1\repeat

Note that the last line contains an ‘\ifxx’ where the associated ‘\fi’ is the ‘\repeat’ at the end
of the line. Thus, in the case where the ‘\loop’ command is not expanded this line is well-balanced
regarding conditionals. In the case where ‘\loop’ is expanded, the value of the ‘\repeat’ token
is irrelevant, it just serves as delimiter, and the ‘\fi’ has to be found in \iterate. In order for
\iterate to work, the ‘\body’ should expand to an incomplete conditional, without \else part.
It conditionally sets \next, and evaluates it after \fi; this trick makes the recursion terminal.

An alternate version is given by LATEX, as follows18

\def\loop#1\repeat{\def\iterate{#1\relax\expandafter\iterate\fi}%
\iterate \let\iterate\relax}

Adding ‘\let\iterate\relax’ at the end of the definition has no real importance; but it causes no
harm either. Note the \expandafter trick: if the test in the loop is false, neither \expandafter
nor \iterate are expanded, if the test is true, \fi is evaluated before \iterate. Thus recursion
is terminal. One difference with the TEX method is that the body of the loop is put in \iterate
rather than in a auxiliary command. The interesting point is the ‘\relax’. Guess what happens
in this case:

\def\bloop#1\repeat{\def\iterate{#1\expandafter\iterate\fi}\iterate}
\count0=0 \count1=4
\bloop \ifnum \count0<\count1 \the\count0 \advance\count0 by 1\repeat

If you use LATEX in verbose mode, you can see that the test is true, true and false, where you
expect it to be true four times. The printed result is ‘0’ (hence the question: what did the second
iteration do?). Using Tralics, you will get more information.

1 +\ifnum6

2 +scanint for \count->0

3 +scanint for \ifnum->0

4 +scanint for \count->1

5 +scanint for \ifnum->4

6 +iftest6 true

7 {\the}

8 {\the \count}

9 +scanint for \count->0

18The kernel contains two versions, one of them being \long.

INRIA

Tralics, a LATEX to XML translator Part I 55

10 \the->0.

11 Character sequence: 0.

12 {\advance}

13 +scanint for \count->0

14 {\expandafter \iterate \fi}

15 +\fi6

16 \iterate ->\ifnum \count 0<\count 1 \the \count 0 \advance \count 0 by 1\expandafter \...

17 +\ifnum7

18 +scanint for \count->0

19 +scanint for \ifnum->0

20 +scanint for \count->1

21 +scanint for \ifnum->4

22 +iftest7 true

23 {\the}

24 {\the \count}

25 +scanint for \count->0

26 \the->0.

27 +scanint for \count->10

28 {\advance}

29 +scanint for \count->0

30 {\expandafter \iterate \fi}

31 +\fi7

32 \iterate ->\ifnum \count 0<\count 1 \the \count 0 \advance \count 0 by 1\expandafter \...

33 +\ifnum8

34 +scanint for \count->0

35 +scanint for \ifnum->10

36 +scanint for \count->1

37 +scanint for \ifnum->4

38 +iftest8 false

39 +\fi8

Lines 16 and 32 are a bit too long; there are two token \iterate\fi that are replaced by \...

As you can see, all tests have a serial number. On lines 2–5, you can see why the first test is true:
it is because the numbers 0 and 4 are compared. On lines 18–21, you see why the second test is
true, and on lines 34–37, you see why the last test is false; in fact, \count0 contains ten. On line 27,
you see something strange. Explanations: Assume that you say ‘\advance \Foo4’, where \Foo is
a reference to some counter. In this case, the trace of Tralics will contain +scanint for \Foo->4,
and everybody understands this. If you replace \Foo by \count0, the trace will contain \count;
it will also contain a line for the zero in \count0. Hence, the number that appears in line 27 is the
value read by the \advance in line 12. What happened is the following: after ‘by’ we have seen the
digit ‘1’. In the case of \loop, the next token would be ‘\relax’, and this stops scanning of the
number. But here, we have ‘\expandafter’, which is expandable and expanded, as a consequence,
this finishes the first conditional. After that comes the test; is it true, because we did not increment
our counter yet. Then comes ‘\the’ which is expandable. This reads ‘\count0’, as well as the
space after it. The expansion of ‘\the...’ is the digit zero; so far, we have read 10, and continue
reading. The next token is ‘\advance’ and this is not expandable. Hence \advance has read
everything up to the next \advance. Is it needed to explain what happens next? Let’s just notice
that, at line 39, Tralics (and also TEX) are still reading tokens for the second \advance.

2.11 Conditionals in TEX

We shall discuss in this paragraph the following commands

• \if AB (comparison of two characters, character code),

RT n° 309

56 José Grimm

• \ifcat AB (comparison of two characters, category code),

• \ifint A=B (comparison of integers),

• \ifdim A=B (comparison of dimensions),

• \ifvmode, \ihmode, \ifmmmode, \ifinner (test of the current mode),

• \ifvoid A, \ifhbox A, \ifvbox A (test box register status),

• \ifx AB (comparison of two tokens),

• \ifeof N (test if characters can be read from a channel),

• \iftrue, \iffalse (constant tests),

• \ifcase (this is called ‘switch’ in some other languages),

• \or, \else, \fi (must be used after if).

A conditional has the form \if test true-code \else false-code \fi. The \else part is
optional; conditionals can be nested, and this nesting is independent from anything else. Con-
ditionals are expanded: this means that conditionals are evaluated inside a \edef, you can use
\noexpand to delay evaluation, and \expandafter to change the order of expansion.

An important point is the following: if you define a command \ifthenelse with three argu-
ment, that evaluates the first argument as a boolean, and expands conditionally to the second or
third argument, then these two arguments must be balanced, and category codes are fixed. In the
case of \if, there is no such limitations: if the test is found false, then all tokens are read at high
speed until finding a ‘\else’, and normal processing occurs, or until finding a ‘\fi’, that indicates
the end of the conditional; if the test is true, and if there is an \else part, all tokens between
‘\else’ and ‘\fi’ are read at high speed. Consider for instance this piece of code

\ifnum \A=\B do-nothing \else {\let\fi\relax\C}\fi

Assume that the test is false; this means that the else part is evaluated. Locally ‘\fi’ is redefined
to do nothing, and ‘\C’ is evaluated. Let’s assume that ‘\C’ does nothing special (it could typeset
‘Hello, word!’). In this case the ‘\fi’ after the brace terminates the conditional. Assume now that
the test is true. Skipping over the \else part at high speed just means compare the actual value
of a token with ‘\if’ or ‘\fi’: in the first case, the if-counter is incremented, in the second case it
is decremented, in all other cases the counter is left unchanged; reading stops when the counter is
zero. Here, the conditional is terminated by the first ‘\fi’. This means that you have to be very
careful: the end of the conditional can change, depending on whether the test is true or false. When
we say: ‘compare the actual value of the token’, this means that the name is irrelevant, only the
meaning is used, for instance ‘\repeat’ has the same value as ‘\fi’, and \loop...\if...\repeat
is well balanced.

All constructions indicated above have a then-part and an else-part, except \ifcase: this
command reads a number and you can specify action for the case zero, the case one, the case
two, etc. For instance, we can solve the problem of constructing \sharp1...\sharp N as follows
(assuming ‘\N’ holds the value of N)

\ifcase \N \error{You cannot use zero here}

\or \sharp1

\or \sharp1\sharp2

\or \sharp1\sharp2\sharp3

\or \sharp1\sharp2\sharp3\sharp4

\or \sharp1\sharp2\sharp3\sharp4\sharp5

\or \sharp1\sharp2\sharp3\sharp4\sharp5\sharp6

\or \sharp1\sharp2\sharp3\sharp4\sharp5\sharp6\sharp7

\or \sharp1\sharp2\sharp3\sharp4\sharp5\sharp6\sharp7\sharp8

\or \sharp1\sharp2\sharp3\sharp4\sharp5\sharp6\sharp7\sharp8\sharp9

INRIA

Tralics, a LATEX to XML translator Part I 57

\else \error{Argument must be non-negative, at most nine}

\fi

The simple conditional ‘\if AB ... \else ... \fi’ compares two characters A and B, it
shares some features with \ifcat. It expands tokens, using the following rules

• In the case \noexpand\cmd, where \cmd is a command that be expanded, it is as if you had
said \relax.

• In the case \noexpand X, where X is an active character, the token that will be considered
is X, without expansion.

• In the case \noexpand Y, that does not match any of the previous cases, the \noexpand is
discarded.

• In the case \cmd, where \cmd can be expanded, it will be expanded.

• In the case X, where X is an active character, it will be expanded.

• In the case \prim, where \prim is a primitive that cannot be expanded, it is as if you have
given character of numeric code −1, and category code −1.

• In the case of an implicit character \cmd (one obtained via \let\cmd Y, where Y is a char-
acter), the numeric code and the category code of the character is considered.

• In the case of an explicit character Y, the numeric code and the category code of the character
is considered.

The command \if compares the two numeric codes, and \ifcat compares the category codes. If
you say something like

\catcode ‘\A=3
\def\fooi{A}
\catcode ‘\A=11
\def\fooii{A}
\if\fooi\fooii H\fi \ifcat\fooi\fooii\else e\fi
\if\bgroup{l\fi \ifcat\egroup}l\fi \if\relax\par o\fi
\if01\else,\fi \ifcat01 w\fi \if\par1\else o\fi
\if\noexpand\fooii\relax r\fi \if\fooii Ald\fi \if!!!\fi

this should typeset as ‘Hello, world!’.

You must be very careful using a construction like ‘\if\A\B...’, because of the following

• If ‘\A’ expands to ‘foo’, the test is false, whatever ‘\B’,

• If \A is defined by ‘\def\A\B{00}’, the test is true, whatever ‘\B’,

• If \A is a command that takes an argument, the argument will be ‘\B’, and what happens
depends on what the command does with the argument,

• If ‘\A’ expands to ‘xxyy’, the test is true, whatever \B, and a part of \A is typeset before
‘\B’,

• If ‘\A’ expands to ‘xyyx’, the test is false, ‘\B’ is ignored,

• If ‘\A’ and ‘\B’ expand to nothing, tokens that follow will be examined,

• If ‘\A’ expands to nothing, ‘\if\A\B...’ behaves like ‘\if\B...’, see above.

It is possible to write a macro \newif that takes an argument \iffoo19, and makes it a new
conditional; the ifthen package provides the more LATEXish syntax \newboolean{foo}. You can

19The first two letters should be I and F.

RT n° 309

58 José Grimm

say ‘\footrue’ and the condition becomes true, or ‘\foofalse’ and it becomes false (the LATEX
syntax is \setboolean{foo}{true}; Tralics knows both). These commands could be implemented
as

\def\footrue{\def\iffoo{\if00}}
\def\foofalse{\def\iffoo{\if01}}

The trouble with this definition is that, when ‘\iffoo’ is read at high speed, it is not recognized
as a conditional (it is a user defined command), see discussion about ‘\ifhph’ in [4, Chapter 20].
For this reason, the commands \iftrue and \iffalse were added, they evaluate respectively to
true and false, and the following lines work (because \let is used instead of \def):

\def\footrue{\let\iffoo\iftrue}
\def\foofalse{\let\iffoo\iffalse}

You can use ‘\ifnum’ or ‘\ifdim’: in both cases a numeric quantity, an operator, and another
numerical quantity are read. In the case of ‘\ifnum’, both quantities have to be numbers, otherwise
dimensions. Three operators are recognized: less than, greater than and equal to. Here is an
example

\count0=0 \count1=1 \dimen0=1pc \dimen1=12pt
\skip0=1cm minus3fill \skip1=1mmplus 2fill
\tracingall
\ifnum \count0<\count1
\ifdim \dimen0=\dimen1
\ifdim \skip0>\skip1 ok \fi\fi\fi

This is the trace of Tralics. Note that for LATEX, all lengths allocated by \newlength are “rubber”
length, i.e. associated to a \skip register. Such quantities are automatically converted into rigid
length (however, if you replace in the example ‘\skip1’ by ‘1mmplus 2fill’, then only a rigid
dimension is read, the “plus 2fill” is not part of the condition).

+\ifnum26

+scanint for \count->0

+scanint for \ifnum->0

+scanint for \count->1

+scanint for \ifnum->1

+iftest26 true

+\ifdim27

+scanint for \dimen->0

+scandimen for \ifdim ->12.0pt

+scanint for \dimen->1

+scandimen for \ifdim ->12.0pt

+iftest27 true

+\ifdim28

+scanint for \skip->0

+scandimen for \ifdim ->28.45274pt

+scanint for \skip->1

+scandimen for \ifdim ->2.84526pt

+iftest28 true

+\fi28

+\fi27

+\fi26

This is one solution to our problem of producing N sharp signs in a row:

\ifnum \N>0 \sharp1\fi\ifnum \N>1 \sharp2\fi\ifnum \N>2 \sharp3\fi
\ifnum \N>3 \sharp4\fi\ifnum \N>4 \sharp5\fi\ifnum \N>5 \sharp6\fi
\ifnum \N>6 \sharp7\fi\ifnum \N>7 \sharp8\fi\ifnum \N>8 \sharp9\fi

INRIA

Tralics, a LATEX to XML translator Part I 59

The following construction is a priori more efficient (on the average there are less tests) but it takes
more memory.

\ifnum \N>0 \sharp1\ifnum \N>1 \sharp2\ifnum \N>2 \sharp3

\ifnum \N>3 \sharp4\ifnum \N>4 \sharp5\ifnum \N>5 \sharp6

\ifnum \N>6 \sharp7\ifnum \N>7 \sharp8\ifnum \N>8 \sharp9\fi\fi\fi\fi\fi\fi\fi\fi\fi

You can test whether a character can be read from an input channel, via the \ifeof command.
Here is an example from the Tralics torture file. The file ‘tortureaux’ has six lines, the first one
contains abc, the second one is empty, the third one contains \a \b {\c, the fourth one contains
{} \d} \e, the next one contains 123, the last one is empty. The \testeq commands compares two
commands: things should be equal here. (See TEXbook, exercise 20-18, if you do not understand
the setting of \endlinechar). Commands starting with ‘bad’ are not evaluated in this example.
Details can be found in section 5.8

{
\openin 5=tortureaux
\endlinechar=-1
\ifeof5 \badifeofatentry\fi
\read 5 to \foo\testeq\foo{abc}
\read 5 to \foo\testeq\foo{}
\read 5 to \foo\testeq\foo{\a\b{\c{} \d} \e}
\global\read 5 to \foo
\closein5\relax
\ifeof5\else\badifeofatexit\fi
}\testeq\foo{123}
\ifeof3\else \badifeofnonexists\fi

You can say \ifvoid25, \ifhbox25 or \ifvbox25. In TEX these command would test the
content of box register 25: if empty, the \ifvoid is true, the other tests are false; if not empty, the
box contains a horizontal list or a vertical list, and \ifhbox and \ifvbox are respectively true, the
two other tests being false. Since Tralics puts elements in box registers, and since elements have
no orientation, the test is not well-defined. What Tralics does is just: read a number and return
false. In the example that follows, only the first equals sign is part of an assignment.

\count0=0
\ifvoid\count0=1\fi
\ifvbox\count0=2\fi
\ifhbox\count0=3\fi

You can say \ifmmode, \ifvmode, \ifhmode and \ifinner. These commands check the current
mode. The first three evaluate to true if the mode is math mode, vertical mode, or horizontal
mode. The last is true if the mode is inner (internal vertical mode, restricted horizontal mode, or
(nondisplay) math mode). The following example shows these modes.

\def\wm{\edef\res{\ifinner i\else I\fi
\ifhmode h\else H\fi
\ifvmode v\else V\fi
\ifmmode m\else M\fi}\res}

\par \wm$$\wm \hbox{\wm \wm} \eqno \wm$$

The result is: ‘IHvM IHVm ihVM iHVm iHVm’. If you remove the ‘\edef’, the trouble will be
that typesetting the ‘I’ enters horizontal mode. This example fails if ‘$$...$$’ is replaced by
‘\[...\]’, because \eqno switches to inner math mode, and ‘\]’ checks for outer math. The same
test, done by Tralics gives IHvM then IHVm (in fact, ‘\ifinner’ always returns false, ‘\eqno’ is
not recognized, and ‘\hbox’ has no influence of the current mode.)

The last conditional to explain is \ifx. This reads two tokens and compares them. Two tokens
are equal if they are character tokens (implicit or explicit) with same character value and category

RT n° 309

60 José Grimm

code, or two TEX primitives with the same meaning, or two user-defined commands with the same
value (same arguments, same body, same \long and \outer flags)20.

Using \ifx we can code our \color command properly, like that

\def\color#1#2{%
\def\crouge{rouge}\def\cvert{vert}\def\cc{#1}%
\ifx\cc\crouge\enrouge{#2}\else\ifx\cc\cvert\envert{#2}\else#2\fi\fi}

It is possible to avoid these assignments in the \color macro, provided that they are hidden
elsewhere. For instance

\def\ifstringeq#1#2#3#4{%
\def\tempa{#1}\def\tempb{#2}%
\ifx\tempa\tempb#3\else#4\fi}

\def\couleur#1#2{%
\ifstringeq{#1}{rouge}{\enrouge{#2}}
{\ifstringeq{#1}{vert}{\envert{#2}}{#2}}}

Note that the ‘ifthen’ package provides the \equal command as helper for such a situation: you
could say \ifthenelse{\equal{A}{B}}{X}{Y} instead of \ifstringeq {A}{B}{X}{Y}. Caveat:
the \equal command fully expands its two arguments, our version expands nothing.

In any computer language, you would define a command that compares two strings and returns
true or false; this is not possible in TEX because commands return no value. All you can do is
modify some variable (a command, a register, a token list, etc). This assignment can be done by
the caller or the callee. Here is a solution where the token \next is set by the caller:

\def\color#1{%
\ifstringeq{#1}{rouge}{\let\next\enrouge}
{\ifstringeq{#1}{vert}{\let\next\envert}{\let\next\relax}}%
\next}

Note that, if \envert accepts an optional argument, for instance if \envert[clair]{text} type-
sets the text using light green, you can say \color{vert}[clair]{text}. We consider now a case
where the assignment is done by the callee (via \equaltrue or \equalfalse; there is a variant
that uses \setboolean).

\newif\ifequal
\def\streq#1#2{%
\def\tempa{#1}\def\tempb{#2}%
%%variant: \setboolean{equal}{\ifx\tempa\tempb true\else false\fi}
\ifx\tempa\tempb\equaltrue\else\equalfalse\fi}

\def\color#1{%
\streq{#1}{rouge}%
\ifequal\let\next\enrouge\else

\streq{#1}{vert}%
\ifequal\let\next\envert\else \let\next\relax\fi\fi

\next}

A subtlety of TEX is that tokens are read only when needed. Said otherwise, if you say
‘\if AB C\else D\fi’, TEX will evaluate the test; it will remember that a new conditional has
started. If the test is false, it will skip at high speed until the \else, and resume normal evaluation;
but if the test is true, it will resume normal evaluation right now. It is only when TEX sees an

20If you remember the code of \fooiv, you can see that two LATEX commands with optional arguments always
compare unequal.

INRIA

Tralics, a LATEX to XML translator Part I 61

\else token (and this can be another one) that it will read all tokens at high speed until the \end.
And, when TEX sees the \fi, it will pop the conditional stack. Consider the following example:

\def\ifstringeq#1#2#3#4{%
\def\tempa{#1}\def\tempb{#2}%
\ifx\tempa\tempb\aux{#3}\else\aux{#4}\fi}

\def\aux#1#2\fi{\fi#1}
\def\color#1{%
\ifstringeq{#1}{rouge}{\enrouge}{\ifstringeq{#1}{vert}{\envert}{\relax}}}

Assume that the test is true. Then \aux reads all tokens, up to ‘\fi’, provides a \fi to finish the
conditional now, then expands to its first argument (which is argument 3 of \ifstringeq). In the
case where the test is false, the same thing happens. This is nicer that the solution that consists
in defining conditionally \next and evaluating it after the \fi, it avoids an assignment.

Let’s consider now a variant of the color problem. We want to write a command with three
arguments A, B and C, it is assumed to read a token, compare it with A, and expand to B or C.
We need an auxiliary command that reads the token. Thus the solution

\def\ifnextchar#1#2#3{%
\let\tempa=#1\def\tempb{#2}\def\tempc{#3}%
\ifaux

}
\def\ifaux#1{%
\let\lettoken=#1%
\ifx\lettoken\tempa\let\tempd\tempb\else\let\tempd\tempc\fi
\tempd

}

Note that we have put an equals sign after ‘\let\tempa’ and ‘\let\lettoken’ for the case where
the token to match is an equals sign. If you want to catch spaces, a bit more complicated machinery
must be used. There is a problem with this command, because, if the argument of \ifaux is not
a single token, say ‘foobar’, then only ‘f’ will be put in \lettoken and ‘oobar’ will be typeset.
On the other hand, if the argument is empty, then ‘\ifx’ will be put in \lettoken; after that
\lettoken will be expanded. Since this is \ifx, the following tokens will be compared (said
otherwise ‘\tempa’ and ‘\let’), this is not exactly what is required. In order to solve this problem,
we first modify slightly our code:

\def\ifnextchar#1#2#3{%
\let\tempa=#1\def\tempb{#2}\def\tempc{#3}%
\ifaux

}
\def\ifaux#1{\let\lettoken=#1\ifnch}
\def\ifnch{%
\ifx\lettoken\tempa\let\tempd\tempb\else\let\tempd\tempc\fi
\tempd

}

The \ifnch command given above looks like the LATEX version of the beast. In fact, spaces are
ignored in LATEX, so that there is an additional test. Moreover, some variables have a different
name, nevertheless, here is the code:

\def\@ifnch{%

\ifx\@let@token\@sptoken

\let\reserved@c\@xifnch

\else

\ifx\@let@token\reserved@d

\let\reserved@c\reserved@a

RT n° 309

62 José Grimm

\else

\let\reserved@c\reserved@b

\fi

\fi

\reserved@c}

The problem is the \ifaux command. The question is: can we rewrite it in such a way as to
read a single token, before calling \ifnch. Recall that we want to distinguish between ‘{x}’ and
‘x’. A very interesting question is the following: if we read the opening brace, how can we put it
back in the input stream? we cannot do so by just expanding a macro (because the body is always
well balanced). You could try something like {\ifnum0=‘}\fi (that leaves an unmatched brace
after expansion), or something like ‘{\iffalse}\fi’. Our solution is much simpler. There is a
TEX primitive that gets the token without reading it. To be precise, \futurelet reads a token A,
that has to be a command name or an active character, then a second token B, then a third token
C. The value of the token is put in A, using the equivalent of \let, then C and B are pushed back
in the input stream (in this order, the token to be read first is B). The code of \ifnextchar is
hence the following:

\def\ifnextchar#1#2#3{%
\let\tempa=#1\def\tempb{#2}\def\tempc{#3}%
\futurelet\lettoken\ifnch}

What ‘\futurelet\lettoken\ifnch’ does is read a token. This could be a space character, an
equal sign, an open brace, a closing brace, whatever. It puts it back in the input stream. It puts
it also in \lettoken. After that, it evaluates \ifnch (which is a command that should take no
argument, of course; it should consult \lettoken and depending on the value, call a command
that, maybe, reads the token). In LATEX, \ifnextchar ignores spaces; amsmath has a version that
does not. The difference is the comparison of the current token with \sptoken. The non-trivial
question is how to construct a token equivalent to a space. We give here three solutions. The first
one uses \futurelet. If the arguments are A, B and C, where A is the command to define, and
C the space, then B has to be a command (if it is a character, it will be typeset); this cannot
be \foo, since spaces after \foo disappear, it has to be something like ‘\;’. This command must
read the space, otherwise it appears in the output. We provide two solutions: a command that is
delimited by a space, and a command that takes an argument (remember that spaces disappear
before undelimited arguments):

\def\; {}\futurelet\SPtoken\; % comment required
\def\;#1{}\futurelet\SPtoken\; 0

In both cases, the command \; cannot be used for typesetting (in the LATEX kernel, it is used for
computing the \SPtoken, and correctly redefined after that). We give here an example, where the
redefinition is temporary, inside the box. Ee can discard the content of the box.

\setbox0\hbox{\def\;{}\global\futurelet\SPtoken\; }

We give now a solution using \let. Remember the syntax, after \let and \sptoken (the token
to be assigned), comes 〈equals〉 and 〈one optional space〉 and 〈token〉, where the last token is our
space token. Since 〈equals〉 reads an arbitrary number of spaces and an optional equals sign, an
equals sign is required. Our optional space cannot be optional. So we must produce a double
space. This is not completely trivial. We give here two solutions (the comment is necessary)

\def\makesptoken#1{\let\sptoken= #1}\makesptoken{ }
\def\:{\let\Sptoken= } \: % this makes \Sptoken a space token

And now, how can we define \@xifnch? this command is assumed to read a space, discard it, and
check again for the next character. Thus the question is to design a macro that reads a space. This
cannot be done via \def\@xifnch#1..., since spaces are ignored before undelimited arguments;
we cannot use the technique of the command ‘\;’ above, because we cannot read what follows
the space; the solution consists in a command that takes no argument, and that starts with a

INRIA

Tralics, a LATEX to XML translator Part I 63

compulsory token, like \def\foo\bar{etc}. The non trivial point is that we want \bar to be
replaced by a space token, but spaces disappear after \foo. We give here two solutions.

\expandafter\def\expandafter\foo\space{etc}
\def\:{\Foo}\expandafter\def\: {etc}

Let’s consider the following variant of the \map command. If we have \do{A}\do{B}\do{C},
we want to separate arguments with a comma, and put a period after the last argument; we might
as well do something with the argument, say, typeset it in italics. This is not always possible. In
one of the style sheets used by the Raweb, a Perl postprocessor is used for replacing some commas
by a period. We assume here that we know where the list ends. For instance, we assume that we
can put a ‘\endl’ token at the end of the list. Then we can write something like

\def\foo#1#2\endl{\textit{#1}\ifx#2\endl\endl.\else, \foo#2\endl\fi}

Then ‘\foo{A}{B and C}{D}\endl’ produces ‘A, B and C , D.’ as expected. Let’s analyze the
code and try to see why it is wrong. We assume that you never say \foo\endl, because the list
is assumed non-empty. We also assume that the list does not contain the \endl token (in LATEX,
you should use the special marker ‘\@nil’ only as list delimiter). In our case, the first argument
is ‘A’, the second is ‘{B and C}{D}’. In the case where the second argument is empty, the test is
true, because \endl is compared against itself. In our case, the test is false because the brace is
compared with the letter B. If we put the second argument in a pair of braces, we get an error:
Too many }’s, because the test is true, and a part of ‘#2\endl\endl’ has been evaluated. This
means that our test is wrong. The only safe way to check whether #2 is empty is to put it in a
command, and check whether this is the same as \empty. We shall give a second version of the
code where the test is replaced by \ifx\endl#2\endl. In the case where #2 is empty, the test
evaluates to true, and if #2 evaluates to some token list that does not start with \endl, the test
will be false; this is better.
Note that, when \foo is called again, it compares ‘D’ with ‘\endl’. Does this surprise you? In
fact, if you say ‘\foo{A}{XY}{UV}\endl’, you get ‘A, XY , U , V .’. The trouble is the following:
when TEX reads the arguments of a command, a pair of braces disappears, when possible. Thus
arguments are ‘A’ (without braces) and ‘{XY}{UV}’ (it is not possible to remove the braces). When
\foo is called again, arguments are ‘XY’ and ‘UV’, without braces. This explains why the test
compares U and V (by the way, if ‘UV’ is replaced by ‘UUVV’, the test will be true, yielding an
Undefined control sequence error). When \foo is called again, arguments are now ‘U’ and ‘V’, an
unwanted result. There is a simple way to avoid disappearance of braces: it suffices to put a token
before each item, for instance like this

\def\foo\do#1#2\endl{\textit{#1}\ifx\endl#2\endl.\else, \foo#2\endl\fi}
\foo\do{A}\do{B}\do{C}\endl

A more elegant solution: notice that #2 starts with \do, unless it is empty. There is no need
to read the argument for seeing this, we can use the \ifnextchar command. With the solution
proposed here, the token that marks the end of the list is evaluated: we use \relax, because this
is harmless.

\def\foo{\def\do##1{\textit{##1}\@ifnextchar{\do}{, }{.}}}
\foo\do{A}\do{B}\do{C}\relax

Note that we can replace \relax by something more useful, for instance a period:

\def\foo{\def\do##1{\textit{##1}\@ifnextchar{\do}{, }{}}}
\foo\do{A}\do{B}\do{C}.

An alternate solution could use ‘\ifprevchar’ instead of ‘\ifnextchar’. There is no such
command in LATEX, but the idea is the following: instead of putting a comma after each argument
but the last, we can put a comma before each argument but the first. All we need to do is to know
if this argument is the first. In one application, we have coded this as: apply \do-first on the

RT n° 309

64 José Grimm

first argument, and map \do-other on the rest of the list. If side effects are allowed, we can use
a piece of code like this (note how the final period is typeset):

\newif\iffirst
\def\do#1{\iffirst\firstfalse\else , \fi\textit{#1}}
\firsttrue
\do{A}\do{B}\do{C}.

In fact, there is no need to use an auxiliary command, it suffices to modify \do itself:

\def\foo{\def\do##1{\textit{##1}\def\do####1{, \textit{####1}}}}
\foo\do{A}\do{B}\do{C}.

If you think that there are two many sharp signs, you can try

\newcommand\normaldo[1]{, \textit{#1}}
\newcommand\firstdo[1]{\textit{#1}\let\do\normaldo}
\newcommand\foo{\let\do\firstdo}
\foo\do{A}\do{B}\do{C}.

There are other possibilities implying conditional commands. We shall see later how to define
a ‘comment’ environment that ignores the content of it. It is as if you said

\newenvironment{comment}{\iffalse}{\fi}

One can make the following strange construct {\ifnum0=‘}\fi. In this case, we compare two
numbers, zero and the internal code of the brace (which is in general non-zero). The result of the
test is false, but who cares? the body of the conditional as well as the else part is empty. Hence,
the result is like \bgroup, there are some differences because TEX has two brace counters: the
balance counter and the master counter; there is only one counter in Tralics. For details, see the
TEXbook and its appendix D, where it is said “If you understand [...] you’ll agree that the present
appendix deserves its name.” (the name of the appendix is ‘Dirty Tricks’).

A piece of code like this causes trouble to Tralics

\def\foo#1{%
\sbox\tempboxa{#1}%
\ifdim \wd\tempboxa >\hsize
#1\par
\else \hbox to \hsize{\hfil\box\tempboxa\hfil}%

\fi}

It is a simplification of the \@makecaption command of the ‘article’ class. The idea is to center the
caption of an image if it fits on a line (centering is achieved via \hfil). The argument is typeset
in a temporary box, and the width of the box is compared against \hsize. Captions in the Raweb
are always centered, but this is not esthetic.

In appendix D of the TEXbook, there are some examples of how to produce N asterisks in a row.
The question is: can we produce this using pure expansion? this is a solution given by D. Kastrup:

\def\nlines#1{\expandafter\nlineii\romannumeral\number\number #1 000\relax}
\def\nlineii#1{\if#1m\expandafter\theline\expandafter\nlineii\fi}
\def\theline{A}
\nlines{5}

This produces ‘AAAAA’. The idea is the following: ‘\romannumeral3000’ expands to ‘mmm’. It
is then rather easy to convert this sequence of m into a sequence of A. The argument of the
command can be ‘\count0’; the ‘\number’ has as effect to convert the value of this counter into
a number, it gobbles a space. The argument of the command can be ‘\count1 ’; the second
‘\number’ will gobble the second space (I don’t know if there is some other reason for these two
\number commands). Here is the same idea, without tests:

INRIA

Tralics, a LATEX to XML translator Part I 65

\def\recur#1{\csname rn#1\recur}
\def\rn#1{}
\def\rnm#1{\endcsname{#1}#1}
\def\replicate#1{\csname rn\expandafter\recur
\romannumeral\number\number#1 000\endcsname\endcsname}

\dimen0=4sp \replicate{\dimen0}{P}

You may wonder how this works. Here is the transcript file of Tralics.

1 [216] \replicate{\dimen0}{P}

2 \replicate #1->\csname rn\expandafter \recur \romannumeral

3 \number \number #1 000\endcsname \endcsname

4 #1<-\dimen 0

5 {\csname}

6 {\expandafter \recur \romannumeral}

7 +scanint for \dimen->0

8 +scanint for \number->4

9 +scanint for \number->4000

10 +scanint for \romannumeral->4000

11 \recur #1->\csname rn#1\recur

12 #1<-m

13 {\csname}

14 \recur #1->\csname rn#1\recur

15 #1<-m

16 {\csname}

17 \recur #1->\csname rn#1\recur

18 #1<-m

19 {\csname}

20 \recur #1->\csname rn#1\recur

21 #1<-m

22 {\csname}

23 \recur #1->\csname rn#1\recur

24 #1<-\endcsname

25 {\csname}

26 {\csname->\rn}

27 \rn #1->

28 #1<-\recur

29 {\csname->\rnm}

30 \rnm #1->\endcsname {#1}#1

31 #1<-P

32 {\csname->\rnm}

33 \rnm #1->\endcsname {#1}#1

34 #1<-P

35 {\csname->\rnm}

36 \rnm #1->\endcsname {#1}#1

37 #1<-P

38 {\csname->\rnm}

39 \rnm #1->\endcsname {#1}#1

40 #1<-P

41 {\csname->\rn}

42 \rn #1->

43 #1<-P

44 Character sequence: PPPP .

This is now something else, it is part of a command defined in the RR style file:

RT n° 309

66 José Grimm

\bgroup
\edef\foo{\ifnum 0<0#1x\else y\fi}\def\xbar{x}%
\ifx\foo\xbar
\global\compteurtheme=#1

\else \global\compteurtheme=0 \@latex@error{Pas un thème #1}\@eha\fi
\egroup

Assume that #1 contains a positive number, for instance 25. In this case, the test will be true,
\foo will be defined as ‘x’, and will be equal to \xbar. In this case, our command puts 25 in
\compteurtheme. Some other tests (not shown here) are done for instance, the value should be a
number between 1 and 4, or a number with two digits, each one being between 1 and 4. Assume
that the argument is not a number, say it is ‘gee’; then \ifnum will compare 0 and 0, the test will
be false, \foo will be defined as ‘y’ hence is not equal to \xbar. Assume that the argument is ‘3a’;
this is not a theme, but a theme and a subtheme. In this case, the test is true, but \foo expands
to ‘3x’, and this is not equal to \xbar. Nowadays, themes are ‘com’, ‘cog’, etc, and this piece of
code has become useless. It is replaced by something different, see end of section 6.8.

2.12 A nontrivial command \verb

The code that follows is a simplified version of a LATEX command
1 \def\verb{%

2 \bgroup

3 \let\do\@makeother \dospecials

4 \verbatim@font\@noligs

5 \@vobeyspaces \frenchspacing\@sverb}

6

7 \def\verb@egroup{\global\let\VBG\@empty\egroup}

8 \let\VBG\@empty

9

10 \def\@sverb#1{%

11 \catcode‘#1\active

12 \lccode‘\~‘#1%

13 \gdef\VBG{\verb@egroup\error{...}}%

14 \aftergroup\VBG

15 \lowercase{\let~\verb@egroup}}

Note first that this code contains two empty lines, that are read by TEX as a \par token (it is
ignored, provided that the definition is read in vertical mode). Lines 5, 7, and 15 are terminated by
a brace and the end of line character produces a space token, that is ignored for the same reasons.
Lines 1, 10, 12, and 15 are terminated by a % character, since otherwise, it would produce a space
character (ignored in case the command is executed in vertical mode, and that is not always the
case). In the case of lines 2, 3, 4, etc., the end of line is converted into a space character that
disappears because it follows a command name.

This code defines a command \verb that starts a group via \bgroup. At line 3, \dospecials is
executed, after redefining \do. This changes the category code of all special characters (included all
characters made active by packages like babel21). Line 4 changes the current font to a typewriter
one, and it executes a piece of code that inhibits ligatures (for instance the one that converts
a double dash in an en-dash). Note that this document contains a great number of verbatim
examples, either inline or as environments. In some cases, we use a smaller font; it is hence
important to allow the user to parameterize commands like these. Line 5 contains three commands:
The first makes an end-of-line character active (usually, it will behave like \par), the second enters
so-called french spacing mode (a mode where the width of a space is constant), and the last

21A safe solution would be to change all category codes; but this is time consuming.

INRIA

Tralics, a LATEX to XML translator Part I 67

command \@sverb will be explained later. The ‘s’ in the name of this command comes from the
‘starred’ version of \verb: If you say ‘\verb*+ +’, you will get ‘ ’. We have omitted the test with
the star character.

On lines 7 and 8, we define a command \VBG that does nothing (i.e. expands to the empty list)
and a command that evaluates to \egroup preceded by a global assignment of \VBG to nothing.
On line 13, \VBG is defined as calling \verb@egroup plus some error, whose text is not shown here.
Thus \VBG is a command that 1) resets \VBG to a harmless command, 2) closes the current group,
3) signals an error.

Let’s consider lines 11 and 12. We assume that the argument of \@sverb is some character
c (If you say \def\foo{\verb\foo=\foo} then \foo, you will get an error Improper alphabetic
constant, and after that, you’re really in trouble. In the usual case, the character that follows
\verb is read with category code 11 or 12, because of the code line 3.) Line 11 makes the character
c active (of category 13); the category code will recover its old value at the end of the group, and
line 13 changes the lc-code of the tilde character (the lc-code will recover its value at the end of the
group). The lc-code of a character will be used for hyphenation, as well as conversion from upper
case to lower case. We assume here, for the sake of simplicity, that hyphenation is inhibited by the
use of a verbatim font. Note that Tralics does not care about subtleties like hyphenation. For this
reason, when you say \verb+foo+, it will execute \verbprefix {\verbatimfont foo}. You can
redefine both commands (the prefix is empty, the font defaults to \tt). Notice that Tralics grabs
the argument, contrarily to LATEX.

Let’s come back to the LATEX implementation of \verb. So far, we have read a character,
changed its category code, changed the lc-code of the tilde character, changed the font and other
tables, redefined \VBG, aftergrouped it (code on line 13: the token is saved on a special stack,
and popped of the end of the current, that was opened on line 2, and normally closed on line
7). Line 15 is a kludge: what \lowercase does is replace in its argument every character by its
lower case equivalent (using the lc-code table). The result is evaluated again. Here the argument
is formed of three tokens: \let, the tilde and \verb@egroup. Since ~ is a character that has a
lower-case equivalent, it will be replaced by that, namely the character c. Note: category codes
are left unchanged by this procedure. It is hence important that ~ be an active character (because
\let modifies that value of ~) and that c be active (otherwise, there is no meaning in changing
the value of c).

Consider the case of \verb+\toto+. Here the character c is the plus sign. After line 15 has
been executed, the situation is the following: all characters are of category other, ligatures are
disabled, french spacing is active, current font is typewriter, a group is opened, and a token is
waiting for the group to terminate. In such a situation, you cannot go outside LATEX properly. In
fact, the carriage return has been made active in order to help error recovery (this is not shown
here), and the ‘+’ sign has been made active: this will help us. TEX sees now the following tokens
\12 t11 o11 t11 o11 +13. The first five tokens are added to the current horizontal list as characters
in the current font, while the last one is expanded. The expansion is that of \verb@egroup, see
line 7. This defines globally \VBG, then closes the group, restoring everything. It does not restore
\VBG (because the last assignment was global). After the group, the after-grouped token \VBG is
evaluated but it does nothing.

So far, so good: the translation of ‘\verb+\foo+’ is the same as ‘\texttt{\char‘\\foo}’.
Note that the author could have entered the previous expression as ‘\verb-\verb+\foo+-’, or
using the fancyvrb package as ‘|\verb+\toto+|’, but he used \quoted{\BS verb+\BS foo+}.

Consider now the following example:

\def\duplicate#1{#1#1} ‘\duplicate{\verb+x+}++’

You would expect ‘xx++’ but you get ‘x+x+’. Explanations: the expansion of \duplicate is
verb +12 x11 +12 verb +12 x11 +12 +? +?. The last two plus signs have not been read, and their
category code is still unassigned. The \verb command reads the +12 via \@sverb. It changes the

RT n° 309

68 José Grimm

category code of the plus sign. The second \verb does the same. It reads the +? as a +13, this
finishes evaluation of \verb. The second \verb command does the same. In the case where you
replace ++ by --, the \verb command will see an end of line character before a plus character and
complain with LaTeX Error: \verb ended by end of line.

Consider now the following example:

\def\braceme#1{{#1}} ‘\braceme{\verb+x+}++’

You get the following error LaTeX Error: \verb illegal in command argument. Let’s try to see
how this is done. The expansion of \braceme produces the following tokens: {1 verb +12 x11 +12

}2. After \@sverb has finished, the first non-inactive character is }2, this closes the current group.
Hence, as above, this restores category code, fonts, lc-codes, etc. It does not restore \VBG because
assignment is global (\gdef at line 13 is like \global\def). The trick is now that a \VBG token
is popped from the aftergroup stack. This one calls \verb@egroup and signals an error. What
\verb@egroup does is to close a group (the one opened by \braceme), and reset \VBG to something
harmless. Note that TEX is in a clean mode when the error is signaled. Tralics has no such error
handling mechanism (however, no category codes are changed when scanning for the end of the
command, so nothing harmful can be done). What this example shows is that error recovery is
not completely trivial; nevertheless nice things can be done.

There is a variant to \verb, it is the ‘verbatim’ environment. The classical exercise is: write a
command that reads everything up to \end{verbatim} (backslash and braces are of category 12
in this token list). There are different packages that solve this problem; For instance ‘fancyvrb’ is
one of them. A solution is also given in the first chapter. It does not allow an optional space after
‘\end’.

2.13 Expandable tokens

We give here the list of all tokens that can be expanded.

• All user defined command.

• All undefined commands.

• \a, \’, \‘, \", \^, \~, \k, \H, \v, \b, \d, \u, \C, \f, \c, \., \=, \r, \T, \V, \D, \h: these
commands produce an accented character.

• \(, \), \[, \]: commands for math mode.

• \noexpand: inhibits expansion of the next token.

• \expandafter: changes order of expansion.

• \UseVerb: restores a quantity saved by \SaveVerb.

• \@stpelt, \stepcounter, \refstepcounter, \addtocounter \setcounter, \value. These
are user-defined commands in LATEX. The expansion in Tralics can depend on the loading of
the calc package.

• \setlength\addtolength. These are user-defined commands in LATEX. The expansion in
Tralics can depend on the loading of the calc package.

• \csname. This manufactures a token.

• \number, \@arabic, \romannumeral, \Romannumeral, \string, \meaning, \fontname,
\jobname, \tralicsversion. These commands convert some internal quantities into tokens;
for instance \jobname is the name of the file that is translated (without an extansion ‘.tex’),
and \tralicsversion is the version number of Tralics; it could be ‘2.5 (pl7)’.

INRIA

Tralics, a LATEX to XML translator Part I 69

• \the. You say \the\foo, if you want to typeset the value of a variable \foo.

• cmdindexarabic, \roman, \Roman, \alph, \Alph, \fnsymbol, \@alph \@Alph, \@fnsymbol:
commands to typset a LATEX counter.

• \input, \include, \endinput: Special macros for files.

• \if,\ifcat, \ifnum, \ifdim, \ifodd, \ifvmode, \ifhmode, \ifmmode, \ifinner, \ifvoid,
\ifhbox, \ifvbox, \ifx, \ifeof, \iftrue, \iffalse, \ifcase. These start a conditional.

• \fi, \or, \else. These modify the conditional stack.

• \topmark, \firstmark, \botmark, \splitfirstmark, \splitbotmark. Marks are not yet
implemented.

• \loop, \@whilenum, \@whiledim, \@whilesw: For loops.

• \xspace. This ads a space if needed.

RT n° 309

70 José Grimm

INRIA

Tralics, a LATEX to XML translator Part I 71

Chapter 3

Mathematics

3.1 Introduction

Mathematics play a great role in TEX and Tralics. For instance, TEX has three modes: vertical
mode, in which no typesetting is done, horizontal mode (where everything happens) and math
mode, a mode in which special objects are handled; a two phase process converts these special
objects in normal ones. Fonts to be used in math mode have special properties (see appendices F
and G of the TEXbook). Not all subtleties of TEX math can be implemented in Tralics; on the other
hand, the XML translation is conforming to MathML. This defines some entities, for instance in
isoamsc.ent, there is a definition of ⌉ to ⌉. As a consequence, Tralics will translate
\rceil to <mo>⌉</mo>. For most elements, there is a mechanism to change the name, this
is not done for MathML.

TEX has also a notion of “inner” mode. Inside an inner object, you cannot put an outer one.
As a consequence, you cannot put a display math formula into a box or another formula; in fact,
in a construction like \hbox{$$} the first dollar sign enters math mode, while in general, a test is
made to see if a second dollar sign follows, case where display math mode is entered. In Tralics,
there is no distinction between inner and outer mode; if you put a \hbox as above inside a math
formula, the TEX behavior is followe; otherwise, there will be a problem if you put a display math
formula in a box; you will get an error of the form Error in pop; stack holds p; trying to pop hbox.
This is essentially because an end-of-paragraph is inserted before the display math formula, which
is harmless, and a start-of-paragraph after the formula; when we see the end of the box, there is a
problem because of this unexpected paragraph.

The essential difference between normal math and display math, is that a display formula is
(in general) centered on a line; it can have an equation number (via \eqno and \leqno, these
two commands are not implemenred). The MathML documentation says “One of the important
uses of <mlabeledtr> is for numbered equations. In a <mlabeledtr>, the label represents the
equation number and the elements in the row are the equation being numbered. The side and
minlabelspacing attributes of <mtable> determine the placement of the equation number.” Thus,
the recommended way, for MathML, is to use a table, like this (replace ellipsis by an expression)

<mtable>
<mlabeledtr id=’e-is-m-c-square’>
<mtd>

<mtext> (2.1) </mtext>
</mtd>
<mtd>
...

RT n° 309

72 José Grimm

</mtd>
</mlabeledtr>

</mtable>

This mechanism is not yet implemented. We do not know how to insert numbers automatically, so
that proposed solution is: you can use \label, \ref for any display math formula. This will add
an id attribute to the <formula> object, which is a wrapper for the <math>. The \tag/\notag
mechanism of amsmath does not work.

The syntax of mathematics is often strange. Instead of

\math{E=\fraction{1}{2} m\power{v}{2}}

you say

$E={1\over 2} mv^2$

If you want a dollar character, you can say \$, if you want ^ (a hat character), you cannot say
\^, because this will put an accent over what follows. In LATEX, you can say \textasciicircum,
provided that you can guess the name. The previous example gives a warning: Package amsmath
Warning: Foreign command \over; \frac or \genfrac should be used instead. The essential
reason for this message is that \over is the only non-prefix command of TEX: it influences what
is on its left. This makes interpretation of math formulas a bit difficult.

When you say {\alpha^2}, TEX will enter math mode with an error of the form Missing $
inserted. On the other hand, Tralics will signal two errors, the first is Math only command \alpha.
Missing dollar not inserted, the second is Missing dollar not inserted, token ignored: {Character
^ of catcode 7}. If you want a command that works in math mode and outside math mode, you
can say:

\def\foo{\ifmmode \alpha^2 \else α^2\fi}

This can be generalised, using the following command

\DeclareRobustCommand{\ensuremath}{%
\ifmmode
\expandafter\@firstofone

\else
\expandafter\@ensuredmath

\fi}
\long\def\@ensuredmath#1{$\relax#1$}

The purpose of the \relax on the last line is for the case of an empty argument: we do not want
\ensuremath{} to expand to $$. Note that the argument is handled only once (i.e, \ensuremath
does not read it, but calls a helper), because of subtle bugs, see latex bugs data base amslatex/2104.
We shall say later ‘Mode independent commands are interpreted as usual’, this implies that the
\relax will do nothing. Other commands, not listed in this chapter, may signal an error. For
instance, \par is forbidden. The same is true for \char; note that \mathchar provokes an Unim-
plemented command error. If you want a random Unicode character, you should use commands
like \mathmi.

Because a math expression translates as <math> inside a <formula>, and that the math has
a long namespace attribute, examples will never fit on a single line. In order to make the result
easier to read, we have inserted some newline characters, and reindented all these examples. Two
consecutive newline characters are scanned by TEX as space plus \par. This space is ignored by
TEX (see TEXbook, the text between exercises 14.12 and 14.13). Hence the general rule in Tralics:
when a <p> element is ended, a trailing space or newline is removed from the content of the element,
a newline character is added to the parent of the <p>. As a result, you will very often see <p> at
the start of a line and </p> at the end of a line in a XML file generated by Tralics.

Consider the following simple example:

INRIA

Tralics, a LATEX to XML translator Part I 73

α and $$\beta \label{foo}$$

The translation is the following

<p>
<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mi>α</mi>

</math>
</formula> and</p>

<formula id=’uid1’ type=’display’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mi>β</mi>
</math>

</formula>

You can also say

\(\alpha\) and \[\beta \label{foo}\]

The result is exactly the same. In LATEX, the commands \(, \), \[and \] test the current mode.
No such test is done by Tralics. The LATEX implementation of \[is a bit strange. If the formula is
in vertical mode, it will be preceded by a box of width .6\linewidth containing nothing (except
two \hss commands to fill it) preceded by the current paragraph indentation. The command \]
executes \ignorespaces. As you can see, there is some difference between a single dollar and a
double dollar. In the first case, we are in normal math mode, otherwise in display math mode. One
difference is the initial style: it is \textstyle (for normal mode) and \displaystyle otherwise
(this will be explained later). A second difference is that the everyXXX token list inserted when
scanning the formula depends on the mode. The third difference is specific to Tralics. A display
math formula is never ‘trivial’ (see section 3.5), it can have a label (not more than one): in this case,
the <formula> element has an id attribute. In any case, the <formula> element has a type attribute
that explains that the formula is inline or display. A non-display formula starts a paragraph; a
display math formula cannot appear in a paragraph (the equivalent of \par is executed), if the
first non-space token (after expansion) that follows the math formula is not \par, a \noindent
token will be inserted (see line 34 of the transcript at page 77). Note that, in TEX, a math formula
does not end a paragraph, in the sense that a \parshape is valid across math formulas; however
what precedes the formula is split into lines, according to parameters in force at the start of the
formula. Tralics does not split paragraphs into lines, and does not implement \parshape.

3.2 The basic objects

The following environments are recognized outside math mode, and produce a math formula:
eqnarray*, align, split, equation*, math and displaymath. When Tralics sees a dollar character, it
looks at the next character (without expansion). If this is a dollar sign, it will be read, and display
math mode is entered, otherwise, normal math mode is entered. All environments showed above
start display math mode (except ‘math’, which enters normal math mode). The environments
‘math’ and ‘displaymath’ are equivalent to \(...\) and \[...\] respectively. The environments
‘eqnarray’ and ‘split’ are implemented as arrays. There is no difference between

\begin{eqnarray} a&b\\ c&d \end{eqnarray}
\begin{split} a&b\\ c&d \end{split}

and

\[\begin{array}{rcl} a&b\\ c&d \end{array}\]
\[\begin{array}{rl} a&b\\ c&d \end{array}\]

RT n° 309

74 José Grimm

Environments ‘equation’ and ‘align’ are translated as normal math. A star after the environment
name is ignored. In the case of normal math mode, the content of the token list \everymath is
inserted before the formula, for displaymath it is \everydisplay. For instance, if you say

\everymath={(N)\ }
\everydisplay={(D)\ }
α and $$\beta$$

the translation will be

<p>
<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow>
<mo>(</mo><mi>N</mi><mo>)</mo><mspace width=’6pt’/>
<mi>α</mi></mrow></math></formula> and</p>

<formula type=’display’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow>
<mo>(</mo><mi>D</mi><mo>)</mo><mspace width=’6pt’/>
<mi>β</mi>

</mrow>
</math>

</formula>

In TEX, you can put anything inside a math formula, provided it is hidden in a box; this is not
possible in Tralics, because we want the XML result to be conforming to MathML. We shall list
here all commands valid in math mode, and explain later on how they are translated.

The following environments are recognized: array, matrix, pmatrix, bmatrix, Bmatrix, vmatrix,
Vmatrix. All these environments produce arrays. For the first, an argument is required, explaining
how cells are aligned. For all other environments, cells are centered. Environments of the form
‘Xmatrix’ have fences, an implicit \left and \right. In order: parentheses, braces, brackets,
simple bars, double bars. There is also an environment ‘cases’, with two columns, left aligned, that
has an open brace as left delimiter, an empty right delimiter. Example

$\begin{array}{lcr}a&b&c\end{array}
\begin{bmatrix}d&e\\f&g\end{bmatrix}$

The translation is the following.

<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow>
<mtable>
<mtr>
<mtd columnalign=’left’><mi>a</mi></mtd>
<mtd><mi>b</mi></mtd>
<mtd columnalign=’right’><mi>c</mi></mtd>

</mtr>
</mtable>
<mfenced open=’{’ close=’}’>
<mtable>
<mtr>
<mtd><mi>d</mi></mtd>
<mtd><mi>e</mi></mtd>

</mtr>
<mtr>

INRIA

Tralics, a LATEX to XML translator Part I 75

<mtd><mi>f</mi></mtd>
<mtd><mi>g</mi></mtd>

</mtr>
</mtable>
</mfenced>

</mrow>
</math>

</formula>

The following delimiters are recognized: <, >, ., (,), [,], |, \{, \}, \langle, \rangle, \lbrace,
\rbrace, \lceil, \rceil, \lgroup, \rgroup, \lfloor, \rfloor, \lmoustache, \rmoustache,
\vert, \Vert, \uparrow, \downarrow, \updownarrow, \Uparrow, \Downarrow, \Updownarrow. A
delimiter is anything that can follow \left or \right. For MathML, this has to be a character.
As the following example shows, we use in most cases a character entity.

$\left\lceil \left\uparrow x\right\}\right.$
$\lceil \uparrow x\}$

The translation is

<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mfenced open=’⌈’ close=’.’>
<mfenced open=’↑’ close=’}’>
<mi>x</mi></mfenced></mfenced></math></formula>

<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow><mo>⌈</mo><mo>↑</mo><mi>x</mi><mo>}</mo>
</mrow></math></formula>

This is the list of commands allowed in math mode, as well as in text mode: \dots, \ldots,
\quad, \qquad, \ , \$, \%, \&, \!, \, \{, \}, \i, \sharp, \natural, \flat, _. The following
commands produce space: \;, \:, \>. Note that \! produces a negative space in math mode,
nothing outside math mode. Example of use:

$\dots\ldots\%\&\{\}\i\sharp\natural\flat_$
\dots\ldots\%\&\{\}\i\sharp\natural\flat_

This is the translation:

<p><formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow><mo>⋯</mo><mo>...</mo><mo>%</mo><mo>&</mo><mo>{</mo>
<mo>}</mo><mo>ı</mo><mo>♯</mo><mo>♮</mo><mo>♭</mo>
<mo>_</mo></mrow></math></formula>
......%&{}ı♯♮♭_</p>

We give here the list of all symbols that have a translation of the form <mi>α</mi>.
They are of type Ord (ordinary symbol). We start with the lower case Greek letters: \alpha,
\beta, \gamma, \delta, \epsilon, \varepsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda,
\mu, \nu, \xi, \pi, \rho, \sigma, \tau, \upsilon, \phi, \chi, \psi, \omega, \varpi, \varrho,
\varsigma, \varphi, \vartheta, \varkappa, then upper case Greek letters: \Gamma, \Delta,
\Theta, \Lambda, \Xi, \Sigma, \Upsilon, \Phi, \Pi, \Psi, \Omega, then other symbols: \hbar,
\ell, \wp, \Re, \Im, \partial, \infty, \emptyset, \nabla, \surd, \top, \bottom, \bot, \angle,
\triangle. Example

$\alpha\Gamma \surd$

This translates as

RT n° 309

76 José Grimm

<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow><mi>α</mi><mi>Γ</mi><mi>√</mi>
</mrow></math></formula>

Next comes the list of all symbols whose translation is like log. There are of type Ord (ordinary
symbol), though they should be Op (large operator). The list is divided in two parts: these have
movable limits: \det, \gcd, \inf, \injlim, \liminf, \limsup, \max, \min, \sup, \projlim, and
these have not: \dim, \exp, \hom, \ker, \lg, \lim, \ln, \log, \Pr, \arccos, \arcsin, \arctan,
\arg, \cos, \cosh, \cot, \coth, \csc, \deg, \sec, \sin, \@mod, \sinh, \tan, \tanh. Example

$\displaystyle\lim_a \liminf_a \sin_a \hom_a$

The LATEX translation is lim
a

lim inf
a

sina homa, and the Tralics version is

<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mstyle scriptlevel=’0’ displaystyle=’true’>
<mrow>
<msub><mo movablelimits=’true’ form=’prefix’>lim</mo> <mi>a</mi> </msub>
<msub><mo movablelimits=’true’ form=’prefix’>lim inf</mo><mi>a</mi></msub>
<msub><mo form=’prefix’>sin</mo> <mi>a</mi> </msub>
<msub><mo form=’prefix’>hom</mo> <mi>a</mi> </msub>

</mrow></mstyle></math></formula>

From now on, all symbols translate into the form <mo>...</mo>. We start with symbols of type
Ord. In reality, most of them they should be of type Op (large operator). \mho, \clubsuit,
\diamondsuit, \heartsuit, \spadesuit, \aleph, \backslash, \Box, \imath, \jmath, \square,
\cong, \lnot, \neg, \forall, \exists, \coprod, \bigvee, \bigwedge, \biguplus, \bigcap,
\bigcup, \int, \sum, \prod, \bigotimes, \bigoplus, \bigodot, \oint, \bigsqcup, \smallint.
Examples

$\bigcap \int\oint$

The translation is

<mrow><mo>⋂</mo><mo>∫</mo><mo>∮</mo></mrow>

These are of type Bin (binary operator). \triangleleft, \triangleright, \bigtriangleup,
\bigtriangledown, \wedge, \land, \vee, \lor, \cap, \cup, \multimap, \dagger, \ddagger,
\sqcap, \sqcup, \amalg, \diamond, \Diamond, \bullet, \wr, \div, \odot, \oslash, \otimes,
\ominus, \oplus, \uplus, \mp, \pm, \circ, \bigcirc, \setminus, \cdot, \ast, \times, \star,
\in. Example

$\cap \cup \wr$

The translation is

<formula type=’inline’><math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow><mo>∩</mo><mo>∪</mo><mo>≀</mo></mrow></math></formula>

These are of type Rel (relation). \propto, \sqsubseteq, \sqsupseteq, \sqsubset, \sqsupset,
\parallel, \mid, \dashv, \vdash, \Vdash, \models, \nearrow, \searrow, \nwarrow, \swarrow,
\Leftrightarrow, \Leftarrow, \Rightarrow, \ne, \neq, \le, \leq, \ge, \geq, \succ, \approx,
\succeq, \preceq, \prec, \doteq, \supset, \subset, \supseteq, \subseteq, \bindnasrepma,
\ni, \gg, \ll, \gtrless, \geqslant, \leqslant, \not, \notin, \leftrightarrow, \leftarrow,
\owns, \gets, \rightarrow, \to, \mapsto, \sim, \simeq, \perp, \equiv, \asymp, \smile,
\leftharpoonup, \leftharpoondown, \rightharpoonup, \rightharpoondown, \hookrightarrow,
\hookleftarrow, \iff, \Longrightarrow, \longrightarrow, \longleftarrow, \Longleftarrow,
\longmapsto, \frown, \bowtie, \longleftrightarrow, \Longleftrightarrow, \Join. Example.

$\approx\leftrightarrow\Longleftrightarrow$

INRIA

Tralics, a LATEX to XML translator Part I 77

Translation:

<formula type=’inline’><math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow><mo>≈</mo><mo>↔</mo>
<mo>⟺</mo></mrow></math></formula>

These are of type Inner: \cdots, \hdots, \vdots, \ddots. These are of type Between (they are
of type Ord in TEX, but are used as opening or closing delimiters): \Vert, \|, \vert, \uparrow,
\downarrow, \Uparrow, \Downarrow, \Updownarrow, \updownarrow. These are of type Open and
Close: \rangle, \langle, \rmoustache, \lmoustache, \rgroup, \lgroup, \rbrace, \lbrace,
\lceil, \rceil, \lfloor, \rfloor.

The following characters are classified as ‘small’: <>,.:;*?!x, these are classified as ‘small-l’
and ‘small-r’: ()[], the vertical bar is small-l, these are bin: +/ and the equals sign is of type Rel.
Note: what you see here as x is in reality the character 215. It cannot be printed in verbatim mode
by LATEX.

$<>,.:;*?!x ()[]|+-/=$

Translation:

<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow><mo><</mo><mo>></mo><mo>,</mo><mo>.</mo><mo>:</mo>

<mo>;</mo><mo>*</mo><mo>?</mo><mo>!</mo><mi>×</mi><mo>(</mo>
<mo>)</mo><mo>[</mo><mo>]</mo><mo>|</mo><mo>+</mo><mo>-</mo>
<mo>/</mo><mo>=</mo>

</mrow></math></formula>

The following commands are used for accents: \acute, \grave, \mathring, \ddddot, \dddot,
\ddot, \tilde, \widetilde, \bar, \breve, \check, \hat, \widehat, \vec, \overrightarrow,
\overleftarrow, \underrightarrow, \underleftarrow, \dot.

The following commands are special. They will be explained later: \overline, \underline,
\stackrel, \underset, \overset, \mathchoice, \frac, \overbrace, \underbrace, \genfrac,
\dfrac, \tfrac, \sqrt, \root.

3.3 Parsing a math formula

This is a non-trivial operation, for this reason in verbose mode, the math expression will be printed
on the transcript file. For instance, given

\tracingall
$\begin{cases} x &y\\a&b \end{cases} \kern2cm x^{ {2 }}!$

you will see

1 {math shift character $}
2 +stack: level + 2 for math
3 +stack: level + 3 for math
4 \cases ->\left \{\begin {array}{ll}
5 +stack: level + 4 for math
6 +stack: level + 5 for cell
7 +stack: level + 6 for math
8 +stack: level - 6 for math
9 +stack: level - 5 for cell

10 +stack: level + 5 for cell
11 +stack: level - 5 for cell
12 +stack: level + 5 for cell

RT n° 309

78 José Grimm

13 +stack: level - 5 for cell
14 +stack: level + 5 for cell
15 \endcases ->\end {array}\right .
16 +stack: level - 5 for cell
17 +stack: level - 4 for math
18 +stack: level - 3 for math
19 +scanint for \kern->2
20 +scandimen for \kern ->56.9055pt
21 +stack: level + 3 for math
22 +stack: level - 3 for math
23 +stack: level + 3 for math
24 +stack: level + 4 for math
25 +stack: level - 4 for math
26 +stack: level - 3 for math
27 +stack: level - 2 for math
28 Math: $\begin {cases}{\left \{\begin {array}{ll} x &y\\a&b \end {cases}
29 \end {array}\right .} \kern (Changed to)\hspace {56.9055pt}x^{ {2 }}!$
30 +scanint for \hspace->56
31 +scandimen for \hspace ->56.9055pt
32 {scanglue 56.9055pt}
33 Realloc xml math table to 20
34 {Push p 1}

We shall explain for each line in the transcript file where it comes from. Math mode scanning is
entered when the translator sees a math shift character (line 1). The scanner reads some tokens
and puts them in a list. The list is printed at the end (lines 28-29). The start of the formula is a
bit special, in that the token that follows the first dollar sign is considered unexpanded when we
check for a double dollar sign. A new group is entered, before scanning the whole formula (line 2).

The loop is as follows:

• A token is read and expanded. Lines 4 and 15 show expansion of user commands. An error
is signaled in the case of end of data.

• In the case of \nobreakspace, we insert a ~.

• If we get a font command, we proceed as follows. First \cal is transformed into \@mathcal.
The font can be \mathtt, \mathcal, \mathbf, \mathrm,\mathit, \mathbb, \mathsf. These
are basic math fonts; they have an inner variant, of the form \@mathtt (same name with an @
in front). There is also \mathnormal. We allow old fonts (like \rm, \sf, \tt, \bf, \it, \sl),
fonts switches of the form \rmfamily, or font commands that take an argument like \textrm.
These fonts has an inner variant, say T . If the font takes no argument, then the token T is
inserted (as explained for \cal above). Otherwise, let S be the current math font. In this
case, an argument is read, then S, T and this argument is pushed back, to be read again. For
instance, if the current font is ‘sf’, then \mathrm{foo} produces \@mathrm foo\@mathsf:
these are five tokens to be read again. Note: \mathbbm is an alias for \mathbb.

• In all other cases the current token is added to the list. In particular, this explains while the
trace starts with a dollar and \begin.

• If the token is an open brace, in fact any character of category code 1, a new math group is
read. You can see on lines 23 and 24 that the stack level increases (a new semantic level is
entered, all assignments are local).

INRIA

Tralics, a LATEX to XML translator Part I 79

• If the token is a close brace, in fact any character of category code 2, this terminates the
current math group (see lines 25 and 26). An error is signaled in case the current group
should be closed differently (for instance with \end, or \right, etc.)

• If the token is a dollar sign, in fact any character of category code 3, then four alternatives
can be chosen. This dollar sign can be the end of the math formula. If we are in display
math, a token is read with expansion. An error is signaled Display math should end with $$
if this is not a dollar sign (in fact, a character of category code 3). If the current group is
defined by \hbox, this can be the start of a math formula (never display math). The token
in \everymath are inserted, then a math formula is read. Otherwise, an error is signaled
Extra $ ignored..., parsing continues.

• In the case of \label, an argument is read. If we are not in display math, or if the formula
already has a label, you get an error: Some labels may be lost. Wherever the location of
the label, an attribute will be added to the <formula> element that contains the <math>
element.

• In the case of \ensuremath, a token list is read, and pushed back, so that this command
acts as \@firstofone.

• The case \begin or \end is considered next. We make the assumption that this is a user
defined environment, or a math environment. In the case of the example, we have a user
environment that expands to a math environment. For a user defined environment, the
following is executed:

{\cases \endcases}

In the trace, lines 28-29, you will see both \begin{cases} and the result of the expansion of
\cases, but not \cases or the brace. However, you can see on lines 4 and 15 the expansion
of the user defined commands, and on lines 3 and 18 the braces. You can see on lines 6 and
16 that a group (named ‘cell’) is opened and closed, because the builtin math environment
starts a cell. This allows & or \\ tokens. The group defined on lines 7-8 does not exists in
TEX. Let’s hope for the best: the argument of the array should contain only letters. Whether
these characters should be expanded is unclear.

• In the case \left and \right, a delimiter is read. The rules are: \relax and space tokens
are ignored. After full expansion, the result should be one of the tokens listed above as
valid delimiters, otherwise an error of the form Invalid character in \left or \right can be
signaled. These commands come in pairs; you might get errors like Missing \right. inserted,
or Unexpected \right. These commands define a group, see lines 5 and 17.

• Case & and \\. These are valid only inside a cell group. They terminate a cell group and
start a new one. See lines 9 to 14.

• The \of token is ignored.

• The \mathchoice command reads 4 arguments, which are remembered.

• Case of \frac, etc. These commands read their arguments. The main token list will contain
a special slot, with the name of the command and the arguments. In the case of \sqrt, the
first argument is optional. You say \root A \of B.

• The syntax of \genfrac is special. It takes six arguments. The following commands are
executed when Tralics bootstraps:

\def\binom{\genfrac()\z@{}}
\def\dbinom{\genfrac(){0pt}0}
\def\tbinom{\genfrac(){0pt}1}

RT n° 309

80 José Grimm

This defines three commands that take two arguments with regular syntax. The first two
arguments of \genfrac are delimiters or empty. The next one is a dimension or empty. If
empty, a default dimension will be used. In the example, the first argument is an opening
parenthesis, the second is a closing parenthesis, the third is zero. The next argument is
empty or a number between 0 and 3. These numbers correspond to a style: \displaystyle,
\textystyle, \scriptstyle, and \scriptscriptstyle respectively. Currently an explicit
number is required; everything else is treated as an empty list. On the other hand, the
dimension is scanned via the scandimen routine (the procedure that prints lines of the form
19-20).

• \hbox and friends. Currently, only \hbox is implemented. The current value of \everyhbox
token list is inserted, and the argument is read. It is possible to insert a math formula in
such a box.

• Case of \mbox, \text, \makebox. Like \hbox, but no \everyXXX token list is inserted.

• Case of a math font, for instance \@mathcal. The font command is inserted in the token list,
but the variable holding the current font is (locally) updated.

• Case of a math command (like \alpha listed as above). The command is read. There is a
special hack: \not\in is converted to \notin, and \not= to \ne.

• \kern, \hskip, \vskip. See the example: on line 19 and 20, there is the trace of the routines
that read the argument. The result is converted into a \hspace, with argument delimited
by braces. Look at the trace, line 29. This will be read again later, see lines 30 to 32.

• An apostrophe is handled in a special way, as explained in the TEX book. Essentially x’ is
x^{\prime} and x’^2 is x^{\prime2}.

• Mode independent commands are interpreted as usual (this includes undefined commands).
This should not typeset anything.

• A character is remembered, together with the current font.

• Everything else is inserted without evaluation.

We give here an example with some fonts.

$\mathtt{Ab}\mathcal{Cd}\mathbf{Ef}\mathrm{Gh}\mathit{Ij}
\mathbb{Kl}\mathsf{Mn}$

The translation is as follows. You can notice that some variants affect only uppercase letters.

<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow>
<mi mathvariant=’monospace’>A</mi>
<mi mathvariant=’monospace’>b</mi>
<mi>𝒞</mi>
<mi>d</mi>
<mi mathvariant=’bold’>E</mi>
<mi mathvariant=’bold’>f</mi>
<mi> G </mi>
<mi> h </mi>
<mi>I</mi>
<mi>j</mi>
<mi>𝕂</mi>
<mi>l</mi>

INRIA

Tralics, a LATEX to XML translator Part I 81

<mi mathvariant=’sans-serif’>M</mi>
<mi mathvariant=’sans-serif’>n</mi>

</mrow>
</math>

</formula>

3.4 Translation of arrays

Whenever we see an array (this can be a global environment like ‘eqnarray’ or a local one, like
‘array’), we translate all cells one after the other. The character & is the cell separator. The
command \\ is the row separator. In the case where an array ends with a \\, this gives an empty
row: it will be removed. Each cell has an alignment, left, right, or center. An attribute is added
only if this is not center. The ‘array’ environment has an argument that explains the type of the
columns (columns not indicated are centered). The default alignment is ‘rl’ for ‘split’ and ‘align’,
‘rcl’ for ‘eqnarray’, centered for matrix. You can use \multicolumn. This command takes three
arguments: the span which should be some integer, then the alignment (one of r, l or c) and the
content of the cell. The program may signal errors in case of wrong syntax. Here is an example:

$\begin{array}{rcl}
a&b&c&d\\
A&\multicolumn{1}{r}{B}&C&D\\
\end{array}$

This is the translation of the array.

<mtable>
<mtr>
<mtd columnalign=’right’><mi>a</mi></mtd>
<mtd><mi>b</mi></mtd>
<mtd columnalign=’left’><mi>c</mi></mtd>
<mtd><mi>d</mi></mtd>
</mtr>
<mtr>
<mtd columnalign=’right’><mi>A</mi></mtd>
<mtd columnalign=’right’ columnspan=’1’><mi>B</mi></mtd>
<mtd columnalign=’left’><mi>C</mi></mtd>
<mtd><mi>D</mi></mtd>
</mtr>

</mtable>

3.5 Trivial math

If you say ‘x and 123’, the translation will be

<p><formula type=’inline’><simplemath>x</simplemath></formula> and 123</p>

Initially, we found this a good idea; because this can easily be converted in HTML into <i>x</i>.
Moreover ‘$2^{i\grave eme}$’ gives

<temporary>2<hi rend=’sup’>e</hi></temporary>

Here the <temporary> element will not show in the XML tree, but is printed on the terminal if
Tralics is called in the ‘interactivemath’ switch. If you invoke Tralics with the ‘-notrivialmath’
switch, these hacks are not tried, and the formula translates into:

RT n° 309

82 José Grimm

<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<msup>
<mn>2</mn>
<mrow>
<mi>i</mi>
<mover accent=’true’><mi>e</mi> <mo>`</mo></mover>
<mi>m</mi>
<mi>e</mi>

</mrow>
</msup>

</math>
</formula>

There are three hacks: the first is when the formula contains only a letter, the second is when
the formula contains only digits, and the last one is when people use a math formula instead of
\textsuperscript. This hack is applied only if the math formula starts with digits (no digit at
all is OK; braces are ignored) followed by a exponent marker, followed by a special exponent; this
has to be a single token or a token list. In the case of a single token, the hack is applied only if
this is e or o. Typically, it applies in cases like 2e and No. In the case of more than one token,
it applies when the exponent is ‘th’, ’st’, ‘rd’ and ‘nd’, for cases like 1st, 2nd, 3rd, and 4th. There
are four rules for French: ‘e’, ‘eme’, ‘ieme’, ‘ème’ and ‘ième’ convert to ‘e’, ‘ier’ and ‘er’ convert to
‘er’, ‘iemes’, ‘ièmes’ and ‘es’ convert to ‘es’ ‘ère’ and ‘re’ convert to ‘re’. The accented letter can
be given as è, or \‘e or \‘{e} or \grave{e} or \grave e. The hack is applied in a case like:

$2 ^{\text{\small\rm \grave ere}} $

Instead of \text, \hbox can be used. Instead of \small or \rm any font change or font size
command can be used. Up to two commands can be given. The original Perl version had 30
exceptions, including $\Sigma{}^{{\rm it}}$ and \ddot{\rm o}. Compare Σit with Σit and ö
with ö.

3.6 Conversion to XML

We use a highly recursive procedure that converts a math list into a formula. The procedure takes
as argument the current style. This is one of D, T, S, or SS (display, text, script, or script script
style). It is D for a display math formula, T for a normal formula.

Consider first the case where the formula has an \over, or a variant, not hidden inside braces.
This example has 6 subexpressions, each of them have such an operator.

${a\over b}{a\above2mm b}{a\atop b}
{a\overwithdelims[] b}{a\abovewithdelims[]2mm b}{a\atopwithdelims[] b}$

The translation is

<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow>
<mfrac><mi>a</mi> <mi>b</mi></mfrac>
<mfrac linethickness=’2mm’><mi>a</mi> <mi>b</mi></mfrac>
<mfrac linethickness=’0.0pt’><mi>a</mi> <mi>b</mi></mfrac>
<mfenced open=’[’ close=’]’>

<mfrac><mi>a</mi> <mi>b</mi></mfrac></mfenced>
<mfenced open=’[’ close=’]’>

<mfrac linethickness=’2mm’><mi>a</mi><mi>b</mi></mfrac></mfenced>

INRIA

Tralics, a LATEX to XML translator Part I 83

<mfenced open=’[’ close=’]’>
<mfrac linethickness=’0.0pt’><mi>a</mi> <mi>b</mi></mfrac></mfenced>

</mrow>
</math>

</formula>

It is an error if the formula has more than one such operators. Otherwise, we have two parts:
what precedes the operator and what follows the operator. As the example shows, some operators
need delimiters. Other operators read a dimension. This dimension must be given explicitly as a
sequence of digits and a unit of measure (we could do better; if you want \parindent instead of
2mm, you should use \genfrac instead). After splitting the formula into two parts, the same idea
than \genfrac is used. If the current style is C, the next style in the list is used for both parts of
the formula (if the style is D or T, the next style is S, otherwise it is SS).

We assume from now on that the formula contains no more operators like \over. This means
that the current style can be used for the current object. Items are handled as follows:

• A space is ignored.

• If the current token is \text, \hbox, \mbox, this is a command with an argument, that is
interpreted using special rules. A sequence of characters produces \mtext, a space produces
a \mspace, and math formulas are allowed. Errors may be signaled if the content of the
argument is too complicated. The translation of

$ x=0 \text{provided that $y=0$ or } a=1$

is

<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow>
<mi>x</mi> <mo>=</mo> <mn>0</mn>
<mrow>
<mtext>provided</mtext>
<mspace width=’0.5em’/>
<mtext>that</mtext>
<mspace width=’0.5em’/>

<mrow> <mi>y</mi><mo>=</mo><mn>0</mn> </mrow>
<mspace width=’0.5em’/>
<mtext>or</mtext><mspace width=’0.5em’/></mrow>
<mi>a</mi><mo>=</mo><mn>1</mn>
</mrow>

</math>
</formula>

• In the case of $\mathop{\rm sin}$, the translation is <mo form=’prefix’>sin</mo>. Any
sequence of characters is allowed instead if ‘sin’. Instead of \rm, any font change command
that switches to ‘rm’ can be used.

• In the case of \hspace, an argument is read, converted to a dimension (in fact, a glue
is read via the scanglue routine, the shrink and stretch parts of the glue are discarded),
and the result is a <mspace> element. For instance \hspace{2cm plus 3pt} produces
<mspace width=’56.9055pt’/>.

• In the case of \displaystyle, \textstyle, \scriptstyle, \scriptscriptstyle, the cur-
rent style is changed, to D, T, S and SS respectively.

RT n° 309

84 José Grimm

• In the case of \nonscript, the token is discarded if the style is D or T, kept otherwise. We
shall see later that space disappears after such a token, if it is not discarded. Example.

$\def\foo{\nonscript~} \foo x^{y\foo}_{\textstyle z\foo}$

The translation is

<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow>
<mspace width=’1em’/>
<msubsup>
<mi>x</mi>
<mstyle scriptlevel=’0’ displaystyle=’false’>

<mrow><mi>z</mi><mspace width=’1em’/></mrow>
</mstyle>
<mi>y</mi>

</msubsup>
</mrow>

</math>
</formula>

• If the token is a character of category code 7 or 8, it is left unchanged (Typically, case of ^
and _).

• If the token is \limits, \nolimits, \mathord, \mathop, \mathbin, \mathrel, \mathopen,
\mathclose, \mathpunct, \mathinner, \ensuremath, \nonumber, \nolinebreak, it is ig-
nored. However, we remember that the next object should be Rel, Bin (if \mathrel or
\mathbin has been seen.)

• If the token is \big, \bigl, \bigm, \bigrm, \bigg, \biggl, \biggm, \biggrm, \Big, \Bigl,
\Bigm, \Bigrm, \Bigg, \Biggl, \Biggm, \Biggrm, we remember that a big object is wanted,
with subtype left, right, middle, or other.

• The current token or group is translated, according to the rules given below. After that,
flags may be added (if the object is declared Bin or Rel or big). The current style is changed
to the next style in the case we are in a group, and the group is preceded by ^ or _.

• If the current token is a character, its translation will be a <mi>, <mn> or <mo> element. In the
case of a letter, this may depend on the font attribute associated to the character. For instance
{\bf x=1} gives <mi mathvariant=’bold’>x</mi> and <mo>=</mo> and <mn>1</mn>.

• If the current token is \left, \right, or already translated, it is left unchanged.

• If the token is a constant, like \alpha, see the big list at the start of the chapter, its XML
value is inserted.

• If the token is a list, like {...}, it will be translated, using a copy of the current style.

• If the token is a list of the form \left ... \right, it will be translated. After that, fences
will be added (using what follows the \left and \right).

• If the token is a list of the form \begin{xxx}...\end{xxx}, we assume that this is an array,
or a matrix, we already explained how it can be translated.

• If the token is \mathchoice, with its four arguments, one of them is selected according to
the mode. For instance

INRIA

Tralics, a LATEX to XML translator Part I 85

\def\foo{\mathchoice{1}{2}{3}{4}}
$\foo{\displaystyle \foo}^{\foo^{\foo}}$

translates to

<mrow>
<mn>2</mn>
<msup>
<mstyle scriptlevel=’0’ displaystyle=’true’><mn>1</mn></mstyle>
<msup>
<mn>3</mn>
<mn>4</mn>
</msup>

</msup>
</mrow>

• It is an error if the current token is not a command of the form \acute, etc, or \overline,
those listed at the end of the section ‘basic objects’ on page 77. As a general rule, arguments
are translated using the next style (i.e., smaller), unless the style is indicated (for \dfrac
and \tfrac, the style is T and S, the style may be indicated for \genfrac). If \foo is as
above, the translation of

$\tfrac{\foo}{\foo} = \dfrac{\foo}{\foo} = \frac{\foo}{\foo}
{\displaystyle \frac{\foo}{\foo}}$

is

<mrow>
<mstyle scriptlevel=’0’ displaystyle=’false’>
<mfrac><mn>3</mn> <mn>3</mn></mfrac>

</mstyle>
<mo>=</mo>
<mstyle scriptlevel=’0’ displaystyle=’true’>
<mfrac><mn>2</mn> <mn>2</mn></mfrac>

</mstyle>
<mo>=</mo>
<mfrac><mn>3</mn> <mn>3</mn></mfrac>
<mstyle scriptlevel=’0’ displaystyle=’true’>
<mfrac><mn>2</mn> <mn>2</mn></mfrac>

</mstyle>
</mrow>

The translation of

\def\xbar#1{\genfrac{}{}{}{#1}{\foo}{\foo}}
$\xbar{0}\xbar{1}\xbar{2}\xbar{3}\xbar{}$

is the following. You can notice that, if the argument of \xbar is 2 or 3, this does not change
the translation of the fraction. In TEX we get two formulas that have the same size but are
not vertically aligned (why?).

<mstyle scriptlevel=’0’ displaystyle=’true’>
<mfrac><mn>2</mn> <mn>2</mn></mfrac>

</mstyle>
<mstyle scriptlevel=’0’ displaystyle=’false’>
<mfrac><mn>3</mn> <mn>3</mn></mfrac>

</mstyle>
<mstyle scriptlevel=’1’ displaystyle=’false’>
<mfrac><mn>4</mn> <mn>4</mn></mfrac>

RT n° 309

86 José Grimm

</mstyle>
<mstyle scriptlevel=’2’ displaystyle=’false’>
<mfrac><mn>4</mn> <mn>4</mn></mfrac>

</mstyle>
<mfrac><mn>3</mn> <mn>3</mn></mfrac>

As a final example, the translation of

$\overline{x}\grave{y} \underbrace{z}\stackrel{a}{b}\overset{a}{b} $

is

<mover accent=’true’><mi>x</mi> <mo>‾</mo></mover>
<mover accent=’true’><mi>y</mi> <mo>`</mo></mover>
<munder accentunder=’true’><mi>z</mi> <mo>⏟</mo>
</munder><mover><mi>b</mi> <mi>a</mi></mover>
<mover><mi>b</mi> <mi>a</mi></mover>

3.7 Final math mode hacks

Before, we forget it: when the formula is completely translated, we have a list of XML elements. If
the list is empty, the result is <mrow/>. For instance, in the case of x^{}, then exponent is empty.
If the list has a single XML token, this will be the result. Otherwise, everything is put in a <mrow>.
If the current formula, or subformula contains a style change, it is put in a <mstyle> element.
This is not always the good solution, because the same style is used, for everything, what precedes
and what follows the style command. If you look at the \genfrac example above, you can see
that styles are added by the \genfrac interpreter. (the single TEX switch is associated with two
MathML attributes).

If we have a formula, of the form $_x^{2}_{abc}$, the translation rules explained so far tell us
that we have: an underscore character, an XML element for x, a hat character, an XML element
for {2}, an underscore, and an XML element for {abc}. We may have \nonscript tokens; they
will be removed, as well as a space that follows. We have to evaluate the commands that control
subscripts and superscripts. A hat character gives <msup>, an underscore character gives <msub>,
and both give <msubsup>. It is possible for a formula to start with an underscore or a hat: in this
case, the kernel is empty. It is not possible for a formula to end with hat or underscore. A kernel
can have at most one subscript and at most one superscript; hence the formula above is wrong:
the letter x is the first subscript to the empty kernel. A valid formula is for instance $_yx^2$. It
translates as

<mrow>
<msub><mrow></mrow> <mi>y</mi> </msub>
<msup><mi>x</mi> <mn>2</mn> </msup>

</mrow>

We have mentioned above that some operators can be flagged as left, right, and that adding
\bigr may convert a left operator into a right operator. There is a magic that converts, in some
cases, the \big operator into fences. For instance

$\bigl [A\big (x^2 \big) B \bigr[$

translates as

<mfenced open=’[’ close=’[’>
<mi>A</mi>
<mfenced open=’(’ close=’)’><msup><mi>x</mi> <mn>2</mn> </msup></mfenced>
<mi>B</mi>

</mfenced>

INRIA

Tralics, a LATEX to XML translator Part I 87

There is another trick, that works in some cases. Consider:

$\int_0^\infty f(x) dx = \big[U \big]$

the translation is

<mrow>
<msubsup><mo>∫</mo> <mn>0</mn> <mi>∞</mi> </msubsup>
<mrow>
<mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi>

</mrow>
<mo>=</mo>
<mfenced open=’[’ close=’]’><mi>U</mi></mfenced>

</mrow>

The interesting point here is the placement of the inner \mrow. The idea is that the parentheses
should remain small (not larger than the \mrow). In particular, it should not be influenced by the
integral that precedes and the fence that follows. In some cases, it works.

3.8 Extensions

In Tralics, you can use the following three commands \mathmo, \mathmi, and \mathmn. They take
an argument and produce a <mo>, <mi>, or <mn>. There is file tralics-iso.sty that contains

\def\makecmd#1{\expandafter\newcommand\csname math#1\endcsname}
\def\makemo#1#2{\makecmd{#2}{\mathmo{\&\##1;}}}
\def\makemi#1#2{\makecmd{#2}{\mathmi{\&\##1;}}}
\def\makemn#1#2{\makecmd{#2}{\mathmn{\&\##1;}}}

Then you can say \makemo{x02190}{slarr}, and this will define a command \mathslarr, whose
translation (in math mode only) is <mo>←</mo>. The file provides nearly 2000 such
definitions, taken from the MathML entity files, with the MathML names. These commands can
be used instead of TEX commands like \mathchar: remember that a math-char is a 15bit integer,
where 8 bits are used for the position in a font table, 3 bits for the type, and 4 bits for the
family. Only three types are defined for Tralics, but the content of the element is arbitrary (most
math symbols are between U+2100 and U+27FF, there are also letters between U+1D400 and
U+1D7FF). There is a command \mathattribute that adds an attribute pair to the last created
math element. You can say for instance

\providecommand\operatorname[1]{%
\mathmo{#1}%
\mathattribute{form}{prefix}%
\mathattribute{movablelimits}{true}%

}

After that,

$\min _xf(x) >\operatorname{min} _xf(x)$

translates as

<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow>
<msub><mo movablelimits=’true’ form=’prefix’>min</mo> <mi>x</mi> </msub>
<mrow>
<mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>></mo>
</mrow>
<msub><mo movablelimits=’true’ form=’prefix’>min</mo> <mi>x</mi> </msub>

RT n° 309

88 José Grimm

<mrow>
<mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo>
</mrow>

</mrow>
</math>

</formula>

You can use the command \mathchardef. This is like \chardef, it reads a command and
a number. The number should fit on 15 bits. Otherwise, you will see an error of the form:
Bad mathchar replaced by 0: 1234567. The command defined by \mathchardef behaves like
\mathchar; said otherwise, it is not implemented in Tralics, an error will be signaled that takes
the form Undefined command \foo; command code = 232.

TEX has a special register called \fam. If you say something like

\fam3 ${\fam9 \the\fam}\ \the\fam$

then the second \the expands to −1. The first give 9, but LATEX complains with: \textfont 9 is
undefined (character 9). In Tralics, you would see

<mrow><mn>9</mn><mspace width=’6pt’/><mn>3</mn></mrow>

As the example shows, the family is unused, and not correctlty restored. Each character has a
\mathcode. The following

\mathcode‘\a="0941 $a\the \mathcode‘\a$

is interpreted by Tralics as $a2369$. However TEX complains, with \textfont 9 is undefined (char-
acter A), because you ask the lower case letter a to be printed like the upper case letter A with
textfont 9.

There is a command \delimiter, it reads a number, but you cannot use it. The syntax rules
of TEX allow \delimiter \relax 12, but these subtleties are not implemented in Tralics. There
is a command \radical, it reads a number, then signals an error. The \mathaccent command is
similar.

There are commands \raise and \lower, as well as \vcenter. The last one is not implemnted
in Tralics. The translation of

a\raise2cm\xbox{foo}{bar}\lower 2pt\xbox{xfoo}{xbar}

is

<p>a<foo>bar</foo><xfoo>xbar</xfoo></p>

As you can see, the specification disappear. Maybe in a future version, we will add an attribute to
the box. You cannot use these commands in math mode is Tralics. In TEX, you can get an error
of the form: You can’t use ‘\raise’ in vertical mode, while \vcenter is a math only command.
Currently \indent and \noindent are ignored in math mode (in TEX \indent_b produces a
kernel and an index; the kernel is an empty box of width \parindent, of type Ord.

INRIA

Tralics, a LATEX to XML translator Part I 89

Chapter 4

Translating a bibliography

4.1 Introduction

As said in [6], “citations are cross-references to bibliographical information outside the current
document, such as to publications containing further information on a subject and source informa-
tion about used quotations. [...] There are numerous ways to compile bibliographies and reference
lists. They can be prepared manually, if necessary, but usually they are automatically generated
from a database containing bibliographic information.”

There are different ways to cite an author, or a text or a specific part of a text. The easiest way
(for an automated system) is to use numbers, as above; if you are reading an interactive version
of this document, you can click on the number, and you will see the entry in the bibliography, at
the end of the document (between the index and the table of contents). This is standard practice;
recommendations for a book series say: References are cited in the text simply as numbers in
square brackets, e.g. [165], do not use the abbreviations “Ref./Refs/” in the middle of a sentence.
Only at the beginning of a sentence should you write “Reference [165]”. In some cases, you can
see ‘[17, p23]’, as the result of \cite[p23]{foo}’; this means page 23 of the reference numbered
17. A bit more sophisticated are references like ‘[GMS93]’ instead of ‘[2]’ for a book by Goosens,
Mittelbach and Samarin published in 1993. Computing the key is not obvious, because, if you cite
a book by, say, Goethe, Molière and Shakespeare in 1793, the key will be the same, and a post-
processor has to add a suffix (typically, this is done by a couple of routines named forward.pass
and reverse.pass in a bst file). Sometimes, a more explicit scheme is use, for instance ‘Knuth,
The Art Of ..., Algorithm P’, in the text, and the full reference can be found in the bibliography.
A text of R. Ridolfi can be cited as ‘Vita di Girolamo Savonarola, 5e éd, Florence, 1974, t. II.,
p. 182-183’. Note that the name of the author appears before the citation, and is not repeated
inside it. In some books, citations are given as footnotes, and you can often see ‘ibid.’, meaning the
previous cited text. These kinds of things are generally hard to fully automate. For this reason,
only a simple scheme is provided by Tralics: a link to a bibliography section via a key.

The problem is essentially the following: The LATEX source file contains a given number of
citations, introduced by the \cite command or a variant. Each command defines one or more
references. For each reference, a key has to be computed and typeset, an item added to the
bibliography, and a link created. In LATEX, the document has in general to be processed three
times; the first run will print \citation{companion2} in the auxiliary file. This file is processed
by BibTEX, that generates a bbl file containing \bibitem{companion2}. On the second run, the
bibliography is typeset, and the key is constructed; if it is 6, then \bibcite{companion2}{6} will
be printed in the auxiliary file. On the last run, we know, after reading the auxiliary file, that the
\cite command should typeset as 6.

RT n° 309

90 José Grimm

The mechanism in Tralics is a bit different: there is only one run. Each \cite command
produces a <cit> element, plus an entry into a biblist. At the end of the document, the bibliography
is constructed, with all the necessary entries; details will be given later. This gives the equivalent of
a bbl file, it is translated. The result of the translation is some XML element, that will be inserted
somewhere in the main XML tree. Finally, a check is made to see if all references are defined.
The mechanism is much simpler than in LATEX; this is really because, in Tralics, you can add an
element or an attribute anywhere in the tree (at the start if you like) at any moment. In TEX, on
the contrary, once a paragraph is typeset, you cannot modify it, and once a page is shipped out,
you cannot modify the whatsits associated to it (pages numbers, in the case of \label, \ref are
computed only when the page is shipped out; they are left in a \write, which is a special kind of
whatsit).

There are some tentatives to design an XML format for bibliography data bases; none of them
is really satisfactory. We give an example of an entry using the DocBook syntax:

<biblioentry id="abc123" type="book">
<author>

<surname>Flynn</surname>
<firstname>Peter</firstname>

</author>
<title>Understanding SGML and XML Tools</title>
<titleabbrev>SGML & XML Tools</titleabbrev>
<publisher>

<publishername>Kluwer</publishername>
<address>Boston</address>

</publisher>
<isbn>0-7923-8169-6</isbn>
<date YYYY-MM-DD="1998">1998</date>

</biblioentry>

This should be referenced in the text as:

<citation><biblioref linkend="abc123"/></citation>

This is the same using the TEI syntax:

<biblFull id="abc123" rend="book">
<titleStmt>

<title>Understanding SGML and XML Tools</title>
<author>
<persName>
<foreName>Peter</foreName>
<surname>Flynn</surname>

</persName>
</author>
<respStmt>
<name>http://imbolc.ucc.ie/~pflynn/books</name>

</respStmt>
</titleStmt>
<extent>432</extent>
<publicationStmt>

<publisher>Kluwer Academic Publishers</publisher>
<pubPlace>Boston</pubPlace>
<idno type="isbn">0-7923-8169-6</idno>
<date value="1998">1998</date>

INRIA

Tralics, a LATEX to XML translator Part I 91

</publicationStmt>
</biblFull>

This should be referenced in the text as:

<cit><ref target="abc123"></ref></cit>

These two citations were found on the Web1. The careful reader may notice that two elements are
used for the citation (in the DocBook, they are <citation> and <biblioref>, in the TEI case,
they are <cit> and <ref>). Tralics uses the TEI syntax for the citation but a completely different
one for the entries (the syntax is very near to BibTEX). We shall explain, in the second part of
this document, Chapter 6, how to convert the Tralics DTD into the TEI DTD (at least for the
bibliography). A non-trivial question concerns mathematics: how can we insert math formulas like
H∞ and what about special words like: “the TEXbook?” The main reason why Tralics does not
read databases written in XML is the need of an XML parser (we have written a BibTEX parser,
this is more challenging).

The interaction between the main document and the bibliography is via the ‘cite key’ on the
LATEX level, in the XML document, this is via the Bid attribute, and for the typeset document,
this is the ‘print key’. As an example, we shall consider a bbl file, created by Tralics, that contains

\citation{60}{footcite:thesefabien}{bid9}{foot}{phdthesis}[Sey98] ...

This is a temporary piece of stuff, the cite key is ‘thesefabien’, the Bid is ‘bid9’, there are two
choices for the print key, ‘60’ or ‘Sey98’. The XML translation is

<citation from=’foot’ key=’60’ id=’bid9’ userid=’footcite:thesefabien’
type=’phdthesis’> ...

As you can see, the effective print key is ‘60’. We shall explain in due time all details. Let’s start
with the cite key, the only quantity that the author can choose freely. For the references from the
web, this key is ‘abc123’, this is clearly a randomly chosen value, not mnemonic at all. At the
start of the chapter, we have shown a reference with key ‘companion2’, this is the cite key for the
second version of the LATEX companion. The cite key ‘thesefabien’ is for the Ph.D. thesis of F.
Seyfert. There is no constraint on the cite key for LATEX: the only important thing is that the
key can be printed in the auxiliary file and read by BibTEX (some years ago, a colleague corrected
\cite{Christele} to \cite{Christèle}, this gave an awful error; in current LATEX, there seems
to be no problem). On the other hand, BibTEX needs an identifier. This is a character string that
does not start with a digit, and contains anything but space, tabulation, double quote, percent
sign, sharp sign, backslash, comma, equals sign, braces, parentheses. For XML, there are additional
constraints for an ID: it has to be unique for the whole document, and some characters like a plus
sign are forbidden. In a first version, we imagined to use the ‘userid’: this is formed of a prefix
(of the form ‘cite:’ or ‘footcite:’, thus making it unique), followed by the cite key, where forbidden
characters like the plus sign were replaced by a minus sign. However, we found an example where a
rather long key differed from another one only by a forbidden character. Replacement introduced a
conflict. For this reason, we added the Bid: this is automatically generated, hence is clearly unique
and valid. A special feature of BibTEX is that it does not create lines longer than 78 characters.
It adds percent characters in a sensible position; in some cases, the choice is wrong. Here is an
example:

\bibitem[13]{Bergamini-Champelovier-Descoubes-Garavel-Mateescu-Serwe-04-a}\RAs%
c{D.~Bergamini, D.~Champelovier, N.~Descoubes, H.~Garavel, R.~Mateescu,
W.~Serwe},

As a result, you will get an error: Undefined control sequence \RAs. Note that there are few people
who use such very long cite keys. A simple idea that works most of the time: use 4 letters for the
first author, three letters for the others, two letters for the year, for instance ‘Bara-Chy-Pom02’.

1From the web page of BiblioX: http://www.silmaril.ie/bibliox/biblioxdoc.html

RT n° 309

92 José Grimm

As explained, Tralics cannot use an XML database; instead it will use a bbl file (this is some
LATEX file, that will be translated by Tralics). The bbl can be part of the source document; in
general it will be automatically constructed by Tralics (in the current version, BibTEX or any other
external program can be used instead). This bbl file should contain, for each unsolved citation, a
command that solves it (either \citation which is a Tralics command, or \bibitem which is a
standard LATEX command, see section 4.2).

One question is: can the bbl contains other items, together with these \bibitem commands? In
general, we have a unique ‘\begin{thebibliography}’ at the start, a ‘\end{thebibliography}’
at the end. The effect is to produce a chapter (or a section), in general unnumbered, whose
name depends on the current language. In the case of the Raweb, there are more than one such
environments, because of the following two facts: Each of the two database files ‘foot’ and ‘refer’
produce a set of references (the ‘foot’ bibliography was originally typeset as footnotes, via the
footcite package). The third database, with name ‘year’, produces a sequence of sections, such
as theses, books, articles, conferences, reports, etc.2 Whenever BibTEX sees an entry with a
different category than the preceding entry, it prints the \end{thebibliography} followed by a
\begin{thebibliography}. Note: the modified environment takes a required argument (as usual,
the longest label) and an optional argument (the name of the section title; the title itself being
in the class file). As a consequence, the bbl files produced by the Raweb are incompatible with
standard LATEX classes. Since year 2001, BibTEX is not used anymore for the Raweb and the XML
result contains just a sequence of references. However, each entry has a category (this depends on
the from and type attributes), entries are sorted by category. The style sheets that convert the XML
to HTML or XSL/Format are assumed to add these sections (see part two of this document). A
nontrivial question is then to guarantee that these two style sheets use the same splitting algorithm,
and the same section titles.

The ‘print key’ is the value that is printed on the paper or displayed on the screen. Each
<citation> has a key attribute that can be used as print key. However, an XML processor may
as well ignore it, and use numbers 1, 2, 3, etc. It can even sort the entries, before assigning them
a number3 (see part two of this document). In some cases, Tralics computes a symbolic key of the
form ‘Sey98’. If the post-processor sorts the entries, and if the keys are not in alphabetic order,
this is a bad idea.

The ‘key’ of an entry is a quantity defined in the database, whose purpose is to help sorting.
In most cases, it is empty, (in some cases the values are junk); this value is used only in the case
where no author is given (this is standard BibTEX practice, it means that this is rather useless).
The ‘sort key’ of an entry is the character string used for sorting (this is lost4; Tralics could insert
it in the resulting XML; this would allow one to merge two bibliographies). In some cases, the print
key is part of the sort key. Imagine for instance a book by Samarin, Mittelbach and Goossens,
written in 1993. The standard key would be GMS93. Assume however that the authors are taken
in the given order, so that the key would be ‘SMG93’. Alphabetically, this is after ‘Sey98’, but if
we sort by authors, Samarin comes before Seyfert.

4.2 Citing a document

In this paragraph, we shall explain the commands that can be put in the source document for insert-
ing a citation, and the companion commands that solve the reference. When the \end{document}
command is about to be translated, Tralics will have created a big list (maybe empty) called the
‘biblist’. Each item in the list has four slots: Reference, Rtype, Bid and Definition. Here Reference
is the cite key, Rtype is a subtype (when merged, these two quantities give the ‘userid’; this subtype

2Exact ordering on page 98.
3Sorting after assigning a number is weird.
4Line 135 to 148 were produced with a hacked version of Tralics and bst files

INRIA

Tralics, a LATEX to XML translator Part I 93

is not standard LATEX, you can ignore it. In some cases, two items with the same Reference and
different Rtype are considered unequal, in some cases they are considered equal; thus, it is a bad
idea to use the same cite key with different subtypes). The Bid is the unique id of the target, of the
form ‘bid17’, and Definition is the internal number of the target of the reference (in Tralics, each
XML element has an internal number). You can say: element number 25 is the target of reference
‘foo’ (syntax described later). This will solve the entry: If the entry with key foo has Bid 17, the
action is to mark the entry as solved, and to add id=’bid17’ to the element number 25. When the
end of the document is sensed, the list of unsolved entries is computed, and a request is made for
constructing a bbl. A warning or an error is signaled for missing items by this construction. This
bbl is then translated. It is forbidden to add unresolved entries to the list. In BibTEX, there is
cross reference mechanism: if X has a cross reference to Y, then X must become before Y; when
Y is read, its fields are used to fill missing fields in X. Unless cited explicitly, Y will not appear in
the bibliography.

For the case of the Raweb, three Rtypes are defined, ‘foot’, ‘year’ and ‘refer’. There is one
command, \footcite, to cite elements with Rtype ‘foot’ and a command, \cite, for anything
else. We generalized this mechanism: for all commands described here, there is no difference
between ‘year’, ‘refer’ and an empty Rtype.

If you say \XMLcite{foo}, or \XMLcite[bar]{foo}, this will insert a new item in the biblist,
with Reference ‘foo’ and Rtype ‘bar’ (unless it already exists). It will construct a Bid for the
reference. The command will call \leavevmode, for the case where it appears at the start of a
paragraph (Remember the recommendations given above: a paragraph should start with a word,
not a reference). The result of the translation is <ref id=’bid17’/>, where ‘bid17’ should be
replaced by the value of the Bid. Remember: if the optional argument is empty, omitted, ‘year’ or
‘refer’, this gives an empty Rtype. The \cite@one command could be defined as

\newcommand\cite@one[3]{%
\XMLelement{cit}{%
\def\temp{#1}\ifx\temp\empty\else\XMLaddatt{rend}{#1}\fi
\XMLcite[#1]{#2}{#3}}

Said otherwise, \cite@one{bar}{foo}{p25} produces <cit rend=‘bar’ ><ref target=‘bid17’/>
p25</cit>. Some care must be taken concerning the first two arguments: they are fully expanded
like \csname. The last argument is translated using usual rules. The code shown above is not
the real code: \XMLcite is not called, but the result is the same. In particular \leavevmode is
executed.

The translation ‘\footcite {Knuth}’ or ‘\footcite [p.25] {Knuth}’ is the same as ‘\cite
[foot] [] {Knuth}’ or ‘\cite [foot] [p.25] {Knuth}’. The \cite command has two optional
arguments, a type and an optional value. If only one optional argument is given, it is the value
(so that ‘\cite [p.25] {Knuth}’ has the same meaning as in LATEX). The translation of ‘\cite
[x] [y] {z}’ is the same as ‘\cite@one {x} {z} {y}’ (note the order of the arguments). However,
if you say ‘\cite [p.25] {Knuth,Lamport}’, the result is the same as ‘\cite@one {} {Knuth}
{p.25}’, followed by ‘\cite@one {} {Lamport} {}’, said otherwise, the second optional argument
applies only to the first citation. Between two \cite@one commands (that come from the same
\cite) are inserted some \citepunct tokens. This is a command that can be redefined by the
user. Its expansion is a comma followed by a space.

People generally say ‘Text\footcite{blah}’, like ‘Text\footnote{blah}’, without any space,
because \footcite is assumed to produce a footnote; but this is not always the case; for this
reason, the command \footcitepre is evaluated before insertion of the XML element associated
to the citation. The default behavior is the following: if the last object on the XML tree is a normal
or non-breaking space, nothing happens; otherwise, if the object is not an opening parenthesis, a
space will be added. Moreover, the \citepunct is replaced by \footcitesep, a command whose
translation is comma space (the idea is that you can redefine it, so that Text\footcite{foo,bar}

RT n° 309

94 José Grimm

shows as ‘Text13,15’, exercise left to the reader). This is a slight difference between \footcite and
\cite with ‘foot’ as optional argument.

The command \nocite can take one optional argument (a Rtype). The effect of \nocite{foo}
is the same as \cite, regarding the biblist, but it does not modify the XML tree. If you say
\nocite{*}, this inserts a special marker, meaning: the whole database should be inserted. The
Rtype is ignored in this case. Note that the correct behavior should be: Rtype is ignored only if
one of ‘year’, ‘refer’ or ‘foot’.

You can say \XMLsolvecite*[25][bar]{foo}. The star is optional, as well as the ‘25’ and
the ‘bar’. If only one optional argument is given it is the first one. This should be the iden-
tifier of an XML element (you can use \XMLlastid, the identifier of the last created element, or
\XMLcurrentid, the identifier of the current element). The current element is used if the argument
is missing or empty. In any case, this gives an element, say Target. The second optional argument
is the Rtype. The required argument is the cite key. The result of the command is to solve the
entry defined by the Reference and the Rtype. The easy case is when the reference has not yet
been cited. In this case, we can use as Bid either the id of the Target, if it exists, or a new id. In
this case, an attribute pair id=‘Bid’ is added to the Target. If the entry exists in the biblist, it
might be already solved, and you get an error of the form Already solved foo. An attribute pair
id=‘Bid’ is added to the Target, unless the Target has already an id, case where an error will be
signaled, for instance Cannot solve (element has an Id) foo in the case

\cite{foo}\section{something}\XMLsolvecite{foo}

The problem here is the following: the section element has a Uid, this is like a Bid, it can be
used as target of a \label. The XML norm forbids using two ids for the same element. Maybe
in a future version, this will be allowed (it suffices to implement a double indirection mechanism).
However, I doubt if this is a good idea: if you say \label{foo}, then \ref{foo} will produce a
<ref> element, this is identical to the <ref> that comes from the \cite. Note that the Raweb
DTD says: the target of a <ref> in a <cit> should be a <citation>.

If a star is given in \XMLsolvecite, there is a little hack. If Reference/Rtype is not found in the
biblist, Tralics tries to see if there is an unsolved entry with the same Reference, Rtype arbitrary.
In such a case, this entry will be solved. If there is no such entry, then a new slot is added to the
reference list.

Some commands may produce strange results. Consider

\setbox0 =\hbox{\XMLsolvecite{foo}} \copy0 \copy0
\setbox1 =\xbox{Box}{\XMLsolvecite{bar}} \copy1 \copy1

This constructs two empty boxes, with an id bid0 and bid1. Since the first box is unnamed, the
tag will not appear in the XML tree; and no tag implies no attribute list, so that the first line is
an error. On the other hand, the second box is copied twice; hence the id bid1 appears twice in
the XML tree, this is also an error (the XML is well-formed, but not valid against any DTD that
says that the Bid should be an ID).

You can say \bibitem[XX]{foo}, the result is the same as \par\leavevmode\XMLsolve*{foo}.
The optional argument is ignored. Note that the \par command terminates the current paragraph,
and \leavevmode starts a new paragraph (in LATEX, \bibitem calls \item that does more or less
the same thing). The important point is that this newly created <p> element is the target of the
reference. If you feed Tralics with the bbl of this document, you will see something like

<Bibliography><p id=’bid0’>
David Carlisle, Michel Goossens, and Sebastian Rahtz.
De XML à PDF avec <hi rend=’tt’>xmltex</hi> et Passive<TeX/>.
In <hi rend=’it’>Cahiers Gutenberg</hi>, number 35-36, pages 79–114,
2000. </p>
<p id=’bid1’>

INRIA

Tralics, a LATEX to XML translator Part I 95

Michel Goossens, Frank Mittelbach, and Alexander Samarin.
<hi rend=’it’>The <LaTeX/> companion</hi>.
Addison Wesley, 1993.</p>

4.3 Using Tralics instead of bibtex

The content of the BibTEX database is a sequence of entries of the form

1 @article{example,
2 Author= "Joseph Garrigue and Didier R{\’e}my",
3 Title= "Extending {ML} with semi-explicit higher-order polymorphism",
4 Number= "1/2",
5 Volume= 155,
6 Year= 1999,
7 Pages= "134-169",
8 Journal= "Journal of Functional Programming",
9 Remark= {a random example},

10 OptMonth = jan,
11 Url= "ftp://ftp.inria.fr/INRIA/Projects/Cristal/iandc.ps.gz"}

This is a second example.

12 @PhdThesis{thesefabien,
13 author = {Seyfert, Fabien},
14 title = {Problèmes extrémaux dans les espaces de Hardy,
15 Application à l’identification de filtres hyperfréquences à
16 cavités couplées},
17 school = {Ecole de Mines de Paris},
18 year = 1998
19 }

After the @ character, there is a keyword, or an entry type. The recognized entry types are
article, book, booklet, conference, coursenotes, inbook, incollection, manual, masterthesis, misc,
phdthesis, techreport, unpublished, as well as mastersthesis, a synonym of masterthesis. These
types are not part of the BibTEX language, but are described in any good book about LATEX, they
are the only ones recognized by Tralics. The case is irrelevant.

There are three keywords. The first is ‘comment’. If you say @comment{foo}, this makes ‘foo’
a comment. Since everything outside the scope of a keyword or an entry is discarded, there is no
real need for a comment keyword, or a comment character. In particular, the percent sign is not a
comment character inside a BibTEX file. If you insert a percent sign in a field, you have to remember
that BibTEX will replace newline characters by spaces, and insert newline characters in the bbl file
wherever it judges adequate. Hence, the percent character will behave, in the bbl, as a comment
character with a random scope. You can say @string{Foo="bar"}. This has as effect to define a
macro, named ‘foo’ (the case is irrelevant), whose value is ‘bar’. In the example, there is a string
after the equals sign, but any expression could be used, including one that uses macros. A macro
must be defined before its use; it is always possible to redefine the macro. There are 12 predefined
macros; there are jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec, and the value of the full
name of the month, for instance ‘janvier’, ‘January’ or ‘Januar’, depending on the language. Note
the following hack: the macros are computed at the start of the run, using some random language
(typically, english), and again, when \begin{document} is seen. This gives you a chance to select
the correct language. The last keyword is ‘preamble’. If you say @preamble{"foo"}, the effect is
to add the string ‘foo’ at the start of a bbl file. Instead of "foo", a general value can be used.
Note: Instead of braces, you can use parentheses to delimit the value of an entry, a string or the

RT n° 309

96 José Grimm

preamble. Inside the value, you can use braces instead of double quotes. Thus @preamble({foo})
is a valid preamble. More than one preamble can be given, they will be merged, in order.

After an entry type comes the cite key, followed by a sequence of pairs, of the form field=value,
separated by commas. The following field names are recognized: address, author, booktitle, chap-
ter, crossref, doi, edition, editor, howpublished, institution, isbn, isrn, issn, journal, key, month,
note, number, organization, pages, publisher, school, series, title, type, url, volume, year. The case
is irrelevant. If a field name is given, whose value is not in the previous list, it will be ignored.
Note: some additional fields are read by Tralics, hence some errors can be signaled while parsing
them.

The value of a field can be a number (lines 5 and 6 in the example), or a macro name (as on
line 10), or a constant in braces (line 9), or a constant in double quotes (other lines). It is possible
to concatenate basic fields, for instance apr # "~1", via the use of the sharp operator. The way
BibTEX handles braces, quotes and backslashes is a bit special. When BibTEX parses a value,
there should be as many opening braces than closing braces; trying to put a backslash before a
brace has no effect. If a string is delimited by double quotes, then braces are needed to hide double
quotes. Special characters should be entered as {\’e}, never as \’{e}, but Tralics accepts é.

Assume that Tralics has seen @article, then an opening brace or parenthesis, followed by
example. All fields up to the closing brace (or parenthesis) are read, but, if the entry is useless, no
error is signaled in case of undefined macros, or duplicate fields. If an entry is useful, all fields are
remembered; if it has a crossref to an entry X, then X becomes useful. Remember: each entry has
a Rtype, this is in general empty; it is added as a prefix to the cite key. For instance, ‘thesefabien’
gives ‘footcite:thesefabien’. In the case of a crossreference from Y to X, we use as prefix for X the
prefix of Y. An entry can be useful because the user has said \nocite{*}. There is a special hack
for the Raweb: we have three types of entries, ‘foot’, ‘year’ and ‘refer’. We already mentioned that
the types ‘year’ and ‘refer’ as the same as the empty type. The difference is that \nocite applies
only to entries from the file ‘year’, never to ‘foot’ (there is an implicit \nocite for ‘refer’).

An entry is useful because it is cited (by \cite or \nocite). Since BibTEX is generally case
insensitive, the entry shown above is useful if you say \cite{Example}. However, for LATEX,
\cite{Foo} and \cite{fOO} are two different items, as a consequence, two references are needed.
Thus, an entry named ‘foo’ is ambiguous. For this reason, you should always capitalize entries
in a consistent way (say, use always lowercase letters), and use the same method in the LATEX
document.

After some manipulations, the entry is printed on the bbl like this (BibTEX version)

20 \citation {GR99a}{example}{article}
21 \bauteurs{\bpers\RAo J.\RAb \RAb Garrigue\RAb \RAf \bpers\RAo D.\RAb \RAb
22 R{\’e}my\RAb \RAf }
23 \cititem{btitle}{Extending {ML} with semi-explicit higher-order polymorphism}
24 \cititem{bjournal}{Journal of Functional Programming}
25 \cititem{bnumber}{1/2}
26 \cititem{bvolume}{155}
27 \cititem{byear}{1999}
28 \cititem{bpages}{134--169}
29 \url{ftp://ftp.inria.fr/INRIA/Projects/cristal/iandc.ps.gz}
30 \endcitation

or like that (Tralics version)

31 \citation{60}{footcite:thesefabien}{bid9}{foot}{phdthesis}[Sey98]
32 \bauthors{\bpers[Fabien]{F.}{}{Seyfert}{}}
33 \cititem{btitle}{Problèmes extrémaux dans les espaces de Hardy, Application
34 à l’identification de filtres hyperfréquences à cavités couplées}
35 \cititem{btype}{Ph. D. Thesis}

INRIA

Tralics, a LATEX to XML translator Part I 97

36 \cititem{bschool}{Ecole de Mines de Paris}
37 \cititem{byear}{1998}
38 \endcitation

There are some slight differences between these two entries. If you compare lines 20 and 31, you
can see that the number of arguments of the \citation command has changed from 3 in the
original version to six in the current version. The following were added: the type (here ‘foot’), the
unique id (here ‘bid9’), the numerical print key (here 60). The first entry was created by BibTEX,
that cannot guess the Rtype of the reference nor the Tralics unique id. It could have computed
the number 60, but we initially thought that only one of the two keys were useful (in the current
version, the \citation command takes five arguments, plus an optional one after these.) If you
compare lines 21 and 32, you can notice two differences. First, we have decided, in 2005, to add an
optional argument to the \bpers command (it contains the full first name). This might be used
for the Ra2005. The second difference is that it is impossible, in BibTEX, to print braces inside a
name. Thus we used \RAo for an opening brace, \RAf for a closing brace and \RAb for a pair of
closing and opening braces. Omitting the first line, the fields are printed in the following order:

1. Unless the type is proceedings, the author.

2. In the case of a book or booklet, the editor.

3. The title.

4. In the case of proceedings or incollection, the editor.

5. In the case of an article, the journal, number, and volume.

6. In the case of a book or inbook, the edition, series, number, volume, publisher, address.

7. In the case of a booklet, the howpublished and address.

8. In the case of incollection, the booktitle, series, number, volume, publisher, address.

9. In the case of inproceedings or conference, the booktitle, series, number, volume, organization,
publisher, editor, pages, address.

10. In the case of a manual, the organization, edition, address.

11. In the case of masterthesis, coursenotes, or phdthesis, the type, school, and address.

12. In the case of a techreport, the type, number, institution, address. (For the case of masterthe-
sis, phdthesis and techreport, the type has a default value, that depends on the language,
and is initialized together with the ‘jan’ macro).

13. In the case of misc, the howpublished, editor, booktitle, series, number, volume, publisher,
address.

14. In the case of proceedings, the organization, series, number, volume, publisher, address.

15. In any case, the month, year.

16. In the case of inbook or incollection, the chapter.

17. In the case of inbook, incollection, article or proceedings, the pages.

18. In any case, the doi, url, note.

This may seem confusing (is there a standard way for formating entries?). Note that missing fields
are not printed. In some case, BibTEX prints a message like “there’s a number but no series” or
“can’t use both volume and number”. No such message is printed by Tralics.

Two keys are computed, the ‘Sey98’ or ‘GR99a’ in the example, and the sort key, which is
something longer. In fact, handling the author or editor field produces four characters strings L1,
L2, L3 and L4. The L4 string is the argument of the \bauthors or \beditors (see lines 21, 32).
The L1 string is ‘Sey’ or ‘GR’, the L2 string contains the full name (it is like L4, without the full
first name, and braces) and L3 contains only the last name (not the first name).

RT n° 309

98 José Grimm

We consider the author (the editor in the case of proceedings). This may give a triple L1,
L2, L3, unless the field is missing. If it is missing, we consider the ‘key’ field. If it is not empty,
then L1 is formed of the first three characters of the field, L2 is empty, L3 is the field. If it is
empty, we consider the editor (author, in case of proceedings). If this is empty, we consider the
cite key, handle it like the ‘key’ above. Note: in the case of ‘Lo{\"i}c’ the first three characters
are ‘Lo{\"i}’, the last two characters are ‘{\"i}c’. In the case of ‘Lo\"ic’, asking for the first
three or last two characters gives the full string. The last two characters are the year are added
to L1, so that we may obtain ‘GR99’. This gives the print label. The LATEX companion says that
you can use year="{\SortNoop{86}}1991". With the rules above, the last two characters of the
year are ‘91’. However, Tralics uses the full year, not ‘861991’ when it computes the sort key. In
the case when Tralics processes the Raweb for, say year 2003, if a reference has type ‘year’, then
its year field should not be missing, and should be ‘2003’. Otherwise an error is signaled5. The
sort key is computed as follows: first a prefix, then the cite label, then L2, then the year, then
the title. All characters are converted to lower case. Note: when BibTEX converts {\’E} to lower
case, the result is ‘e’. Converting ‘É’ can produce strange results. Such subtleties do not exist in
Tralics (the style sheet that converts the XML to HTML sorts all entries; how can we tell it that
the author used a \SortNoop command?).

Because of this sort-again, we try to be clever. Said otherwise, for the Raweb, and only the
Raweb, we use a prefix, formed of a letter and L3. The prefix 0 for an entry of Rtype ‘refer’, 1
for an entry of Rtype ‘foot’, and for entries of Rtype ‘year’, it is: 2 for book, booklet, proceedings,
3 for phdthesis, 4 for article, inbook, incollection, 5 for conference, inproceedings, 6 for manual,
techreport, coursenotes, 7 for masterthesis, misc, unpublished. These numbers are indices into a
table. Currently the order is 02345671. In a future version, this might be changed (however, the
result should be compatible with the style sheets described in the second part of this report).

Let’s repeat: for the Raweb case, we have in the sort key a prefix that depends on the type
and Rtype, followed by the author names, the print key, the full author names, the year, the title.
In this case, the content of the bbl will be as on line 31: the first argument of \citation is not
the print key, but the index of the reference in the table after sorting. On the other hand, for the
non-Raweb case, the sort key starts with the print key, the bbl looks like line 20. The important
point is: assume that we have two entries with the same print key, say ‘GR99’; we must change
them to ‘GR99a’ and ‘GR99b’, this is easy to do when they are consecutive. The following piece
of code comes from a standard bst file. Parsing a bst file is rather easy (maybe one day, Tralics will
do it). The important point is that a postfix language is used: instead of: if a then b else c, you
say: a b c if. This piece of code computes a suffix for every entry that has the same key as the
previous one.

39 FUNCTION {forward.pass}
40 { last.sort.label sort.label =
41 { last.extra.num #1 + ’last.extra.num :=
42 last.extra.num int.to.chr$ ’extra.label :=
43 }
44 { "a" chr.to.int$ ’last.extra.num :=
45 "" ’extra.label :=
46 sort.label ’last.sort.label :=
47 }
48 if$
49 }

The is the companion routine, executed in reverse order. Its purpose is to add the ‘a’ suffix when
the next entry has a ‘b’ suffix. There is a piece of code, not shown here, that computes the longest
label. This is sometimes nonsense (consider the ‘De La Cruz’ case below).

5No error is signaled if you invoke Tralics with the switch ‘nobibyearerror’

INRIA

Tralics, a LATEX to XML translator Part I 99

50 FUNCTION {reverse.pass}
51 { next.extra "b" =
52 { "a" ’extra.label := }
53 ’skip$
54 if$
55 label extra.label * ’label :=
56 extra.label ’next.extra :=
57 }

In summary, when Tralics is used instead of BibTEX, the following happens. We have a big
entry list, and a list of typed databases. From the entry list, we consider only unsolved ones. For
each entry, a prefix is computed, for instance, ‘footcite:fabien’, by considering the Rtype, the word
‘cite:’ and the cite key. If the Rtype is anything else than ‘foot’, an empty value will be used.
When an entry with cite key ‘foo’ is read from a database of type ‘bar’, the same mechanism is
applied. The type of a database is currently one of ‘year’, ‘refer’ or ‘foot’ (the default being ‘year’).
We plan the extend this mechanism: more than these three types can be used; ‘year’ and ‘refer’
are the same as empty, but ‘refer’ has an implicit \nocite.

All entries from the database files are read, and stored if useful. For each entry X that has a
crossreference to Y, missing fields in X are copied from Y. After that Y is discarded (unless cited
via \cite or \nocite). An error is signaled in case some references are undefined. After that, the
sort label is computed, entries are sorted, the print label is computed, and everything is printed
on the bbl file. This is apics_.bbl if the jobname is ‘apics’. Note the underscore in the name.

This is the XML version of the reference above, as used in the Raweb2004.

58 <citation from=’foot’ key=’60’ id=’bid9’ userid=’footcite:thesefabien’
59 type=’phdthesis’>
60 <bauteurs><bpers prenom=’F.’ part=’’ nom=’Seyfert’ junior=’’</bauteurs>
61 <btitle>Problèmes extrémaux dans les espaces de Hardy,
62 Application à l’identification de filtres hyperfréquences à cavités
63 couplées</btitle>
64 <btype>Ph. D. Thesis</btype>
65 <bschool>Ecole de Mines de Paris</bschool>
66 <byear>1998</byear>
67 </citation>

4.4 The format of a name

We shall discuss in this section how names can be used in a BibTEX file, and how Tralics constructs
keys. We have already mentioned a procedure that gives ‘Sey’ from ‘Seyfert’. It is not satisfactory,
but is used only in rare cases (when the year is strange, or a strange key has been used). The
important point that, when we fetch the first three letters of Lo\"ic, we do not obtain neither
‘Lo\’ nor ‘Lo\"’. The mechanism explained here is more subtle. The LATEX companion explains
that, in order to get ‘Göd’ for the key, you should use one of the first names shown here, not the
others.

author = {A. G{\"o}del and B. G{\"{o}}del},
editor = {C. {G{\"{o}}del} and D. {G\"{o}del}}

The rule is that special BibTEX characters are formed by a left brace followed by a backslash.
In the case C, the brace in inside another brace. In fact, if the bibliography contains the following

68 @Article{GoA,
69 author = {A. G{\"o}del }, title="X"}
70 @Article{GoB,

RT n° 309

100 José Grimm

71 author = {B. G{\"{o}}del }, title="X" }
72 @Article{GoC,
73 author = {C. {G{\"{o}}del} }, title="X" }
74 @Article{GoD,
75 author = {D. {G\"{o}del} }, title="X" }

Then the translation by Tralics looks like this. If you compare with lines 60 and 61, you can see
that the full first name appears, empty attribute pairs part and junior are not shown.

76 <biblio>
77 <citation from=’year’ key=’Ga’ id=’bid2’ userid=’cite:GoC’ type=’article’>
78 <bauteurs><bpers prenom=’C.’ nom=’Gödel’ prenomcomplet=’C.’/></bauteurs>
79 <btitle>X</btitle>
80 </citation>
81 <citation from=’year’ key=’Gb’ id=’bid3’ userid=’cite:GoD’ type=’article’>
82 <bauteurs><bpers prenom=’D.’ nom=’Gödel’ prenomcomplet=’D.’/></bauteurs>
83 <btitle>X</btitle>
84 </citation>
85 <citation from=’year’ key=’Göd’ id=’bid0’ userid=’cite:Goa’ type=’article’>
86 <bauteurs><bpers prenom=’A.’ nom=’Gödel’ prenomcomplet=’A.’/></bauteurs>
87 <btitle>X</btitle>
88 </citation>
89 <citation from=’year’ key=’Göd’ id=’bid1’ userid=’cite:GoB’ type=’article’>
90 <bauteurs><bpers prenom=’B.’ nom=’Gödel’ prenomcomplet=’B.’/></bauteurs>
91 <btitle>X</btitle>
92 </citation></biblio>

The same file processed by BibTEX gives the following keys: {G{\"}}a, {G\"}b, G{\"o}da and
G{\"{o}}db. The first two keys are invalid. The reason why suffixes a and b are added is that
a special BibTEX function removes braces and funny characters when comparing keys. Such a
function is not implemented in Tralics, thus labels G{\"o}d and G{\"{o}}d are considered different,
although their translation is the same. In Tralics, the best thing to do is use ‘Gödel’ as name.

Since lots of errors may be found in bibliography files, Tralics tries to be clever. First, it replaces
‘\c{c}’ by ‘ç’ and ‘\c{C}’ by ‘Ç’. It also replaces ‘\v{c}’ by ‘{\v c}’. Maybe other replacements
of this kind will be made in a future version. Expressions of the form \a’e are replaced by \’e.
We also replace backslash-space by a single space.

After that, characters or group of characters are classified, this will make parsing easier. A
sequence like ‘{foo}’ will be considered as a single random character; something like \’e as a
single lower case letter, \’E as a single uppercase letter. The expression \’{e} will be replaced
by {\’e} with a warning, \"\i will be rejected (unless inside braces) because a single character is
needed after backslash-accent. Commands like \foo are also rejected. Note that an ampersand &
is an error (some people try to use this instead of ‘and’). Character categories are: space, comma,
dash, and tie (this is a ~). In a case like this,

93 @Article{cruz,
94 author = {Maria {\MakeUppercase{d}e La} Cruz},
95 title="X" }

the print key computed by BibTEX is {\MakeUppercase{d}e La}C, this typesets as ‘De LaC’. Such
a construct is not understood by Tralics, that thinks that the last name is ‘Cruz’.

If more than one author is given, in the author or editor list, you should use ‘and’ as separator.
Case is irrelevant, a space is required. For instance, the following citation contains 3 authors and
others. The print key is ‘AAJA+’, because the last author has a double last name.

INRIA

Tralics, a LATEX to XML translator Part I 101

96 @Article{many,
97 author = {Joe~And and And,Joe and Joe-And And others}
98 title="X" }

The BibTEX transformation of this is

99 \bibitem[AAJA{\etalchar{+}}]{many}
100 Joe And, Joe And, Joe-And, et~al.

If the list is too long, you can use ‘others’ as the last name (case is important). A name has four
components: von, First, Last and Junior. On line 32, you can see the value of the full first name,
then the abbreviated first name, then the von part (empty) then the last name, then the junior part
(empty). In Tralics, the von part is always merged with the last name. Consider somebody named
Jean de la Fontaine. French rules say that the particle ‘de’ should be omitted, unless preceded
by the first name or a word like ‘Monsieur’. In particular, in the dictionary, you will find him
between La Follette (an American politician) and Lafontaine (a Canadian politician), not between
Delacroix and Delage. More interesting is the case of Marie Joseph Gilbert Motier, marquis de La
Fayette. The name of this guy is ‘Motier’, but he is known as ‘La Fayette’. Another example is
William Thomson (For his work on the transatlantic cable Thomson was created Baron Kelvin of
Largs in 1866. The Kelvin is the river which runs through the grounds of Glasgow University and
Largs is the town on the Scottish coast where Thomson built his house.) How this guy should be
cited is unclear: William Thomson or Lord Kelvin?

The simple case is when two fields are given, with a comma between. The first field is the last
name, the other field is the first name. Then comes the case of three fields: last name, junior, and
first name. You cannot use more than three fields, that is, you cannot give more than two commas.
In the case no comma is given, we look at a ‘von’ part. This is something that starts at a lower
case letter. For instance,

101 @Article{poussin,
102 author = {Charles Louis Xavier Joseph de la Vall{\a’e}e Poussin },
103 title="X" }

This is what BibTEX puts in the bbl file:

104 \bibitem[dlVP]{poussin}
105 Charles Louis Xavier~Joseph de~la Vall{\a’e}e~Poussin.
106 \newblock X.

The translation by Tralics is the same, but no ties are inserted (BibTEX inserts one for the first
name, the von part, the last name, see TEXbook, page 92). The ‘De La Cruz’ example shows how
you can fool BibTEX. Tokens between names are recognized. For instance, consider:

107 @Article{strange,
108 author = {A-b-C and A.b.C and A~b~C and A.Bb.Cc},
109 title="X" }

This is how BibTEX interprets the names. Authors number two and four have only a last name,
no von part, no first name.

110 \bibitem[bCAbCA]{strange}
111 A~b~C, A.b.C, A~b~C, and A.Bb.Cc.
112 \newblock X.

This is the translation by Tralics. You can see that, for the last author, one dot has been
replaced by a space: this is done in case no other way is found to split the name, but there is an
upper case on each side of the dot. You can also see that BibTEX inserts some characters (here
ties) instead of dashes. Tralics keeps the dashes, whenever possible.

113 \citation{bCAbCB}{cite:strange}{bid3}{year}{article}
114 \bauthors{\bpers[A]{A.}{}{b-C}{}
115 \bpers[]{}{}{A.b.C}{}

RT n° 309

102 José Grimm

116 \bpers[A]{A.}{}{b~C}{}
117 \bpers[A]{A.}{}{Bb.Cc}{}}
118 \cititem{btitle}{X}
119 \endcitation

Here is another example.

120 @Article{strange2,
121 author = {Jean-Claude XX and J.-Ch. YY and J.-{Ch.} ZZ},
122 title="X" }

This is the translation by BibTEX, in ‘abbrv’ mode. The format used in plain mode is
{ff~}{vv~}{ll}{, jj}, and in abbrv mode, it is {f.~}{vv~}{ll}{, jj}. This is explained
in any good reference about BibTEX6

123 \bibitem{strange2}
124 J.-C. XX, J.-C. YY, and J.-C. ZZ.
125 \newblock X.
126 \bibitem{poussin}
127 C.~L. X.~J. de~la Vall{\a’e}e~Poussin.
128 \newblock X.

This is the translation by Tralics. The quantity ‘{Ch.} is considered as a single character. No
dot is added after it, since it is terminated by a dot.7

129 \citation{XYZ}{cite:strange}{bid3}{year}{article}
130 \bauthors{\bpers[Jean-Claude]{J.-C.}{}{XX}{}
131 \bpers[J.-Ch.]{J.-C.}{}{YY}{}
132 \bpers[J.-{Ch.}]{J.-{Ch.}}{}{ZZ}{}}
133 \cititem{btitle}{X}
134 \endcitation

The print key is computed as follows: Each author gives an initial (if the name is complicated,
more than one will be used, for instance Poussin gives four letters ‘dlVP’). If a single author is
cited, and if it gives less than three letters, then the first three letters of its name are used (for
instance, Seyfert gives ‘Sey’). If more than four authors are given, only the first three ones give an
initial, there is a ‘+’ sign at the end. If ‘and others’ is given, there is also a ‘+’ sign.

We show here the sort key, as computed by Tralics, for some the entries shown above. Remember
that these entries have no year field and that the title is X.

135 cru m. {\makeuppercase{d}e la}. cruz x
136 g c. {g{\"{o}}del} x
137 g d. {g\"{o}del} x
138 g{\"o}d a. g{\"o}del x
139 g{\"{o}}d b. g{\"{o}}del x
140 aaja+ j. and j. and joe-and etal x
141 dlvp c. l. x. j. de la vall{\’e}e poussin x

These are the keys, for the same entries, computed by BibTEX, using the alpha style. You can
see that BibTEX uses last name and first name, whereas Tralics uses abbreviated first name then
last name. The format is: {vv{ } }{ll{ }}{ ff{ }}{ jj{ }}

142 delac dela cruz maria x
143 god godel a x
144 god godel b x
145 g godel c x

6For instance Tame the BeaST, by Nicolas Markey, available on CTAN
7According to N. Markey, you should say {\relax Ch}ristopher in BibTEX

INRIA

Tralics, a LATEX to XML translator Part I 103

146 g godel d x
147 aaja and joe and joe joe and et al x
148 dlvp de la vallee poussin charles louis xavier joseph x

4.5 Commands for the bbl

The Raweb DTD explains that the following items can appear inside a bibliography entry.

• <baddress>, the address of the publisher.

• <bauteurs>, the names of the authors of the document.

• <bbooktitle>, the title of the document.

• <bchapter>, the chapter number, in case it is relevant.

• <bedition>, the edition number.

• <bdoi>, the DOI.

• <bediteur>, the names of the editors.

• <bhowpublished>, how a document is published, in unusual cases.

• <binstitution>, the institution, for the case of a report.

• <bjournal>, the journal where an article can be found.

• <bmonth>, month of publication.

• <bnote>, a note.

• <bnumber>, the number of a report, etc.

• <borganization>, organizer (of a conference ...)

• <bpages>, page number (or sequence of pages).

• <bpublisher>, the publisher of a book.

• <bschool>, the school for a thesis.

• <bseries>, the name of a series.

• <btitle>, the title of the reference.

• <btype>, the type (of a thesis, technical report).

• <bvolume>, the volume.

• <xref>, an external link.

• <byear>, the year of publication.

In almost every case, if the database file contains a field ‘foo’ with value ‘bar’, the bbl file
will contain \cititem{bfoo}{bar}, and this is translated into <bfoo>bar</bfoo>. The \cititem
command takes two arguments. The second argument is translated as usual. The first argument
is the name of the resulting element. There is a hook: in the case where \cititem-foo is defined,
this macro is used instead of the default procedure. If the database contains a ‘url’ field, the result
is a call to the \url command, that will produce a <xref> element. The \cititem command
should be used only in a bibliography.

If the entry in the database contains a ‘author’ or ‘editor’, the \bauthors or \beditors com-
mands will be called. These two commands must be used inside a bibliography. They take a
single argument, translate it, and put the result in a <bauteurs> or <beditor> element. Note:
the bibliography part of the Raweb DTD was meant to be temporary. For this reason, the names
were chosen so as to replace them easily with new names (hence the prefix ‘b’); For some reason,

RT n° 309

104 José Grimm

‘auteurs’, ‘editeur’ and attributes of ‘bpers’ have French names. Later on, we decided to modify
the Tralics names, hence the ‘bauthors’ and ‘beditors’. Because ‘bauteurs’ had a final s, we added
an s to both command names; not the best choice.

The \bpers command takes one optional argument, and 4 required arguments. The translation
is an empty <bpers> element with following attributes: prenomcomplet for the optional argument,
and prenom, part, nom, junior for the required arguments.

The \citation command constructs a <citation> element. It takes 5 required arguments,
and an optional argument. The optional argument is ignored. Other arguments are converted to
attributes. The whole text, up to \endcitation is translated in bibliography mode, and added to
the <citation> element. Example:

149 \citation{a}{b}{c}{d}{e}
150 \cititem{foo}{bar}
151 \beditors{\bpers[a]{b}{c}{d}{e} \bpers[]{B}{}{C}{} \cititem{etal}{}}
152 \endcitation

The translation is

153 <citation from=’d’ key=’a’ id=’c’ userid=’b’ type=’e’>
154 <foo>bar</foo>
155 <bediteur>
156 <bpers prenom=’b’ part=’c’ nom=’d’ junior=’e’ prenomcomplet=’a’/>
157 <bpers prenom=’B’ nom=’C’/>
158 <etal/>
159 </bediteur>
160 </citation>

4.6 Other commands

The \bibliography command takes one argument, this is a comma separated list of database
files. Spaces are ignored. The command can be given more than once. This command (the last
occurrence) defines the position where the bibliography should be inserted.

The command \insertbibliohere can be used to force the position of the bibliography. It
overwrites the location specified by the previous command.

The environment ‘thebibliography’ can be used for typesetting the bibliography. There is an
optional argument (ignored), a required argument (ignored), an optional argument (ignored). The
result is an XML element whose name is defined by \refname, by default ‘Bibliography’, and whose
content is formed of the translation of the environment. You can redefine this \refname command.
An error is signaled if strange commands appear in the argument, but not for invalid characters
(in particular, space cannot appear in an element name). The command can be empty. In this
case, the name will not appear in the XML result.

The command \bibliographystyle takes one argument. Its translation is empty. The argu-
ment is remembered. This is the style to use. If the argument is ‘bibtex:’, this is an indication that
BibTEX should be used instead of Tralics for the production of the bbl. The style can be given after
the colon, or with the invocation of another command. If the argument is ‘program:foo’, this means
to use foo as program. For instance \bibliographystyle{program:cat -v}. In this example,
this will print the auxiliary file; this is not good, because the command should create the bbl file (its
argument is jobname.aux, data must be written on jobname.bbl). A second \bibliographystyle
command can be used for specifying the style (the default is ‘plain’). Example. Consider a file
that contains these lines

161 \documentclass{article}
162 \begin{document}

INRIA

Tralics, a LATEX to XML translator Part I 105

163 \AtEndDocument{\bibitem{unused}Hey}
164 \bibliography{torture}
165 \bibliographystyle{bibtex:}
166 \cite{poussin,cruz,many,strange,unused}
167 \end{document}

When Tralics sees the \end{document} command, it evaluates it (with the hooks, etc.) After
that, a bbl is created and translated. If there is no unsolved entry, nothing happens. If no style
command indicates that BibTEX or an external program should compute the bbl, then Tralics does
it, as explained above. In the case of the Raweb, three database files are used: apicsfoot_2004,
apicsrefer_2004, and apics2004. These files are typed ‘foot’, ‘refer’ and ‘year’. In the non-Raweb
case, files in the list indicated by \bibliography are used. If a file is named ‘miaou+refer’ or
‘miaou+foot’ and does not exist, then miaou is tried instead; in this case the type will be ‘refer’
and ‘foot’ (otherwise, it is ‘year’). In the case an external program is used, a minimal auxiliary file
is created. In the case of the example, it will contain

168 \citation{poussin}
169 \citation{cruz}
170 \citation{many}
171 \citation{strange}
172 \bibstyle{plain}
173 \bibdata{torture}

The database torture.bib contains a sequence of entries, plus the following lines. In order to
understand the last line, you have to remember that character strings are always balanced against
braces. Hence it is not: open brace concatenated with 1 concatenated with 1 and close brace. It
is: open brace, double quote, space, sharp, etc, up to double quote, close brace.

174 @String{ stra= {\def}}
175 @String{ strb= "#1" }
176 @String(strc= "\mycmd ")
177 @Preamble (stra # strc # strb)
178 @Preamble("{" #1 #1 "}")

After that, the external program is called, and the bbl file is read. In the example this gives
the following. The first line is the preamble.

179 \def\mycmd #1{" #1 #1 "}
180 \begin{thebibliography}{1}
181

182 \bibitem{many}
183 Joe And, Joe And, Joe-And, et~al.
184 \newblock X.
185

186 \bibitem{strange}
187 A~b~Cde.
188 \newblock X.
189

190 \bibitem{poussin}
191 Charles Louis Xavier~Joseph de~la Vall{\a’e}e~Poussin.
192 \newblock X.
193

194 \bibitem{cruz}
195 Maria {\MakeUppercase{d}e La}~Cruz.
196 \newblock X.

RT n° 309

106 José Grimm

197

198 \end{thebibliography}

After that, the bibliography is translated and inserted. The resulting XML file is shown here.

1 <?xml version=’1.0’ encoding=’iso-8859-1’?>
2 <!DOCTYPE std SYSTEM ’classes.dtd’>
3 <!-- translated from latex by tralics 2.5 (pl4)-->
4 <std>
5 <bibliography>
6 <Bibliography><p id=’bid2’>
7 Joe And, Joe And, Joe-And, et al.
8 X.</p>
9 <p id=’bid3’>

10 A b Cde.
11 X.</p>
12 <p id=’bid0’>
13 Charles Louis Xavier Joseph de la Vallée Poussin.
14 X.</p>
15 <p id=’bid1’>
16 Maria De La Cruz.
17 X.</p>
18 </Bibliography>
19 </bibliography><p><cit><ref target=’bid0’/></cit>, <cit><ref target=’bid1’/></cit>,
20 <cit><ref target=’bid2’/></cit>, <cit><ref target=’bid3’/></cit>,
21 <cit><ref target=’bid4’/></cit></p>
22 <p id=’bid4’>Hey</p>
23 </std>

Finally, we show here everything printed on the screen, including all warnings by BibTEX.

1 This is tralics 2.5 (pl4), a LaTeX to XML translator
2 Copyright INRIA/MIAOU/APICS 2002-2005, Jos\’e Grimm
3 Licensed under the CeCILL Free Software Licensing Agreement
4 Starting xml processing for testb.
5 Configuration file identification: standard $ Revision: 2.12 $
6 Read configuration file /user/grimm/home/cvs/tralics/.tralics_rc.
7 Bib stats: seen 5(1) entries
8 This is BibTeX, Version 0.99c (Web2C 7.3.1)
9 The top-level auxiliary file: testb.aux

10 The style file: plain.bst
11 Database file #1: torture.bib
12 Warning--empty journal in many
13 Warning--empty year in many
14 Warning--empty journal in strange
15 Warning--empty year in strange
16 Warning--empty journal in poussin
17 Warning--empty year in poussin
18 Warning--empty journal in cruz
19 Warning--empty year in cruz
20 (There were 8 warnings)
21 Used 1718 commands
22 Math stats : formulas 0, non trivial kernels 0, cells 0,
23 special 0 trivial 0, \mbox 0 large 0 small 0.
24 List stats: short 0 inc 5 alloc 1192

INRIA

Tralics, a LATEX to XML translator Part I 107

25 Buffer realloc 2 string 1400 size 13877; merge 4
26 Macros created 74 deleted 0
27 Save stack +14 -14
28 Attribute list search 1558(1496) found 962 in 1424 elements (1403 after boot)
29 number of ref 0, of used labels 0, of defined labels 0, of ext. ref. 0
30 Modules with 0, without 0, sections with 0, without 0
31 There was no image.
32 Output written on testb.xml (626 bytes).
33 No error found.
34 (For more information, see transcript file testb.log)

Some comments. Line 6 shows the name of the configuration file. If this file contains a line
that starts with ‘## tralics ident rc=’ then all characters after the equals sign are printed (see line
5). Since version 2.5 (pl4), in the case where character number 30 is a dollar sign, a space will be
added after it.8 The reason for this is that the RCS software interprets a string like ‘Revision’ in
dollar signs; we do not want it to replace the 2.11 by the revision number of the LATEX document.
We shall explain elsewhere how to read the statistics. When Tralics says: Used 1718 commands,
this is the number of entries in the hash table (the total number of commands defined). Among
these, 74 were defined by \def, in the bootstrap phase, all others are defined in C++.

Line 7 shows the number of entries in the biblist. If some entries are solved, they are shown
in parentheses. Here, we have 5-1=4 unsolved entries. If line 5 of the source file is commented
out, then BibTEX is not used, and lines 30 to 42 will be replaced by the single line ‘Seen 4 bibli-
ographic entries’. In such a case, Tralics says: Used 1720 commands, because the two commands
\cititem-etal and \cititem-btitle are dynamically created.

The standard configuration file contains a line that says that ‘article’ is an alias for ‘std’. The
‘std’ configuration defines two quantities: the name of the DTD, hence the root element, it is
<std>, see line 4 of the XML result. It defines xml_biblio to be ‘bibliography’. This is the name
of the element that will hold the bibliography. The default value is ‘biblio’, but it can be redefined
(see line 5). Do not confuse this with the name of the element produced by the environment
‘thebibliography’, that appears line 6 in the XML result.

8In fact, in subsequent version, a space is added after the first dollar sign, independently of the position on the
line.

RT n° 309

108 José Grimm

INRIA

Tralics, a LATEX to XML translator Part I 109

Chapter 5

Other commands

5.1 Character encoding

We have to distinguish between input encoding, internal encoding and output encoding. The
internal encoding of TEX is ASCII (i.e. 65 is the internal code of the upper case letter A), at
least for all characters with code between 32 and 126. The input encoding is the mechanism
that converts the code of the letter A supplied by computer into the code 65. Almost all input
encodings are nowadays ASCII-based, they produce the same value for the letter A; the results
may be different for a character like é. The output encoding indicates for a letter, say A, which
position in the font to use. We shall not discuss the output encoding here. Let’s just notice that
the character ‘{’ exists in the font cmtt10, but not in other text fonts of the computer modern
family. If you read a version of this document that uses the original encoding (OT1), braces shown
in error messages are taken from a math font, hence are upright. Some years ago, a 8bit encoding
(called T1) was designed, which contains braces. You can compare Figure 1 in appendix F of the
[4] (describing the font cmr10) with Table 7.32 of [6], describing ecrm1000.

The first version of TEX was using 7bit input and output characters (but fonts and dvi files
were coded on 8bits). There is an extension Ω to TEX that accepts 16bit characters as input, using
different encoding schemes. Characters that are not part of the ASCII specifications (less than 32
or greater than 126) are not guaranteed to be treated the same in all implementations. For this
reason, it it wise to load the inputenc package, with the current encoding as argument. The effect
will be that some characters, like é will become active, and expand to \’e. As a result: only ASCII
letters are allowed in control sequence names. On the other hand, if you say \begin{motclés},
then LATEX complains with LaTeX Error: Environment motcl\’es undefined. Don’t try to define
the motcl\’es environment: the expansion of the accent depends on the context: it is é for \begin
and \’e for the macro that prints the error message. Non-ASCII characters may be printed by
TEX as ^^ab (in some older version of TEX, I had to pretend, via locale settings, that my computer
did not understand English in order for it to output the guillemet as «).

A silly question concerns end-of-line markers. Some systems like Unix use LF (line feed) as line
separators, some others like Macintosh use CR (carriage return) and Windows uses CR-LF. This is
replaced by TEX by a single character: the carriage return with ASCII code 13. Tralics interprets
CR-LF, CR and LF alike: as an end-of-line marker. This marker will be replaced by the character
whose code is in \endlinechar, provided that this value is in the range 0–2551. The default value
is 13, a character of category 5. The tokeniser converts this into a \par token, a space token or
ignores it depending on the state. This space token has value 32 (but Tralics uses 10, so as to keep
the same line breaks in the XML result as in the TEX source). Note that, whenever a line is read,

1Null characters are ignored by Tralics, so that the effective range is 1–255.

RT n° 309

110 José Grimm

spaces at the end of the line are removed. If you want a space after a control sequence, you say
something like ‘\TeX\ ’, and if this construct appears at the end of a line, the space is ignored; if
the endline character has category code 5, it will be converted to a space, and everything works
fine; if this character is for instance 65, you may get a strange error, like this

! Undefined control sequence.^^J
l.170 ...reaks in the \XML\ result as in the \TeX\^^J

^^J
? ^^J

We have shown here the end of line as ^^J. There are four lines: the error messages, two context
lines, and the line with the prompt. The two context lines show that the space at the end of the
line is removed. TEX does not print the undefined control sequence: it assumes that it is either
the last token on the first context line, or a token marked as ‘<recently read>’ or something like
that; in our case, the undefined control sequence is the one obtained by replacing ^^J by the value
of the endline character.

There is a way to enter special characters in TEX, for instance ^^J is a line feed. The algorithm is
the following: whenever TEX sees two consecutive identical characters of category code 7, followed
by a character whose number is x, it replaces these three characters by the character whose code
is y, where y = x − 64 if x ≥ 64, and y = x + 64 if x < 64. Hence ^^? yields y = 127 (the is the
delete character). All characters with codes between 1 and 26 can be obtained using the form ^^A,
^^B, etc. The null character is ^^@, characters with code between 27 and 31 are ^^[, ^^\, ^^],
^^^ and ^^_. Character 32 can be represented as ^^‘. All other characters are ASCII characters.
This is an example of use:

27=\char‘\^^[, 28=\char‘\^^\, 39=\char‘\^^], 30=\char‘\^^^, 31= \char‘\^^_

Because some characters in the list could be active, we have used the construction \char‘\A
(with A replaced by some other character). This typesets as ‘27=ff, 28=fi, 39=fl, 30=ffi, 31= ffl’
The result depends on the font encoding (OT1 vs T1). The translation by Tralics is 27=,
28=, 39=, 30=, 31= . When TEX switched to 8 bits, the rule changed
a little bit: the previous rule applies only if 0 ≤ x ≤ 127, it gives 0 ≤ y ≤ 127. Another test was
added: if you say ^^ab, these four characters are replaced by the single character whose code is
ab (in base 16, i.e. 171 in base ten in this case). In such a case two characters are needed: a letter
or a digit; only lower case letters between a and f are allowed. Thus every character in the range
0-255 has such a representation. For instance, the character 32 has can be entered as ^^20. There
is one situation where the space character can be used in this way: at the end of the line, when
\endlinechar is non trivial. Note that, in the case where the resulting character has category 7,
it can participate in a hat-hat construct. Here is an example.

{1^^{^^ab2^^5e^ab3^^5e^5e^ab4\def\Abc{ok}\def\bAc{OK}\^^41bc\b^^41c}
{\catcode ‘\é=7 ééab $xé2$ %next line should produce M
éé
%$1^è=^^^AééT$ %% hat hat control-A
$1^è=^^^A$ %% hat hat control-A
}\def\msg{a message.^^J}

Some explanations are needed. ^^{ is a semi colon, ^^ab is an opening French guillemet, ^^5e is
a hat (recursion...), ^^41 is the uppercase letter A. The first line of the example explains that such
funny characters can appear in a control sequence name. The second line shows that the hat-hat
mechanism can be used with other characters than a hat. It also shows that, if the mechanism
cannot be applied, a character with category 7 behaves like a superscript character, whatever its
numeric value. The line that follows shows that the end-of-line character is ASCII 13, aka control-
M (usually written as ^M). After that, there are two lines containing a control-A character, shown
here as ^A. It is preceded by hat-hat, so that the effect should be a single A. The line that is
commented out contains a control-T written as ééT (for some strange reasons, this character is

INRIA

Tralics, a LATEX to XML translator Part I 111

invalid in XML1.0, but valid as an entity in XML1.1, [8, 9]). The last line is just a real example of
^^J. This character is printed by Tralics as LF, or CR-LF on Windows. This is the translation of
Tralics:

<p>1;«2«3«4okOK
« <formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<msup><mi>x</mi> <mn>2</mn> </msup></math>

</formula> M<formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow><msup><mn>1</mn> <mi>è</mi> </msup><mo>=</mo><mi>A</mi></mrow>
</math>

</formula></p>

As said above, Ω accepts 16bit characters, using the notation ^^^^abcd. This syntax works
also in Tralics, but it does not produce a character that can be used in a command name. The
scanner evaluates \chardef\foo"ABCD\relax, and produces the \foo token (of course, the \foo
command is not modified). Note that this allows 16bit characters, while in Tralics, the \char and
\chardef commands accpt 27bit integers. Here is an example

\def\foo#1#2#3{#1=#2=#3=}
\foo^^^^0153^^^^0152^^^^0178
^^^^017b^^8?

It is translated by Tralics as œ=Œ=Ÿ= Żx?. The argument to \foo could
also have been: \oe\OE{\"Y}. The transcript file contains lines of the form:

[8] \foo^^^^0153^^^^0152^^^^0178
\foo #1#2#3->#1=#2=#3=
#1<-^^^^0153
#2<-^^^^0152
#3<-^^^^0178
{\char339}
{\char338}
{\char376}

The original version of the Tralics documentation said: Si on a un texte qui contient essen-
tiellement des caractères 7bits, et très peu d’autres caractères, l’utilisation de caractères 16bits
consomme énormément de place. This means that using a 16bit encoding consumes a lot of space
if you write a French document (and even more, for an English one). The sentence has 159 ASCII
characters and 6 others; these can be input using iso-8859-1 (aka latin-1) as input encoding2. In
TEX, it uses 165 bytes, in Ω, it uses 330 bytes. Using a construction like \’e we need 177 bytes
(and 7 bits per byte). Using UTF-8 requires only 171 bytes (8 bits per byte). This explains why
UTF-8 is popular. We shall explain (in the second part of this document) how UTF-8 is encoded
and how TEX may read it. In the case of Tralics, the situation is: you can (via an argument to
the Tralics program) specify that the sources are encoded using UTF-8 or latin1 (this being the
default). However, if the tex file contains, on the first line “utf8-encoded” UTF-8 encoding will be
used, if it contains “iso-8859-1” then latin1 encoding will be used. When UTF-8 mode is enabled,
Ã© is read as é; if the value of a character is greater than 256, it is read in the form ^^^^abcd.

5.2 Characters and Accents

There are some commands that put an accent over a letter. You can say a\accent 98 cde, this
works in TEX, but not in Tralics: you will get an error, Unimplemented command \accent. The

2All French letters exist in iso-8859-1, except \oe \OE, \"Y, and the Euro sign

RT n° 309

112 José Grimm

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
\^ x x x x x x x x x x x x x
\’ x x x x x x x x x x x x x x x x x
\‘ x x x x x x x x
\" x x x x x t x x x x
\c x x x x x x x x x x x x
\u x x x x x x
\v x x x x x x x x j x x x x x x x x x
\~ x x x x x x x x
\H x x
\k x x x x x
\. x x x x x x x I x x x x x x x x x x x
\= x x x x x x x x x
\r x x w y
\b x x h x x x x x x
\d x x x x x x x x x x x x x x x x x x x
\f x x x x x x
\C x x x x x x
\T x x x
\V x x x x x x
\D x
\h x x x x x x

Table 5.1: All possible accents. You can put an accent on any letter, except Q. You can put accents
on non-letters, for instance \ae, see text. Some characters accept two accents. In general, you can
put an accent on a lower case letter, an upper case letter. There is one exception: you cannot put
a dot over a lower case I, because there is already a dot. For h, j, t w, and y, there are accents
that apply only to lowercase letters.

number 98 is read, and converted to an integer. The Unicode character will be used; thus the
translated result is ‘abcde’.

You can say \a’e. This is a command introduced by LATEX so as to allow accents inside a
tabbing. Some care must be taken. If you say \a{par}{b} in LATEX, you get an error of the form:
Paragraph ended before \@changed@cmd was complete. The Tralics error message is: wanted a
single token as argument to \a. If you say \a\foo12, there is a single token, and the error is: Bad
syntax of \a, argument is \foo. In fact, the token after \a must be a valid accent character. After
that \a’ is handled exactly like \’. You can say ‘\= U’, the space after the command is ignored.
You cannot say ‘\={ U}’, the space is not removed, this is an error. In fact, the argument list of
the accent command should contain exactly one token (exception: double accents will be explained
later). This token should be a character, with code between 0 and 128. Hence \’Ê is wrong, you

must say \’{\^E}} if you want Ế. The message is Error in accent, command = \’; Cannot put
this accent on non 7-bit character É. If the token \i is given, it will be replaced by i, so that \"\i
and \"i produce the same result. You can say \=\AE, \=\ae, \’\AE, \’\ae, \’\AA, \’\aa, \’\O,
\’\o. The result looks like ǢǣǼǽǺǻǾǿ.

You can put an accent on a letter only in the case where this gives a Unicode character. In
the case of \c{a} and \c{\=a}, the error message is the same: Error in accent, command = \c;
Cannot put this accent on letter a. Table 5.1 indicates on which letters you can put an accent.
See the html page http://www-sop.inria.fr/apics/tralics/doc-chars.html for a list of some glyphs.

Some accents are not standard. Examples:

• \^a gives â,

INRIA

Tralics, a LATEX to XML translator Part I 113

¨̄U Ǟ Ȫ Ǘ Ḯ Ǜ ¯̇A ¯̇O Ȭ Ǭ ´̃U Ǿ ´̄O ´̄E ˙́S Ḉ Ấ Ố

Ế `̄O `̄E L̄. R̄. Ầ Ề
,́

U
,́

O
,̀

U
,̀

O
¸,
U

¸,
O

,̃
U

,̃
O

,
U.

,
O. Â.

Ô. Ê. Ẫ Ỗ Ễ
¸
Â

¸
Ô

¸
Ê ´̆A `̆A

¸
Ă ˜̆A Ă. Ṏ Ố Ồ Ḝ Ṧ Ṡ.

Figure 5.1: Some characters

• \’a gives á,
• \‘a gives à,
• \"a gives ä,
• \c c gives ç,
• \u a gives ă,
• \v a gives ǎ,
• \~a gives ã,
• \H o gives ő, it is redefined in the case of double accents,
• \k a gives ą,
• \. a gives ȧ,
• \=a gives ā,
• \r a gives å,
• \b b gives b

¯
,

• \d a gives a. ,
• \f a gives an inverted breve accent over a,
• \C a gives a double grave accent on a,
• \T e gives a tilde under e,
• \V d gives a a circumflex below d,
• \D a gives a a ring below a,
• \h a gives a hook over a.

If in the table you see ‘I’ instead of ‘x’, this means that the accent applies only on capital I. If you
see h, j, t, w or y, this applies only to the lower case letter. Otherwise the accent applies to both
upper case letter and lower case letter.

There is a possibility to put double accents (for Vietnamese, for instance). The following ones
are recognized, for upper and lower case letters, the order of the accents is irrelevant. Inside braces,
there is an accent command, optional spaces, and a character (maybe enclosed in braces).

\"{\=U} \"{\=A} \"{\=O} \"{\’U} \"{\’I} \"{\‘U} \.{\=A} \.{\=O}
\={\~ O} \k{\=O} \’{\~U} \’{\O} \’{\=O} \’{\=E} \’{\.S} \c{\’ C}
\’{\^A} \’{\^O} \’{\^E} \‘{\=O} \‘{\=E} \d{\=L} \d{\=R}
\‘{\^ A} \‘{\^ E} \H{\’U} \H{\’O} \H{\‘U} \H{\‘O} \H{\h U} \H{\h O}
\H{\~U} \H{\~O} \H{\d U} \H{\d O} \d{\^A} \d{\^O} \d{\^E} \~{\^A}
\~{\^O} \~{\^E} \h{\^A} \h{\^O} \h{\^E} \u{\’A} \u{\‘A} \u{\h A}
\u{\~A} \u{\d A} \~{\" O} \^{\’O} \^{\‘O} \u{\c E} \.{\v S} \.{\d S}

This is the translation.

Ṻ Ǟ Ȫ Ǘ Ḯ Ǜ Ǡ Ȱ
Ȭ Ǭ Ṹ Ǿ Ṓ Ḗ Ṥ Ḉ
Ấ Ố Ế Ṑ Ḕ Ḹ Ṝ
Ầ Ề Ứ Ớ Ừ Ờ Ử Ở
Ữ Ỡ Ự Ợ Ậ Ộ Ệ Ẫ
Ỗ Ễ Ẩ Ổ Ể Ắ Ằ Ẳ
Ẵ Ặ Ṏ Ố Ồ Ḝ Ṧ Ṩ

RT n° 309

114 José Grimm

You can see a representation on figure 5.1. We show here the LATEX output for these characters.

¨Ū ¨Ā ¨Ō Ú̈ Í̈ Ù̈ ˙Ā ˙Ō Ȭ Ǭ ´Ũ Ǿ ´Ō ´Ē ´Ṡ Ḉ Ấ Ố Ế `Ō `Ē L̄. R̄. Ầ Ề Ú̋ Ó̋ Ù̋ Ò̋ Ű Ő ˝Ũ Õ̋ ˝U.
˝O. Â. Ô. Ê. Ẫ Ỗ Ễ Â Ô Ê Á̆ À̆ Ă Ã̆ ˘A. Ö̃ Ó̂ Ò̂ ˘Ȩ Ṧ ˙S. . The first character in the list is: latin
capital letter u with macron and diaeresis, the second one is latin capital letter a with diaeresis
and macron. The order of accents is not the same. For simplicity, in Tralics, this is irrelevant.
You can notice that the LATEX output is strange. First, we have defined \h to be a no-op. For the
figure, we used the following code:

\newcommand\hook@above[1]{%
\leavevmode\setbox0\hbox{#1}\dimen@\ht0 \advance\dimen@.5ex
\rlap{\raise\dimen@\hbox{\kern2pt\char11}}#1}

This code works, provided that the font has, at position 11, something that looks like a hook
(for the T1 encoding, this is a cedilla). In LATEX you canny put a \" accent on \=U. No error
is signaled, it is just that TEX puts the accent before the accentee in case the accentee is not a
character, instead of putting it above3. You can say \"{\’U} because \’U is a character in the T1
encoding. The \mathaccent command has not these limitations4. The first character of the figure
was composed via

\UnicodeCharacter{x1E7A}{\ensuremath{\ddot{\mbox{\=U}}}}

In German, the umlaut character has a special meaning. The following example shows what
can be input. See the babel documentation for details.

\language=2
"a"o"u"e"i"""A"O"U"I"E
"s"z"S"Z"c"C"f"F"l"L"m"M"n"N"p"P"r"R"t"T
"""-"~"|"="‘"’"<">

and the Tralics translation.

äöüëïÄÖÜÏË
ßßSSSZckCKffFFllLLmmMMnnNNppPPrrRRttTT
--„”«»

The previous hack does not apply if the double quote character has category code 11 (letter),
is in an URL, or in a file name to be read (for instance, via \includegraphics).

The translation of the dash character is the following. If this character appears in an URL or
while reading a file name, it is left unchanged. If its category code is 11 (letter), usually inside
a verbatim environment, its translation is a dash followed by a \textnospace, unless you invoke
Tralics with the nozerowidthspace switch, case where the translation is a single hyphen. Otherwise,
a test is made for a ligature: three hyphens in a row produce — (mdash), and two hyphens
produce – (ndash),

The characters: :;!?«» are handled normally if inside an URL, when translating a filename,
when their category code is 11 (letter, typically, inside a verbatim), or when the current language is
not French. The translation of « is an opening guillemet with some space after it. If the character
that follows is (after expansion), a normal space, or a ~ or a \,, it will be discarded. The translation
of » is a space plus the character. If the previous character is a space, it will be removed. (TEX
has a primitive \unhskip that can remove a space; the Tralics equivalent works in usual cases).
The other four punctuation characters are handled like a closing guillemet. In any case, the space
added by these characters is a non-breaking one.

The characters ‘’<> behave in a special manner, in the same case as the guillemets. In fact, if
they are doubled, French guillemets will be used instead. Thus <<foo>> and ‘‘foo’’ and «foo»
behave the same, if the current language is French. Otherwise, a \textnospace will be added

3See the TEXbook, chapter 25
4See the TEXbook, chapter 26

INRIA

Tralics, a LATEX to XML translator Part I 115

after the character, in the same way as for a dash, namely outside an URL, file name, but if the
category code is 11 (letter), and the magic switch has not been given. Example:

\language = 0
test ligatures: <<>>‘‘’’-- et --- !?:;
\language=1
test ligatures: <<>>‘‘’’-- et --- !?:;
test ligatures:\verb=<<>>‘‘’’-- et --- !?:;=

This is the translation

test ligatures: <<>>‘‘’’– et — !?:;
test ligatures : « »« »– et — ! ?

 : ;
test ligatures :<hi rend=’tt’><​<​>​

>​‘​‘​’​’​-​-​
 et -​-​-​ !?:;</hi>

5.3 Verbatim material

We have seen a little example of verbatim code above. It shows that some ​ characters
are inserted, this is so that, if the XML file is read, a double dash will not be interpreted as an
en-dash. What the \verb command produces is a sequence of characters, whose category codes
are 12, except for some, that are of category 11, namely ‘’-<>~&:;?!«». You can compare this
with the LATEX code, shown in section 2.12: the \@noligs command makes some characters of
category code 13, the associated action is: output the character, with a zero kern in front.

You can say \verb*+ x y+ or \verb+ x y+. All characters between the two plus signs are
collected. Any character can be used instead of the plus sign (Try \verb*abca and \verb =a= !. In
the case a star is given, spaces are replaced by \textvisiblespace, otherwise by \nobreakspace.

You can say \DefineShortVerb\+, after that +foo+ is the same as \verb+foo+. Note that
the command must be followed by something like ‘\+’ or ‘*’, i.e., a macro whose name is formed
of a single character. You can say \UndefineShortVerb\+, this will undo the previous com-
mand. The syntax is the same. In the case where ‘+’ is a short verb character, you can say
\SaveVerb{foo}+\bar+. This has as effect to remember in a private command all tokens that
+\bar+ gathers. When you say \UseVerb{foo}, these tokens are re-inserted in the input stream.
Example:

\DefineShortVerb\+
\SaveVerb{foo}+\bar +
\UndefineShortVerb\+
\UseVerb{foo}

The transcript file will contain, for the \UseVerb command the following line.

\savedverb@foo ->\verbprefix {\verbatimfont \bar\nobreakspace }

The \\ before ‘b’ is not a command delimiter, for otherwise there would have been a space after
\bar. Note: another explanation is that the ‘b’ is not of category code 11, so that the command
is \b; exercise: find all interpretations of this line.

In the case of a verbatim environment, all characters on the line are gathered (final spaces disap-
pear, as usual), with category codes as explained above. As is the case of \verb, the \verbatimfont
command is prepended. This is defined to be \tt. Moreover, \verbatimprefix is also added in
front of the token list. In the case of the \verb command, there is \verbprefix instead. These
two commands are defined as \@empty. You can redefine them. Each line is followed by \par and

RT n° 309

116 José Grimm

\noindent. If the environment is followed by an empty line, or a \par command, this command
is removed, as well as the last \indent. Example that shows use of the prefix commands:

\DefineShortVerb{\|}
\def\verbatimfont#1{{#1}}
\def\verbprefix#1{A#1A}
\def\verbatimprefix#1{B#1B}
Test: \verb+foo+ and |bar|
\UndefineShortVerb{\|}
\begin{verbatim}
line1
line2
\end{verbatim}

The translation is:

<p>Test: AfooA and AbarA</p>
<p noindent=’true’>Bline1B</p>
<p noindent=’true’>Bline2B</p>
<p noindent=’true’></p>

The Verbatim environment is an extension of the verbatim environment. There is an optional
argument, an association list. If you say ‘numbers=true’, then lines will be numbered, starting
from 1. If say say ‘numbers=N’, where N is a number, then the number N will be used; instead
of a number, you can also give a counter name. Other features defined by the fancyvrb package
have not yet been implemented.

If a line number M is given, the following piece of code is inserted before the verbatim line:
{\verbatimnumberfont{M}}\space. The funny command is \let equal to \small at the start of
the run. The number is incremented for each line.

Characters after \begin{Verbatim}, but on the same line, are ignored. The same is true if an
optional argument is given: all characters that follow the closing bracket of the optional argument
are ignored. The opening bracket is only looked for on the current line (unless the end of line
character is commented out).

\begin{Verbatim} [numbers=true]
TEST
\end{Verbatim}
and without
\begin{Verbatim}
[ok]TEST
\end{Verbatim}
\begin{Verbatim} %
[ok] this is handled as comment
TEST
\end{Verbatim}

\def\verbatimfont#1{{\it #1}}
\def\verbatimnumberfont{\large}
\tracingall
\count3=4
\begin{Verbatim}[counter=3]
5,one line
\end{Verbatim}

INRIA

Tralics, a LATEX to XML translator Part I 117

\begin{Verbatim}[counter=03]
6,one line
\end{Verbatim}
\newcounter{vbcounter}
\setcounter{vbcounter}8
\begin{Verbatim}[counter=vbcounter]
9,one line
\end{Verbatim}
\begin{Verbatim}[counter=vbcounter]
10,one line
\end{Verbatim}

This is the translation.

<p noindent=’true’><hi rend=’small1’>1</hi> <hi rend=’tt’>TEST</hi></p>
<p noindent=’true’>and without</p>
<p noindent=’true’><hi rend=’tt’>[ok]TEST</hi></p>
<p noindent=’true’></p>
<p noindent=’true’><hi rend=’tt’>TEST</hi></p>
<p noindent=’true’><hi rend=’large1’>5</hi> <hi rend=’it’>5</hi>,one line</p>
<p noindent=’true’><hi rend=’large1’>6</hi> <hi rend=’it’>6</hi>,one line</p>
<p noindent=’true’></p>
<p noindent=’true’><hi rend=’large1’>9</hi> <hi rend=’it’>9</hi>,one line</p>
<p noindent=’true’><hi rend=’large1’>10</hi> <hi rend=’it’>1</hi>0,one line</p>
<p noindent=’true’></p>

You can say \numberedverbatim or \unnumberedverbatim. After that, verbatim environments
will be automatically numbered or not. This does not apply to Verbatim environments. There is
a command \DefineVerbatimEnvironment that is not yet implemented.

There is a command \fvset that takes an associated list as argument. If it contains ‘shows-
paces=true’ or ‘showspaces=false’, this changes how spaces are interpreted in a verbatim environ-
ment or command (except for \verb*, case where the space is always visible).

5.4 Case change

There are different commands for changing the case of letters. For instance, the translation of

\uppercase{Einstéin: $E=mc^2$}
\lowercase{Einstéin: $E=mc^2$}

is

<p>EINSTÉIN: <formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow><mi>E</mi><mo>=</mo><mi>M</mi><msup><mi>C</mi> <mn>2</mn> </msup>
</mrow></math></formula>
einstéin: <formula type=’inline’>
<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow><mi>e</mi><mo>=</mo><mi>m</mi><msup><mi>c</mi> <mn>2</mn> </msup>
</mrow></math></formula>
</p>

There are two tables that control these conversions: the lc-table and the uc-table. If the lc value
of a character is non-zero, it’s the lowercase equivalent of the character; otherwise, the character

RT n° 309

118 José Grimm

is left unchanged by \lowercase. The same is true for the lc-table. You can use \lccode and
\uccode for changing these tables. They are initialized like this: for all integers x with value
between ‘a’ and ‘z’, and between ‘à’ and ‘ÿ’, the uc value is x − 32, the lc value is x, the same
holds for x − 32. There are four exceptions: the pair 215, 247, this is multiplication and division
sign, and the pair 223, 255 this is ß and ÿ, the uppercase version of these two characters are ‘SS’
and ‘Ÿ’, but this character is not a latin1 character, its code is 376.

You can use the two commands \MakeUppercase and \MakeLowercase. These commands have
a regular syntax (in the example that follows, the \expandafter would be useless for \lowercase).
They convert letters, as for \uppercase and \lowercase, plus some commands that define some
characters. This example shows the list of all the recognised commands.

\def\foo{foo}
\def\List{{abcABCéÉ\foo

\oe\OE\o\O\ae\AE\dh\DH\dj\DJ\l\L\ng\NG\ss\SS\th\TH}}
\expandafter\MakeUppercase\List
\expandafter\MakeLowercase\List

The translation is

ABCABCÉÉfooŒŒØØÆÆÐÐĐĐŁŁ
ŋŋSSSSÞÞ
abcabcééfooœœøøææððđđłł
ŊŊßßþþ

5.5 Simple commands

We consider here some commands that take no arguments. They are not allowed in math mode.
A new paragraph is started (via \leavevmode) in vertical mode.

• \# translates to #.
• \- is \discretionary{-}{}{} in LATEX, empty in Tralics.
• \AA and \aa translate to Å and å.
• \AE and \ae translate to Æ and æ.
• \copyright translates to ©.
• \dag translates to †.
• \ddag translates to ‡.
• \DH and \dh translate to Ð and ð.
• \DJ and \dj translates to Ð and đ.
• \endguillemets translates to ».
• \fg translates to ».
• \guillemets translates to «.
• \guillemotleft translates to «.
• \guillemotright translates to ».
• \ieme translates to &ieme;. Something like 3\ieme should typeset as 3e.
• \iemes translates to &iemes;. Something like 3\iemes should typeset as 3es.
• \ier translates to &ier;. Something like 1\ier should typeset as 1er.
• \iers translates to &iers;. Something like 1\iers should typeset as 1ers.
• \iere translates to &iere;. Something like 1\iere should typeset as 1re.
• \ieres translates to &ieres;. Something like 1\ieres should typeset as 3res.
• \LaTeX translates to <LaTeX/>.
• \No and \Numero translate to &Numero;. This should render as No.

INRIA

Tralics, a LATEX to XML translator Part I 119

• \no and \numero translates to №. This should render as no.
• \O and \o translates to Ø and ø.
• \og translates to «.
• \P translates to ¶.
• \S translates to §.
• \slash translates to /.
• \SS and \ss translate to ß and ß.
• \TeX translates to <TeX/>.
• \TH and \th translate to Þ and þ.

The following commands all start with ‘text’. They are forbidden in math mode.

• \textacutedbl translates as ˝.
• \textasciiacute translates as ´.
• \textasciiacutex translates as the Unicode character U+2032; this is known as ‘prime’.

It is not the same as U+27, apostrophe, or U+B4 acute accent, or U+2B9, modifier letter
prime.

• \textasciicedilla translates to a cedilla.
• \textasciidieresis translates to ¨.
• \textasciigrave translates to `.
• \textasciimacron translates as ¯.
• \textbackslash translates to \.
• \textbaht translates to �.
• \textbrokenbar translates as ¦.
• \textbullet translates to •.
• \textcelsius translates to ℃.
• \textcent translates as ¢.
• \textcircledP translates to ­.
• \textcopyright translates as ©.
• \textcurrency translates as ¤.
• \textdagger translates to †.
• \textdaggerdbl translates to ‡.
• \textdegree translates as °.
• \textdiv translates to ÷.
• \textdollar translates to $.
• \textdong translates to ₫.
• \textestimated translates to ℮.
• \texteuro translates to €.
• \textexclamdown translates as ¡.
• \textflorin translates to ƒ.
• \textfrenchfranc translates to the symbol of the French Franc (not used any more).
• \textgravedbl translates to .
• \textinterrobang translates to ‽.
• \textlira translates to ₤.
• \textlnot translates to ¬.
• \textlquilltranslates to .
• \textmho translates to ℧.
• \textmu translates to µ.
• \textnaira translates to ₦.

RT n° 309

120 José Grimm

• \textnospace translates to U+200B (zero width space). We use this as a mark to inhibit
ligatures in verbatim mode.

• \textnumero translates to �.
• \textohm translates to Ω.
• \textonehalf translates to ½.
• \textonequarter translates to ¼.
• \textonesuperior translates to ¹.
• \textordfeminine translates as ª.
• \textordmasculine translates to º.
• \textparagraph translates to ¶.
• \textperiodcentered translates to ·.
• \textpertenthousand translates to %��.
• \textperthousand translates to %�.
• \textpm translates as ±.
• \textquestiondown translates to ¿.
• \textrecipe translates to �.
• \textreferencemark translates to ※.
• \textregistered translates as ®.
• \textrquill translates to ¡.
• \textsection translates as §.
• \textservicemark translates to ℠.
• \textsofthyphen translates as soft-hyphen, Unicode character U+00AD, (discretionary hy-

phen). Is this is the same as \-?
• \textsterlingtranslates as £.

• \textthreequarters translates to ¾.

• \textthreesuperiortranslates as ³.

• \texttimes translates as ×.

• \texttrademark translates as ™.

• \texttwosuperior translates as ².

• \textvisiblespace translates as .

• \textwon translates as ₩.

• \textyen translates as ¥.

The following commands are accepted in text and math mode.

• \textvisiblespace (space, carriage return, newline, tabulation) translates as a space.

• \! has empty translation. This is defined by LATEX as minus \thinmuskip, math only.

• \, translates as , same as a tilde. This is defined in LATEX as a mskip of width
\thinmuskip in math mode, and \thinspace otherwise.

• \$ translates as $.

• \% translates as %.

• \& translates as &, in fact as &

• _ translates as _.

• \dots translates as ‘...’.

• \flat translates as ♭.

• \i translates as ı.

• \j translates as .

• \ldots translates as ‘...’.

• \natural translates as ♮.

INRIA

Tralics, a LATEX to XML translator Part I 121

• \quad translates as .

• \qquad is the same as \quad\quad.

• \sharp translates as ♯.

• \} translates as }.

• \{ translates as {.

• \nobreakspace translates as .

5.6 The fp package

Introduction

This is an implementation in C++ of the package by Michael Mehlich. It implements fixed point
arithmetics in TEX. Each number is formed by a sign, then 18 digits before the point and 18 digits
after the point. Since 109 ≤ 230, four 32bits integers are sufficient. In the code, we shall sometimes
write a number as

x =

5
∑

i=−6

biB
i = 10−18(

11
∑

i=0

ciB
i)

where B = 1000, bi and ci are integers between 0 and 999. This requires 12 integers, instead of 4,
but is useful for internal operations. You can say

\FPadd\foo{10}{3.5}
\FPmul\xbar\foo\foo

This will put 13.5 in \foo and 282.5 in \xbar. In verbose mode, you will see that the transcript
file contains lines of the form:

{\FPadd}
{\FP@add}
{FPread for \FP@add=+10.}
{FPread for \FP@add=+3.5}

In reality, the first input line is converted into

\FP@add\foo10..\relax3.5..\relax

Most commands follow this scheme. There are some exceptions. You can use \FPprint. This
takes one argument and prints (typesets) it. The algorithm is a bit strange: if the argument list is
empty, the result is 0. If the argument is 123, ore more generally a list of tokens, where the first
has category code 12 (other), then nothing happens, the arguments is translated normally. If the
argument is ‘foo’, the result is ‘13.5’. More generally, if the first item is a character not of category
code 12, the command behaves like \csname. Don’t try constructions like \FPprint{x^2}. You
can say \FPset{gee}{foo}. The second argument is handled as for \FPprint. The first argument
should be a command name, or a sequence of characters that becomes a command name via
\csname. The effect of the command is the same as \def\gee{13.5}.

The general mechanism for a command like \FPadd or \FPsincos is to call intermediary com-
mands like \FP@add or \FP@sincos. These read some command names (these must be definable,
no check is make, as for \let), then parse numerical arguments, compute results and store the
results in the commands. The result is always normalized: trailing zeroes are removed as well as
leading zeroes (but at least one digit is returned before the point). If the number is negative a sign
is added. A special case is when the result is boolean. In this case the syntax has the form

\FPiflt{0.21}{0.20} Wrong\else Correct\fi

As a side effect, \ifFPtest is made equivalent to \iftrue or \iffalse. The following line is valid
in Tralics, it gives an error in LATEX.

RT n° 309

122 José Grimm

\iffalse \FPiflt{0.21}{0.20} \bad\else \badagain\fi \fi

Numbers are read as follows: We assume that \FP@add sees a string that contains two dots
and a \relax, see above. This means that you lose if the argument of the user command contains
a \relax. Otherwise, we have a list A, a dot, a list B, a dot, a list C, then \relax. As you
can see from the \FPmul\xbar\foo\foo example, these quantities are obtained by expanding the
argument (here \foo) in a \edef. For some reason quantities \A and \B are expanded again. In a
case like

\FPadd\foo{\noexpand\noexpand\noexpand\V}{12}

this gives \V after expansion, this is wrong. In a case like

\def\V{10.2}
\FPadd\foo{\noexpand\V.4}{12}

expansion of A is 10.2, this is equally wrong: After expansion, there should remain only digits in
A and B; there can be an optional sign at the start of A: any combination of + and - characters
is OK. Note that C, as well as all digits after a space in A or B are ignored. Thus, the following
two lines are valid for Tralics, invalid in the TEX case.

\def\V{10 .2}
\FPadd\foo{\noexpand\V.4}{12}
\FPadd\foo{\V.4}{12}

The list of all commands

In the list that follows, \C, \Ca, \Cb are command names, and \V, \Va, \Vb are values.

• \FPident\C\V. This is the identity; it copies \V in \C.

• \FPclip\C\V. This puts in \C the number \V. In the TEX version, trailing zeroes are not
removed by default. The \FPclip command has as function to removed them. In Tralics this
is a no-op.

• \FPprint\V. See description above. This typesets \V.

• \FPset\C\V. See description above. This copies \V in \C.

• \FPneg\C\V. This copies the opposite of \V in \C.

• \FPsgn\C\V. This copies the sign of \V, that can be +1, −1 or 0, in \C.

• \FPabs\C\V. This puts in \C the absolute value of the number \V.

• \FPadd\C\Va\Vb. This computes the sum of \Va and \Vb and stores the result in \C.

• \FPsub\C\Va\Vb. This computes the difference of \Va and \Vb and stores the result in \C.

• \FPmul\C\Va\Vb. This computes the product of \Va and \Vb and stores the result in \C.
The TEX code is beautiful: Tralics uses the same idea: we write each number as

∑

biB
i and

∑

ciB
i, then compute the sum of bicjB

i+j . 144 additions and multiplications are required.
One can do better, using Karatsuba’s method, but there is an additional cost for finding
the bi and merging at the end. This cost is 22 multiplications and divisions. The result is
a number with 72 decimal digits. An overflow is signaled in case there are more than 18
decimals before the point. Last digits are silently ignored.

INRIA

Tralics, a LATEX to XML translator Part I 123

\FP@@mul vv \relax\FP@saveshift%
\FP@@mul vu uv \relax\FP@saveshift%
\FP@@mul uu vt tv \relax\FP@saveshift%
\FP@@mul ut tu vz zv \relax\FP@saveshift%
\FP@@mul tt zu uz rv vr \relax\FP@saveshift%
\FP@@mul zt tz ur ru vq qv \relax\FP@saveshift%
\FP@@mul zz rt tr uq qu vp pv \relax\FP@saveshift%
\FP@@mul zr rz tq qt up pu vo ov \relax\FP@saveshift%
\FP@@mul rr qz zq tp pt uo ou vn nv \relax\FP@saveshift%
\FP@@mul rq qr zp pz to ot un nu vm mv \relax\FP@saveshift%
\FP@@mul qq rp pr zo oz tn nt um mu vl lv \relax\FP@saveshift%
\FP@@mul qp pq ro or zn nz tm mt ul lu kv vk \relax\FP@saveshift%
\FP@@mul pp oq qo rn nr zm mz tl lt ku uk \relax\FP@saveshift%
\FP@@mul op po nq qn rm mr zl lz tk kt \relax\FP@saveshift%
\FP@@mul oo pn np mq qm rl lr kz zk \relax\FP@saveshift%
\FP@@mul no on mp pm lq ql kr rk \relax\FP@saveshift%
\FP@@mul nn mo om pl lp qk kq \relax\FP@saveshift%
\FP@@mul mn nm lo ok pk kp \relax\FP@saveshift%
\FP@@mul mm ln nl ko ok \relax\FP@saveshift%
\FP@@mul lm ml kn nk \relax\FP@saveshift%
\FP@@mul ll km mk \relax\FP@saveshift%
\FP@@mul kl lk \relax\FP@saveshift%
\FP@@mul kk \relax\FP@saveshift%

Figure 5.2: A part of the TEX code of the multiplication in fp.

• \FPdiv\C\Va\Vb. This computes the quotient of \Va and \Vb and stores the result in \C.
Division is much harder than multiplication. Given x and y, if

X = 10nx Y = 10my q = Q10m−n

then
X = QY ⇐⇒ x = qy

We chose n and m as large as possible, then compute the quotient Q of X and Y . The
quotient q is then obtained by shifting. By construction Q is between 10 and 1/10, shifting
may underflow (this gives 0), or overflow (this is an error). When we compute the quotient
of X by Y , we can multiply both numbers by 1018, said otherwise, consider them as integers.
Write Q =

∑

ak10−k. Only indices k with k ≥ 0 are needed. In the case a0 = 0, we know
a1 6= 0. Write 10kQ = Q′

k + Q′′

k, where Q′

k is an integer, and Q′′

k is between 0 and 1. Write

X − 10−kY · Q′

k = Q′′

k(10−kY)

Let Y ′

k = 10−kY . This quantity appears twice above. Let X ′

k = X − Y ′

kQ′

k. We have
X ′

k = Q′′

kY ′

k. The algorithm is then: replace X ′

k and Y ′

k by their integer parts. Multiply X ′

k

by 10, find n the largest integer such that nY ′

k ≤ 10X ′

k. This is the next digit in the quotient.
Replace X ′

k by 10X ′

k − nY ′

k, divide Y ′

k by 10. The procedure stops when Y ′

k becomes zero.
For instance, if we compute the inverse of the inverse of π, we find a number whose last digits
are 243 instead of 238. On the other hand, if we divide 10 by 10/π, we get all correct digits
(this is because we lose a digit when we shift).

• \FPmin\C\Va\Vb. This puts in \C the smallest of the two values \Va and \Vb.

• \FPmax\C\Va\Vb. This puts in \C the largest of the two values \Va and \Vb.

RT n° 309

124 José Grimm

• \FPtruncate\C\V\I. This truncates \V to \I digits and puts the result in \C.

• \FPround\C\V\I. This rounds \V to \I digits and puts the result in \C. For the two commands
\FPtruncate and \FPround, the last argument has to be an integer. It is an error if this is a
negative integer. Nothing happens if the integer is larger than 18. Truncating π to 4 digits
gives 3.1415, rounding gives 3.1416. Rounding 1.25 to 1 digit gives 1.3. Rounding −X gives
the opposite of rounding X . No overflow is signaled: rounding 1018 − ǫ may give 1018.

• \FPiflt\Va\Vb, \FPifgt\Va\Vb, \FPifeq\Va\Vb. These three commands compare two val-
ues and set the boolean \ifFPtest to \iftrue in the case a < b, a > b and a = b respectively,
to \iffalse otherwise. This command is then executed. It is a conditional, so that a \fi is
required, and an \else is allowed.

• \FPifneg\V, \FPifpos\V, \FPifzero\V, \FPifint\V. Four command that test if the argu-
ment a satisfies a < 0, or a > 0 or a = 0 or a integer. The command \ifFPtest is set and
executed as above.

• \FPe\C. This put the number e in \C.

• \FPseed\V. This is a counter that contains the seed used by the random number generator.

• \FPrand\C. This puts in the command a random number. The algorithm is that of Lewis,
Goodman & Miller (1969). Let q = 127773, m = 2147483647. Write m = Aq + B, with
A = 16807 and B = 2836. If s is the seed, a and b the quotient and remainder of s by q,
w = Ab − Ba if this is ≥ 0, w = Ab − Ba + m otherwise. Then w is the remainder of As by
m. This is the new seed. The random number is w/m.

• \FPpascal\C\I. The last argument must be an integer, between 1 and 63. The result is
one row of the Pascal triangle. For instance \FPpascal\foo{5} stores in \foo the token list
[1.,5.,10.,10.,5.,1.].

• \FPexp\C\V. This puts in \C the exponential of the number \V. The command uses the
relation

exp(a + b) = exp(a) · exp(b)

The argument x is written as x = a + b, where a is an integer, and b is between 0 and 1
in magnitude (same sign as x). The quantity exp(a) is precomputed (if a ≥ 42, we have
an overflow, if a ≤ −43, we have an underflow, and the result is zero). The other factor is
computed as

exp(b) =
∑

bn/n! =
∑

Xk

Here Xk+1 is Xk multiplied by b, divided by k. The division by k uses a special algorithm
(if the digits in base 1000 of the numbers are ci, dividing

∑

ciB
i by a number k is trivial,

provided k < 1000). We compute terms as long as Xk is no zero.

• \FPln\C\V. This puts in \C the logarithm of the number \V. The command uses the relation

log(a · b) = log(a) + log(b)

Here we use for a a power of ten, so that our number is ab, with b between 1 and 10,
then a power of two so that it is between 1 and 2. The logarithms of these quantities are
precomputed. Let y = (x − 1)/(x + 1). If 1 ≤ x ≤ 2 then 0 ≤ y ≤ 1/3. Let

f(y) = 2
∑

y2k+1/(2k + 1) = 2
∑

Xk

We have f ′(y) = 2
∑

y2k = 2/(1 − y2). If we consider f(y) as a function of x, say g(x),
its derivative is 1/x, so that g(x) is the logarithm of x. We compute Xk as Yk/(2k + 1),

INRIA

Tralics, a LATEX to XML translator Part I 125

division as above, Yk+1 = zYk, where z is y2. This gives, for the number π with 18 digits a
logarithm of 1.144729885849400161 (last digits should be 173). For the exponential, we get
23.140692632779268882 (last digits should be 8995). The error is larger, because we multiply
two truncated numbers.

• \FPpow\C\Va\Vb. This puts in \C the first value raised to the power the second value.

• \FProot\C\Va\Vb. This puts in \C the first value raised to the power the inverse of the
second value. This use

ab = exp(b · log a) b
√

a = exp(log a/b)

If we compute \FPpow\foo{4}{2}, we get 16 − 99 · 10−18 and \FProot\foo{16}{2} gives
4− 51 · 10−18. Other examples: For some numbers, we have computes the square and fourth
root. We have then squared the result (or squared twice) and computed the difference with
the initial number.
x 70000 7000 700 70 7 0.7 0.07 0.007 0.0007
10−18(x − (

√
x)2) 1629349 171653 17569 1871 157 14 2 1 1

10−18(x − (4
√

x)4) 2515666 297486 27306 2222 247 7 2 1 1

• \FPsin\C\V, \FPcos\C\V, \FPtan\C\V, \FPcot\C\V,
\FPsincos\Ca\Cb\V, \FPtancot\Ca\Cb\V. These six functions compute the trigonometric
functions of a value v. In some cases, both the sine and the cosine are computed. The
tangent is the quotient of the sine and the cosine, the cotangent is the quotient with arguments
reversed. The \FPsincos takes two commands: the sine will be put in the first, the cosine
in the second. The command \FPtancot stores the tangent and the cotangent.

The first step is to reduce the argument modulo 2π. The same algorithm as for the division is
used (however 2π is computed with 36 digits, so that the result is more precise that a division
via FP commands). The second step is to reduce modulo π/2. This is done according to the
following table, where S and C and the sine and cosine of y.

x y sin x cosx
0 ≤ x ≤ π/4 x S C

π/4 ≤ x ≤ π/2 π/2 − x C S
π/2 ≤ x ≤ 3π/4 x − π/2 C −S
3π/4 ≤ x ≤ π π/2 − x S −C
π ≤ x ≤ 5π/4 x − π −S −C

5π/4 ≤ x ≤ 3π/2 3π/2 − x −C −S
3π/2 ≤ x ≤ 7π/4 x − 3π/2 −C S
7π/4 ≤ x ≤ 3π 2π − x −S C

The quantities C and S are computed via the obvious formulas

sin y =
∑

(−1)ny2n+1/(2n + 1)! cos y =
∑

(−1)ny2n/(2n)!.

The following piece of code can be used to test:

\def\T#1{
\FPsin\fooA{#1}\FPcos\fooB{#1}
\FPmul\fooA\fooA\fooA
\FPmul\fooB\fooB\fooB
\FPadd\foo\fooA\fooB\FPadd\foo\foo{-1}
\show\foo}

If the argument is 2x/10, x integer, between 0 and 30, this procedure gives numbers with
magnitude at most 3 · 10−18.

RT n° 309

126 José Grimm

• \FParcsin\C\V, \FParccos\C\V, \FParcsincos\Ca\Cb\V. These commands compute the
inverse sine, cosine, or both of an argument. The inverse sign is between −π/2 and π/2, the
inverse cosine is between 0 and π. It is an error if the argument is not between −1 and +1.
Consider

f(x) =
∑

x2k+1ak/(2k + 1) ak = ak−1(2k − 1)/2k.

We have f ′(x) =
∑

akx2k. Since ak = (2k − 1)!/k!2k, we have f ′(x) = (1 − x2)−1/2, so that
f is inverse sine. If n = 2k− 1, we have to compute n/(n+1), this uses a hack. If x ≤

√
2/2,

we compute f(x), otherwise f(y) with y =
√

1 − x2. This is the inverse cosine of x. The
square root is computed exactly, it is not an approximation via logarithms and exponentials.
When we compute, for x integer between 0 and 30, the inverse cosine of the cosine of x, we
get an error at most 24 · 10−18. The error reaches its maximum and changes sign near π/4
and 3π/4.

• \FPtan\C\V, \FPcot\C\V, \FPtancot\Ca\Cb\V. These commands compute the inverse tan-
gent, or cotangent or both of the argument. For the inverse tangent the result is between−π/2
and π/2. For the inverse cotangent the result is between 0 and π. Since tan(π/2−t) = 1/ tan t,
we can assume that the argument is less than one. In the case x ≥ 8/9, we use the following:

y =
5 − 4x2

9

1√
1 + x2

=
2/3√
1 − y

.

If x = tan t, then 1/
√

1 + x2 = cos t. We compute this, then the inverse cosine. For 1/
√

1 − y,
we use a variant of the formula shown above: We write (2k − 1)/(2k) = 1 − 1/(2k), and we
compute 1/(2k) via normal division. In the case x ≤ 8/9, we use the formula

arctanx = x − x3/3 + x5/5 − x7/7 + . . .

• \FPlsolve\Ca\Va\Vb. Assume that the arguments are x1, and A, B. This solves the equation

Ax + B = 0

and puts the result in x1. In Tralics, you will find the number of solutions in \count0. In
the case of an equation of degree one, the result is trivial: x = −B/A.

• \FPqsolve\Ca\Cb\Va\Vb\Vc. Assume that the arguments are x1, x2, and A, B, C. This
solves the equation

Ax2 + Bx + C = 0

and puts the result in x1, and x2. In Tralics, you will find the number of solutions in \count0.
A special case is when A = 0, the equation is of degree one. Otherwise, we replace B by B/A
and C by C/A. We replace B by B/2. Thus, the equation to be solved is x2+2Bx+C = 0. Let
∆ = B2 −C. If ∆ < 0, there is no solution. Otherwise, the solutions are x2 = −(±

√
∆+B),

and x1 = C/x2. Here the sign of the square root is the same as B.

• \FPcsolve\Ca\Cb\Cc\Va\Vb\Vc\Vd. Assume that the arguments are x1, x2, x3, and A, B,
C, D. This solves the equation

Ax3 + Bx2 + Cx + D = 0

and puts the result in x1, x2, and x3. In Tralics, you will find the number of solutions in
\count0. A special case is when A = 0, this is an equation of degree 2. Otherwise, let
D′ = (D/A)/2, T = −B/(3A), p = C/(3A) − T 2 and q = −(BC)/(6A2) + D − T 3. Let
δ = p3 − q2. If δ > 0, there is a single solution. Let u =

√
δ − q and v = −(

√
δ + q). The

solution is
x = 3

√
u + 3

√
v + T.

INRIA

Tralics, a LATEX to XML translator Part I 127

Otherwise, let R = ±
√

|p|, with the same sign as q. Let s = arccos(q/R3)/3, and

r1 = − cos(s) r2 = cos(π/3 − s) r3 = cos(π/3 + s).

The solutions are xi = 2Rri +T . The implementation of the formulas are a bit different than
in the initial TEX version, so that numerically, there can be some small differences.

• \FPqqsolve\Ca\Cb\Cc\Cd \Va\Vb\Vc\Vd\Ve. Assume that the arguments are x1, x2, x3, x4

and A, B, C, D, E. This solves the equation

Ax4 + Bx3 + Cx2 + Dx + E = 0

and puts the result in x1, x2, x3 and x4. In Tralics, you will find the number of solutions in
\count0. We can assume A 6= 0, otherwise this is an equation of degree 3. Then we divide
by A, and assume A = 1. A special case is D = 0, i.e. Ay2 + Cy + E = 0, x2 = y. We first
find y. For each positive solution, we take the square root. A second special case is A = E,
B = D. This is

x4 + Bx3 + Cx2 + Bx + 1 = 0.

If u = x + 1/x, we get u2 + Bu + (C − 2) = 0. We solve this equation. For each solution u
we solve x2 − ux + 1 = 0. In the general case, we consider

B′ = B/4, T = −B′, E′ = E −B′D +CB′2 − 3B′4, D′ = D− 2B′C′ +8B′3, C′ = C − 6B′2

The effect is to shift the roots by T . If

x4 + C′x2 + D′x + E′ = 0

has roots ri, then the initial equation has roots xi = ri + T . Consider

P = (x2 + s′/2 + r − D/s′)(x2 − s′/2 + r + D/s′)

This is the original polynomial if C = 2r− s′2/4 and E = r2 −D2/s′2. Let s = 8r− 4C. The
first equation is true if s′2 = s. We must have s > 0. The second relation says that r must
be a solution of

8y3 − 4Cy2 − 8Ey + 4CE − D2 = 0.

This is called the resolvant. This, we solve this equation, compute the three roots, chose one
with s > 0 (if this is not possible the initial equation has no real root). After that P = 0
becomes two equations of degree two.

Alternate syntax

The command \FPupn implements a postfix language that allows you to write shorter code. Here
is an example

\FPupn\foo{7 20 2 sub 100 2000 - add +}
\testeq\foo{1925.}

\FPupn\foo{20 2 div 100 2000 / add 3 mul 2 *}
\testeq\foo{180.}

\def\mthree{-3}%there is no unary minus in this language
\FPupn\foo{ 3 abs mthree abs 3 sgn 10 * mthree sgn 100 * + + +}

\testeq\foo{-84.}
\FPupn\foo{2 3 min 400 500 max +}

\testeq\foo{502.}
\FPupn\foo{12.43745678 2 round 12.35745678 2 trunc -}

RT n° 309

128 José Grimm

\testeq\foo{-0.09}
\FPupn\foo{e 1.2 exp + 2.3 ln + 3 4 pow + 5 6 root +}

\testeq\foo{72.302276955235951659}
\FPupn\foo{pi 0.7 - sin cos sincos - tan cot tancot +}

\testeq\foo{-2.894412996263821897}
\FPupn\foo{0.3 arcsin 0.1 * arccos 0.1 * arcsincos - arctan arccot arctancot -}

\testeq\foo{0.751779218345560029}
\FPupn\foo{3.4 seed random}

\testeq\foo{0.000023479107778276}
\FPupn\foo{1.1 2.3 3.4 pop swap copy add sub}

\testeq\foo{0.1}

The \testeq command can be used to test the code. It is an error if the two arguments are not
the same. Some comments. Consider the last expression. We put 1.1, 2.3 and 3.4 on the stack.
After that we pop an item. After that we swap. The stack holds 1.1 (top stack), followed by 2.3.
Then we duplicate the top stack. The we add. The topstack is now 2.2. After subtraction, we get
0.1. If you say ‘2 3 -’, the result is 1, because - and sub use arguments in a different order. The
same is true for / and div. Note the order of 10 2 pow, this gives 1024. If strange words are seen,
like ‘mthree’, they are replaced by \mthree. Note that ‘e’ and ‘pi’ are predefined.

If you don’t like postfix language, you can use \FPeval. Here are some examples.

\FPeval\foo{1000-100-10-1}
\testeq\foo{889.}

\FPeval\foo{1000+100+10+1}
\testeq\foo{1111.}

\FPeval\foo{1000-100+10+1}
\testeq\foo{911.}

\FPeval\foo{1000+100-10+1}
\testeq\foo{1091.}

\FPeval\xfoo{(20 - 2) + (2000-100) + 7}
\testeq\xfoo{1925.}

\FPeval\xfoo{(20/2 + 2000/100)*3*2}
\testeq\xfoo{180.}

\FPeval\foo{210/2/3/5}
\testeq\foo{7.}

\FPeval\foo{210*2/3/5}
\testeq\foo{28.}

\FPeval\foo{210/2*3/5}
\testeq\foo{63.}

\FPeval\foo{210/2/3*5}
\testeq\foo{175.}

\FPeval\foo{210*2*3/5}
\testeq\foo{252.}

\FPeval\foo{210*2/3*5}
\testeq\foo{700.}

\FPeval\foo{210/2*3*5}
\testeq\foo{1575.}

\FPeval\xfoo{abs(3) + abs(-3) + (sgn(3)* 10) + (sgn(-3) * 100)}
\testeq\xfoo{-84.}

\FPeval\xfoo{min(2:3) + max(400,500)}
\testeq\xfoo{502.}

\FPeval\xfoo{round(12.43745678,2) - trunc(12.35745678, 2)}
\testeq\xfoo{0.09}

INRIA

Tralics, a LATEX to XML translator Part I 129

\FPeval\xfoo{e + exp(1.2) + ln(2.3) + pow(3, 4) + root(5, 6)}
\testeq\xfoo{72.302276955235951659}

\FPeval\xfooa{sin(cos(sin(0.7 - pi))) - cos(cos(sin(0.7 - pi)))}
\FPeval\xfoo{tan (cot(tan(xfooa))) + cot(cot(tan(xfooa)))}

\testeq\xfoo{-2.894412996263821897}
\FPeval\xfooa{arcsin (arccos (arcsin(0.3)*0.1)*0.1) -

arccos (arccos (arcsin(0.3)*0.1)*0.1)}
\FPeval\xfoo{arctan(arccot(arctan(xfooa))) - arccot(arccot(arctan(xfooa)))}

\testeq\xfoo{0.751779218345560029}
\FPeval\foo{2+3*4+5*3^2}

\testeq\foo{58.999999999999998665}
\FPeval\foo{3^2*5+4*3+2+1}

\testeq\foo{59.999999999999998665}
\FPeval\foo{(+3+4)*(-5-6)}

\testeq\foo{-77.}

If you wonder what happens, you can look the transcript file. You can see something like:

{\FPeval}
{FPpostfix 1 2 3 mul add 400 500 max sin 4 pow add}
{\FP@upn}
{FPupcmd ??}
{FPupcmd ??}
{FPupcmd ??}
{FPupcmd mul}
{FPread for \FP@upn=+3.}
{FPread for \FP@upn=+2.}
{FPupcmd add}
{FPread for \FP@upn=+6.}
{FPread for \FP@upn=+1.}
{FPupcmd ??}
{FPupcmd ??}
{FPupcmd max}
{FPread for \FP@upn=+500.}
{FPread for \FP@upn=+400.}
{FPupcmd sin}
{FPread for \FP@upn=+500.}
{FPupcmd ??}
{FPupcmd pow}
{FPread for \FP@upn=+4.}
{FPread for \FP@upn=-0.467771805322476126}
{FPupcmd add}
{FPread for \FP@upn=+0.522845423476396576}
{FPread for \FP@upn=+7.}
{FPread for \FP@upn=+7.522845423476396576}

The second line is the expression converted from infix to postfix. Each ‘??’ represents a string
that does not start with a letter. This is generally a number.

RT n° 309

130 José Grimm

5.7 Action before translation

Normally, translation applies only to what is between \begin{document} and \end{document}.
This is a very special environment, in fact, it leaves the semantics stack pointer unchanged. There
are two hooks. You can say

\AtBeginDocument{\foo}
\AtEndDocument{\xbar}

These commands remember the tokens in a special list, that is inserted in the input stream when
\begin or \end is seen. After that, the meaning of the command changes: it becomes ‘evaluate
now’, more precisely \@firstofone. The last action in the begin-document hook is to change the
definition again, so that an error may be signaled, for instance Can be used only in preamble:
\AtBeginDocument. On the other hand, the \end{document} command inserts a special marker
that closes every open file, thus stopping translation at the end of the hook (the bibliography is
translated after that). Before the begin of the document, you can use commands of the form

\documentclass[doc-opt]{doc-class}
\usepackage[pack-opt]{pack-name}

There are some differences with LATEX, in particular the lines are completely independent; in LATEX,
options that are not used by the document class are seen by the packages. We assume moreover
that pack-name is the name of a single package. If ‘doc-opt’ contains ‘useallsizes’ this is the same
as if a line in the configuration file has said to use all font sizes. If it contains ‘french’ or ‘english’,
this defines the default language. If it contains ‘leadingchapter’ or ‘leadingpart’ this means that
the top-level section is ‘chapter’ or ‘part’, otherwise it is ‘section’. If ‘doc-class’ contains ‘book’
then the top-level section is ‘part’, it if contains ‘report’, it is ‘chapter’. If the top-level section
is part, chapter, or section, the translation of \subsection is, respectively, a <div3>, <div2> or
<div1> element. Moreover, an attribute pair chapters=‘true’ or part=‘true’ is added to the main
element, so that a post-processor can decide that <div1> is subsection, section or chapter.

If the packages ‘calc’, ‘fp’ or ‘fancyhdr’ are loaded, then the meaning of some command changes,
as explained elsewhere. If the babel package is loaded, the following languages are recognized:
english, american, british, canadian, UKenglish, USenglish (these have number 0), french, francais,
frenchb, acadian, canadien (these have number 1) austrian, german, germanb, naustrian, ngerman
(these have number 2). The first language in the list is the default language. If a package is name
‘french’ or ‘frenchb’ or ‘german’, the default language is also set. The default language can be
used in the attribute list of the main document element. Setting the default language also set the
current language (value of \language).

The standard configuration file contains lines like these:

on package loaded calc CALC = "true"
on package loaded foo/bar FOO1 = "true"
on package loaded *foo/bar FOO2 = "true"
on package loaded foo/*bar FOO3 = "true"
on package loaded *foo/*bar FOO4 = "true"

The first line means: if the ‘calc’ package is loaded, then the CALC attribute of the main document
should be set to true. The second line means: if the package ‘foo’ is loaded with the option ‘bar’,
then the FOO1 attribute should be set. In the lines that follows ‘*foo’ means: anything that
contains foo. You can also say

on_package_loaded calc CALC = "true"
on_package_option calc CALC = "true"
on_class_option article CALC = "true"
on class option */* CALC = "*+"

INRIA

Tralics, a LATEX to XML translator Part I 131

In the attribute value, a star is replaced by the value of the package, or document class, and a
plus sign by the options that matches (or the whole list of options). If ‘class’ is used instead of
‘package’, the the document class and its options is considered instead of the package.

5.8 Other expandable commands

Not all commands defined here can be expanded, see the list at the end of Chapter 2. Essentially,
this describes the ifthen package, the calc package, the newtheorem mechanism, and some input-
output commands.

• \@whilenum, \@whiledim, \@whilesw, \whiledo. Consider the following example,

\newcounter{ca}\newcounter{cb}
\newcommand{\printgcd}[2]{%
\setcounter{ca}{#1}\setcounter{cb}{#2}%
Gcd(#1,#2) =
\whiledo{\not\(\value{ca}=\value{cb}\)}%
{\ifthenelse{\value{ca}>\value{cb}}%
{\addtocounter{ca}{-\value{cb}}}%
{\addtocounter{cb}{-\value{ca}}}%

gcd(\arabic{ca},\arabic{cb}) = }%
\arabic{ca}.}

This works only if the package ‘ifthen’ is loaded. It should produce (we have inserted some
\allowbreak commands in order to allow linebreaks in the very big formula): Gcd(144,272)
= gcd (144, 128) = gcd (16, 128) = gcd (16, 112) = gcd (16, 96) = gcd (16, 80) = gcd (16, 64)
= gcd (16, 48) = gcd (16, 32) = gcd (16, 16) = 16.

The ifthen package implements \whiledo in terms of the LATEX command \@whilesw. The
Tralics implementation of \whiledo is: read arguments A and B. Evaluate A as the first
argument of \ifthenelse. If false terminate. Otherwise, the expansion is B\whiledo A{B}.
Using one version or the other produces the same result.

\makeatletter
\newif\if@whiledo
\long\def\whiledo#1#2{%
\ifthenelse{#1}%
{\@whiledotrue
\@whilesw\if@whiledo\fi

{#2%
\ifthenelse{#1}\@whiledotrue\@whiledofalse}}%

{}%
}

This is the same code, without the ifthen package.

\newif\iftest
\newcommand{\printgcd}[2]{%
\setcounter{ca}{#1}\setcounter{cb}{#2}%
\testtrue
\@whilesw\iftest gcd(\arabic{ca},\arabic{cb}) = \fi{%
\ifnum\value{ca}=\value{cb}\testfalse\else
\ifnum\value{ca}>\value{cb}%
\addtocounter{ca}{-\value{cb}}\else
\addtocounter{cb}{-\value{ca}}\fi

RT n° 309

132 José Grimm

\fi}%
\arabic{ca}.}

We propose now a method that uses \@whilenum. We start with two commands that put
in (c, d) the numbers (a, b), in some order, starting with the smallest. We consider also a
function that takes the integers, puts then in length registers.

\newlength\cC\newlength\cD
\newcounter{cc}\newcounter{cd}
\def\assigncounter{%
\ifnum\value{ca}<\value{cb}%
\setcounter{cc}{\value{ca}}%
\setcounter{cd}{\value{cb}}%

\else
\setcounter{cc}{\value{cb}}%
\setcounter{cd}{\value{ca}}%
\fi}

\def\assignlength{%
\ifnum\value{ca}<\value{cb}%
\setlength\cC{\value{ca}sp}%
\setlength\cD{\value{cb}sp}%

\else
\setlength\cC{\value{cb}sp}%
\setlength\cD{\value{ca}sp}%
\fi}

This puts (c, c − d) in (a, b).

\def\subtractcounter{%
\setcounter{cb}{\value{cd}}%
\setcounter{ca}{\value{cc}}%
\addtocounter{cb}{-\value{cc}}}%
\def\subtractlength{%
\setcounter{cb}{\cD}%
\setcounter{ca}{\cC}%
\addtocounter{cb}{-\cC}}%

Computing the gcd is now obvious: it suffices to call assign and subtract, until c = d (this
will happen), because the procedures leave the gcd invariant.

\let\printgcd\relax
\newcommand{\printgcd}[2]{%
\setcounter{ca}{#1}\setcounter{cb}{#2}%
\assigncounter
\@whilenum \value{cc}<\value{cd} Gcd(\arabic{cc},\arabic{cd}) = \do{%

\subtractcounter\assigncounter}%
\arabic{ca}.}

\printgcd{144}{272}

The same with dimensions

\let\printgcd\relax
\newcommand{\printgcd}[2]{%
\setcounter{ca}{#1}\setcounter{cb}{#2}%
\assignlength
\@whiledim \cC<\cD Xgcd(\arabic{ca},\arabic{cb}) = \do{%

\subtractlength\assignlength}%

INRIA

Tralics, a LATEX to XML translator Part I 133

\arabic{ca}.}
\printgcd{144}{272}

In verbose mode, the transcript file of Tralics will contain lines of the form shown here. It
indicates the expansion of \@whilenum and the internal command \@iwhilenum associated
to it.

\@whilenum<- \ifnum \value {cc}<\value {cd} Gcd(\arabic {cc},\arabic {cd}) =

\relax \subtractcounter \assigncounter \relax \@iwhilenum {\value {cc}<\value

{cd} Gcd(\arabic {cc},\arabic {cd}) = \relax \subtractcounter \assigncounter

\relax }\fi

\@iwhilenum<- \ifnum \value {cc}<\value {cd} Gcd(\arabic {cc},\arabic {cd}) =

\relax \subtractcounter \assigncounter \relax \expandafter \@iwhilenum \else

\expandafter \@gobble \fi {\value {cc}<\value {cd} Gcd(\arabic {cc},\arabic

{cd}) = \relax \subtractcounter \assigncounter \relax }

This looks like the following (in the case of \@whilenum, there is no \relax after ‘ETC’, so
that the code is compatible with LATEX).

\@whilenum<- \ifnum TEST ACTION \relax ETC \relax

\@iwhilenum {TEST ACTION \relax ETC \relax }\fi

\@iwhilenum<- \ifnum TEST ACTION \relax ETC \relax

\expandafter \@iwhilenum \else \expandafter \@gobble \fi

{TEST ACTION \relax ETC \relax }

We can simplify this further to the following.

\@whilenum<- \ifnum CODE \@iwhilenum {CODE}\fi

\@iwhilenum<- \ifnum CODE

\expandafter \@iwhilenum \else \expandafter \@gobble \fi {CODE}

You can see that, if the test is true, the first \expandafter token is evaluated; as a con-
sequence, everything between \else and \fi is removed and we are left with \@iwhilenum
followed by {CODE}; if the test is false the \fi is expanded first, so that \@gobble sees the
code to gobble.

• \loop. This is the command described in the TEX book. The implementation is less tricky.
The following example should print 0291817161514131211101908070605040302010

\count0=0
\def\foo{}
\def\xbar#1#2{\xdef\foo{\foo#1#2}}
\loop \advance\count0by1 \edef\xx{\ifnum\count0<10 0\fi\the\count0 }
\expandafter\xbar\xx \ifnum\count0<20 \repeat
\show\foo

• \setlength. This command takes two argument, say \foo and ‘ba’. The expansion is
\foo ba\relax, unless the calc package is loaded, case where the result is \calc{\foo}{ba}.

• \addtolength. This command takes two argument, say \foo and ‘bar’. The expansion
is \advance\foo bar\relax, unless the calc package is loaded, case where the result is
\calc{\advance\foo}{bar}. Tralics tests that the first argument is a single token; an error
is signaled if this is \skip\footins, although this is a valid length.

• \setcounter. This command takes two arguments, say ‘foo’ and ‘bar’. The expansion
is \global\c@foo bar\relax, unless the calc package is loaded, case where the result is
\calc{\global\c@foo}{bar}.

RT n° 309

134 José Grimm

• \addtocounter. This command takes two arguments, say ‘foo’ and ‘bar’. The expansion is
\global\advance\c@foo bar\relax, unless the calc package is loaded, case where the result
is \calc{\global\advance\c@foo}{bar}. For these last two commands, Tralics tests that
the first argument is a counter. For instance, if the first argument is \bar, you get Invalid
token \bar found in counter name.

• \widthof, \heightof, \depthof: These commands take an argument, typeset it is a box,
and return the dimension of the box. Not implemented in Tralics.

• \ratio. This command is defined by the calc package to be used as x/\ratio{u}{v} or
x*\ratio{u}{v}. Arguments u and v are dimensions, interpreted by the \calc function.
The expression that comes before the operator is divided by u and multiplies by v (or the
contrary). In Tralics, the quotient is computed with 6 digits; this is not exactly the same
algorithm as in LATEX.

• \real. This command is defined by the calc package to be used as x*\real{u} or x/\real{u}.
The argument u should be a real number as in ‘1.5’.

• \calc. Examples of the calc package are given in section 2.7. The rules are the following: the
\calc command (a private command), takes two arguments; the first argument is a token
list of the form \global\advance\count0. Said otherwise, a variable, preceded by optional
prefixes. The variable must be something that reads an integer, a dimension, or glue. The
second argument is evaluated and put in the variable (or added to the variable); assignment
can be global. A primitive is either a parenthesized expression, a call to \widthof, or the
result of the command scanint, scandim or scanglue (whichever is used depends on the type
of the variable). As a result, if a command like \setcounter{foo}{bar} is valid without the
calc, it remains valid with it, and the interpretation is the same. Moreover, expressions like
a + b, a − b, a/b and a ∗ b can be used, instead of \advance, \multiply or \divide. In the
case of multiplication or division, the second argument must be an integer; as an extension,
it can be \real or \ratio, as explained above, in this last case, the Tralics result may differ
slightly from the LATEX value.

• \newboolean, \provideboolean. These two commands take as argument a character string,
for instance ‘foo’ and behave like \newif\iffoo. Nothing happens for \provideboolean if
the command \iffoo exists, but an error is signaled by \newboolean.

• \setboolean. This command takes two arguments. The second argument should be, after
translation, and modulo the case, ‘true’ or ‘false’. If the first argument is ‘foo’, then \footrue
is executed, otherwise \foofalse is executed. This works well if the command has been
defined by \newboolean{foo}.

• \boolean. This can be used only in an ‘ifthenelse’ test. It takes an argument, say ‘foo’. The
test is true if \iffoo is \iftrue, false otherwise. This works as expected if \setboolean
has been used to set the value of ‘foo’.

• \equal. This can be used only in an ‘ifthenelse’ test. It takes two arguments, puts them
in commands, say \tmpa, and \tmpb, expands then via \edef, and compares the result via
\ifx. The result can be true of false.

• \isodd. This can be used only in an ‘ifthenelse’ test. It takes an argument, say ‘foo’. The
test is true if the argument is an odd number as seen by \ifodd. There are no such hacks
as in the LATEX version.

• \isundefined. This can be used only in an ‘ifthenelse’ test. It takes an argument, say \foo.
The test is true if it is undefined (if the argument contains more than one token, only the
first one is considered).

INRIA

Tralics, a LATEX to XML translator Part I 135

• \lengthtest. This can be used only in an ‘ifthenelse’ test. It takes an argument, say
‘1cm=2cm’. The test is true if \ifdim interprets this as true.

• \not, \and, \or, \NOT, \AND, \OR. These can be used only in an ‘ifthenelse’ test as boolean
connectors (but could be used elsewhere with a different meaning). If you say \not \foo
\and \not \not \bar, the condition is true if \foo is false and \bar is true. Note that if
\foo is found true, the condition is false, whatever follows \and, and this is not evaluated.
In the same fashion, if what precedes \or is true, what follows is not evaluated.

• \(, \). This can be used to change the order of evaluation. For instance \not \(\foo \and
\bar\) negates foo-and-bar.

• \ifthenelse. This takes three arguments. The first is evaluated using the command ex-
plained above. If true, the expansion is the second argument, otherwise the third. In a case
like \ifthenelse{1=3}{Y}{N}, the argument is evaluated as in \ifnum.

• \theorembodyfont. This is a command that remembers its argument for use with theorems.
Default value is empty.

• \theoremstyle. This is a command that remembers its argument for use with theorems.
Default value is ‘plain’

• \theoremheaderfont. This is a command that remembers its argument for use with theo-
rems. Default value is \bfseries.

• \newtheorem. The implementation is as described in the latex companion, first edition. An
example can be found on page 194. We comment here a part of the trace:

1 [8] \theorembodyfont{\sl}

2 [9] \theoremstyle{break}

This is our first theorem. It defines an environment ‘Cor’. For some reason, \theCor is set
to \relax.

3 [10] \newtheorem{Cor}{Corollary} \relax

4 {\newtheorem}

5 {\newtheorem Cor}

6 {\let \endCor \@endtheorem}

7 {\let \theCor \relax}

8 {\def \Cor ->\@begintheorem {Corollary}\theCor {\sl }{Cor}{Cor}{break}}

Here you see that a counter ‘Cor’ is defined.

9 {\countdef \c@Cor=\count24}

10 {\def \theCor ->\arabic {Cor}}

Here we see that an optional argument can be used after the name. The counter ‘Exa’
depends on the counter section, and \theExa uses \thesection.

11 [14] \newtheorem{Exa}{Example}[section]

12 {\newtheorem}

13 {\newtheorem Exa}

14 {\let \endExa \@endtheorem}

15 {\let \theExa \relax}

16 {\def \Exa ->\@begintheorem {Example}\theExa {\sl }{Exa}{Exa}{plain}}

17 {\countdef \c@Exa=\count25}

18 {newcounter_opt}

19 {newcounter_opt->\cl@section}

20 \cl@section ->\@elt {subsection}

21 {\def \theExa ->\thesection .\arabic {Exa}}

RT n° 309

136 José Grimm

Here we have an optional argument before the name. There is no counter ‘Lem’, but \theLem
is \theCor.

22 [17] \newtheorem{Lem}[Cor]{lemma}

23 {\newtheorem}

24 {\newtheorem Lem}

25 {\let \endLem \@endtheorem}

26 {\let \theLem \relax}

27 {\def \Lem ->\@begintheorem {lemma}\theLem {\sl }{Lem}{Cor}{marginbreak}}

28 {\def \theLem ->\theCor }

This is now the use of one theorem. We have a command that reads 6 arguments, plus the
text.

29 [23] \begin{Cor}

30 {\begin}

31 {\begin Cor}

32 +stack: level + 2 for environment

33 \Cor ->\@begintheorem {Corollary}\theCor {\sl }{Cor}{Cor}{break}

34 {\@begintheorem}

35 [24] This is a sentence typeset in the theorem environment \Lenv{Cor}.

36 {Push theorem 1}

We first increment the counter (argument 5).

37 \refstepcounter->\global \advance \c@Cor 1\relax {\let \@elt \@stpelt \cl@Cor }

38 {\global}

39 {\global\advance}

40 +scanint for \c@Cor->1

41 ...

This produces ‘Corollary 1’ from arguments 1 and 2. A part of the transcript file has been
removed. but you get the idea. The \scshape comes from \theoremheaderfont.

42 +stack: level + 3 for brace

43 {\scshape}

44 {font change \scshape}

45 {begin-group character {}

46 \theCor ->\arabic {Cor}

47 \arabic->\number \c@Cor

48 +scanint for \number->1

49 {Text:Corollary 1 }

50 {font restore }

51 +stack: level - 3 for brace

What follows is easy: the body is typeset using argument 3.

52 {\sl}

53 {font change \slshape}

54 Character sequence: This is a sentence typeset in the theorem environment .

55 ...

If the configuration file defines xml_theorem_name, the translation is not the same, because
the meaning of \@begintheorem has changed.

56 [23] \begin{Cor}

57 {\begin}

58 {\begin Cor}

59 +stack: level + 2 for environment

60 \Cor ->\@begintheorem {Corollary}\theCor {\sl }{Cor}{Cor}{break}

61 {\@begintheorem}

62 [24] This is a sentence typeset in the theorem environment \Lenv{Cor}.

63 {Push theorem 1}

INRIA

Tralics, a LATEX to XML translator Part I 137

Arguments 1, 4 and 6 are grabed, and put in an element or attributes. Note: arguments 5
and 6 are identical.

64 {Push Head 2}

65 Character sequence: Corollary.

66 {Text:Corollary}

67 {Pop 2: document_v theorem_v Head_t}

68 {Push argument 2}

69 Character sequence: Cor.

70 {Text:Cor}

71 {Pop 2: document_v theorem_v argument_t}

72 {Push argument 2}

73 Character sequence: break.

74 {Text:break}

75 {Pop 2: document_v theorem_v argument_t}

The counter is always incremented.

76 \refstepcounter->\global \advance \c@Cor 1\relax {\let \@elt \@stpelt \cl@Cor }

End is as usual.

77 {Push p 2}

78 Character sequence: This is a sentence typeset in the theorem environment .

• \openin. This command reads a small integer, an optional equals sign, and a file name, this
is a sequence of characters not containing a space. It reads the content of the file. If the
filename if ‘foo’, and no file named foo exists, then foo.tex is tried. You can read the content
via \read. If the file is not found, empty, or completely read, it is marked as ‘closed’.

• \closein. This command reads an integer, and closes the channel associated to the number.

• \ifeof. This command reads an integer, and checks if the channel is opened for reading.

• \read. This command reads an integer, the keyword ‘to’ and a command name. After that,
it reads a line (more then one line can be read, because the result is always balance according
to braces), and put in the command. The line is read from the file associated to the number,
unless it is closed, case where a line is read from the terminal. We give here an example:

{
\openin 5=tortureaux
\endlinechar=-1
\ifeof5 \badifeofatentry\fi
\read 5 to \foo\show\foo
\read 5 to \foo\show\foo
\read 5 to \foo\show\foo
\global\read 5 to \foo
\closein5\relax
\ifeof5\else\badifeofatexit\fi
}\show\foo
\ifeof3\else \badifeofnonexists\fi

The transcript file contains the following lines. One purpose of the group opened here is to
keep the modification to the endline character local.

1 [9] {

2 {begin-group character {}

3 +stack: level + 2 for brace

This shows the \openin command. You can see that the file was tortureaux.tex, it contains
six lines.

RT n° 309

138 José Grimm

4 [10] \openin 5=tortureaux

5 {\openin}

6 +scanint for \openin->5

7 ++ Opened file tortureaux.tex; it has 6 lines

The \endlinecharacter command specifies the value of the character that should be inserted
at the end of every line read from a file. An out-of-range value means that no character should
be inserted.

8 [11] \endlinechar=-1

9 {\endlinechar}

10 +scanint for \endlinechar->-1

This is a test of \ifeof; the test should be ‘false’ if the file has been read.

11 [12] \ifeof5 \badifeofatentry\fi

12 +\ifeof1

13 +scanint for \ifeof->5

14 +iftest1 false

15 +\fi1

The first line of the file contains ‘abc’. Thus, \foo should contain these letters, plus the
endline character.

16 [13] \read 5 to \foo\show\foo

17 {\read}

18 +scanint for \read->5

19 {\show}

20 \foo=macro: ->abc.

The second line of the file is empty.

21 [14] \read 5 to \foo\show\foo

22 {\read}

23 +scanint for \read->5

24 {\show}

25 \foo=macro: ->.

The third line contains \a \b {\c, this is incomplete, so that line 4, containing {} \d} \e
must also be read.

26 [15] \read 5 to \foo\show\foo

27 {\read}

28 +scanint for \read->5

29 {\show}

30 \foo=macro: ->\a \b {\c {} \d } \e .

This is to show that \global applies to \read: the command \foo is globally defined.

31 [16] \global\read 5 to \foo

32 {\global}

33 {\global\read}

34 +scanint for \read->5

We close the file. Since the end-of-line character is inactive, it cannot be used as a terminator
for the number 5, thus the \relax.

35 [17] \closein5\relax

36 {\closein}

37 +scanint for \closein->5

38 ++ End of file tortureaux.tex

39 {\relax}

Here we check that the file is effectively closed. The \relax is automatically inserted because
the \else is seen before the number 5 has been completely read (the \else is re-inserted).

INRIA

Tralics, a LATEX to XML translator Part I 139

40 [18] \ifeof5\else\badifeofatexit\fi

41 +\ifeof2

42 +\else2

43 +scanint for \ifeof->5

44 +iftest2 true

45 {\relax}

46 +\else2

47 +\fi2

Here you can see what happens at the end of the group: the end-line character is restored,
but \foo is retained.

48 [19] }\show\foo

49 {end-group character }}

50 +stack: retaining \foo

51 +stack: restoring integer value 13 for \endlinechar

52 +stack: level - 2 for brace

53 {\show}

54 \foo=macro: ->123.

• \openout. This command reads a small integer (between 0 and 15), an optional equals sign,
and a file name, this is a sequence of characters not containing a space. It opens the file for
writing. In TEX, this is an extension, and can be prefixed by \immediate; in Tralics, the
action is always immediate.

• \closeout. This command reads a small integer, and closes the channel with this number.
No error is signaled if the integer is not in the range 0-15. In TEX, this is an extension,
and can be prefixed by \immediate; in Tralics, the action is always immediate. If you write
something on a file, and do not close it, it is unclear what is saved on the disk when Tralics
quits.

• \write. This command reads an integer N , and a command and writes the argument, after
full expansion, to the stream. If N < 0, this is the transcript file; if N is a valid channel,
to which a file is associated via \openout, printing will go there; otherwise to the terminal
and transcript file. A special case is when the N = 18 and the ‘shell-escape’ switch has been
given: in this case, the command is evaluated by a shell.

Here is an example. Note how we inhibit expansion of commands. Note also that each
\write command produces a single line; but newline characters can be added via ^^J.

\immediate\openout 6=tout.tex
\immediate\write6{\def\noexpand\foo{\noexpand\endinput}}
\immediate\write6{\noexpand\foo^^J\noexpand\bar}
\immediate \closeout6 \relax
\input{tout}

This is part of the transcript file. It shows that the file has 3 lines, a first line that defines
\foo, a line with \foo and \bar. Since \foo is \endinput, the line with \bar is not read.

1 [12] \input{tout}

2 {\input}

3 {Push argument 1}

4 Character sequence: tout.

5 {Text:tout}

6 {Pop 1: document_v argument_v}

7 {\input tout}

8 ++ Opened file tout.tex; it has 3 lines

9 [1] \def \foo {\endinput }

10 {\def}

RT n° 309

140 José Grimm

11 {\def \foo ->\endinput }

12 [2] \foo

13 \foo ->\endinput

14 {\endinput}

15 ++ End of file tout.tex

• \IfFileExists. This command takes three arguments, say A, B, and C. The quantity A
must be a character string after translation. If there is a file with name A, the test is true.
Otherwise, if there is a file with name ‘A.tex’, the test is true. Otherwise, it is false. If the
test is true, the expansion is ‘B’, otherwise ‘C’.

• \InputIfFileExists. This command takes one argument, say A. It does the same test as
the previous command. If the test is false, nothing is done, otherwise, the file is input.

• \include. This command takes one argument, otherwise behaves like \input.

• \input. This command reads a filename as in \openin or \openout. It is redefined by LATEX
to accept an argument. ‘\input foo\input{bar}’ is valid. In the first case, tokens are read
and expanded until find either a space, a non-expandable token, or \input.

• \endinput. This command has as effect to close the current file (in Tralics, the file is read
once and for all, closing the file means ignoring all unprocessed files. Here is an example.
This assumes that there are no files nohope, nohope.tex neither X.tex. but a file taux2.tex
that contains a call to \mytypeout.

{
\IfFileExists{nohope}{\errmessage{bad1}}{}
\IfFileExists{\jobname}{}{\errmessage{bad2}}
\IfFileExists{X.tex}{\errmessage{bad3}}{}
\def\bad{\errmessage{BAD}}\let\ybad\bad
\def\mytypeout#1{\def\bad{\xbad}}
\def\foo{\ifx\bad\ybad\else\let\xbad\relax\fi\let\bad\ybad}
\let\IIFE\InputIfFileExists
\IIFE{taux2}\IIFE{nohope}\foo\IIFE{taux2}
\bad
}

Assume now that taux contains the 5 following lines

% aux file for testing tralics
% this file contains nothing useful
\mytypeout{in file taux1.tex}
\input taux2
% the file should finish with a comment

and that taux contains the 5 following lines

% aux file for testing tralics
% this file contains nothing useful
\mytypeout{in file taux2.tex}
\endinput
The file should finish with a \endinput, but not on the last line.

The following lines should work:

\let\mytypeout\typeout
\ifnum \tracingcommands=0 \def\mytypeout{\write -1 }\fi
\input taux1.tex\input taux2.tex
\input{taux1.tex}\input{taux2.tex}

INRIA

Tralics, a LATEX to XML translator Part I 141

\def\foo{\input taux1 \input taux2 }
\foo

5.9 Other non-expandable commands

• \ignorespaces. Tokens are full expanded, until a non-space character is seen. Spaces are
ignored.

• \xspace. This command reads a token. It may insert a space unless a) the token is a
character of category code 12, and one of .,!?:;/’)-, b) the token is an open brace, a close
brace, or c) a space or \ .

• \mark. A token list is read, the result is discarded.

• \topmark, \firstmark, \botmark, \splitfirstmark, \splitbotmark. The expansion is
empty.

• \penalty. An integer is read, but nothing happens.

• \lastkern, \lastpenalty, \lastskip. Since Tralics not insert kerns, penalties, or glue in
the boxes, it is not possible to fetch the last such quantity. In TEX you can get an error
of the form You can’t use ‘\lastpenalty’ in vertical mode. InTralics the message is: Read
only variable \lastpenalty. You can use \the to access the variable, but the result is zero
(depending on the command, this is an integer, a dimension, or glue).

• \unpenalty, \unkern, \unskip. These are assumed to remove the last penalty, kern or glue.
They are defined as a no-op.

• \shipout. This reads a box and signals an error \shipout is undefined.

• \setlanguage. This command reads an integer and does nothing.

• \@@end. This command can be used to stop translation. It closes all files. The end-document
hooks are not applied.

• \message. This is like \write-1. The argument is expanded and printed.

• \typeout. This is like \write17. The argument is expanded and printed on the terminal
and the transcript file.

• \errmessage. This is as above, but an error is signaled. For instance \errmessage{This
\iftrue can \else cannot\fi happen} will give: Error signaled at line 1: This can happen.

• \insert{arg}. Unimplemented, an error is signaled.

• \vadjust. Unimplemented, an error is signaled.

• \unhbox, \unvbox, \unhcopy, \unvcopy. These commands read a box number, say N. The
\unhbox command calls \leavevmode (in LATEX, \leavevmode uses \unhcopy). A copy of
the box register N is put on the main tree. In the case of \unhbox and \unvbox, the box is
cleared.

• \centering. This command changes the current value of the internal centering number, and
adds an attribute to the current paragraph (the numbers mean normal, centered, flush left,
flush right, quoted).

RT n° 309

142 José Grimm

• \nocentering. This sets the internal centering number to ‘normal’. The next paragraph
will not have a centering attribute.

• \href. The command takes two arguments, say ‘foo’ and ‘bar’. The translation is an <xref>
element, containing \bar, with an attribute url, with value foo.

• \htmladdnormallink, \Href. Like \href, but the order of arguments is changed.

• \url. This takes one argument. Normally \url{foo} is the same as \href{foo}{foo}.
However, the element is translated using the value of \urlfont, which is empty by default.
In a construction like \href{foo}{\url{bar}}, the \url command does nothing, as well as
in the case \url{\rrrt{foo}}.

• \rrrt. This command takes one argument. Its translation is \url{prefix/foo.html}, if
the argument is foo, where the prefix is ‘http://www.inria.fr/rrrt’. This is useful for the
Raweb.

• \caption. This command takes an optional argument and a required argument. The optional
argument is ignored. The result is a <caption> element. It can contain paragraphs. An
implicit \nocentering command is executed.

• \footnote. This command takes one argument. The result is a <note> element. It can
contain paragraphs. An implicit \nocentering command is executed. If the result contains
a single <p> element, the <p> will be replaced by its content (unless in hack mode).

• \label. This command takes and argument, and defines it as the name of an anchor to be
used by \ref. The anchor is an id attribute of the element associated to a section command,
a footnote, an item in an enumeration, a formula, a figure etc. The translation is empty.

• \eqref. Like \ref, but parentheses are put around the reference.

• \ref. This takes an argument, that must be defined bay \label. The translation is a <ref>
element.

• \part, \chapter, \section, \subsection, \subsubsection \paragraph, \subparagraph.
To each command is assigned an integer between 0 and 6. It is decremented by 1 if the
leading section is ‘chapter’, by 2 if it is ‘section’ (negative numbers are replaced by 0). If this
gives N, the result is a <divN> element. The command takes an argument, the title, that is
translated in a <head> element. Before the title, an optional star and an optional argument
is ignored. The title is printed in the terminal if N = 0 (and unless the ‘silent’ switch has
been given, if N = 1). A section can be the target of a \label.

• \endsec. This command takes an argument. Nothing happens if it is empty. If the first
argument is one of the 7 section commands described above, it will be terminated; more
precisely, if this section command has number N , then all divisions with number N and
greater will be terminated. Example:

\section{A}\subsection{B}
\paragraph{C} x \label{a1}
\paragraph{D} \label{a2}x\label{a3}
\endsec{\subsection}
\paragraph{E} x\footnote{x\label{a4}}
\endsec{\part}
\paragraph{F} x
\ref{a1} \ref{a2}\ref{a3}\ref{a4}

This translates as

INRIA

Tralics, a LATEX to XML translator Part I 143

<Section id=’uid1’><Head>A</Head>
<Subsection id=’uid2’><Head>B</Head>
<Paragraph id=’uid3’><Head>C</Head>
<p>x</p>

</Paragraph>
<Paragraph id=’uid4’><Head>D</Head>
<p>x</p>

</Paragraph>
</Subsection>
<Paragraph id=’uid5’><Head>E</Head>
<p>x<Footnote id=’uid6’ Place=’as a note’><p>x</p>

</Footnote></p>
</Paragraph>

</Section>
<Paragraph id=’uid7’><Head>F</Head>
<p>x <ref target=’uid3’/>
<ref target=’uid4’/><ref target=’uid4’/><ref target=’uid6’/>

</p>
</Paragraph>

• \aparaitre, \toappear. These two commands are for the Raweb. They translate as ‘à
paraître’ (with the correct spelling) or ‘to appear’, depending on the current language.

• \xmllatex. This is a command that takes two arguments, and ignores the second. In the first,
commands are replaced by their names. For instance \xmllatex{\&\#x25;}{etc} translates
as %. Normally, the translation of \& is &.

• \xmlelt. This commands takes two arguments, say foo and bar. The translation is a <foo>
element containing the translation of bar. The command calls \leavevmode.

• \xmlemptyelt. This commands takes one arguments, say foo. The translation is an empty
<foo> element. The command does not call \leavevmode.

• \xbox. This commands takes two arguments, say foo and bar. The translation is a <foo>
element containing the translation of bar. This command behaves like \hbox, in that it does
not read the second argument, so that category code changes are allowed. The token list
\everyxbox is inserted in the input stream after the first argument and opening brace of the
second have been read.

• \vbox, \hbox. These command read their argument as described in the TEX book; the result
is an unnamed XML element. The token list \everyvbox or \everyhbox is inserted in the
input stream after the opening brace has been read.

• \leaders, \cleaders, \xleaders. These commands read a box, then signal an error leaders
are not implemented.

• \moveleft, \moveright. These commands read a dimension, and a box; but the box is not
moved. Compare with \raise and \lower.

• \vtop. This is the same as \vbox.

• \vsplit. You can say \vsplit0 to 3cm. Th eresult is the same as \copy0.

• \lastbox. This returns the last element on the stack, unless the top-stack is a character,
case where the result is the empty box. Example:

RT n° 309

144 José Grimm

\def\dupbox{\setbox0=\lastbox \copy0 \box0 }
\xbox{foo}{ok} and \dupbox; \xbox{bar}{ok}\dupbox.

The translation is:

<foo>ok</foo><p>and ; <bar>ok</bar><bar>ok</bar>.

• \begin{rawxml} . . . \end{rawxml}. This is like a verbatim environment, but special charac-
ters like & and < are not escaped. For instance

let\verbatimfont\relax
\begin{verbatim}
{\let\rm\bf \bf toto}
<!--this is a comment -->
$ not = EURO !
\end{verbatim}

%
\begin{rawxml}
{\let\rm\bf \bf toto}
<!--this is a comment -->
$ not = EURO !
\end{rawxml}

translates (with the ‘nozerowidthspace’ switch) to

<p Noindent=’true’>{\let\rm\bf \bf toto}</p>
<p Noindent=’true’><!--this is a comment --></p>
<p Noindent=’true’>&dollar; not &equals;

 EURO &excl;</p>
<p Noindent=’true’>{\let\rm\bf \bf toto}
<!--this is a comment -->
$ not = EURO !</p>

• \begin{xmlelement} \end{xmlelement}. Like \xbox, but this is an environment. You can
put a star after the name of the environment. The effect is the following. If no star is used,
then horizontal mode is entered before creating the element. Otherwise, the element just
created is typeset in vertical mode. If a ‘+’ sign is used instead of ‘*’, then \leavevmode is
called, translation starts in vertical mode. For instance

\begin{xmlelement}{foo1} A \end{xmlelement}\par
\begin{xmlelement*}{foo2} B \end{xmlelement*}\par
\begin{xmlelement+}{foo3} C \end{xmlelement+}\par

translates as

<p> <foo1> A </foo1> </p>
<foo2><p>B </p> </foo2>

<p> <foo3><p>C </p></foo3></p>

• \AddAttToCurrent. This command takes two arguments, and constructs an attribute pair
that will be added to the current element.

• \AddAttToLast. This command takes two arguments, and constructs an attribute pair that
will be added to the last created element.

• \addattributestodocument. This command takes two arguments, and constructs an at-
tribute pair that will be added to the main document element. This is an example:

INRIA

Tralics, a LATEX to XML translator Part I 145

\begin{xmlelement}{foo}
\begin{xmlelement}{subelt1}
texte1
\end{xmlelement}
\begin{xmlelement}{subelt2}
texte2
\end{xmlelement}
\AddAttToLast{sb2-att}{value1}%
\AddAttToLast{sb3-att}{}%
\AddAttToCurrent{foo-att}{att-value’’}%
\end{xmlelement}

The translation is

<foo foo-att=’att-value''’><subelt1>texte1
</subelt1>
<subelt2 sb3-att=’’ sb2-att=’value1’>texte2
</subelt2>
</foo>

The commands described above can be followed by a ‘*’. In that case, an existing attribute
will be overwritten. Example:

\AddAttToCurrent{x}{1} % ignored
\AddAttToCurrent{y}{2} % ok
\AddAttToCurrent*{x}{3} % ok
\AddAttToCurrent{y}{4} % ignored

• \XMLaddatt. This command takes an optional star, an optional integer, and two arguments,
and constructs an attribute pair that will be added to the element defined by the number. If
no number is given, the current element is used. The following example shows usage.

{\everyxbox{Vest}
\setbox0=\xbox{foo}{1\xbox{bar}{2} %

\XMLaddatt[\the\XMLlastid]{x}{1}%
\XMLaddatt[\the\XMLcurrentid]{y}{2}%
\XMLaddatt{y}{22}3}

\showbox0
}
{\everyxbox{West}
\setbox0=\xbox{foo}{1\xbox{bar}{2} %

\XMLaddatt*[\the\XMLlastid]{x}{1}%
\XMLaddatt*[\the\XMLcurrentid]{y}{2}%
\XMLaddatt*{y}{4}3}

\showbox0
}

should print

<foo y=’2’>Vest1<bar x=’1’>Vest2</bar> 3</foo>
<foo y=’4’>West1<bar x=’1’>West2</bar> 3</foo>

• \begin{itemize} \begin{description} \begin{enumerate} \begin{glossary} . . .
\end{glossary} \end{enumerate} \end{description} \end{itemize}.
These commands behave as in LATEX, but do not depend on quantities like ‘enumiv’ or
\leftmarginvi. They can be arbitrarily nested.

RT n° 309

146 José Grimm

• \item. This command takes an optional argument, that will produce a <label> element.
What follows \item is translated in a <item> element. The end of the element is defined by
a following item or the end of the list (thus, you should use this command only in a list).

• \lhead, \rhead, \chead, \cfoot, \lfoot, \rfoot. These commands are available only if
the fancyhdr package is loaded. They take an optional argument, say A, and a required
argument, say B. The default value of A is B. The result is the same as \@IF{elh}{A}
followed by \@IF{olh}{B}, where ‘lh’ must be replaced by the first two characters of the
command.

• \fancyhead, \fancyfoot, \fancyhf. These commands are available only if the fancyhdr
package is loaded. They take two arguments, an optional one x, and a required argument y.
The argument x is a sequence of letters, separated by commas. In each sequence, only letters
e, o, l, c, r, h, and f are considered. If none of e or o are given, both are added; if none of l,
c, r and given, all three are added; for \fancyhead, h is added, for \fancyfoot, f is added;
if none of h or f are given, both are added. After that we consider all sequences XYZ, where
X is one of e, o, Y is one of l, c, r, Z is one one h, f, the letters being in the list so completed
(at least one sequence matches). For each match we call \@IF{XYZ}{y}.

• \@IF. This is an internal command, that takes two arguments, say x and y. The translation
is \fancyinternal {x} {\let \thepage \inert@thepage y}.

• \inert@thepage. The translation is <thepage/>.

• \fancyplain. Not yet implemented. It takes two arguments, that are conditionally evalu-
ated, depending on whether this is a “plain” page or not.

• \fancyinternal. The command takes two arguments x and y. It constructs a <headings>
element, containing y, with an attribute type with value x. Example:

\newcommand\rightmark{\xmlemptyelt{rightmark}}
\newcommand\leftmark{\xmlemptyelt{leftmark}}
\newcommand\fancyplain[2]{#2}
\lhead[\fancyplain{}{\bf\thepage}]{\fancyplain{}{\sl\rightmark}}
\rhead[\fancyplain{}{\sl\leftmark}]{\fancyplain{}{\bf\thepage}}
\cfoot[\fancyplain{\bf\thepage}{}]{\fancyplain{\bf\thepage}{}}
\chead{}\lfoot{}\rfoot{}

The translation is

<headings type=’olh’><hi rend=’slanted’><rightmark/></hi></headings>
<headings type=’elh’><hi rend=’bold’><thepage/></hi></headings>
<headings type=’orh’><hi rend=’bold’><thepage/></hi></headings>
<headings type=’erh’><hi rend=’slanted’><leftmark/></hi></headings>
<headings type=’ocf’/>
<headings type=’ecf’/>
<headings type=’och’/>
<headings type=’ech’/>
<headings type=’olf’/>
<headings type=’elf’/>
<headings type=’orf’/>
<headings type=’erf’/>

• \@ifundefined. The command takes three arguments. The first argument should be a
sequence of letters, for instance ‘foo’. If \foo is undefined, the expansion of the command is
the value of the first argument, otherwise, the value of the second. Note: \csname is used to
construct the command, so that ‘undefined’ is the same as being \relax. If the first argument

INRIA

Tralics, a LATEX to XML translator Part I 147

is \par, an error is signaled, of the form Invalid token \par found while scanning command
for \@ifundefined. If the argument is \xpar, the error is Undefined command \xpar, and
\relax gives: Invalid token \relax found while scanning command for \@ifundefined. Note
that Tralics may complain with an extra \endcsname.

As an example, this should give 2.

\makeatletter
\def\Foo{foo}\def\Bar{bar}
\@ifundefined{\Foo}{\@ifundefined{\Bar}{1}{2}}{3}

• \epsfbox, \epsffile. These command do exactlty the same thing. They take one argu-
ment, say X. It behaves as \includegraphics[Y]{X}Z, where Y contains ‘width=w’ and
‘height=h’, where w and h are the values of \epsfxsize and \epsfysize, provided they are
not zero, and Z is the code that sets these values to zero.

• \psfig, \epsfig. The command takes an argument, which is an association list. It must
contain file=X, or figure=X. If Y is the remaining of the list, the command is equivalent to
\includegraphics[Y]{X}.

• \includegraphics. The command takes an optional argument and a required argument.
The optional argument is an association list, with names can be clip, angle, height, width,
scale. The required argument is a file name. There is no difference between ‘foo’, ‘foo.ps’
and ‘foo.eps’. Not more than one dot is allowed in the file name. See examples section 6.14.

• \lsc, \fsc. These commands are like \textsc.

• \@ifstar The command takes two arguments. After that, it looks at the next character
(ignoring spaces). If the character is a star, it is read, the expansion is the first argument,
otherwise the second. The following code produces B1A2.

\makeatletter
\def\foo{\@ifstar{A}{B}}
\foo1\foo*2

• \@ifnextchar. The command takes three arguments, a character token, say w, and two
commands say A and B. After that, it looks at the next character (ignoring spaces). If the
character is w, the expansion is A, else B. The character is not read. The following should
produce: ‘With opt AABBWithout opt CC’.

\makeatletter
\def\ifbracket{\@ifnextchar[}
\makeatother
\def\wopt{\ifbracket\xwopt\ywopt}
\def\xwopt[#1]#2{With opt #1#2}
\def\ywopt#1{Without opt #1}
\wopt[AA]{BB}\wopt{CC}

• \batchmode, \nonstopmode, \scrollmode, \errorstopmode. These commands do nothing
in Tralics, because the only supported mode is ‘batchmode’. In TEX, they change an interval
variable, so that they can be preceded by the prefix \global.

• \@gobble, \@gobbletwo These commands read one or two argument. The result is empty.

• \discretionary. This command reads two arguments but does nothing with it. In TEX,
there is a third argument, that is typeset.

• \HTMLset (Raweb only command). This command reads two arguments but does nothing
with them.

RT n° 309

148 José Grimm

• \RAlabel (Raweb only command). This command reads one argument but does nothing
with it.

• \special, \patterns, \hyphenation. These command read one argument but do nothing
with it.

• \protect, \sloppy, \subitem, \htmlimage, \centerline, \immediate, \break, \nobreak,
\allowbreak, \@, \/ \clearpage, \cleardoublepage, \allowbreak, These command are
currentlty defined as doing nothing.

• \begin{latexonly} . . . \end{latexonly}, \begin{xmlonly} . . . \end{xmlonly},
\begin{subequations} . . . \end{subequations}. The environment is ignored, not the con-
tent.

• \begin{htmlonly} . . . \end{htmlonly}, \begin{comment} . . . \end{comment},
\begin{rawehtml} . . . \end{rawhtml}, \begin{LaTeXonly} . . . \end{LaTeXonly}, The en-
vironment is ignored, the content also.

• \centering, \raggedright, \raggedleft. These commands are associated to the envi-
ronments: ‘center’, ‘flushleft’, ‘flushright’. There are two other environments ‘quote’ and
‘quotation’. This gives an integer with values between 1 and 5, the normal value being 0.
Whenever a new paragraph is started, the value of the integer considered. It is is non-zero,
an attribute is added (for instancerend=’center’). If you say \begin{center}, this will ter-
minate the current paragraph (and the next one will be centered). If you say \end{center},
this will terminate the current paragraph (and the next one will not be centered). If you say
\centering, this will add an ettribute to the current paragraph.

• \error. This command takes an argument and signals an error.

• \@notprerr. After \let\foo\@notprerr,sing the command \foo will produce the Can be
used only in preamble: \foo error.

• \hrule, \vrule. These commands are implemented identically in Tralics. They produce a
<rule> element. For a hrule, the default height is 0.4pt, the default depth is 0pt, for a vrule
the default width is 0.4pt. You can give the height, depth, width arguments in any order,
more than once. For instance

\hrule \hrule width 15pt height 2pt
\vrule \vrule height 2pt depth 4pt

translates as

<rule depth=’0.0pt’ height=’0.4pt’/>
<rule width=’15.0pt’ depth=’0.0pt’ height=’2.0pt’/>
<rule width=’0.4pt’/>
<rule width=’0.4pt’ depth=’4.0pt’ height=’2.0pt’/>

• \ding. You can use the \ding command in order to access one character of the Zapfg
Dingbats fonts. The command takes one argument, an integer (it is parsed by the scanint
routine, \ding{‘\A} is as valid as \char‘\A). If the number is between 33 and 126, or
between 161 and 239, or between 241 and 254, then you get one of the characters listed on
the Tralics Web page. Otherwise, the translation is bad!

• \mkern. There is currentlty no difference between \kern and \mkern.

INRIA

Tralics, a LATEX to XML translator Part I 149

Chapter 6

Running Tralics

6.1 The command line arguments

If you call Tralics without arguments, you will see something like

This is tralics 2.5 (pl5), a LaTeX to XML translator
Copyright INRIA/MIAOU/APICS 2002-2005, Jos\’e Grimm
Licensed under the CeCILL Free Software Licensing Agreement
Say tralics --help to get some help

In any case, the first three lines are printed. Arguments are read, and interpreted as follows.

• Anything that does not start with a dash is a source file. At most one source file can be
given.

• An option starts with a single or double dash; this is irrelevant.

• If the option is ‘version’, the program stops after printing the banner.

• If the option is ‘?’, or ‘help’ the program stops after printing the list of all possible switches.

• If the option is ‘verbose’, the program is rather verbose. The equivalent of the command
\tracingall is executed.

• If the option is ‘silent’, the program is silent (less lines are printed on the terminal).

• If the option is ‘utf8’, then sources files are assumed to be UTF-8 encoded, unless the first
line of a file contains ‘iso-8859-1’.

• If the option is ‘latin1’, then sources files are assume to be latin1 encoded, unless the first
line of a file contains ‘utf8-encoded’ (if ‘utf8’ and ‘latin1’ are given, the last option wins, if
none is given latin1 is assumed).

• If the option is ‘entnames’, then some commands as \nobreakspace translate as ‘ ’.
Note that \texteuro always translates as ‘€’.

• If the option is ‘noentnames’, then some commands as \nobreakspace translate as ‘ ’.
Note that \alpha always translates as ‘α’.

• If the option is ‘notrivialmath’, then even trivial math formulas such as 0 are translated
as a <formula> element.

• If the option is ‘nozerowidthspace’, then no special marker is inserted in a case like \verb+--+.

RT n° 309

150 José Grimm

• If the option is ‘shell-escape’, then \write18{rm \jobname.tex} removes the file you are
translating. The dash in the name is optional.

• If the option is ‘noxmlerror’, then an error will not produce an <error> element in the XML
tree.

• If the option is ‘noundefmac’, then no error is signaled when you use an undefined command
like \foo. Instead, the command is automatically defined to be \foo.

• If the option is ‘dir=XXX’, then XXX will be the “raweb dir”.

• If the option is ‘type=XXX’, then XXX will be the default type, as explained later.

• If the option is ‘noconfig’, then no configuration file will be used.

• If the option is ‘config_file=XXX’, then XXX will be used as configuration file (the underscore
in the option name is optional).

• If the option is ‘find_words’, then the list of all words will be printed on the file words. The
underscore in the name is optional.

• If the option is ‘interactivemath’, then no input file is required, expressions are read from
the terminal. The translation of every math expression is printed on the terminal. The value
of \jobname will be ‘texput’ (so that the XML result is in texput.xml, the transcript file is
texput.log).

• If the option is ‘interactivebib’ is given, then a special mode is entered. It is not described
here.

• If the option is ‘year=XXX’ (Raweb only), then XXX will be the default year (year 2005
starts at May, 1st, because people start writing the Raweb2004 in September 2004, and
everything should be finished by March 2005).

• If the option is ‘debug’ (Raweb only), then parsing of the Raweb source continues after the
first error.

• If the option is ‘check’ (Raweb only), then the document is tested for the Raweb syntax, not
translated.

• If the option is ‘ps’ (Raweb only), then LATEX is called for converting the document into dvi
then PostScript format.

• If the option is ‘xml’ (Raweb only), then Tralics is called for converting the document into
XML.

• If the option is ‘xmlfo’ (Raweb only), then the XML should be translated in XSL/Format.

• If the option is ‘xmltex’ (Raweb only), then the XML should be translated in XSL/Format,
that should be converted to PostScript.

• If the option is ‘xmlhtml’ (Raweb only), then the XML should be translated in HTML.

• If the option is ‘xmllint’ (Raweb only), then an external process is called that checks the
validity of the translation against the Raweb DTD.

• If the option is ‘xmlall’ or ‘all’ (Raweb only), then all options ‘xmlXXX’ are selected.

• If the option is ‘external_prog=XXX’ (Raweb only), then XXX will be used instead of
‘rahandler.pl’ as interpreter for the raweb actions defined by the xmlXXX switches. The
underscore in the name is optional.

INRIA

Tralics, a LATEX to XML translator Part I 151

• If the option is ‘nobibyearerror’ (Raweb only), then no error is signaled for a bibliography
reference with missing or wrong year.

Example. Assume that we have a file, named xii.tex, containing

\let~\catcode~‘76~‘A13~‘F1~‘j00~‘P2jdefA71F~‘7113jdefPALLF
PA’’FwPA;;FPAZZFLaLPA//71F71iPAHHFLPAzzFenPASSFthP;A$$FevP
A@@FfPARR717273F737271P;ADDFRgniPAWW71FPATTFvePA**FstRsamP
AGGFRruoPAqq71.72.F717271PAYY7172F727171PA??Fi*LmPA&&71jfi
Fjfi71PAVVFjbigskipRPWGAUU71727374 75,76Fjpar71727375Djifx
:76jelse&U76jfiPLAKK7172F71l7271PAXX71FVLnOSeL71SLRyadR@oL
RrhC?yLRurtKFeLPFovPgaTLtReRomL;PABB71 72,73:Fjif.73.jelse
B73:jfiXF71PU71 72,73:PWs;AMM71F71diPAJJFRdriPAQQFRsreLPAI
I71Fo71dPA!!FRgiePBt’el@ lTLqdrYmu.Q.,Ke;vz vzLqpip.Q.,tz;
;Lql.IrsZ.eap,qn.i. i.eLlMaesLdRcna,;!;h htLqm.MRasZ.ilk,%
s$;z zLqs’.ansZ.Ymi,/sx ;LYegseZRyal,@i;@ TLRlogdLrDsW,@;G
LcYlaDLbJsW,SWXJW ree @rzchLhzsW,;WERcesInW qt.’oL.Rtrul;e
doTsW,Wk;Rri@stW aHAHHFndZPpqar.tridgeLinZpe.LtYer.W,:jbye

If you call Tralics, with the option ‘find_words’, you can see that the XML file contains once
drumming and drummers, twice piping and pipers, 3 times leaping and lords, 4 times dancing and
ladies, 5 times milking and maids, 6 times swimming and swans, 7 times laying and geese, 8 times
rings and gold, 9 times calling and birds, 10 times hens and french, 11 times doves, turtle and
‘and’, 12 times tree, pear, in, partridge, me, to, gave, love, true, my, christmas, of, day, the, on.
There are 45 words with a single letter. The words: twelve, eleven, ten, nine, eight, seven, six, five,
four, three, two, appear x times, where 13 − x is the value of the word. The words first, second,
third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelfth appear once. Amazing
isn’t it? The file was written by D. Carlisle, it is available on the CTAN. This is not really a LATEX
file, so that some features cannot be applied (for instance, there is no at-begin-document hook).
The \bye command is implemented in Tralics for this example to compile without error.

6.2 The standard configuration file

We give here the content of the standard configuration file. Lines 2 and 3 were modified: we added
the letter ‘x’ after the dollar sign, for otherwise RCS would replace the identification of the original
file by the identification of the LATEX file. The content of the file will be explained later. What
you have to know is that some lines start with ‘Begin’, and others with ‘End’. To each Begin,
there should be an associated End. Blocks can be nested. Characters after ‘End’ are ignored, so
that you can say ‘BeginFoo’ followed by ‘EndBar’, although it is not recommended. All other lines
should be comment lines, empty, or indented.

1 # This is a configuration file for tralics.
2 # $xId: tralics_rc,v 2.15 2005/08/02 09:22:56 grimm Exp $
3 ## tralics ident rc=standard $xRevision: 2.15 $
4

5 # Copyright Inria. José Grimm. Apics. 2004/2005
6 # This file is part of Tralics.
7 # (See the file COPYING in the Tralics main directory)
8 # If you modify this file, by changing the semantics of type RA,
9 # please remove the ‘standard’ on the ‘tralics ident’ line above,

10 # or replace it by ‘non-standard’.
11

12 % Some comments: comments start with % or #

RT n° 309

152 José Grimm

A configuration file is split into main sections, one for each type. We start with the RA, or
raweb.

13 ## configuration for the RA (Inria’s Activity Report)
14 ## First type defined is the default
15

16 BeginType RA % Case RA
17 DocType = raweb raweb3.dtd
18 DocAttrib = year \specialyear
19 DocAttrib = creator \tralics

This comment explains how to parameterize some element or attribute names that were built-
in in a previous version of Tralics. We shall see later how Language can be used (default value
is ‘language’), the same for lang_en and lang_fr that have ‘english’ and ‘french’ as default value.
Translation of a \caption produces an element <caption>, whose name will be changed to <head>
by the post-processor of figures (it will be left unchanged if the caption is not in a figure or a table).
The variable xml_caption_name can be used to change the first name, and xml_scaption_name can
be used to change the second name. The title of a ‘topics’ (defined by \declaretopics) is in a
<t_title> element, the name can be changed by xml_topic_title. A reference to a topic uses the
num attribute; this attribute name can be changed by att_topic_num. The identification of an
Inria Team is in <accueil>, this can be changed via xml_accueil_name. It is formed of a long
name in <projetdeveloppe> and a short name in <projet>, the name of these elements can be
changed via xml_project_name or the ‘expanded’ version. The section with the composition of
the team is <composition>, its name can be changed by xml_composition_ra_name .

20 #(new)
21 # Language = "xml:lang"
22 # lang_en = "en"
23 # xml_scaption_name= "caption"
24 # xml_topic_title=""
25 # xml_project_name = "title"
26 # xml_expanded_project_name = "longtitle"
27 # xml_accueil_name = "identification"
28 # xml_composition_ra_name = "team"
29 # att_topic_num = "id"

Processing of the Raweb needs converting the XML output of Tralics into XSL/Format, HTML,
etc., via some external commands like ‘xsltproc’, ‘latex’, etc. Details are given on the Web page.
Since 2004, processing is done by an external program, so that you should look at rahandler.pl for
explanations of how %A, %B, and the like are converted to file names.

30 makefo="xsltproc --catalogs -o %A.fo %B %C";
31 makehtml = "xsltproc --catalogs %B %C";
32 call_lint = "xmllint --catalogs --valid --noout %C"
33 makepdf = "pdflatex -interaction=nonstopmode %w"
34 %makedvi = "latex -interaction=nonstopmode %w"
35 % makedvi et dvips pour marie-pierre
36 %dvitops = "dvips %w.dvi -o %w.ps"
37 %makedvi = "latex -interaction=nonstopmode %w"
38 generatedvi = "latex -interaction=nonstopmode %t"
39 % old latex: "latex \\nonstopmode\\input{%t}"
40 generateps = "dvips %t.dvi -o %t.ps"

This defines the list of valid Raweb sections, themes and URs (research units). If you change
these lines please: a) remove the ‘standard’ on line 3, or b) make sure that it matches the official

INRIA

Tralics, a LATEX to XML translator Part I 153

list, or c) make sure that this remains a private copy. A star after a section name says that topics
are not allowed1.

41 #these are new in version 2.0
42 theme_vals = "com cog num sym bio"
43 section_vals = "composition*/presentation*/fondements/domaine/logiciels/"
44 section_vals = "+resultats/contrats*/international*/diffusion*/"
45 ur_vals = "Rocquencourt//Sophia/Sophia Antipolis/Rennes//Lorraine//";
46 ur_vals = "+RhoneAlpes/Rhône-Alpes/Futurs//"

Due to some inertia, people continue using the obsolete environment. We make sure an error
is signaled.

47 BeginCommands
48 \newenvironment{body}{\obsoleteEnvBody The body environment is %
49 obsolete since 2003}
50 {End of obsolete environment body}
51 \newenvironment{abstract}{\obsoleteEnvAbstract The abstract %
52 environment is obsolete since 2003}
53 {End of obsolete environment abstract}
54 EndCommands
55

56 End

This is an example of titlepage environment; it will be discussed later.

57 ## configuration for the RR (Research Report of Inria)
58 ## not yet complete
59

60 BeginType RR# Case RR
61 DocType = rr raweb.dtd # ok ?
62 BeginTitlePage
63 \makeRR <RRstart> "" "type = ’RR’"
64 alias \makeRT "" "type = ’RT’"
65

66 <UR> -
67 \URSophia ?+<UR>
68 \URRocquencourt ?+<UR>
69 alias \URRocq
70 \Paris ?<UR> <Rocquencourt>
71 \URRhoneAlpes ?+<UR>
72 \URRennes ?+<UR>
73 \URLorraine ?+<UR>
74 \URFuturs ?+<UR>
75

76 \RRtitle <title> "pas de titre"
77 \RRetitle <etitle> "no title"
78 \RRprojet <projet> "pas de projet"
79 \RRtheme <theme> "pas de theme"
80 \motcle <motcle> "pas de motcle"
81 \keyword <keyword> "no keywords"
82 \RRresume p<resume> "pas de resume"
83 \RRabstract p<abstract> "no abstract"
84 \RRauthor + <author> <auth> "Pas d’auteurs"

1This is new in version 2.5 (pl7)

RT n° 309

154 José Grimm

85 \RRdate <date> "\monthyearvalfr"
86 \RRNo <RRnumber> "????"
87

88 End
89 EndType

A short definition for standard classes.

90 BeginType std# standard latex classes
91 DocType = std classes.dtd
92 xml_biblio = "bibliography"
93 End

Some aliases.

94 # (types Article and slides are not defined, hence this is useless)
95

96 BeginAlias
97 Article report
98 slides inriaslides foiltex
99 End

This command has to be outside any block.

100 % this means: take the documentclass value as type name
101 Type = \documentclass

More aliases. Note that toto matches RR (first in list) and report matches std (because ‘un-
known’ is undefined).

105 BeginAlias
106 RR toto# ra2001
107 RA ra toto ra2001x%etc
108 torture torture1 torture2
109 unknown report
110 std report book article minimal
111 End

For fun.

112 ## an empty type
113 BeginType MP
114 EndType

This is used for testing Tralics.

115 BeginType torture
116 DocAttrib = creator \tralics
117 DocType = ramain raweb.dtd
118 on package loaded calc CALC = "true"
119 on package loaded foo/bar FOO1 = "true"
120 on package loaded *foo/bar FOO2 = "true"
121 on package loaded foo/*bar FOO3 = "true"
122 on package loaded *foo/*bar FOO4 = "true"
123 url_font = "\large "
124 no_footnote_hack = "false"
125 on class loaded calc CALC="true"
126

127 use_font_elt = "true"
128 xml_font_small = "font-small"
129 xml_font_small1 = "font-small1"

INRIA

Tralics, a LATEX to XML translator Part I 155

130 xml_font_small2 = "font-small2"
131 xml_font_small3 = "font-small3"
132 xml_font_small4 = "font-small4"
133 xml_font_large = "font-large"
134 xml_font_large1 = "font-large1"
135 xml_font_large2 = "font-large2"
136 xml_font_large3 = "font-large3"
137 xml_font_large4 = "font-large4"
138 xml_font_large5 = "font-large5"
139 xml_font_normalsize = "font-normalsize"
140 xml_font_upright = "font-upright-shape"
141 xml_font_medium = "font-medium-series"
142 xml_font_roman = "font-roman-family"
143 xml_font_it = "font-italic-shape"
144 xml_font_slanted = "font-slanted-shape"
145 xml_font_sc = "font-small-caps-shape"
146 xml_font_tt = "font-typewriter-family"
147 xml_font_sansserif = "font-sansserif-family"
148 xml_font_bold = "font-bold-series"
149

150 xml_sup_name = "font-super"
151 xml_sub_name = "font-sub"
152 xml_oldstyle_name = "font-oldstyle"
153 xml_overline_name = "font-overline"
154 xml_underline_name = "font-underline"
155

156 BeginCommands
157 % These commands are inserted verbatim in the file
158 \def\recurse{\recurse\recurse}
159 EndCommands
160 EndType

This may be used for typesetting a bibliography, exactly like the Raweb.

161 BeginType rabib % Case RA
162 DocType = raweb raweb3.dtd
163 DocAttrib = year \specialyear
164 DocAttrib = creator \tralics
165

166 BeginCommands
167 % These commands are inserted verbatim in the file
168 \newcommand\usebib[2]{\bibliography{#1#2,#1_foot#2+foot,#1_refer#2+refer}}
169 EndCommands
170 EndType

6.3 The action before translation

We have indicated above the list of all switches, some of them take an argument, and there must
be a space or an equals sign between the switch and the argument (but no spaces in case of an
equals sign). For instance you can say:

tralics -dir foo -year=2004

RT n° 309

156 José Grimm

Some options are marked ‘Raweb only’; this means that there are not used, unless you are trans-
lating the Raweb. Unless you call Tralics with interactive math, or interactive bib, an input file
name is required. This cannot be an absolute or relative pathname (on Unix, this means that the
first character cannot be a dot or a slash). It must be the name of a TEX file: an extension tex
is added, so that foo and foo.tex are the same. If the input is foo.xml, you will see something like
Fatal error: Cannot open input file foo.xml.tex. After the input file has been completely read,
Tralics will print something like Starting xml processing for xii. Instead of ‘xml processing’ it could
be ‘latex processing’, or ‘check’, case where you specify a raweb option that tells Tralics not to
produce an XML file. Let’s ignore this special case. After that, Tralics reads the configuration file;
an example is given above. If a line starts with ## tralics ident rc (for instance, line 3), what
follows the equals sign is printed. Note the hack: a space is printed after the dollar sign. You may
see: Configuration file identification: standard $ Revision: 2.12 $. Note the space after the dollar
sign; it is inserted by Tralics, for the same reason than we inserted a ‘x’ on line 3.

If the option ‘noconfig’ is given, then an empty configuration file is used. If the option ‘config-
file=xxx’ has been used, then xxx is the name of the configuration file. In the current version of
Tralics, the configuration file can be indicated in the source file, near the start, using a line of the
form:

% Tralics configuration file ’foobar’

The first character on the line has to be a percent sign. Single quotes are used to delimit the file
name. The first character in ‘Tralics’ can be a lower case T as well. If this fails, then the name
of the configuration file is .tralics_rc (without the leading dot on Windows). It is looked up in
the current directory first. Otherwise, in the directory specified by the ‘dir’ option; otherwise, in
the home directory of the user; otherwise, a standard directory is looked at. If the shell variable
TRALICSDIR is set, this is a good location. If RAWEBDIR is set, this is another good location.
Otherwise, a default path is used. In all examples shown here, the current directory or the default
path will be used (the default path works well for the author of the software, by definition).

Translation depends on the “type” of the document. This is computed as follows. First of all,
the configuration file is looked at to see if there is a line defining ‘Type’. The standard configuration
file has (line 101) \documentclass. This means that the value of the document class should be
considered. In the case of the xii file, the following line is printed: No \documentclass in source
file. Remember, it is not a LATEX file. In the case of a very simple example like this

\documentclass{article}
\begin{document}
Hello, world!
\end{document}

the result would be Seen \documentclass article. Note the following hack: the \documentclass
command can be inside a comment, provided that a single percent sign is used, not a double
percent sign. The potential type is the following: if the command line option ‘type=foo’ is given,
then the type is foo. If the configuration file defines a type it will be used. If no configuration file
is found, or no type is found in the configuration file, or if this is \documentclass, then the value
of the document class will be used, if any. In the case of xii, you will see Using some default type,
in the case of the hello world, you will see Potential type is article.

The configuration file is analyzed, in order to see what types are defined. In the case of the
default configuration file, Tralics will print: Defined type: RA, plus other lines with RR, std, MP,
torture, and rabib. It happens that the potential type is none of these. Thus, the aliases are looked
at. For line 97, you will see Alias Article undefined. This line as well as the following is useless (it’s
just a test to show the alias mechanism). For line 106, you get Alias RR does not match article,
because the line says that you can use ‘toto’ instead of ‘RR’. Six lines are printed in the transcript
file. Line 110 matches, and you will see Potential type article aliased to std. If you call Tralics with
option ‘-type=ra2004’ for this file, you will see an error message of the form: Fatal error: Please

INRIA

Tralics, a LATEX to XML translator Part I 157

add 2005 in the name of the input file. The main reason for this is that, if no type matches, and if
the potential type ends with digits, these are removed, and the whole list is tried again. You will
see something like Trying type ra, then Potential type ra aliased to RA, then Using type RA. If
you use ‘ar’ instead of ‘ra’, this will match nothing, and you get: Chosing first defined type RA. In
the case where there is no configuration file, you will see something like Using some default type.

If a type is found, then lines that do not concern this type are removed form the configuration
file. Lines that are not in a block are evaluated. For instance, lines 116, 118, 123. An important line
is 117: this defines the DocType. If it is missing, you will see some thing like dtd is unknown from
unknown.dtd (standard mode) or, in the case of standard classes: dtd is article from article.dtd
(standard mode). You could also see: dtd is raweb from raweb3.dtd (mode RAWEB2005). In fact,
if the Type is ’ra’ (lowercase, or uppercase) we are in ‘raweb mode’. In this case, the switches
for Raweb mode apply. Moreover, the file name should be of the form ‘foo2005’ (any year can
be used instead of 2005), and the document class should be ‘ra2005’ (same year). A ‘standard’
configuration file (see Copyright notice) must enter Raweb mode if the document class is ‘raxxxx’
and no ‘type=yy’ option has been given.

Assume that we call Tralics in verbose mode, with ‘type=rabib’. The transcript file will contain
the following

dtd is raweb from raweb3.dtd (standard mode)
Ok with the config file, dealing with the TeX file...
There are 4 lines
Starting translation
[1] %% Begin bootstrap commands for latex
...
[66] %% End bootstrap commands for latex
[1] \documentclass{article}
{\documentclass}
{Push argument 1}
Character sequence: article.
{Text:article}
{Pop 1: document_v argument_v}
[183] % These commands are inserted verbatim in the file
[184] \newcommand\usebib[2]{\bibliography{#1#2,#1_foot#2+foot,#1_refer#2+refer
}}
{\newcommand}
{\newcommand \usebib}
[2] \begin{document}
...
[4] \end{document}
...
Output written on hello1.xml (218 bytes).
No error found.
(For more information, see transcript file hello1.log)

One interesting point here is that all lines that start with digits like ‘[123]’ are TEX input lines
that have to be translated. The document source has 4 lines. There are 66 lines (not shown here)
marked ‘bootstrap commands’. They contain definitions that are written in LATEX syntax, not
C++. The two lines 183 and 184 come from the configuration file (with number 167 and 168
in this document). The interesting point is that they are inserted just after the line with the
document class. As line 183 explains, the block named ‘Commands’ is copied verbatim from the
configuration file to the TEX source file (to be precise: the TEX source file is read, once and for
all, as a list of lines, before the configuration file is read, because it might contain the name of the
configuration file; some lines are added to this list).

RT n° 309

158 José Grimm

If the configuration file contains lines as 18 and 19, the effect is to add an attribute to the main
element. The normal syntax is: DocAttrib = foo "bar". Using a command name instead of a
string means that the value of the command should be used. In effect, a line like the following is
added, after the document-class line:

\AtBeginDocument{\addattributestodocument{Foo}{\World}}

On line 18, you see \specialyear: this is a hack; this is the value of the year as used by the Raweb
(the current year, in general). On line 19, you see \tralics. This means that the current Tralics
version should be used. Example: for this configuration file,

tralics ident rc=helloconf.

BeginType article
DocType = Article classes.dtd
DocAttrib =Foo \World
DocAttrib =A \specialyear
DocAttrib =B \tralics
DocAttrib =C \today
BeginCommands
\def\World{world}
\def\today{\the\year/\the\month/\the\day}

End
End

the translation of the hello file is:

<?xml version=’1.0’ encoding=’iso-8859-1’?>
<!DOCTYPE Article SYSTEM ’classes.dtd’>
<!-- translated from latex by tralics 2.5 (pl7)-->
<Article Foo=’world’ C=’2005/8/5’ B=’Tralics version 2.5 (pl7)’ A=’2005’>
<p>Hello, world!
</p>
</Article>

6.4 Translating the Raweb

Raweb mode is entered if a configuration file is found that says that the type to use is ‘RA’ or ‘ra’.
The document class should be ra97, ra98, or, for later years, ra1999. The example has ra2003. This
must match the name of the input file, which is miaou2003. The document can be translated in one
of three versions: first, you may try latex, this gives miaou2003.dvi; then we have a mode in which
miaou2003.tex is converted into miaou.tex, and latex can produce miaou.dvi. Finally, Tralics may
produce miaou.xml, and this can be compiled into wmiaou.dvi. Historically, we had a Perl script
for the conversion, this was extended to a translator, then re-written in C++; since the normal
user has no more access to the source, we have added a means to parameterize the options of the
‘latex’ and other commands, see configuration file, lines 30 to 40. Since 2004, an external program
is used, it is described on the web page of Tralics. What Tralics does is thus: convert miaou2003.tex
to miaou.tex; if this file has to be processed by LATEX, write it on disk, otherwise, translate it as
miaou.xml. Then, relevant parameters are written to user_param.pl. Here is an example.

1 $::makefo=’xsltproc --catalogs -o %A.fo %B %C’;
2 $::makehtml=’xsltproc --catalogs %B %C’;
3 $::checkxml=’xmllint --catalogs --valid --noout %C’;
4 $::makepdf=’pdflatex -interaction=nonstopmode %w’;
5 $::makedvi=’’;

INRIA

Tralics, a LATEX to XML translator Part I 159

6 $::dvitops=’’;
7 $::generate_dvi=’latex -interaction=nonstopmode %t’;
8 $::generate_ps=’dvips %t.dvi -o %t.ps’;
9 $::raweb_dir=’/user/grimm/home/cvs/raweb’;

10 $::raweb_dir_src=’/user/grimm/home/cvs/raweb/src/’;
11 $::ra_year=’2003’;
12 $::no_year=’miaou’;
13 $::tex_file=’miaou’;
14 $::todo_fo=0;
15 $::todo_html=0;
16 $::todo_tex=0;
17 $::todo_lint=0;
18 $::todo_ps=0;
19 $::todo_xml=1;
20 1;

If some action has to be done (one of ‘todoXXX’ between lines 14 and 18 is 1), then ‘rahandler.pl’
is called. In our case, only ‘xml’ is set, but this action is already done. You can edit the file,
and run ‘rahandler’ yourself. You can also use another program, via the ‘externalprog’ switch of
Tralics. This program can ignore some of the flags, so that it is called in any case, even if there is
nothing to do. Here is an example of a source file.

1 \documentclass{ra2003}
2 \theme{Num}
3 \isproject{YES} % \isproject{OUI} works also
4 \projet{MIAOU}{Miaou}{Mathématiques et Informatique de
5 l’Automatique et de l’Optimisation pour l’Utilisateur}
6 \def\foo{bar}
7 \UR{\URSophia\URFuturs}
8 \declaretopic{abc}{Topic abc}
9 \declaretopic{def}{Topic def}

10 \begin{document}
11 \maketitle
12 ...
13 \begin{module}{composition}{en-tete}{}
14 \begin{catperso}{Head of project team}
15 \pers{Laurent}{Baratchart}[DR INRIA]
16 \end{catperso}
17 \end{module}
18 \begin{module}{diffusion}{dif-conf}{Conferences and workshops}
19 \begin{glossaire}\glo{A}{B\par C}\glo{A1}{B1\par C1}\end{glossaire}
20 \begin{participants}
21 \pers{Laurent}{Baratchart},
22 \pers{José}{Grimm}
23 \end{participants}
24 \begin{motscle}
25 meromorphic approximation, frequency-domain identification,
26 extremal problems
27 \end{motscle}
28 \end{module}
29 \loadbiblio
30 \end{document}

This is what Tralics prints, for the full miaou2003 document, in verbose mode

RT n° 309

160 José Grimm

This is tralics 2.5 (pl7), a LaTeX to XML translator

Copyright INRIA/MIAOU/APICS 2002-2005, Jos\’e Grimm

Licensed under the CeCILL Free Software Licensing Agreement

Starting xml processing for miaou2003.

Configuration file identification: standard $ Revision: 2.14 $

Read configuration file /user/grimm/home/cvs/tralics/.tralics_rc.

Following lines are not printed on the terminal in non-verbose mode. You can see how the document
type is found.

Configuration file has type \documentclass

Seen \documentclass ra2003

Potential type is ra2003

Defined type: RA

Defined type: RR

Defined type: std

Defined type: MP

Defined type: torture

Defined type: rabib

Alias Article undefined

Alias slides undefined

Alias RR does not match ra2003

Alias RA does not match ra2003

Alias torture does not match ra2003

Alias unknown undefined

Alias std does not match ra2003

Trying type ra

Alias Article undefined

Alias slides undefined

Alias RR does not match ra

Potential type ra aliased to RA

Using type RA

The lines that follow show the assignments from the configuration file.

makefo=xsltproc --catalogs -o %A.fo %B %C

makehtml=xsltproc --catalogs %B %C

makepdf=pdflatex -interaction=nonstopmode %w

generatedvi=latex -interaction=nonstopmode %t

generateps=dvips %t.dvi -o %t.ps

theme_vals=com cog num sym bio

dtd is raweb from raweb3.dtd (mode RAWEB2005)

Following lines are specific to the Raweb. You can see a summary of all the tests done by the
program that converts miaou2003.tex to miaou.tex.

Ok with the config file, dealing with the TeX file...

Activity report for MIAOU (Miaou)

Mathématiques et Informatique de l’Automatique et de l’Optimisation pour l’Utilisateur

There are 138 environments

Checked 15 keyword env with 60 keywords (52 unique)

Checked 8 catperso and 31 participant(es) envs with 146 \pers

There were 2 topics

Sections (and # of modules): 1(1) 2(1) 3(2) 4(6) 5(5) 6(13) 7(4) 8(5) 9(3).

Whenever a section or a chapter is translated, a line is printed on the terminal. There is a complaint
at the end, about a lonely module without title. A title is invented, namely ‘(Sans Titre)’. A non-
trivial task for the post-processor is to remove it (it should not appear on the HTML pages).

Translating section composition

Translating section presentation

Translating section fondements

INRIA

Tralics, a LATEX to XML translator Part I 161

Translating section domaine

Translating section logiciels

Translating section resultats

Translating section contrats

Translating section international

Translating section diffusion

Bib stats: seen 57 entries

Seen 64 bibliographic entries

(SansTitre) Only one module seen in the section

Problem with sans titre 1

There was 1 NoTitle not handled

Tralics prints now statistics.

Used 1756 commands

Math stats : formulas 503, non trivial kernels 299, cells 10227,

special 1 trivial 149, \mbox 5 large 0 small 118.

List stats: short 0 inc 10 alloc 43456

Buffer realloc 41 string 15750 size 610086; merge 7

Macros created 80 deleted 0

Save stack +1582 -1582

Attribute list search 7539(1494) found 3154 in 5616 elements (1401 after boot)

Number of ref 92, of used labels 36, of defined labels 73, of ext. ref. 19

Modules with 24, without 16, sections with 9, without 15

There were 6 images.

Output written on miaou.xml (250758 bytes).

No error found.

(For more information, see transcript file miaou2003.log)

Here you can see the call to the post-processor.

rahandler.pl v2.12, (C) 2004 INRIA, José Grimm, projet APICS

Postprocessor did nothing

Here are the commands specific to the Raweb:

• The document class should be ‘ra2003’ (the number must match the suffix of the file name).
The document should start with \maketitle (see line 11) and end with \loadbiblio, see
line 29. These commands are set to \relax by the translator.

• Some commands can be placed before \begin{document}. They will be evaluated in or-
der. Then all commands outside a ‘module’ environment are executed (modules may be
re-ordered). Strange results can be obtained... so that it is better not to put anything
between modules.

• You use \project, or \projet, with three arguments. The first argument is the name of the
Team. After converting to lower case letters, this must be the name of the file. The second
argument can be empty (in this case the name of the Team is used). Any LATEX command is
allowed (remember: this is the official name of the Team). Then comes the long name (see
example, lines 4-5).

• You use \theme to specify the theme. The argument must be one of those defined by the
configuration file. The case is irrelevant. See example, line 2.

• You use \isproject, to say whether this is a “Project” or not (an argument that starts with
y, Y, o or O is true). See example, line 3. Note that the Miaou team has been dissolved
on 12/31/2003, and replaced by Apics, a team that had not the status of “project” until
01-01-2005.

• The command \localisation is obsolete.

RT n° 309

162 José Grimm

• You use \UR for explaining in which UR the team is localized. Line 7 gives an example of a
team in ‘Sophia’ and ‘Futurs’. The list of valid URs are defined by the configuration file (see
example, lines 45, 46). The ‘UR’ prefix is not in the configuration file. The translator will
see a single command, instead of all these four; in the example it is:

\RAstartprojet{num}{1}{Miaou}{Mathématiques et Informatique de l’Automatique
et de l’Optimisation pour l’Utilisateur}{Sophia Antipolis --- Futurs}

• You can use \declaretopic. At most ten topics can be declared. The first argument will be
replaced by a unique id. For instance, the translator will see the following, instead of lines 8
and 9.

{\declaretopic{1}{Topic abc}\declaretopic{2}{Topic def}}

• You can use the module environment. Modules cannot be nested. A module is the equivalent
of a \section, so that you cannot use the \section command; you can use \subsection.
The first argument of the environment is the section name. It can be empty, meaning the
same section as the previous module. The list of valid sections is defined by the configuration
file. The first section cannot have more then one module. A module can have an optional
argument (before the section name), a topic reference (the translator will see the numeric
value). This is ignored, in the case a star follows the section name in the configuration file2.
Then comes the module name and the module title. The module name must be unique, and
consists only in letters, digits, and dashes. The module title should not be empty (module in
the ‘composition’ section are special; this is an awful hack, because the translator does not
know which section is the composition section.) The translator will see

\begin{module}{MIAOU}{1}{en-tete}{module1}{module\textit{title}!}
... \end{module}

Here ‘MIAOU’ is the name of the team, ‘1’ the section number, and ‘module1’ the unique
identifier associated to the module.

• You can use the ‘catperso’ environment, only in a module in section one. You can use
‘participants’ in other sections. These environments contain \pers commands (separated by
commas in a ‘participants’).

• You can use \pers only as indicated above. The program checks a lot a things. Between the
first name and the last name, there can be an optional argument, a particle. After the last
name, there can be an optional argument.

• You should not use the ‘abstract’ and ‘body’ environments.

• You can use the ‘motscle’ environments for keywords.

• You can use a glossary (see line 19).

• You can use \moduleref for a reference to a module. As a consequence, each module has
an implicit label; The statistics shown above say that, of the 73 labels defined, only 36 were
used; in fact, 40 of them were implicit.

• The environments ‘glossary’, ‘moreinfo’, ‘participants’ and ‘keywords’ are designed for mod-
ules only. The statistics say : Modules with 24, without 16, sections with 9, without 15.
You have to interpret this as: there are 24 modules and 9 other sectioning commands (like
\subsection) with such an information; there is a total of 40 modules (in accordance with
Sections (and # of modules): 1(1) 2(1) 3(2) 4(6) 5(5) 6(13) 7(4) 8(5) 9(3)).

2Feature introduced in version 2.5 (pl7)

INRIA

Tralics, a LATEX to XML translator Part I 163

More information is available on the Web page.

The following commands can be used in any document, but they are specific to the Raweb.

• \RAstartprojet{a}{b}{c}{d}{e}. The translation is a <accueil> element. You should not
use this command, because its translation depends on parameters that are not arguments.

• \begin{RAsection}{domaine} . . . \end{RAsection}. The translation is a <domaine> ele-
ment; it can be the target of a \ref, if a \label is used, it can also be the target of a
\moduleref, but this is a bad idea, because the section may disappear, if the Raweb is
viewed as a sequence of topics. The first argument can be any character sequence. Note:
This is automatically generated, it should not appear in a Raweb source, otherwise the result
is not conforming to the Raweb DTD.

• \begin{module}{MIAOU}{9}{dif-conf}{module28}{Some title} . . . \end{module}
The syntax is a bit different, from what is in the input source. The translation is

<module id=’uid75’ html=’module28’><head>Some title</head>...

A module can be the target of a \ref, or a \moduleref via its name (in the example ‘dif-
conf’). The name does not appear in the XML result. The value ‘module28’ is computed by
the preprocessor. The first two arguments are ignored.

• \begin{participants} . . . \end{participants}. The name of the environment can be
‘participantes’, the final S can be omitted. The translation is an element with the same
name. Locally \par is redefined to do nothing. No text is allowed. If you look at the
example, the comma at the end of line 21 is necessary, but should not be translated.

• \begin{catperso}{title} . . . \end{catperso}. This is like ‘participants’, but it takes an
argument. No commas should be given here.

• \declaretopic{a}{b}. The translation is a <topic> element, with attribute num equal to
a, containing an element <t_titre> containing the translation of b.

• \begin{moreinfo} . . . \end{moreinfo}. The translation is a <moreinfo> element. Para-
graphs are allowed.

• \moduleref[y]{t}{s}{m}. Argument y is optional; only empty values are allowed. Argu-
ment t is unused (this must be the name of the team in uppercase letters). If m is empty,
this is reference to section s, otherwise to module m.

• \pers{a}[b]{c}[d]. If b is not empty, it will be prepended to c. If c contains a \footnote,
the command disappears, the argument is prepended to d. Normally, a should be the first
name of a person, c its last name, and d additional information. Initial and final spaces are
removed from c and d. The result is then \@pers{a}{c}{d}.

• \@pers{a}{c}{d}. This command takes three arguments; if followed by a comma, the comma
is read. In Raweb mode, the command is only allowed in a ‘catperso’ or ‘participants’
environment. Translation may be

<pers prenom=’Laurent’ nom=’Baratchart’>DR INRIA</pers>

You can modify the translation of the \pers command, as follows:

\def\@pers#1#2#3{\xbox{pers}{\xbox{firstname}{#1}%
\xbox{lastname}{#2}\xbox{info}{#3}}}

\pers{Jean}[de la]{Fontaine}
\pers{Donald}{Knuth}[author of \TeX]
\pers{Leslie}{Lamport}

RT n° 309

164 José Grimm

Then, the translation will be:

<pers><firstname>Jean</firstname><lastname>de la Fontaine</lastname>
<info/></pers>

<pers><firstname>Donald</firstname><lastname>Knuth</lastname>
<info>author of <TeX/></info>

</pers><pers><firstname>Leslie</firstname><lastname>Lamport</lastname>
<info/></pers>

6.5 Tracing commands

In some cases, TEX or Tralics produce wrong results, incomprehensible error messages, and so
on. In these cases, you must use specialized commands to see what happens. Since the internal
structure of TEX is not the same as Tralics, the results in the transcript file may be different.

We have explained the command \show: it prints the meaning of a command (useful for a user
defined command) and \showthe (this shows the value of a variable, counter, a token list, etc).
We have also mentioned that \showbox prints the content of a TEX box or XML element. There
is a command \showlists; its effect is to indicate the global context; this is not implemented in
Tralics. The typical example is from the TEXbook. Given the test file:

\tracingcommands=1
\hbox{
$
\vbox{
\noindent$$
x\showlists
$$}$}\bye

This is the result of the \showlists command.

display math mode entered at line 5
\mathord
.\fam1 x
internal vertical mode entered at line 4
prevdepth ignored
math mode entered at line 3
restricted horizontal mode entered at line 2
\glue 3.33333 plus 1.66666 minus 1.11111
spacefactor 1000
vertical mode entered at line 0
prevdepth ignored

This example does not compile in Tralics: you cannot put a \vbox in a math formula. You cannot
put a display math formula in a formula.

TEX provides 9 commands of the form \tracingXXXX described earlier. Each variable de-
fines an integer (in general, positive means verbose). There is a command \tracingall that
turns everything on. In Tralics, it sets \tracingmacros, \tracingoutput, \tracingcommands and
\tracingrestores to 1. Only these variables are useful in Tralics. For instance, \tracingonline
controls whether or not anything is printed on the terminal; for Tralics, debugging information
is only printed on the transcript file. Variables like \tracingparagraphs and \tracingpages
show line-break and page-break calculations, performed by TEX but not by Tralics. The com-
mand \tracingoutput shows boxes when they are shipped out (in Tralics, the whole XML tree is
printed at the end; if the command is positive, lines are printed, whenever used by the scanner),
\tracinglostchars indicates all characters not found in the fonts (Tralics never looks at font

INRIA

Tralics, a LATEX to XML translator Part I 165

properties). The command \tracingstats indicates that TEX should gather all statistical infor-
mation available; in Tralics, statistics are always computed; if you call it with the ‘silent’ switch,
statistics are not printed on the terminal. Note that the ‘verbose’ switch calls \tracingall.

There are three remaining commands: \tracingmacros is used whenever a user command
is expanded, \tracingrestores whenever things are popped from the save stack, and finally,
\tracingcommands for all other commands. Let’s start with the example given on page 21. This
is what you see if \tracingoutput is positive:

[4] \def\foo#1{\xbar#1}
[5] \def\xbar#1{{\itshape #1}}
[6] \foo{12}

It shows the input. This is what you see if \tracingmacros is positive:

\foo #1->\xbar #1
#1<-12
\xbar #1->{\itshape #1}
#1<-1

This is what you see if \tracingrestores is positive:

+stack: level + 2 for brace
{Push p 1}
{font restore }
+stack: level - 2 for brace

This is now what you see if \tracingcommands is positive: As you can see, some commands
produce more than one line in the transcript file. For instance, a line is printed for \def when the
command is seen, another one when the whole definition is read.

{\def}
{\def \foo #1->\xbar #1}
{\def}
{\def \xbar #1->{\itshape #1}}
{begin-group character {}
{\itshape}
{font change \itshape}
Character sequence: 1.
{end-group character }}
{Text:1}
Character sequence: 2 .
{Text:2
}

This is the start of the trace on page 24:

[61] \begin{x}a b c \end{x}
{\begin}
{\begin x}
+stack: level + 3 for environment

What you can see is that \begin produces three lines, the second line holds the name of the
environment; the last line explains that the stack pointer was changed from 2 to 3; the system
remembers that the change comes from an environment, so a closing brace of a \endgroup command
is illegal. Later on, the trace says:

Character sequence: ZbAY c .
{\end}
{Text:ZbAY c }

RT n° 309

166 José Grimm

{\end x}
\endx ->by\end {y}ay

In TEX, instead of the first line, you would have seen:

{the letter Z}
{blank space }
{the letter c}
{blank space }

Tralics shows all characters it translates; it puts them on a single line. The character sequence is
printed on the log file, because the command \end wants to be logged. After that, we have a line
that contains ‘Text’ in braces. The text is added to the current XML element; a line is printed
whenever the buffer is flushed. The buffer is flushed here because it might be used by the internal
routine that scans the argument of \end. The trace contains also:

Character sequence: ay.
{\endgroup (for env)}
{Text:ay}
+stack: ending environment x; resuming document.
+stack: level - 3 for environment
Character sequence: .

Normally, each line of the form ‘level +3’, is followed by a line ‘level -3’, after that the current level
is 2. The last line contains Character sequence, followed by a colon, a space, some characters, a
period. Instead of ‘some characters’, you see only a space, it could be any character token with
the category code of a space. In our case, it is the new line character that marks the end of the
line. If the example is followed by an empty line, you will see:

[62]
{\par}
{Text:
}

What you see here is: open brace, Text, colon, some text, close brace. Here ‘some text’ is the
space above, shown as a new line character. What the \par command does is: a) flush the buffer,
so that the text is printed, b) remove space at end of paragraph, c) terminate the element and
unwind the XML stack. The next line shows this ‘pop’. The integer 1 is the number of elements
on the stack after the pop; you see the content of the stack, just before it is popped, in case the
topstack is wrong. After the underscore, there is a suffix that indicates the mode (here p_v means
that vertical mode will be entered after the pop).

{Pop 1: document_v p_v}

This is an example from page 28:

\E ->\expandafter

{\expandafter \E \E}

\E ->\expandafter

\E ->\expandafter

{\expandafter \expandafter \def}

{\expandafter \def \toto}

\toto ->\titi !

{\def}

{\def \titi !->7}

This shows that \expandafter\foo\bar shows all three tokens. This can be interesting if these
tokens come from the expansion of other tokens. For instance, in a case like this

\def\y{yy}

\def\foo{\textit\y}

\expandafter\expandafter\foo

INRIA

Tralics, a LATEX to XML translator Part I 167

it is interesting to know that \y is expanded before \textit.

The next one is from page 39.

[346] \skip\count0=2pt plus \parindent \relax
{\skip}
+scanint for \count->0
+scanint for \skip->1
+scanint for \skip->2
+scandimen for \skip ->2.0pt
+scandimen for \skip ->3.0pt
{scanglue 2.0pt plus 3.0pt}
{\relax}

In TEX, there is a big recursive function that converts characters into integers, dimensions and
glue. The interesting point is the following: We have two commands \skip and \relax. The
purpose of \relax is to stop scanning the glue, because an optional ‘minus’ term. You will not see
\parindent nor \count. The TEX output, in this case, consists of two lines. Tralics offers 6 more
lines. The last line holds the glue that is effectively read and put in the register. There are three
calls to the internal function ‘scanint’, the first is the number of the count register, the second is
the number of the skip register, the last is the integer part of the dimension. There are two calls
to the internal routine ‘scandimen’, one for each component of the glue (the shrink component is
omitted, hence not read).

The next example comes from page 40.

1 [3506] \count0=2\ifnum\count0=\count13\fi4
2 {\count}
3 +scanint for \count->0
4 +\ifnum3532
5 +scanint for \count->0
6 +scanint for \ifnum->7
7 +\fi3532
8 +scanint for \count->13
9 +scanint for \ifnum->7

10 +iftest3532 true
11 +scanint for \count->2
12 {\relax}
13 +\fi3532
14 Character sequence: 4 .

We have already explained that ‘scanint’ is used to read something in case of assignment; as you
can see, the procedure is also called in the case of a conditional. This example is a bit strange.
Let’s explain what happens. A line of characters is read (see line L1), tokens are constructed,
expanded and evaluated. The evaluator sees a first token, printed on line L2. This matches the
rule: 〈simple assignment〉, in fact, the first clause, which is 〈variable assignment〉, that is defined
as 〈integer variable〉 〈equals〉 〈number〉, and the first term is \count〈8-bit number〉. There are two
calls to ‘scanint’, the first with a range check. In order to makes things easier to understand, we
given an index to each call, like S1, S2, etc.

The job of S1 is easy: there is one digit, printed on L3. The equals character is the first unread
character. It is an 〈equals〉. After the equals sign an integer is read, via S2. This sees the digit
2, then the conditional I3532. This number was computed by Tralics, it is printed on line L4 to
make debug easier. The \ifnum command reads two numbers, and a character between them,
and compares the numbers. First number is read via S3. In fact, S3 sees \count and calls S4.
Procedure S4 sees the number 0, followed by an equals sign. It prints that value on line L5. Now
S3 knows that its value is in \count0, this is 7, printed on line L6. After that, I3532 has a first

RT n° 309

168 José Grimm

number 7, and sees the equal sign, and reads the second number via S5. This sees \count and
reads a number via S6. This reads 13. Then comes \fi. The \fi command prints line L7 on
the transcript file. This terminates I3532. This is not possible: our conditional is still reading the
second number. As a consequence, two tokens are pushed back, a \fi and a \relax, in this order:
the \relax is read again first. This terminates expansion of the \fi.

Our procedure S6 is programmed to fully expand tokens, and read them as long as digits are
seen (even if the result overflows). It is unaware of the fate of the \fi token. All it knows is that
the first unexpandable token after the digit 3 is \relax. Thus, S6 has finished its jobs: the value
is 13, printed on line L8. Then S5 knows its result: the value is \count13, hence 7, printed on
line L9. After that, I3532 has two numbers, they are the same, the test is true, as can been seen
on line L10. Normal expansion resumes; however the condition stack has a marker that tells that
the next \fi or \else matches I3532. If the test had been false, the expansion of the test would
have read, at high speed, all tokens up to the next \fi or \else. There are four unread tokens: a
\relax, a \fi, the digit 4, and the newline character. Remember S2: this is a procedure that has
read a digit, and wonders what follows. It does not care how complicated the task of ‘expand’ may
be. It just wants a non-expandable token. In fact, the current token is \relax. Thus, S2 knows it
has read all digits; it prints the result of the transcript file L11. As a consequence, 2 is stored in
\count0. The \relax token does nothing (let’s hope nobody has redefined it), see line L12. The
conditional is terminated because of the inserted \fi token, line L13. After the last character on
the line is translated, a new line is read, and a line of the form L1 will be printed; before a line
is added to the transcript file, the internal buffer is flushed, this explains line L14. Note that the
following sequence provokes an error in TEX

\edef\FOO{\ifnum\count0=\count13\fi}
\expandafter\def\FOO{2x}

It is accepted by Tralics. As a consequence, the special \relax token inserted by TEX always
behaves like \relax.

6.6 Pictures and friends

We explain here the translation of some commands related to the picture environment. The syntax
is unusual. In some cases, a pair of integers or a pair of real numbers are read. These numbers are
multiplied by the value of the current unit of length, and the XML file contains these values, in pt,
without the unit. The default value of \unitlength is 1pt. For instance

\setlength{\unitlength}{3pt}
\def\ten{10}
\put(\ten,\ten.2){x}

translates as <pic-put xpos=’30’ ypos=’30.59999’>x</pic-put>. As the example shows, arith-
metic on scaled integers is exact, but ‘10.2’ cannot be represented exactly. In some cases, arguments
are converted to attributes, and errors can be signaled. In the case ‘\put(1.2.3,4) {}’, you will
see Missing unit (replaced by pt) {Character . of catcode 12}, followed by three other errors. In
the case of ‘\makebox(1,2)[α]{x}’ the error is unexpected element formula. Without
the dollar signs, an error is signaled, the math formula is discarded, a second error is signaled
with unexpected element error. If you invoke Tralics with ‘-noxmlerror’, the first error produces no
<error> element, so that there is only one error.

• \begin{picture}(A,B)(C,D) . . . \end{picture}. The first two arguments are required, the
other ones are optional. Normally, there should be no text in the environment, the mode is
neither horizontal not vertical, \par commands are forbidden. Example:

\begin{picture}(1,2)
\begin{picture}(3,4)(5,6)

INRIA

Tralics, a LATEX to XML translator Part I 169

1=1
\end{picture}
\end{picture}

This translates as

<picture width=’1’ height=’2’>
<picture xpos=’5’ ypos=’6’ width=’3’ height=’4’>
1=1

</picture>
</picture>

• \fboxrule, \fboxsep. These two dimensions are defined by LATEX, unused by Tralics. Default
values: 0pt and 3pt.

• \makebox(A,B)[x]{y}. This translates the value y, inside a group (as is the case for all ‘box’
commands that follow). The result is <pic-framebox> element, with attributes width=‘A’,
height=‘B’, and position=‘x’.

• \framebox(A,B)[x]{y}. Same as \makebox above, but the attribute framed is set to true.
As an example, the translation of

\makebox(1,2)[l]{\it x}
\makebox(1,2){\it x}
\framebox(1,2)[l]{\it x}
\framebox(1,2){\it x}

is

<pic-framebox width=’1’ height=’2’ position=’l’>
<hi rend=’it’>x</hi></pic-framebox>

<pic-framebox width=’1’ height=’2’>
<hi rend=’it’>x</hi></pic-framebox>

<pic-framebox width=’1’ height=’2’ position=’l’ framed=’true’>
<hi rend=’it’>x</hi></pic-framebox>

<pic-framebox width=’1’ height=’2’ framed=’true’>
<hi rend=’it’>x</hi></pic-framebox>

• \makebox[w][x]{y}. See alternate syntax above. The first argument must be a dimension,
it is the width of the box; its value is currently ignored. The second argument must be
one character of ‘lrcs’. A paragraph is started if necessary. The result is a <mbox> element,
containing the translation of y, unless either the box contains only a <figure>, or if it
contains only text (characters, and font changes), case where the result is y.

• \mbox{y}. This is exactly like \makebox, with a simple syntax. For instance:

\makebox{\it x} \mbox{\it x}
\makebox[2cm]{y\it x}
\makebox[2cm][l]{\it x}
\makebox{x} \mbox{x}
\makebox{\xbox{foo}{bar}} \mbox{\xbox{foo}{bar}}
\makebox{\includegraphics{x}}\mbox{\includegraphics{x}}

translates as

<hi rend=’it’>x</hi> <hi rend=’it’>x</hi>
<mbox>y<hi rend=’it’>x</hi></mbox>
<mbox position=’l’><hi rend=’it’>x</hi></mbox>
<mbox><formula type=’inline’><simplemath>x</simplemath></formula></mbox>

RT n° 309

170 José Grimm

<mbox><formula type=’inline’><simplemath>x</simplemath></formula></mbox>
<mbox><foo>bar</foo></mbox> <mbox><foo>bar</foo></mbox>
<figure rend=’inline’ file=’x’/><figure rend=’inline’ file=’x’/>

• \framebox[w][x]{y}. This is like \makebox, but the result is a <fbox>, instead of <mbox>,
with attribute rend =‘boxed’. In the case where the content is a <figure>, then no box is
created but the attribute framed is added to the figure.

• \fbox{y}. Like \framebox, with a simple syntax. For instance

\framebox{\it x} \fbox{\it x}
\framebox[2cm]{y\it x}
\framebox[2pt][l]{\it x}
\framebox{x} \fbox{x}
\framebox{\xbox{foo}{bar}} \fbox{\xbox{foo}{bar}}
\framebox{\includegraphics{x}} \fbox{\includegraphics{x}}

translates as

<fbox rend=’boxed’><hi rend=’it’>x</hi></fbox>
<fbox rend=’boxed’><hi rend=’it’>x</hi></fbox>
<fbox width=’56.9055pt’ rend=’boxed’>y<hi rend=’it’>x</hi></fbox>
<fbox width=’2.0pt’ position=’l’ rend=’boxed’><hi rend=’it’>x</hi></fbox>
<fbox rend=’boxed’><formula type=’inline’><simplemath>x</simplemath>

</formula></fbox>
<fbox rend=’boxed’><formula type=’inline’><simplemath>x</simplemath>

</formula></fbox>
<fbox rend=’boxed’><foo>bar</foo></fbox>
<fbox rend=’boxed’><foo>bar</foo></fbox>
<figure framed=’true’ rend=’inline’ file=’x’/>
<figure framed=’true’ rend=’inline’ file=’x’/>

• \scalebox{x}{y}. The translation is a <scalebox> containing y, with a scale attribute
whose value is x.

• \rotatebox{x}{y}. The translation is a <pic-rotatebox> containing y, with a angle at-
tribute whose value is x.

• \dashbox{A}(B,C)[d]{y}. The translation is a <pic-dashbox> containing y, with a position
attribute whose value is d. The three values A, B and C are numbers, affected by the unit
length. They produce attributes dashdim, width and height. Example:

\setlength\unitlength{2pt}
\scalebox{3}{\it x}
\rotatebox{90}{\it x}
\dashbox{1.2}(2,3)[l]{\it x}
\dashbox{1.2}(2,3){\it x}

The translation is

<scalebox scale=’3’><hi rend=’it’>x</hi></scalebox>
<pic-rotatebox angle=’90’><hi rend=’it’>x</hi></pic-rotatebox>
<pic-dashbox dashdim=’2.4’ width=’4’ height=’6’ position=’l’>

<hi rend=’it’>x</hi></pic-dashbox>
<pic-dashbox dashdim=’2.4’ width=’4’ height=’6’>

<hi rend=’it’>x</hi></pic-dashbox>

INRIA

Tralics, a LATEX to XML translator Part I 171

• \begin{minipage}[x][y][z][t]{dim} . . . \end{minipage}. Optional arguments y and t
are ignored. Arguments x and z should define vertical position. The last argument is a glue.
Note: the translation starts in vertical mode. The command \nocentering is called.

• \parbox[x][y][z]{dim}{y}. This should be the non-environment version of ‘minipage’, but
it is much more primitive. It behaves like \hbox and \xbox for argument parsing. Example

\begin{center}
a
\begin{minipage}{2cm} a \end{minipage}
\begin{minipage}[c][l][b][r]{2cm plus 3pt} a \end{minipage}
\end{center}
\parbox[foo][bar][gee]{2cmPlus3mm}{some \it box content}.

The translation is

<p rend=’center’>a
<minipage width=’56.9055pt’><p>a </p></minipage>
<minipage inner-pos=’b’ pos=’c’ width=’56.9055pt’><p>a </p></minipage></p>
some <hi rend=’it’>box content</hi><p>.</p>

• \bezier{N}(A,B)(C,D)(E,F). The first argument must be an integer, others are real num-
bers, affected by \unitlengh. The result is a <pic-bezier> element.

• \qbezier[N](A,B)(C,D)(E,F). As above, but the first argument is optional. A Bezier curve
is defined by three points, you must give the coordinates. In the first implementation, you
had to specify the number of intermediate points used for plotting. For instance

\bezier{10}(1,2)(3,4)(5,6)
\qbezier(1,2)(3,4)(5,6)
\qbezier[10](1,2)(3,4)(5,6)

translates as

<pic-bezier a1=’1’ a2=’2’ b1=’3’ b2=’4’ c1=’5’ c2=’6’ repeat=’10’/>
<pic-bezier a1=’1’ a2=’2’ b1=’3’ b2=’4’ c1=’5’ c2=’6’/>
<pic-bezier a1=’1’ a2=’2’ b1=’3’ b2=’4’ c1=’5’ c2=’6’ repeat=’10’/>

• \put(A,B){x}. The translation is a <pic-put> element containing the translation of x, with
attributes xpos and ypos that come from A and B.

• \xscale, \yscale, \xscaley, \yscalex. These are user defined commands, that should
contain real numbers. The default values are 1, 1, 0, and 0.

• \scaleput(A,B){x}. The translation is a <pic-scaleput>. It is like \put, but current scale
values are put in the element. For instance the translation of

\setlength\unitlength{2pt}
\put(1,2){x}
\def\xscale{2.0}\def\yscale{3.0}\def\xscaley{4}\def\yscalex{0.5}
\scaleput(1,2){x}

is

<pic-put xpos=’2’ ypos=’4’>x</pic-put>
<pic-scaleput xpos=’2’ ypos=’4’

xscale=’2.0’ yscale=’3.0’ xscaley=’4’ yscalex=’0.5’>x</pic-scaleput>

• \multiput(A,B)(a,b){n}{x}. The translation is a <pic-multiput> element, with all the
arguments as attributes. If the command is followed by a star, then n calls of \put are
evaluated, with the same argument x, but at positions (A + ka, B + kb) instead of (A, B).

RT n° 309

172 José Grimm

See example of the little car on figure 6.1; the ruler was constructed with \multiput, a star
is used for the figures.

• \frame{x}. This translates as <pic-frame> with the value of x.

• \oval(A,B)[c]. This translates as <pic-oval/> with some attributes, xpos, ypos, spec.

• \line(A,B){c}. This translates as <pic-line/>. The first two arguments have to be in-
tegers. Only small values are recognized by LATEX. The last argument is a real number.
Attributes are xdir, ydir, width.

• \vector(A,B){c}. This translates as <pic-vector/>. Same comments as above. Example.

\setlength\unitlength{2pt}
\oval(2,3) \oval(2,3)[4]
\frame{x}
\line(2,3){12.2} \vector(2,3){12.2}

The translation is

<pic-oval xpos=’4’ ypos=’6’/>
<pic-oval xpos=’4’ ypos=’6’ specs=’4’/>
<pic-frame>x</pic-frame>
<pic-line xdir=’2’ ydir=’3’ width=’24.4’/>
<pic-vector xdir=’2’ ydir=’3’ width=’24.4’/>

• \thicklines. The translation is <pic-thicklines/>.

• \thinlines. The translation is <pic-thinlines/>.

• \linethickness{x}. The translation is <pic-linethickness> with attribute size.

• \arc[n](A,B){c}. The translation is an empty <pic-arc> with attributes nbsymb, angle,
xpos, ypos (and also unit-length).

• \bigcircle[n]{c}. The translation is an empty <pic-bigcircle> element with attributes
nbsymb, size, (and also unit-length).

• \circle{c}. The translation is an empty <pic-circle>. For instance

\setlength\unitlength{2pt}
\arc[17](2,3){40} \arc(2,3){40}
\bigcircle[17]{40} \bigcircle{40}
\circle{40}

translates to

<pic-arc angle=’40’ xpos=’4’ ypos=’6’ unit-length=’2’ nbsymb=’17’/>
<pic-arc angle=’40’ xpos=’4’ ypos=’6’ unit-length=’2’/>
<pic-bigcircle size=’40’ unit-length=’2’ nbsymb=’17’/>
<pic-bigcircle size=’40’ unit-length=’2’/>
<pic-circle size=’80’/>

• \curve[n](A1,B1)(A2,B2)(A3,B3),...,(An,Bn).
\closecurve[n](A1,B1)(A2,B2)(A3,B3),...,(An,Bn).
\tagcurve[n](A1,B1)(A2,B2)(A3,B3),...,(An,Bn). These produces curves.

• \dashline[A]{B}[C](A1,B1)(A2,B2)(A3,B3),...,(An,Bn).
\dottedline[A]{B}[C](A1,B1)(A2,B2)(A3,B3),...,(An,Bn).
\drawline[A][C](A1,B1)(A2,B2)(A3,B3),...,(An,Bn). These produce dashes. Example:

INRIA

Tralics, a LATEX to XML translator Part I 173

\setlength\unitlength{2pt}
\curve[12](1,2)(3,4)(4,5)(7,8)
\tagcurve[12](1,2)(3,4)(4,5)(7,8)
\closecurve[12](1,2)(3,4)(4,5)(7,8)
\curve(1,2)(3,4)(4,5)(7,8)
\tagcurve(1,2)(3,4)(4,5)(7,8)
\closecurve(1,2)(3,4)(4,5)(7,8)
\dashline[12]{13}[14](1,2)(3,4)(4,5)(7,8)
\dottedline[12]{13}[14](1,2)(3,4)(4,5)(7,8)
\drawline[12][14](1,2)(3,4)(4,5)(7,8)

The translation is

<pic-curve unit-length=’2’ nbsymb=’12’>1,2</pic-curve><p>(3,4)(4,5)(7,8)

<pic-tagcurve unit-length=’2’ nbsymb=’12’>1,2</pic-tagcurve>(3,4)(4,5)(7,8)

<pic-closecurve unit-length=’2’ nbsymb=’12’>1,2</pic-closecurve>(3,4)(4,5)(7,8)

<pic-curve unit-length=’2’>1,2</pic-curve>(3,4)(4,5)(7,8)

<pic-tagcurve unit-length=’2’>1,2</pic-tagcurve>(3,4)(4,5)(7,8)

<pic-closecurve unit-length=’2’>1,2</pic-closecurve>(3,4)(4,5)(7,8)

<dashline arg3=’14’ arg2=’13’ arg1=’12’>

<point xpos=’2’ ypos=’4’/><point xpos=’6’ ypos=’8’/>

<point xpos=’8’ ypos=’10’/><point xpos=’14’ ypos=’16’/></dashline>

<dottedline arg3=’14’ arg2=’13’ arg1=’12’><point xpos=’2’ ypos=’4’/>

<point xpos=’6’ ypos=’8’/><point xpos=’8’ ypos=’10’/>

<point xpos=’14’ ypos=’16’/></dottedline>

<drawline arg3=’14’ arg1=’12’><point xpos=’2’ ypos=’4’/>

<point xpos=’6’ ypos=’8’/><point xpos=’8’ ypos=’10’/>

<point xpos=’14’ ypos=’16’/></drawline>

6.7 The title page

The configuration file explains how to gather information from a document, in order to construct
a ‘title page’. This mechanism is used for producing a HTML page containing some meta-data for
each Inria Research Report. The author sends to the “gescap” mailing list the beginning of the
document, up to the magic command \makeRR. This is translated by Tralics (that does not care
about missing \end{document}), and a post-processor extracts the <RRstart> element from the
XML result, and converts it to HTML. Consider a sample document:

1 \documentclass[a4paper]{report}
2 \usepackage{RR}
3

4 \providecommand\Tralics{\xbox{Tralics}{}}
5 \def\XML{XML}
6

7 \RRtitle{Tralics, a \LaTeX\ to XML translator\\Partie I}
8 \RRetitle{Tralics, a \LaTeX\ to XML translator\\Part I}
9 \RRauthor{José Grimm\thanks{Email: Jose.Grimm@sophia.inria.fr}}

10

11 \RRprojet{Apics}
12 \RRtheme{\THNum}
13

14 \RRresume{
15 Dans cet article\par nous décrivons le logiciel \Tralics,\par...}
16 \RRabstract{

RT n° 309

174 José Grimm

17 In this paper we describe \Tralics, a \LaTeX\ to \XML\ translator.}
18

19 \RRdate{Aout 2005}
20 \URSophia
21 \motcle{Latex, XML, HTML, MathML, Perl, PostScript, Pdf}
22 \keyword{Latex, XML, HTML, MathML, Perl, PostScript, Pdf}
23

24 \begin{document}
25 \makeRR
26 text

This is translated by Tralics as follows.

<?xml version=’1.0’ encoding=’iso-8859-1’?>

<!DOCTYPE rr SYSTEM ’raweb.dtd’>

<!-- translated from latex by tralics 2.5 (pl7)-->

<rr type=’RR’ chapters=’true’>

<RRstart><UR>

<URSophia/>

</UR>

<title>Tralics, a <LaTeX/> to XML translator Partie I</title>

<etitle>Tralics, a <LaTeX/> to XML translator Part I</etitle>

<projet>Apics</projet>

<motcle>Latex, XML, HTML, MathML, Perl, PostScript, Pdf</motcle>

<keyword>Latex, XML, HTML, MathML, Perl, PostScript, Pdf</keyword>

<resume><p>

Dans cet article</p>

<p>nous décrivons le logiciel <Tralics/>,</p>

<p>...</p></resume>

<abstract><p>

In this paper we describe <Tralics/>, a <LaTeX/> to XML translator.</p></abstract>

<author><auth>José Grimm<note id=’uid1’

place=’foot’>Email: Jose.Grimm@sophia.inria.fr</note></auth>

</author>

<date>Aout 2005</date>

<RRnumber>????</RRnumber>

<Theme>

<THNum/>

</Theme>

<cmdp>nodefault</cmdp>

<cmdA><error l=’1’ c=’Undefined command ’/></cmdA>

<cmdB><error l=’24’ c=’Undefined command ’/></cmdB>

<cmdC><error l=’25’ c=’Undefined command ’/></cmdC>

</RRstart>

<p>text</p>

</rr>

A big part of the transcript file is given later in section 6.11, we sometimes make references to
it. A line number of the form S3 refers to line 3 of the source, C3 is line 3 of the configuration file,
and T3 is line 3 of the transcript file.

We used the following configuration file. It starts like the standard configuration file, with some
modifications near the end. In particular we have added some lines that provoke 4 errors, they
will be explained later. We copy the titlepage section from the standard configuration file, with a
small addition, plus some comments.

1 ## test file for the titlepage
2 ## tralics ident rc=Test $ Revision: 2.1 $

INRIA

Tralics, a LATEX to XML translator Part I 175

3

4 BeginType RR
5 DocType = rr raweb.dtd
6 BeginTitlePage
7 \makeRR <RRstart> "" "type = ’RR’" % CESS
8 alias \makeRT "" "type = ’RT’" % ACSS
9 <UR> - % E

10 \URSophia ?+<UR> % CE
11 \URRocquencourt ?+<UR> % CE
12 alias \URRocq % AC
13 \Paris ?<UR> <Rocquencourt> % CEE
14 \URRhoneAlpes ?+<UR> % CE
15 \URRennes ?+<UR> % CE
16 \URLorraine ?+<UR> % CE
17 \URFuturs ?+<UR d=’true’> % CE
18 \RRtitle q<title> "pas de titre" % CES
19 \RRetitle q<etitle> "no title" % CES
20 \RRprojet <projet> "pas de projet" % CES
21 \motcle <motcle> "pas de motcle" % CES
22 \keyword <keyword> "no keywords" % CES
23 \RRresume p<resume> "pas de resume" % CES
24 \RRabstract p<abstract> "no abstract" % CES
25 \RRauthor + <author> <auth> "Pas d’auteurs" % CEES
26 \RRdate <date> "\monthyearvalfr" % CES
27 \RRNo <RRnumber> "????" % CES
28

29 \RRtheme <> +"pas de theme" % CES
30 <Theme> - % E
31 \THNum ?+<Theme> % CE
32 \THCog ?+<Theme> % CE
33 \THCom ?+<Theme> % CE
34 \THBio ?+<Theme> % CE
35 \THSym ?+<Theme> % CE
36

37 \myself \RRauthor "grimm" % CCS
38 \cmdp <cmdp> +"nodefault" % CES
39 \cmda <cmdA> A"\cmdAval" % CES
40 \cmdb <cmdB> B"\cmdBval" % CES
41 \cmdc <cmdC> C"\cmdCval" % CES
42

43 End
44 BeginCommands
45 \let\thanks\footnote
46 End
47

48 EndType

The syntax in the TitlePage part of a configuration file is the following: each line has some
fields, that can be of type A (the word ‘alias’) or type C (a command, a backslash followed by some
letters), or E (an element name, delimited by less-than and greater-than) or S (a string, delimited
by a double quote). Before each field, you can put one or two modifiers. Only the second and
the third fields can have a modifier. Comments are not necessary. The following combinations are
recognized.

RT n° 309

176 José Grimm

CESS as in \makeRR <RRstart> "" "type = ’RR’". This declaration has to be the first in the
list. It can be given only once. No modifiers are allowed. It defines a command \makeRR, that
can be used only once in the document, after \begin{document}. Each titlepage command
is defined by a number, line T1 shows that this number is 0. Line T118 shows the use. On
the line that follows, we see that the evaluator does not know the name associated to the
command, line T119 shows that this is the command number 0, and line T120 shows the
name.

The effect is to insert the <RRstart> element into the XML tree, after some checks (that may
produce an error like on line T122). In what follows, we shall call it the TPA element. This
element is formed of other elements defined by the titlepage info, the names of these elements
are statically defined, their content is dynamic (i.e., the names depends on the configuration
file, the content on the TEX document). The first string is a list of attributes added to the
TPA element and the second string is a list of attributes added to the document element. In
our example, the first string is empty.

In the case where one of the attributes of the second string has the value ‘only title page’,
then \endinput is evaluated just after the Titlepage command. This means that everything
after the titlepage command is ignored. This is useful if you want to extract the titlepage
information from a document, without converting the whole document.

AESS as in alias \makeRT "" "type = ’RT’". This declaration is valid only after a CESS
declaration (or after another AESS declaration). It defines a command \makeRT that can be
used instead of \makeRR (only one of these commands can be used). The result is the same;
however it can use different attributes. (Same remark as above for special attribute values in
the second string). In what follows, the \TPA command means one of the commands defined
by this rule or the preceding one.

CEES as in \RRauthor + <author> <auth> "Pas d’auteurs". Note that the plus sign is re-
quired before the <author> element. This declaration has as side effect that the TPA element
will contain a <author> element, formed of a number of <auth> elements. Initially there is
only one, initialized with ‘Pas d’auteurs’.

The declaration has another effect, it defines a command \RRauthor, that has to be used
before the \TPA command. It takes one argument, and creates a <auth> element whose
content is the translation of the argument. This element is added to the end of the <author>
element. The command can be used more than once, in the case there are multiple authors.
Note that the default value is removed in case at least one value is given.

CCS as in \myself \RRauthor "JG". The effect is the same as \def\myself{\RRauthor{JG}}.
However, the string argument is not translated, it is taken verbatim.

AC as in alias \URRocq, line C12 and T11. This makes \URrocq an alias for the command
defined on the previous line. Aliasing is achieved via \let.

E as in <UR> -. The dash after the element is required. Another example can be <sUR fr=’unité
de recherche’ en=’research unit’> -. In this second example, we have an element named
<sUR>, that has two attributes. The effect is to put, in the XML result, this element (with
its attributes), and its content is a list of items declared in the configuration file (the list can
be empty).

CE as in \URSophia ?+<UR> or \URFuturs ?+<UR d=’true’>. This has as effect to define a
command, here \URSophia or \URFuturs, that takes no argument, whose effect is to insert,
to the element <UR> (that must be defined by a previous rule), an empty element, whose
name is <URSophia>, and that has the attributes of <UR>. See lines T8 and T21, they show
the element and the attribute.

INRIA

Tralics, a LATEX to XML translator Part I 177

CEE as in \Paris ?<UR> <Rocquencourt>. The effect is to define a command \Paris, that
behaves like \URsophia, but the element created is <Rocquencourt> instead of one named
<Paris>.

CES as \RRtitle <title> "pas de titre". This is the generic command. The element can
have the modifiers p, q, e or E, and the value can have the modifiers +ABC. The effect is to
define a command \RRtitle (or an environment ‘RRtitle’ if the E modifier has been given),
that can be used only before the \TPA command. The argument of the command (or the
content of the environment) is translated, put in a <title> element, and added to the TPA
element.

If no modifier is given for the element, paragraphs are forbidden in the argument. If you want
to use paragraphs (either \par or \\) you must use the P modifier (lower-case letter), as in
lines C23, C24, T33, T35. In the same fashion, a lower case E means environment without
paragraphs, an upper case E means environment with paragraphs. If the q modifier is given,
paragraphs are forbidden, but you can use \\, which is ignored. (In fact, the command reads
an optional star, an optional argument, and the result is replaced by a space). Example, lines
C18, C19, T23, T25. Note that, in this document, there is a \\ in the title, that appears
as a space in the page headings. This is done by redefining \\ to \space, so that optional
arguments are not taken into account. There is a dirty hack in Tralics.

If no modifier is given for the value, then <title>pas de titre</title> is added to the
TPA element in case the command is never used. For instance, line C27 specifies an optional
report number to be some question marks.

Near the end of the titlepage example, we define \cmdp, \cmdA, \cmdB, and \cmdC in a similar
fashion, but add a modifier before the value. None of these commands is used in the TEX
file, and you can observe the following facts.

• Tralics complains with: Error signaled at line 25 of file tptest.tex: No value given for
command \cmdp. In fact, when Tralics sees the \makeRR command, it notices that
\cmdp has not been called and complains, because the plus-sign modifier means: this
value is required. See transcript file, line T122, T123.

• In the case where the modifier is one of A, B or C, then the default value is a LATEX
command (in fact, a list of characters, that may be interpreted as a set of LATEX com-
mands, and must be translated). Tralics removes the double quotes, and inserts the
characters in one of its buffers, or converts the string into a token list that is appended
to the input token list. The non trivial point is: when is the command evaluated?

• In the case of ‘A’ modifier, the command is evaluated just after the \documentclass
command. See line T70. There may be other lines that are not in the TEX source file
that are evaluated there; for instance line C46, which is evaluated just after this one. As
lines 71 to 76 show, an error is signaled, because the command is evaluated too early.

• In the case of ‘B’ modifier, the command is evaluated at begin-document. More precisely
\cmdb{\cmdBval} is tokenised, and the result is added to the token list maintained by
\AtBeginDocument. See lines T64, T65. The second line shows the special \endinput
marker that indicates the end of the character list. These tokens are stored somewhere,
and executed after the \begin{document}, the result can be seen in the transcript
file. Line T104 shows the document-hook, lines T106 to T112 the translation. Is the
\ignorespaces really needed? this is the last command in the document-hook.

• In the case of ‘C’ modifier, the command is evaluated when the TPA command is seen.
See line T124 (the definition) and T125 (End of virtual file). The important point is
that category codes in effect at this moment will be used to convert the string into a
sequence of tokens.

RT n° 309

178 José Grimm

There is special trick for the case where the name of the element associated to the command
is empty. Assume that the configuration file contains \RRtheme <> +"pas de theme", line
C29. In the case where the user does not use \RRtheme, an error will be signaled, and the text
will appear in the resulting XML. If the user says \RRtheme{foo}, then Tralics remembers
the use and issues no complain. Moreover, it reads the argument, and pushes foo\par in
the input stream (the reason why \par is executed is to make sure that Tralics remains in
vertical mode). See lines T88-90, the \par is on line T91.

In fact, in the case of a theme, the input source is on line S12. The author must use commands
defined in the file RR.sty, that contains the following code. Note how the \TH* commands are
defined only locally, and \@RRthmnum has a default value that prints a warning if not overwritten.

\newcommand\@RRthmnum{?\@warning{*** Il manque un numéro de thème INRIA ;
utilisez \string\RRtheme ***}}

\newcommand\RRtheme[1]{\def\RR@theme{#1}}%
\RRtheme{}
\def\eval@theme{%
\begingroup
\def\THCom{\TH@add{COM}{Systèmes communicants}}%
\def\THCog{\TH@add{COG}{Systèmes cognitifs}}%
\def\THSym{\TH@add{SYM}{Systèmes symboliques}}%
\def\THNum{\TH@add{NUM}{Systèmes numériques}}%
\def\THBio{\TH@add{BIO}{Systèmes biologiques}}%
\RR@theme\endgroup}
\newcommand\TH@add[2]{%
\ifx\@RRthmname\@empty
\gdef\@RRthmnum{}%
\else
\xdef\@RRthmname{\@RRthmname\space et }%
\xdef\@RRthmnum{\@RRthmnum\space et }%
\xdef\@RRTHMTYPE{Thèmes}%
\xdef\@RRthmtype{Thèmes}%

\fi
\xdef\@RRthmnum{\@RRthmnum#1}%
\xdef\@RRthmname{\@RRthmname#2}%
}

6.8 Array and Tables

We describe here the implementation of the arrays in Tralics. One has to distinguish between ‘table’
which is an environment in which you can put some objects (in general tables) with a caption;
like the ‘figure’ environment, this generates a floating object. On the other hand, the ‘array’ and
‘tabular’ environments can be used to create a table: the first one is designed for math only,
the second for non-math material. Math tables are described in the chapter about mathematics.
Example

\begin{table}
\begin{tabular}{c} x \\y \end{tabular}
\caption{My caption}
\label{tl}
\end{table}
\begin{tabular}{c} \ref{tl} \end{tabular}

INRIA

Tralics, a LATEX to XML translator Part I 179

The translation is a follows. As you can see, both objects have the same same. If the table contains
a tabular, only one XML object is created.

<table id=’uid1’>
<head>My caption</head>
<row><cell halign=’center’>x</cell></row>
<row><cell halign=’center’>y</cell></row>

</table>
<p><table rend=’inline’><row><cell halign=’center’><ref target=’uid1’/></cell>
</row></table></p>

The tabular environment

You can say \begin{tabular} [pos] {cols} . . . \end{tabular} or \begin{tabular*}{width}
[pos] {cols} . . .\end{tabular*}. In both cases, the result is a <table> element. This element
has a vpos attribute whose value is t, b or c, provided that the optional [pos] argument is one of
[t], [b] or [c]. The element has a width attribute with value xx, provided that the ‘tabular*’
environment has been used and the first argument evaluates to xx as a dimension. The resulting
element consists of some <row> elements, each of which contains some <cell> elements. A more
complicated example:

\begin{tabular*}{10pc}[b]{lrc}
\hline
a&b&c\\[2pt]
\multicolumn{1}{l}{A}&B&C\\\hline
\end{tabular*}

The translation here shows that the name of elements and attributes can be changed.

<Table VPos=’b’ TableWidth=’120.0pt’ rend=’inline’>
<Row SpaceAfter=’2.0pt’ TopBorder=’true’>

<Cell Align=’Cleft’>a</Cell>
<Cell Align=’Cright’>b</Cell>
<Cell Align=’Ccenter’>c</Cell>

</Row>
<Row BottomBorder=’true’>

<Cell Align=’Cleft’ Cols=’1’>A</Cell>
<Cell Align=’Cright’>B</Cell>
<Cell Align=’Ccenter’>C</Cell>

</Row>
</Table>

Interpreting the preamble

The preamble of the array is the quantity marked ‘{cols}’ in the description above. This is a
specification for columns. It specifies how the columns should be formatted. In standard LATEX,
you cannot use more columns than specified; in Tralics, this is not relevant. The TEX primitive is
called \halign, and LATEX has to construct a preamble that matches the requirements of TEX; it
is very difficult to implement the TEX algorithm, so that we make no attempt to implement the
commands. This is an example

\vbox{\offinterlineskip
\hrule
\halign{&\vrule#&
\strut \quad\hfil#\quad\cr

RT n° 309

180 José Grimm

Year Word Population

8000BC 5,000,000
50AD 200,000,000

1650AD 500,000,000
1850AD 1,000,000,000
1945AD 2,300,000,000
1980AD 4,400,000,000

Table 6.1: A TEX table

height2pt &\omit&&\omit&\cr
&Year\hfil&&Word Population&\cr
height2pt &\omit&&\omit&\cr
\noalign{\hrule}
\noalign{\vskip 2pt}
\noalign{\hrule}
height2pt &\omit&&\omit&\cr
&8000BC&&5,000,000&\cr
&50AD&&200,000,000&\cr
&1650AD&&500,000,000&\cr
&1850AD&&1,000,000,000&\cr
&1945AD&&2,300,000,000&\cr
&1980AD&&4,400,000,000&\cr
height2pt &\omit&&\omit&\cr}\hrule}

The table has 5 columns, of the form ABABA, because the preamble has the form &A&B\cr, the
first & marks repetition. Both templates A and B are formed of a 〈u〉 part, then #, then a 〈v〉 part.
In the table, the # means: “stick the text of each column entry in this place”. In the case of A, this
is almost always empty. In some cases, it is ‘height2pt’, case where the values of B are \omit. Here
\omit says that 〈u〉 and 〈v〉 should be omitted; the important point is that the \strut be omitted.
This gives additional vertical space, of exactly 2pt; other rows have (at least) the vertical size of a
\strut. Very often row are too narrow; LATEX has a command \arraystretch that controls this.
Note that A is \vrule# and \vrule is a command that accepts an optional argument. Note how
horizontal rules are inserted in the table.

As the previous example shows, there are three standard column types: c, l and r (centered,
left-aligned, right-aligned). A TEX preamble like \quad\hfil#\quad corresponds to ‘r’ (instead
of \quad, LATEX uses some default intercolumn space that can be modified. You can also say
p{dim}. This should typeset the column in a \parbox[t]{dim}. This feature is not implemented:
the argument is ignored, and p is replaced by c. Note: \parbox currently ignores its argument in
Tralics.

The array.sty package adds two options that take a dimension as argument: ‘m’ and ‘b’. The
‘b’ option is like the ‘p’ option, but bottom-aligned. The ‘m’ option should be used only in math
mode (i.e. for the array environment, and not tabular). In Tralics, there is no difference between
‘b’, ‘m’ and ‘p’.

There is a @{text} option. It inserts ‘text’ in every row, where ‘text’ is processed in math mode
in the ‘array’ environment and in LR mode in the ‘tabular’ and ‘tabular*’ environments. Such
an expression suppresses the space that LATEX normally inserts between columns. For instance,
an array specification like {l@{\hspace{1cm}}l} says that the two columns of text should be
separated by exactly one centimeter. A specification like {@{}c@{}} says that no additional space
should be added neither of the left not the right of the column. An \extracolsep{wd} command

INRIA

Tralics, a LATEX to XML translator Part I 181

can be used inside such an expression. It causes an extra space to appear to the left of all subsequent
columns. Note that \extracolsep expands to \tabskip; this TEX primitive is not implemented
in Tralics. In fact, Tralics ignores an ‘@’ and its argument.

You can use a | for specifying a vertical rule. However, in Tralics you cannot use double or
triple rules. Sorry. There is also a !{...} options that is not implemented.

Every specification (‘l’, ‘r’, ‘c’, ‘p’, ‘b’, ‘m’) can be preceded by a >{xx} declaration, and
followed by a <{yy} declaration. In case of multiple declarations, the last will be executed first.
Said otherwise, >{3}>{b}c<{a}<{z} is the same as >{b3}c<{za}. The effect is to insert ‘b3’
before the cell in the current position, and ‘za’ after the cell. See the last tabular in table 6.2. This
corresponds to 〈u〉 and 〈v〉 parts of a TEX array. Note that the cell is finished when a token is
sensed that indicates either a new cell, a new row or the end of the array. Technically, this means
a &, a \\, or an \end (the end of the environment). A special marker is pushed back after the
‘za’. This is a special endtemplate token in the case of a cell, and a \cr in the case of \\. You
should not use \cr or \crcr outside an array defined by \halign (this is not yet implemented).
You must be careful that the ‘za’ (more generally, the 〈v〉 part) does not contain something that
reads the special end marker. For instance \def\x#1{}\halign{#\x&#\cr 1&2\cr} is an error.
Finally, *{N}{text} can be used instead of N occurrences of ‘text’.

Note. At the end of Chapter 22 of the TEXbook, Knuth gives an example of a table where
the preamble is \centerline{#}. Such a construction cannot be done in Tralics, since a speci-
fication of the form >{\centerline?}c<{?} would transform into \centerline?#? and question
marks cannot be replaced by braces; you could try >{\expandafter\centerline?} and replace
the question mark by something that expands to an open brace but contains as many open braces
as closing ones, for instance \expandafter{\iffalse}\fi. However, it is not possible to put in
the <{?} part something that the parser considers as a closing brace followed by some other text
(otherwise, this closing brace would terminate parsing of the <{?} part).

Knuth says that an entry of the form a}b{c is legitimate, with respect to this template. This
cannot be the case in Tralics, but it would be valid for a template like >{\bgroup\bf}c<{\egroup}.
This justifies that a table has to be terminated by \cr or \crcr. In the case of Tralics, this is not
needed.

New column types

You can add new column types to the list of existing one, using \newcolumntype, with as argument
a letter. For instance:

\newcolumntype{C}{>{$}c<{$}}
\newcolumntype{L}{>{$}l<{$}}
\newcolumntype{R}{>{$}r<{$}}
\newcolumntype{d}[1]{>{\rightdots{#1}}r<{\endrightdots}}
\newcolumntype{X}{CLR}
\begin{tabular}{*{3}{|c|}d{23}X}
\end{tabular}

In this case, the log file will contains (line breaks added before ‘r’)

{Push tabular 2}
array preamble at start: |c||c||c|d{23}X
array preamble after X: |c||c||c|d{23}CLR
array preamble after d: |c||c||c|>{\rightdots {23}}

r<{\endrightdots }CLR
array preamble after C: |c||c||c|>{\rightdots {23}}

r<{\endrightdots }>{$}c<{$}LR
array preamble after L: |c||c||c|>{\rightdots {23}}

RT n° 309

182 José Grimm

r<{\endrightdots }>{$}c<{$}>{$}l<{$}R
array preamble after R: |c||c||c|>{\rightdots {23}}

r<{\endrightdots }>{$}c<{$}>{$}l<{$}>{$}r<{$}
array preamble parse: | c | | c | | c | >>{}

r <<{} >>{} c <<{} >>{} l <<{} >>{} r <<{}

Whenever a tabular is seen, optional arguments are read, and then the first argument is handled.
In a first pass, * is evaluated. This gives the lines marked ‘at start’. After that, the preamble
contains, at toplevel (outside braces) two characters ‘d’ and ‘X’ that are defined to be new column
types. These are evaluated one after the other (the order is irrelevant, here alphabetic order is
used so that X is expanded first). Since the expansion was non trivial, a second try is made. Note
that only a finite numbers of tries are executed. In case of recursion, strange things can happen.
Note how you can use commands with arguments (here ‘d’ takes one argument, it is ‘23’).

The table is empty, on purpose, because there are two undefined macros, moreover, because,
in the current version of Tralics, dollar signs have to be explicit, and not hidden in a >{}...<{}
construction.

Another example

We consider here the following new column types. As you can see, one of them is the character +,
another is the character _. The fact that these characters have special catcodes is irrelevant (they
cannot be of catcode 1 and 2, because this would interfere with brace matching, and they cannot
be of catcode 10, because space characters should be ignored in the preamble).

\newcolumntype{L} {>{\large\bfseries 2}l <{y}|}
\newcolumntype{+} {>{B}l <{D}|}
\newcolumntype{_}{rlc<{x}}
\newcolumntype{x}{>{b}c<{a}}

Consider the four following tables

\begin{tabular*}{5cm}[b]{*{4}{_c|}}
a1&a2&a3&a4 & b1&b2&b3&b4 & c1&c2&c3&c4& d1&d2&d3&d4\\
Wa1&Wa2&Wa3&Wa4 & Wb1&Wb2&Wb3&Wb4 & Wc1&Wc2&Wc3&Wc4& Wd1&Wd2&Wd3&Wd4\\
\end{tabular*}

\begin{tabular}{|ll|rr|cc|}
\hline a&b&c&d&e&f\\
aaa&bbb&ccc&ddd&eee&fff\\
\hline
A&\multicolumn{3}{+}{C}&E&F\\
\multicolumn{2}{|l}{ab}&c&d&e&f\\
\cline{1-3}\cline{6-6}
aaa&bbb&ccc&ddd &eee&fff\\\hline
\end{tabular}

\begin{tabular} {| >{\large 1}c <{x}| L > {\large\itshape 3}c <{z}|}
\hline A&B&C\\\hline 100&10 &1\\\hline
\end{tabular}

\begin{tabular} {| >{\large 1}c <{x}| L > {\large\itshape 3}x <{z}|}
\hline A&B&C\\\hline 100&10 &1
\end{tabular}

INRIA

Tralics, a LATEX to XML translator Part I 183

a1a2 a3x a4 b1b2 b3x b4 c1c2 c3x c4 d1d2 d3x d4
Wa1Wa2Wa3xWa4Wb1Wb2Wb3xWb4Wc1Wc2Wc3xWc4Wd1Wd2Wd3xWd4

a b c d e f
aaa bbb ccc ddd eee fff
A BCD E F
ab c d e f
aaa bbb ccc ddd eee fff

1Ax 2By 3Cz

1100x 210y 31z

1Ax 2By b3Cza

1100x 210y b31za

Table 6.2: Some LATEX tables

You can see the LATEX result on table 6.2. We had to change the \tabcolsep of the first table
to 0, otherwise, it is two wide. Specifying 5cm as width gives the following warning : Overfull
\hbox (197.12044pt too wide) in alignment. The table appears centered because it is followed by
a \kern of 200pt. The XML translation can be found on the Web page. In order to explain what
happens, we consider an example:

\begin{tabular*}{10pc}[b]{l>{x}r<{y}c}
\hline
a&b&c\\[2pt]
a&\omit b&c\\
\multicolumn{1}{l}{A}&B&C\\\hline
\end{tabular*}

We explain now the translation. Line numbers refer to the transcript file given below. We do
not show the start of the job (initialization). The command \par is redefined to do nothing. It is
restored on line 107.

• A first procedure is used to start a row. See example, lines 1, 35, 63, 101. It can take an
argument, that explains that some vertical spacing should be added between rows, this is
the case for line 35. Tokens are read and expanded. Spaces are ignored. If the command
that comes next is \hline, for instance lines 1 and 101, we add a bottom-border attribute
to the previous row (if we are about to start the first row, we mark this as top-border for the
current row). If the command is \cline, see syntax above, we try to add a bottom-border
attribute to some cells (this is not shown on the example). This could fail, because cells can
span more than one column; in this case an row of empty cells may be added. If the next
token is \end, we do nothing (line 101). Otherwise, we create a new \row element (lines 3,
36, and 63) and start a cell.

• When a cell is started, the equivalent of \begingroup is evaluated, and a \cell element
is started. The example table has 9 cells, started on lines 4, 12, 22, 37, 45, 53, 64, 82, 92.
The ‘Push’ line indicates that a <cell> element is created, the line that follows show the
‘begingroup’ command. We consider the first non space token after expansion. This token
may be \omit, as on line 47. The cell is marked omitted; otherwise the 〈u〉 part of the
current template is added. The current token could be \multicolumn. This is a command
that takes 3 arguments: an integer n, a specification c, a value v. The example on lines 66
to 69 shows how n is read; this might change, LATEX uses the equivalent of \setcounter for
parsing the number. The specification is handled in the same fashion as an array preamble

RT n° 309

184 José Grimm

(lines 70-71), it should provide only one cell specification. The integer n specifies the span,
it will be added as an attribute to the cell, but also used to find the position of the next cell
in the row.

The cell is marked ‘omit’; in fact, we push in the current input stream the value of the 〈u〉
part, 〈v〉 part and content (last argument) of \multicolumn. Braces are added for some
obscure reason (see lines 72 and 73).

• Translation proceeds as usual, three events may change it. Assume that we see &, as on lines
7, 15, 40, 77, 85. This is only allowed in a table. A final space in the XML element will be
removed. A \endtemplate token is pushed to be read again. It will be read again on lines
9, 18, 42, 79, and 88. If the cell on the stack is not marked ‘omit’ then the 〈v〉 part of the
template is inserted in the input stream (see lines 17 and 87).

• The translation of \endtemplate is trivial: it is an error if not in a cell. Otherwise, the
current cell is finished, the equivalent of \endgroup is executed, and a new cell is started as
above. On line 10 you can see for instance that the cell and the row are in ‘array’ mode, the
tabular in horizontal mode, the paragraph and the document in vertical mode.

• Assume that we see \\, for instance lines 25, 56, 95. We have explained the meaning of this
command outside a cell. In any case, an optional argument is read (between the command
and the optional argument can be a space or a newline character, so that source line 10 is
read; see line 58). The behavior is like &, except that \cr is pushed instead of \endtemplate.
(in the case of an optional argument, the code is a bit hacked, see line 30).

• The translation of \cr is trivial. We have two versions: one that reads a dimension, and one
that does not. On lines 27-29, you can see how ‘scanglue’ reads to optional argument to \\,
on line 31, you see that ‘scanint’ reads 1703, this is the address in a table of the string that
represents the glue. The command finishes the cell, finishes the row, evaluates \endgroup
and starts a new row.

• The \end command, with argument ‘tabular’ or ‘tabular*’ behaves in a strange manner: If
inside a cell, it behaves like \\, except that it does not insert \endtemplate but itself with
the argument, then a \cr. We have seen that \cr starts a new row. We have seen that no
row is started if the token is \end. The magic is that the top-stack contains the ‘begin’, and
a normal ‘end’ can be used, instead of a hacked one. In our example, the array is terminated
by \\\hline, so that the end occurs when we are about to start a new row. In order to show
this, we have commented out this line, and re-run the example. The result can be see on line
111, a \cr is inserted and evaluated on line 115, the second \end is evaluated on line 19.

• The commands \cr, \crcr, \span, \halign, \valign, \noalign are not implemented as
described in the TEXbook.

This is the transcript file.

1 [7] \hline

2 [8] a&b&c\\[2pt]

3 {Push row 3}

4 {Push cell 4}

5 +stack: level + 3 for cell

6 Character sequence: a.

7 {alignment tab character &}

8 {Text:a}

9 {\endtemplate}

10 {Pop 4: document_v p_v tabular*_h row_a cell_a}

11 +stack: level - 3 for cell

12 {Push cell 4}

INRIA

Tralics, a LATEX to XML translator Part I 185

13 +stack: level + 3 for cell

14 Character sequence: xb.

15 {alignment tab character &}

16 {Text:xb}

17 Character sequence: y.

18 {\endtemplate}

19 {Text:y}

20 {Pop 4: document_v p_v tabular*_h row_a cell_a}

21 +stack: level - 3 for cell

22 {Push cell 4}

23 +stack: level + 3 for cell

24 Character sequence: c.

25 {\\}

26 {Text:c}

27 +scanint for \\->2

28 +scandimen for \\->2.0pt

29 {scanglue 2.0pt}

30 {\cr withargs}

31 +scanint for \cr withargs->1703

32 {Pop 4: document_v p_v tabular*_h row_a cell_a}

33 +stack: level - 3 for cell

34 {Pop 3: document_v p_v tabular*_h row_a}

35 [9] a&\omit b&c\\

36 {Push row 3}

37 {Push cell 4}

38 +stack: level + 3 for cell

39 Character sequence: a.

40 {alignment tab character &}

41 {Text:a}

42 {\endtemplate}

43 {Pop 4: document_v p_v tabular*_h row_a cell_a}

44 +stack: level - 3 for cell

45 {Push cell 4}

46 +stack: level + 3 for cell

47 Character sequence: b.

48 {alignment tab character &}

49 {Text:b}

50 {\endtemplate}

51 {Pop 4: document_v p_v tabular*_h row_a cell_a}

52 +stack: level - 3 for cell

53 {Push cell 4}

54 +stack: level + 3 for cell

55 Character sequence: c.

56 {\\}

57 {Text:c}

58 [10] \multicolumn{1}{l}{A}&B&C\\\hline

59 {\cr}

60 {Pop 4: document_v p_v tabular*_h row_a cell_a}

61 +stack: level - 3 for cell

62 {Pop 3: document_v p_v tabular*_h row_a}

63 {Push row 3}

64 {Push cell 4}

65 +stack: level + 3 for cell

66 {Push argument 5}

67 Character sequence: 1.

68 {Text:1}

RT n° 309

186 José Grimm

69 {Pop 5: document_v p_v tabular*_h row_a cell_a argument_a}

70 array preamble at start: l

71 array preamble parse: l

72 {begin-group character {}

73 +stack: level + 4 for brace

74 Character sequence: A.

75 {end-group character }}

76 +stack: level - 4 for brace

77 {alignment tab character &}

78 {Text:A}

79 {\endtemplate}

80 {Pop 4: document_v p_v tabular*_h row_a cell_a}

81 +stack: level - 3 for cell

82 {Push cell 4}

83 +stack: level + 3 for cell

84 Character sequence: xB.

85 {alignment tab character &}

86 {Text:xB}

87 Character sequence: y.

88 {\endtemplate}

89 {Text:y}

90 {Pop 4: document_v p_v tabular*_h row_a cell_a}

91 +stack: level - 3 for cell

92 {Push cell 4}

93 +stack: level + 3 for cell

94 Character sequence: C.

95 {\\}

96 {Text:C}

97 {\cr}

98 {Pop 4: document_v p_v tabular*_h row_a cell_a}

99 +stack: level - 3 for cell

100 {Pop 3: document_v p_v tabular*_h row_a}

101 [11] \end{tabular*}

102 {\end}

103 {\end tabular*}

104 {\endtabular*}

105 {Pop 2: document_v p_v tabular*_h}

106 {\endgroup (for env)}

107 +stack: restoring \par=\par

108 +stack: ending environment tabular*; resuming document.

109 +stack: level - 2 for environment

110 Character sequence: .

Alternate version, where the final \\\hline is commented out

111 [11] \end{tabular*}

112 {\end}

113 {Text:C}

114 {\end tabular*}

115 {\cr}

116 {Pop 4: document_v p_v tabular*_h row_a cell_a}

117 +stack: level - 3 for cell

118 {Pop 3: document_v p_v tabular*_h row_a}

119 {\end}

120 {\end tabular*}

121 {\endtabular*}

INRIA

Tralics, a LATEX to XML translator Part I 187

6.9 Actions declared in the configuration file

An action is defined by a name, an equals sign, and a value. Optional spaces can be used. The
syntax of DocType and DocAttrib is special. In all other cases, double quotes must delimit the
value. Some names are special, see for instance lines 118-122. All other names contain only letters,
digits, and underscores. If the name starts with ‘xml’ this defines an element. If the name starts
with ‘att’ this defines an attribute. Unless specified otherwise, if a name is given more than once,
the last occurrence wins. These are all the actions:

• makefo, makehtml, checkxml, makepdf, makedvi, dvitops, generatedvi, generateps. These spec-
ify actions for the Raweb. For details see the Web page.

• theme_vals (Raweb only). This defines the list of all Inria Themes. See example line 42.

• section_vals (Raweb only). This defines the list of all valid sections in the Raweb. See
examples on lines 43 and 44. If the first character is a ‘+’ sign, the remaining of the line is
appended to the previous value. You must use a slash as separator.

• ur_vals (Raweb only). This defines the list of all valid UR (name and value) in the Raweb.
See examples on lines 45 and 46. If the first character is a ‘+’ sign, the remaining of the line
is appended to the previous value. You must use a slash as separator. After each name, you
must give a value (if empty, the name will be used). Only letters can be used in the name.

• Language. The main element contains an attribute pair of the form language=’english’.
Specifying ‘Language’ in the configuration file modifies the name of the attribute.

• lang_fr, lang_en. See above. These two commands can parameterize the value of the at-
tribute. The attribute pair is added to the main element: just after translation of the
preamble in the Raweb case, by the titlepage command, or in the at-begin-document hook.
The language chosen is the “default language”.

• url_font. If you specify a value ‘\foo’, then \def\urlfont{\foo} will be added to the
document-hook. The command is empty by default. It is the font used for urls.

• no_footnote_hack. If the value is ‘true’, then no hack is applied to footnotes. As a conse-
quence, the translation of

a\footnote{B}\footnote{C\par D}

is

<p>a<note id=’uid1’ place=’foot’><p>B</p>
</note><note id=’uid2’ place=’foot’><p>C</p>
<p>D</p>
</note></p>

The hack is that, if the footnote holds only a single <p> element, it will be removed, and the
translation is this:

<p>a<note id=’uid1’ place=’foot’>B</note>
<note id=’uid2’ place=’foot’><p>C</p> <p>D</p>
</note></p>

• xml_footnote_name, att_place, att_foot_position. These assignments explain how to change
the name of the <note> element, the attribute name and the attribute value in ‘place=’foot’.
Thus, the translation of the example above can be:

RT n° 309

188 José Grimm

<p>a<Footnote id=’uid1’ Place=’as a note’><p>B</p>
</Footnote><Footnote id=’uid2’ Place=’as a note’><p>C</p>
<p>D</p>
</Footnote></p>

• everyjob. If the value is ‘\foo’, then \everyjob={\foo} will be executed. In fact, this is the
last line of the bootstrap code (it will be inserted just above line ‘[66]’ in the example above).
After these lines are translated, the value of the token list \everyjob is inserted in the input
stream, before the first line of the input file.

• use_font_elt. The default translation of {\tiny \textit{A}B} is

<hi rend=’small’><hi rend=’it’>A</hi></hi><hi rend=’small’>B</hi>

In this case, you cannot change the name of the element: the parameters described below
will change the value of the attribute. If you say ‘use_font_elt=true’, this changes the
translation as follows (the parameters described below will change the name of the element).

<small><it>A</it></small><small>B</small>

• use_all_sizes. By default, Tralics knows only three font sizes, normal, smaller, larger. If the
switch is true, the previous example translates to

<small4><it>A</it></small4><small4>B</small4>

or

<hi rend=’small4’><hi rend=’it’>A</hi></hi><hi rend=’small4’>B</hi>

• xml_font_small, xml_font_large, xml_font_normalsize. These elements specify the names of
small, large and normal size. The translation of {\tiny a}{\normalsize b}{\large c}
can be changed to

<Small>a</Small>b<Large>c</Large>

Currently, no tag is inserted in the case of \normalsize. In some cases, this is wrong.

• xml_font_small1, xml_font_small2, xml_font_small3, xml_font_small4,
xml_font_large1, xml_font_large2, xml_font_large3, xml_font_large4, xml_font_large5.
These specify the names of all font sizes for the case where all sizes are used. For instance,
the translation of

{\tiny a}{\scriptsize b}{\footnotesize c}{\small d}%
{\normalsize e}{\large f}{\Large h}{\LARGE h}{\huge i}{\Huge j}

is

<small4>a</small4><small3>b</small3><small2>c</small2><small1>d</small1>
e<large1>f</large1><large2>h</large2><large3>h</large3><large4>i</large4>
<large5>j</large5>

It can be changed to

<S4>a</S4><S3>b</S3><S2>c</S2><S1>d</S1>e<L1>f</L1>
<L2>h</L2><L3>h</L3><L4>i</L4><L5>j</L5>

• xml_font_upright, xml_font_it, xml_font_slanted, xml_font_sc. These four parameters spec-
ify the shape. The first one is currently unused. The default translation of

{\upshape a}{\itshape b}{\slshape c}{\scshape d}

is

a<hi rend=’it’>b</hi><hi rend=’slanted’>c</hi><hi rend=’sc’>d</hi>

or (using elements):

INRIA

Tralics, a LATEX to XML translator Part I 189

a<it>b</it><slanted>c</slanted><sc>d</sc>

You can change it to:

a<hi rend=’It’>b</hi><hi rend=’Slanted’>c</hi><hi rend=’Sc’>d</hi>

or

a<It>b</It><Slanted>c</Slanted><Sc>d</Sc>

• xml_font_medium, xml_font_bold. These two parameters specify the series. The first is
currently unused.

• xml_font_roman, xml_font_tt, xml_font_sansserif. These three parameters specify the fam-
ily. The first is currently unused. The translation of

{\bfseries a}{\ttfamily b}{\sffamily c}

is

<hi rend=’bold’>a</hi><hi rend=’tt’>b</hi><hi rend=’sansserif’>c</hi>

but you can change it to

<bold>a</bold><tt>b</tt><sansserif>c</sansserif>

or

a<TT>b</TT><SF>c</SF>

• xml_sup_name, xml_sub_name. These two parameters control the name of superscript and
subscripts in text mode. The translation of

a\textsubscript{b}

is by default

<hi rend=’sup’>a</hi><hi rend=’sub’>b</hi>

but can be changed to

<Super>a</Super>_b

• xml_oldstyle_name, xml_overline_name, xml_underline_name. These are font-like commands.
The translation of

\overline{foo}\underline{bar}\oldstylenums{xyz}

is

<hi rend=’overline’>foo</hi><hi rend=’underline’>bar</hi>
<hi rend=’oldstyle’>xyz</hi>

but it can be changed to

<Overline>foo</Overline><Underline>bar</Underline><Oldstyle>xyz</Oldstyle>

• xml_labelitem_name. This specifies the name of the element containing the optional argument
of an \item. Default value is ‘label’.

• xml_item_name. This specifies the name of the element containing an \item. Default value
is ‘item’.

• xml_gloitem_name. This specifies the name of the element containing the first argument of
\glo. Default value is ‘label’.

• xml_list_name. This is the name of the element generated by list environments like itemize,
enumerate and description.

RT n° 309

190 José Grimm

• xml_glo_name. This controls the name of the glossary.

• att_gloss_type. In a glossary, a <list> element is created with attribute type=’gloss’. This
variable can be used to change the value of the attribute.

Example:

\begin{description}
\item [a] etc
\begin{enumerate}
\item [b] etc
\begin{itemize}
\item [c] etc
\end{itemize}
\end{enumerate}
\end{description}
\begin{glossaire}\glo{a}{b}
\end{glossaire}

This is the translation

<list type=’description’><label>a</label>
<item id=’uid1’><p>etc</p>
<list type=’ordered’><label>b</label>
<item id=’uid2’><p>etc</p>
<list type=’simple’><label>c</label>
<item id=’uid3’><p>etc</p>
</item></list>
</item></list>
</item></list>
<list type=’gloss’><head>Glossary</head><label>a</label><item><p>b</p>
</item></list>

It can be changed to:

<List type=’description’><Label>a</Label>
<Item id=’uid1’><p>etc</p>
<List type=’ordered’><Label>b</Label>
<Item id=’uid2’><p>etc</p>
<List type=’simple’><Label>c</Label>
<Item id=’uid3’><p>etc</p>
</Item></List>
</Item></List>
</Item></List>
<List type=’Glossary><Head>Glo</Head><GItem>a</GItem><Item><p>b</p>
</Item></List>

• xml_head_name. This is the name of the <head> element in a title.

• xml_div0_name, xml_div1_name, xml_div2_name, xml_div3_name, xml_div4_name,
xml_div5_name, xml_div6_name. This specifies the name of a section. The default transla-
tion of

\part{A}\chapter{B}\section{C}\subsection{D}
\subsubsection{E}\paragraph{F}\subparagraph{G}
etc
\endsec{\chapter}ok?

INRIA

Tralics, a LATEX to XML translator Part I 191

is

<div0 id=’uid1’><head>A</head>
<div1 id=’uid2’><head>B</head>
<div2 id=’uid3’><head>C</head>
<div3 id=’uid4’><head>D</head>
<div4 id=’uid5’><head>E</head>
<div5 id=’uid6’><head>F</head>
<div6 id=’uid7’><head>G</head>
<p>etc</p>
</div6></div5></div4></div3></div2></div1>
<p>ok?</p>

but you can use these commands to get:

<Part id=’uid1’><Head>A</Head>
<Chapter id=’uid2’><Head>B</Head>
<Section id=’uid3’><Head>C</Head>
<Subsection id=’uid4’><Head>D</Head>
<SubSubsection id=’uid5’><Head>E</Head>
<Paragraph id=’uid6’><Head>F</Head>
<Subparagraph id=’uid7’><Head>G</Head>
<p>etc</p>
</Subparagraph></Paragraph></SubSubsection></Subsection></Section>
</Chapter>
<p>ok?</p>

• xml_fbox_name, xml_scalebox_name, xml_box_name. These control the names of various
box commands.

• att_boxed. This is the name of the attributed added by \fbox, unless it is a includegraphics.

• att_framed. If a figure is in a \fbox, it will have framed=’true’. This changes the name of
the attribute.

• att_box_width. Name of width attribute for commands like \framebox.

• att_box_scale. This controls the name scale attribute, unless in a figure. Example

\fbox{foo}\scalebox{0.3}{foo}\framebox(10,10){foo}\framebox[10pt][11]{foo}

translates as

<fbox rend=’boxed’>foo</fbox>
<scalebox scale=’0.3’>foo</scalebox>
<pic-framebox width=’51.2149’ height=’51.2149’

framed=’true’>foo</pic-framebox>
<fbox width=’10.0pt’ rend=’boxed’>foo</fbox>

You can change it to

<Fbox rend=’Boxed’>foo</Fbox>
<Scalebox Boxscale=’0.3’>foo</Scalebox>
<Box Width=’10’ Height=’10’ Framed=’true’>foo</Box>
<Fbox BoxWidth=’10.0pt’ rend=’Boxed’>foo</Fbox>

• xml_keywords_name. This is the name of the element generated by ‘motscle’ environment.
The default value is ‘keywords’.

RT n° 309

192 José Grimm

• xml_term_name. This is the name of the element used for each keyword. The default value
is ‘term’. For instance,

\begin{motscle} first, second, {(max,+)}\end{motscle}

translates to

<keywords>
<term>first</term>
<term>second</term>
<term>(max,+)</term>
</keywords>

and can be changed to

<Keywords>
<Term>first</Term>
<Term>second</Term>
<Term>(max,+)</Term>
</Keywords>

• xml_mbox_name. This is the name of the element used by the \mbox, unless the result is
trivial.

• xml_rotatebox_name. This is the name of the element generated by \rotatebox.

• att_rotate_angle. This controls the name of the angle attribute in the case of \rotatebox.

• att_noindent. This is the name of the noindent attribute.

• xml_subfigure_name. This is the name of the element generated by \subfigure. The default
value is ‘subfigure’.

• xml_text_name. This is the name of the element generated by \subfigure, containing the
required argument.

• xml_subfigure_name. This is the name of the element generated by \subfigure, containing
the optional argument.

For instance, the translation of

\noindent \mbox{\xbox{a}{b}} \rotatebox{30}{x}
\subfigure[a]{b}

is

<p noindent=’true’>
<mbox><a>b</mbox>
<pic-rotatebox angle=’30’>x</pic-rotatebox>
<subfigure><leg>a</leg><texte>b</texte></subfigure>

</p>

but can be changed to

<p Noindent=’true’>
<Mbox><a>b</Mbox>
<Rotatebox RotAngle=’30’>x</Rotatebox>
<Subfigure><SFCapt>a</SFCapt><SFText>b</SFText></Subfigure>

</p>

• xml_topic_name, xml_topic_title, att_topic_num. These are used for topics (Raweb only).
The default values for the elements are ‘topic’ and ‘t_titre’, for the attribute it is ‘num’.

INRIA

Tralics, a LATEX to XML translator Part I 193

• xml_caption_name, xml_graphics_name, xml_figure_env_name, xml_table_env_name,
xml_Table_name. These names are used by some commands and environments. For instance,
consider the following code. Normally, you put a tabular in a table, an image in a figure (as
in B or D), this gives smaller XML objects.

\begin{figure}[htbp]
\begin{tabular}{c}a\end{tabular}
\caption{A}
\begin{table}[htbp]
\begin{tabular}{c}a\end{tabular}
\caption{B}
\end{table}
\begin{table}[htbp]
\includegraphics{a}
\caption{C}
\end{table}
\begin{figure}[htbp]
\includegraphics{a}
\caption{D}
\end{figure}

This is the default translation:

<figure rend=’array’ id=’uid1’>
<head>A</head>
<p>
<table rend=’inline’>
<row><cell halign=’center’>a</cell></row></table></p>

</figure>
<table id=’uid2’>

<head>B</head><row><cell halign=’center’>a</cell></row>
</table>
<table id=’uid3’><head>C</head><figure rend=’inline’ file=’a’/></table>
<figure file=’a’ id=’uid4’><head>D</head></figure>

This shows how all names can be parameterized.

<Figureenv rend=’array’ id=’uid1’>
<Caption><p>A</p></Caption>
<p>
<Table rend=’inline’>
<Row><Cell Align=’Ccenter’>a</Cell></Row></Table></p>

</Figureenv>
<Tableenv id=’uid2’>

<Caption><p>B</p></Caption>
<Row><Cell Align=’Ccenter’>a</Cell></Row></Tableenv>

<Tableenv id=’uid3’>
<Caption><p>C</p></Caption><Figure rend=’inline’ File=’a’/></Tableenv>

<Figureenv File=’a’ id=’uid4’>
<Caption><p>D</p></Caption></Figureenv>

• xml_xref_name. This is the name of the element associated to \url.

• xml_scaption_name. Special caption.

• xml_project_name. This controls the name of the <projet> element.

RT n° 309

194 José Grimm

• xml_accueil_name. This controls the name of the <accueil> element.

• xml_composition_ra_name. This controls the name of the <composition> element. In fact, in
Raweb mode, when a environment ‘RAsection’ is closed, and the argument of the environment
is the value of this variable, then modules inside the element are replaced by their content.

• xml_xtheorem_name. This controls the theorem names. This is an example of theorems

\theorembodyfont{\sl}
\theoremstyle{break}
\newtheorem{Cor}{Corollary}
\theoremstyle{plain}
%\newcounter{section}
\setcounter{section}{17}
\newtheorem{Exa}{Example}[section]
{\theorembodyfont{\rmfamily}\newtheorem{Rem}{Remark}}
\theoremstyle{marginbreak}
\newtheorem{Lem}[Cor]{lemma}
\theoremstyle{change}
\theorembodyfont{\small\itshape} \newtheorem{Def}[Cor]{Definition}
\theoremheaderfont{\scshape}
\def\Lenv#1{\texttt{#1}}

\begin{Cor}
This is a sentence typeset in the theorem environment \Lenv{Cor}.

\end{Cor}
\begin{Exa}
This is a sentence typeset in the theorem environment \Lenv{Exa}.

\end{Exa}
\begin{Rem}
This is a sentence typeset in the theorem environment \Lenv{Rem}.

\end{Rem}
\begin{Lem}[Ben User]
This is a sentence typeset in the theorem environment \Lenv{Lem}.

\end{Lem}
\begin{Def}[Very Impressive definition]
This is a sentence typeset in the theorem environment \Lenv{Def}.

\end{Def}

This is the translation:

<p><hi rend=’sc’>Corollary 1 </hi><hi rend=’slanted’>This
is a sentence typeset in the theorem environment </hi>
<hi rend=’slanted’><hi rend=’tt’>Cor</hi></hi><hi rend=’slanted’>.</hi></p>

<p><hi rend=’sc’>Example 17.1 </hi><hi rend=’slanted’>This
is a sentence typeset in the theorem environment </hi>
<hi rend=’slanted’><hi rend=’tt’>Exa</hi></hi><hi rend=’slanted’>.</hi></p>

<p><hi rend=’sc’>Remark 1 </hi>This is a sentence typeset in
the theorem environment <hi rend=’tt’>Rem</hi>.</p>

<p><hi rend=’sc’>lemma 2 (Ben User) </hi><hi rend=’slanted’>
This is a sentence typeset in the theorem environment </hi><hi
rend=’slanted’><hi rend=’tt’>Lem</hi></hi><hi rend=’slanted’>.</hi></p>

INRIA

Tralics, a LATEX to XML translator Part I 195

<p><hi rend=’sc’>Definition 3 (Very Impressive definition) </hi><hi
rend=’small’/><hi rend=’small’><hi rend=’it’>

This is a sentence typeset in the theorem environment </hi></hi>
<hi rend=’small’><hi rend=’it’><hi rend=’tt’>Def</hi></hi></hi>
<hi rend=’small’><hi rend=’it’>.</hi></hi></p>

This may be changed to:

<Xtheorem id=’uid1’><p><Sc>Corollary 1 </Sc><Slanted>This
is a sentence typeset in the theorem environment </Slanted>
<Slanted><TT>Cor</TT></Slanted><Slanted>.</Slanted></p>

</Xtheorem>
<Xtheorem id=’uid2’><p><Sc>Example 17.1 </Sc><Slanted>This

is a sentence typeset in the theorem environment </Slanted>
<Slanted><TT>Exa</TT></Slanted><Slanted>.</Slanted></p>

</Xtheorem>
<Xtheorem id=’uid3’><p><Sc>Remark 1 </Sc>This

is a sentence typeset in the theorem environment <TT>Rem</TT>.</p>
</Xtheorem>
<Xtheorem id=’uid4’><p><Sc>lemma 2 (Ben User) </Sc><Slanted>

This is a sentence typeset in the theorem environment </Slanted>
<Slanted><TT>Lem</TT></Slanted><Slanted>.</Slanted></p>

</Xtheorem>
<Xtheorem id=’uid5’><p><Sc>Definition 3 (Very Impressive definition) </Sc>

<S1/><S1><It>
This is a sentence typeset in the theorem environment </It></S1><S1><It>
<TT>Def</TT></It></S1><S1><It>.</It></S1></p>

</Xtheorem>

• xml_theorem_head. This controls the element that contains the optional argument of the
theorem, if the alternate syntax is used (default is alt_head, shown as AltHead below).

• xml_theorem_name. This is used for theorems. The value of the variable is unused. Re-
defining the command changes the meaning of \@begintheorem to \@xbegintheorem. As a
consequence the translation of the previous theorem is:

<Xtheorem style=’break’ type=’Cor’ id=’uid1’>
<Head>Corollary</Head>
<p>This is a sentence typeset in the theorem environment <TT>Cor</TT>.</p>

</Xtheorem>
<Xtheorem style=’plain’ type=’Exa’ id=’uid2’>

<Head>Example</Head>
<p>This is a sentence typeset in the theorem environment <TT>Exa</TT>.</p>

</Xtheorem>
<Xtheorem style=’plain’ type=’Rem’ id=’uid3’>

<Head>Remark</Head>
<p>This is a sentence typeset in the theorem environment <TT>Rem</TT>.</p>

</Xtheorem>
<Xtheorem style=’marginbreak’ type=’Lem’ id=’uid4’>

<Head>lemma</Head>
<AltHead>Ben User</AltHead>
<p>This is a sentence typeset in the theorem environment <TT>Lem</TT>.</p>

</Xtheorem>
<Xtheorem style=’change’ type=’Def’ id=’uid5’>

RT n° 309

196 José Grimm

<Head>Definition</Head>
<AltHead>Very Impressive definition</AltHead>
<p>This is a sentence typeset in the theorem environment <TT>Def</TT>.</p>

</Xtheorem>

• xml_biblio This controls the name of the element that contains the bibliography.

• att_box_pos. This controls the name of the pos attribute in a box.

• att_full. If a star follows \circle, an attribute pair full=’true’ is added. This controls the
attribute name.

• att_table_width. Name of width attribute for a table.

• att_pos. Used by environments like ‘minipage’, for the horizontal position.

• att_vpos. Used by ‘minipage’, for the vertical position.

• att_inner_pos. Used by ‘minipage’, for the third optional argument.

• xml_figure_name. This controls the name of the element produced by \includegraphics.

• att_file, att_angle, att_scale, att_clip, att_width, att_height. These control the attribute
names set by \includegraphics.

The translation of

\fbox{\includegraphics[clip=, angle=90, scale=3, %
width=10cm, height=3m]{A}}

is

<figure framed=’true’ rend=’inline’ height=’3m’
width=’10cm’ scale=’3’ angle=’90’ clip=’true’ file=’A’/>

You can change it to

<Figure Framed=’true’ rend=’inline’ Height=’3m’ Width=’10cm’ Scale=’3’
Angle=’90’ Clip=’true’ File=’A’/>

• att_rend, att_fbox_rend. These control the name of the rend attribute (why is ‘fbox’ a special
case ?)

• att_flush_right, att_flush_left, att_quotation, att_quote, att_centering. Environments like
‘center’, etc., modify (locally) an integer that asks each <p> to get an attribute rend with value
‘flushed-left’, ‘flushed-right’, ‘center’ or ‘quote’. These environment execute the equivalent
of \par just after the \begin (before the paramter is changed), and just after the \end. the
\centering command modifies the integer and the attribute list of the current \p. These
assignments show how to control the value of the attribute. Example:

\begin{center}A\end{center}
\begin{quote}A\end{quote}
\begin{quotation}A\end{quotation}
\begin{flushleft}A\end{flushleft}
\begin{flushright}A\end{flushright}

The default translation is

<p rend=’center’>A</p>
<p rend=’quoted’>A</p>
<p rend=’quoted’>A</p>
<p rend=’flushed-left’>A</p>
<p rend=’flushed-right’>A</p>

INRIA

Tralics, a LATEX to XML translator Part I 197

but you can change it to

<p rend=’Centered’>A</p>
<p rend=’Quote’>A</p>
<p rend=’Quotation’>A</p>
<p rend=’RaggedRight’>A</p>
<p rend=’RaggedLeft’>A</p>

• att_cell_bottomborder, att_cell_leftborder, att_cell_rightborder, att_cell_topborder. Specify-
ing a \hline in a table, or vertical rules may add attributes to cells. The name is left-border
etc. The name of the attribute can be changed via these commands.

• att_row_spaceafter, att_row_spacebefore. Inside a table, an optional argument to \\ asks for
a space before or after the current row. This is done by adding a spacebefore and spaceafter
attribute. The name of the attribute can be changed via this variable.

• att_cols, att_halign, att_cell_left, att_cell_right, att_cell_center. The translation of a com-
mand of the form \multicolumn{1}{c}{...} is a cell, with attributes halign=‘center’ and
cols=‘1’. These parameters allow you to change the name of the attribute name or value.

• xml_table_name, xml_row_name, xml_cell_name. These commands allow you to change the
names of the elements <table>, <row> and <cell>.

The default translation of

\begin{tabular}{|r|l|c}
\hline a&b&\multicolumn{1}{c|}{x}\hline\\[2pt]
\end{tabular}
$\begin{array}{|r|l|}
a&b&\multicolumn{1}{c|}{x}\\[2pt]
\end{array}$

is

<table rend=’inline’>
<row spaceafter=’2.0pt’ top-border=’true’>
<cell left-border=’true’ halign=’right’ right-border=’true’>a</cell>
<cell halign=’left’ right-border=’true’>b</cell>
<cell halign=’center’ right-border=’true’ cols=’1’>x</cell>

</row>
</table>
<formula type=’inline’>

<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mtable>
<mtr>

<mtd columnalign=’right’><mi>a</mi></mtd>
<mtd columnalign=’left’><mi>b</mi></mtd>
<mtd columnspan=’1’><mi>x</mi></mtd>

</mtr>
</mtable>

</math>
</formula>

You can parameterize the <table>, using all parameters shown above. Of course, it has no
influence on the <mtable>.

<Table rend=’inline’>
<Row SpaceAfter=’2.0pt’ TopBorder=’true’>

RT n° 309

198 José Grimm

<Cell LeftBorder=’true’ Align=’Cright’ RightBorder=’true’>a</Cell>
<Cell Align=’Cleft’ RightBorder=’true’>b</Cell>
<Cell Align=’Ccenter’ RightBorder=’true’ cols=’1’>x</Cell>

</Row>
</Table>

• att_prenom, att_full_first, att_nom, att_particule, att_junior, xml_bpers_name. These control
typesetting of \bpers in a bibliography. The default translation of

\bpers[E]{A}{B}{C}{D}

is

<bpers prenom=’A’ part=’B’ nom=’C’ junior=’D’ prenomcomplet=’E’/>

and you can change it to

<Pers First=’A’ von=’B’ Last=’C’ Junior=’D’ Full=’E’/>

• xml_picture_name. This can be used to change the name of the element created by the
‘picture’ environment (it is ‘picture’).

• xml_bezier_name. This specifies the name of the element produced by \bezier.

• xml_put_name. This specifies the name of the element produced by \put.

• xml_arc_name. This specifies the name of the element produced by \arc.

• xml_scaleput_name. This specifies the name of the element produced by \scaleput.

• xml_multiput_name. This specifies the name of the element produced by \multiput.

• xml_line_name. This specifies the name of the element produced by \line.

• xml_vector_name. This specifies the name of the element produced by \vector.

• xml_oval_name. This specifies the name of the element produced by \oval.

• xml_dashline_name. This specifies the name of the element produced by \dashline.

• xml_dottedline_name. This specifies the name of the element produced by \dottedline.

• xml_circle_name. This specifies the name of the element produced by \circle.

• xml_bigcircle_name. This specifies the name of the element produced by \bigcircle.

• xml_curve_name. This specifies the name of the element produced by \curve.

• xml_closecurve_name. This specifies the name of the element produced by \closecurve.

• xml_tagcurve_name. This specifies the name of the element produced by \tagcurve.

• xml_thicklines_name. This specifies the name of the element produced by \thicklines.

• xml_thinlines_name. This specifies the name of the element produced by \thinlines.

• xml_linethickness_name. This specifies the name produced by \linethickness.

• att_xpos, att_ypos, att_xdir, att_ydir, att_size, att_dx, att_dy, att_repeat. These attributes
are used by some picture commands.

INRIA

Tralics, a LATEX to XML translator Part I 199

b
b

b
b

b
b

b
b

b
bb

b
b

b
b

b
b

b
b

b
bb

"
"

"
"

"
"

"
"

"
""

"
"

"
"

"
"

"
"

"
""

"
"

"
"

"
"

"
"

"
""

b
b

b
b

b
b

b
b

b
bb

..............
...

..............
.........
.......
.......
.......
.......
.......
.......
.......
.......
.................
.............

..
..........

cm 1 2 3 4 5

�

��

�

��u u

car

H
H

HY

Figure 6.1: Two examples of a picture environment from [2]

• att_xscale, att_xscaley, att_yscale, att_yscalex. Commands \xscale, \xscaley, \yscale,
and \yscalex read values and store them somewhere. Whenever needed, they are put as
attribute on the elements. The default name of the argument is the name of the command,
but this can be changed.

• att_curve_nbpts. Commands like \arc, \bigcircle, \closecurve, \tagcurve, \curve take
an optional argument, the number of points. It will be stored in an attribute, named ‘nb-
symb’. This parameter can change the name of the attribute.

• att_unit_length. Inside a picture environment, the value of \unitlength is stored in an
attribute named ‘unit-length’. It can be changed using this command.

The example of a picture environment is

\setlength{\unitlength}{1.8mm}
\begin{picture}(40,30)
\thicklines
\multiput(20,5)(20,12){2} {\line(0,-1){2}\line(-5,3){20}}
\multiput(20,5)(-20,12){2} {\line(5,3){20}}
\put(20,3){\line(5,3){20}}
\put(20,3){\line(-5,3){20}}
\put(0,15){\line(0,1){2}}
\linethickness{1pt}
\put(20,5) {
\renewcommand{\xscale}{1}
\renewcommand{\xscaley}{-1}
\renewcommand{\yscale}{0.6}
\renewcommand{\yscalex}{0.6}
\scaleput(10,10){\bigcircle{10}}
\put(0,-2){%

\scaleput(10,10){\arc(5,0){121}}
\scaleput(10,10){\arc(5,0){-31}}}}

\end{picture}

it is translated as

<picture width=’204.85962’ height=’153.64471’>

<pic-thicklines/>

<pic-multiput xpos=’102.42981’ ypos=’25.60745’

RT n° 309

200 José Grimm

repeat=’2’ dx=’102.42981’ dy=’61.45789’>

<pic-line xdir=’0’ ydir=’-1’ width=’10.24298’/>

<pic-line xdir=’-5’ ydir=’3’ width=’102.42981’/>

</pic-multiput>

<pic-multiput xpos=’102.42981’ ypos=’25.60745’

repeat=’2’ dx=’-102.42981’ dy=’61.45789’>

<pic-line xdir=’5’ ydir=’3’ width=’102.42981’/>

</pic-multiput>

<pic-put xpos=’102.42981’ ypos=’15.36447’>

<pic-line xdir=’5’ ydir=’3’ width=’102.42981’/></pic-put>

<pic-put xpos=’102.42981’ ypos=’15.36447’>

<pic-line xdir=’-5’ ydir=’3’ width=’102.42981’/></pic-put>

<pic-put xpos=’0’ ypos=’76.82236’>

<pic-line xdir=’0’ ydir=’1’ width=’10.24298’/></pic-put>

<pic-linethickness size=’1pt’/>

<pic-put xpos=’102.42981’ ypos=’25.60745’>

<pic-scaleput xpos=’51.2149’ ypos=’51.2149’

xscale=’1’ yscale=’0.6’ xscaley=’-1’ yscalex=’0.6’>

<pic-bigcircle size=’10’ unit-length=’5.12149’/>

</pic-scaleput>

<pic-put xpos=’0’ ypos=’-10.24298’>

<pic-scaleput xpos=’51.2149’ ypos=’51.2149’ xscale=’1’

yscale=’0.6’ xscaley=’-1’ yscalex=’0.6’>

<pic-arc angle=’121’ xpos=’25.60745’ ypos=’0’ unit-length=’5.12149’/>

</pic-scaleput>

<pic-scaleput xpos=’51.2149’ ypos=’51.2149’ xscale=’1’

yscale=’0.6’ xscaley=’-1’ yscalex=’0.6’>

<pic-arc angle=’-31’ xpos=’25.60745’ ypos=’0’ unit-length=’5.12149’/>

</pic-scaleput>

</pic-put>

</pic-put>

</picture>

You can parameterize it so as to obtain this

<Picture Width=’204.85962’ Height=’153.64471’>

<Thicklines/>

<Multiput Xpos=’102.42981’ Ypos=’25.60745’ Repeat=’2’

Dx=’102.42981’ Dy=’61.45789’>

<Line Xdir=’0’ Ydir=’-1’ Width=’10.24298’/>

<Line Xdir=’-5’ Ydir=’3’ Width=’102.42981’/>

</Multiput>

<Multiput Xpos=’102.42981’ Ypos=’25.60745’ Repeat=’2’

Dx=’-102.42981’ Dy=’61.45789’>

<Line Xdir=’5’ Ydir=’3’ Width=’102.42981’/>

</Multiput>

<Put Xpos=’102.42981’ Ypos=’15.36447’>

<Line Xdir=’5’ Ydir=’3’ Width=’102.42981’/>

</Put>

<Put Xpos=’102.42981’ Ypos=’15.36447’>

<Line Xdir=’-5’ Ydir=’3’ Width=’102.42981’/>

</Put>

<Put Xpos=’0’ Ypos=’76.82236’>

<Line Xdir=’0’ Ydir=’1’ Width=’10.24298’/>

</Put>

<Linethickness Size=’1pt’/>

<Put Xpos=’102.42981’ Ypos=’25.60745’>

<Scaleput Xpos=’51.2149’ Ypos=’51.2149’ Xscale=’1’ Yscale=’0.6’

INRIA

Tralics, a LATEX to XML translator Part I 201

XscaleY=’-1’ YscaleX=’0.6’>

<Bigcircle Size=’10’ Ulength=’5.12149’/>

</Scaleput>

<Put Xpos=’0’ Ypos=’-10.24298’>

<Scaleput Xpos=’51.2149’ Ypos=’51.2149’ Xscale=’1’

Yscale=’0.6’ XscaleY=’-1’ YscaleX=’0.6’>

<Arc Angle=’121’ Xpos=’25.60745’ Ypos=’0’ Ulength=’5.12149’/>

</Scaleput>

<Scaleput Xpos=’51.2149’ Ypos=’51.2149’ Xscale=’1’

Yscale=’0.6’ XscaleY=’-1’ YscaleX=’0.6’>

<Arc Angle=’-31’ Xpos=’25.60745’ Ypos=’0’ Ulength=’5.12149’/>

</Scaleput>

</Put>

</Put>

</Picture>

A second example:

\newcounter{cms}
\setlength{\unitlength}{1mm}
\begin{picture}(50,39)
\put(0,7){\makebox(0,0)[bl]{cm}}
\multiput*(10,7)(10,0){5}{% remove the * for latex
\addtocounter{cms}{1}\makebox(0,0)[b]{\arabic{cms}}}

\put(15,20){\circle{6}}
\put(30,20){\circle{6}}
\put(15,20){\circle*{2}}
\put(30,20){\circle*{2}}
\put(10,24){\framebox(25,8){car}}
\put(10,32){\vector(-2,1){10}}
\multiput(1,0)(1,0){49}{\line(0,1){2.5}}
\multiput(5,0)(10,0){5}{\line(0,1){3.5}}
\thicklines
\put(0,0){\line(1,0){50}}
\multiput(0,0)(10,0){6}{\line(0,1){5}}
\end{picture}

The translation is

<Picture Width=’142.26303’ Height=’110.96516’>

<Put Xpos=’0’ Ypos=’19.91682’>

<Box Width=’0’ Height=’0’ BoxPos=’bl’>cm</Box>

</Put>

<Put Xpos=’28.4526’ Ypos=’19.91682’>

<Box Width=’0’ Height=’0’ BoxPos=’b’>1</Box></Put>

<Put Xpos=’56.90521’ Ypos=’19.91682’>

<Box Width=’0’ Height=’0’ BoxPos=’b’>2</Box></Put>

<Put Xpos=’85.35782’ Ypos=’19.91682’>

<Box Width=’0’ Height=’0’ BoxPos=’b’>3</Box></Put>

<Put Xpos=’113.81042’ Ypos=’19.91682’>

<Box Width=’0’ Height=’0’ BoxPos=’b’>4</Box></Put>

<Put Xpos=’142.26303’ Ypos=’19.91682’>

<Box Width=’0’ Height=’0’ BoxPos=’b’>5</Box></Put>

<Put Xpos=’42.67891’ Ypos=’56.90521’><Circle Size=’17.07156’/></Put>

<Put Xpos=’85.35782’ Ypos=’56.90521’><Circle Size=’17.07156’/></Put>

<Put Xpos=’42.67891’ Ypos=’56.90521’>

<Circle Full=’true’ Size=’5.69052’/></Put>

<Put Xpos=’85.35782’ Ypos=’56.90521’>

RT n° 309

202 José Grimm

<Circle Full=’true’ Size=’5.69052’/></Put>

<Put Xpos=’28.4526’ Ypos=’68.28625’>

<Box Width=’71.13152’ Height=’22.76208’ Framed=’true’>car</Box></Put>

<Put Xpos=’28.4526’ Ypos=’91.04834’>

<Vector Xdir=’-2’ Ydir=’1’ Width=’28.4526’/></Put>

<Multiput Xpos=’2.84526’ Ypos=’0’ Repeat=’49’ Dx=’2.84526’ Dy=’0’>

<Line Xdir=’0’ Ydir=’1’ Width=’7.11314’/>

</Multiput>

<Multiput Xpos=’14.2263’ Ypos=’0’ Repeat=’5’ Dx=’28.4526’ Dy=’0’>

<Line Xdir=’0’ Ydir=’1’ Width=’9.9584’/></Multiput>

<Thicklines/>

<Put Xpos=’0’ Ypos=’0’><Line Xdir=’1’ Ydir=’0’ Width=’142.26303’/></Put>

<Multiput Xpos=’0’ Ypos=’0’ Repeat=’6’ Dx=’28.4526’ Dy=’0’>

<Line Xdir=’0’ Ydir=’1’ Width=’14.2263’/>

</Multiput>

</Picture>

6.10 A sample configuration file

This is the file we used in the section above.

tralics ident rc=helloconf.

BeginType article

DocType = Article classes.dtd

#DocAttrib =Foo \World

DocAttrib =A \specialyear

DocAttrib =B \tralics

no_footnote_hack = "true"

xml_footnote_name = "Footnote"

att_place ="Place"

att_foot_position = "as a note"

everyjob="\message{OK}"

url_font= "\it"

att_flush_right = "RaggedLeft"

att_flush_left = "RaggedRight"

att_quote = "Quote"

att_quotation = "Quotation"

att_centering = "Centered"

att_cell_bottomborder ="BottomBorder"

att_cell_topborder ="TopBorder"

att_cell_leftborder ="LeftBorder"

att_cell_rightborder ="RightBorder"

att_row_spaceafter = "SpaceAfter"

att_row_spacebefore = "SpaceBefore"

att_halign="Align"

att_cell_left = "Cleft"

att_cell_right = "Cright"

att_cell_center = "Ccenter"

xml_table_name = "Table"

xml_cell_name = "Cell"

xml_row_name = "Row"

xml_fbox_name = "Fbox"

xml_scalebox_name = "Scalebox"

xml_box_name = "Box"

att_framed="Framed"

xml_figure_name = "Figure"

INRIA

Tralics, a LATEX to XML translator Part I 203

att_file = "File"

att_angle = "Angle"

att_rotate_angle = "RotAngle"

att_scale = "Scale"

att_clip = "Clip"

att_width = "Width"

att_height = "Height"

xml_bezier_name = "Bezier"

xml_put_name = "Put"

xml_scaleput_name = "Scaleput"

xml_multiput_name = "Multiput"

xml_arc_name = "Arc"

xml_line_name = "Line"

xml_vector_name = "Vector"

xml_oval_name = "Oval"

xml_circle_name = "Circle"

xml_bigcircle_name = "Bigcircle"

xml_dashline_name = "Dashline"

xml_drawline_name = "Drawline"

xml_dottedline_name = "Dottedline"

xml_curve_name = "Curve"

xml_closecurve_name = "CloseCurve"

xml_tagcurve_name = "Tagcurve"

xml_thicklines_name = "Thicklines"

xml_thinlines_name = "Thinlines"

xml_linethickness_name = "Linethickness"

xml_subfigure_name = "Subfigure"

xml_keywords_name = "Keywords"

xml_term_name = "Term"

xml_mbox_name = "Mbox"

xml_topic_name = "Topic"

xml_topic_title = "TopicTitle"

att_inner_pos = "InnerPos"

att_vpos = "VPos"

att_noindent = "Noindent"

att_boxed = "Boxed"

att_box_width = "BoxWidth"

att_table_width = "TableWidth"

att_pos = "Pos"

att_full = "Full"

att_xpos = "Xpos"

att_ypos = "Ypos"

att_xdir = "Xdir"

att_ydir = "Ydir"

att_rotate_angle = "RotAngle"

att_topic_num = "Num"

xml_font_small= "Small"

xml_font_large= "Large"

xml_font_normal= "Normal"

use_all_sizes="true"

xml_font_small1 = "S1"

xml_font_small2 = "S2"

xml_font_small3 = "S3"

xml_font_small4 = "S4"

RT n° 309

204 José Grimm

xml_font_large1 = "L1"

xml_font_large2 = "L2"

xml_font_large3 = "L3"

xml_font_large4 = "L4"

xml_font_large5 = "L5"

xml_font_upright = "Upright"

xml_font_sc = "Sc"

xml_font_slanted = "Slanted"

xml_font_it = "It"

xml_font_sansserif = "SF"

xml_font_bold = "B"

xml_font_tt = "TT"

xml_sup_name = "Super"

xml_sub_name = "Sub"

xml_oldstyle_name = "Oldstyle"

xml_overline_name = "Overline"

xml_underline_name = "Underline"

xml_div0_name= "Part"

xml_div1_name= "Chapter"

xml_div2_name= "Section"

xml_div3_name= "Subsection"

xml_div4_name= "SubSubsection"

xml_div5_name= "Paragraph"

xml_div6_name= "Subparagraph"

att_full_first ="Full"

att_prenom="First"

att_nom="Last"

att_particule="von"

att_junior ="Junior"

xml_bpers_name = "Pers"

xml_caption_name = "Caption"

xml_graphics_name = "Graphics"

xml_figure_env_name = "Figureenv"

xml_table_env_name = "Tableenv"

xml_Table_name = "TTable"

xml_xref_name = "Xref"

xml_rotatebox_name = "Rotatebox"

xml_list_name = "List"

xml_head_name = "Head"

xml_scaption_name = "Scaption"

xml_glo_name= "Glo"

xml_project_name = "Projet"

xml_accueil_name = "Accueil"

xml_composition_ra_name

xml_theorem_name = "XXtheorem"

xml_theorem_head = "AltHead"

xml_xtheorem_name = "Xtheorem"

xml_biblio "Biblio"

att_box_pos = "BoxPos"

att_box_scale="Boxscale"

xml_picture_name = "Picture"

att_unit_length = "Ulength"

att_curve_nbpts = "Nbpts"

att_xscale = "Xscale"

att_xscaley = "XscaleY"

att_yscale = "Yscale"

INRIA

Tralics, a LATEX to XML translator Part I 205

att_yscalex = "YscaleX"

att_repeat = "Repeat"

att_dx = "Dx"

att_dy = "Dy"

att_size = "Size"

xml_labelitem_name = "Label"

xml_item_name = "Item"

xml_gloitem_name = "GItem"

xml_texte_name = "SFText"

xml_leg_name = "SFCapt"

att_gloss_type = "Glossary"

use_font_elt ="true"

att_cols = "Cols"

End

End

6.11 Trace of titlepage

This is a part of the transcript file for the titlepage command.

1 Defining \makeRR as \TitlePageCmd 0

2 main <RRstart -- type = ’RR’/>

3 Defining \makeRT as \TitlePageCmd 1

4 main <RRstart -- type = ’RT’/>

5 Defining \UR as \TitlePageCmd 2

6 ur_list <UR/>

7 Defining \URSophia as \TitlePageCmd 3

8 ur <URSophia/>

9 Defining \URRocquencourt as \TitlePageCmd 4

10 ur <URRocquencourt/>

11 Defining \URRocq as alias to \URRocquencourt

12 Defining \Paris as \TitlePageCmd 6

13 ur <Rocquencourt/>

14 Defining \URRhoneAlpes as \TitlePageCmd 7

15 ur <URRhoneAlpes/>

16 Defining \URRennes as \TitlePageCmd 8

17 ur <URRennes/>

18 Defining \URLorraine as \TitlePageCmd 9

19 ur <URLorraine/>

20 Defining \URFuturs as \TitlePageCmd 10

21 ur <URFuturs d=’true’/>

22 Defining \RRtitle as \TitlePageCmd 11

23 usual <title/> (flags -par)

24 Defining \RRetitle as \TitlePageCmd 12

25 usual <etitle/> (flags -par)

26 Defining \RRprojet as \TitlePageCmd 13

27 usual <projet/>

28 Defining \motcle as \TitlePageCmd 14

29 usual <motcle/>

30 Defining \keyword as \TitlePageCmd 15

31 usual <keyword/>

32 Defining \RRresume as \TitlePageCmd 16

33 usual <resume/> (flags +par)

34 Defining \RRabstract as \TitlePageCmd 17

RT n° 309

206 José Grimm

35 usual <abstract/> (flags +par)

36 Defining \RRauthor as \TitlePageCmd 18

37 list <author/> and <auth/>

38 Defining \RRdate as \TitlePageCmd 19

39 usual <date/>

40 Defining \RRNo as \TitlePageCmd 20

41 usual <RRnumber/>

42 Defining \RRtheme as \TitlePageCmd 21

43 usual </> (flags +list)

44 Defining \Theme as \TitlePageCmd 22

45 ur_list <Theme/>

46 Defining \THNum as \TitlePageCmd 23

47 ur <THNum/>

48 Defining \THCog as \TitlePageCmd 24

49 ur <THCog/>

50 Defining \THCom as \TitlePageCmd 25

51 ur <THCom/>

52 Defining \THBio as \TitlePageCmd 26

53 ur <THBio/>

54 Defining \THSym as \TitlePageCmd 27

55 ur <THSym/>

56 Defining \myself as \TitlePageCmd 28

57 list? <grimm/> and <auth/>

58 Defining \cmdp as \TitlePageCmd 29

59 usual <cmdp/> (flags +list)

60 Defining \cmda as \TitlePageCmd 30

61 usual <cmdA/> (flags +A)

62 Defining \cmdb as \TitlePageCmd 31

63 usual <cmdB/> (flags +B)

64 [1] \cmdb{\cmdBval}

65 ++ End of virtual file.

66 Defining \cmdc as \TitlePageCmd 32

67 usual <cmdC/> (flags +C)

68 [1] \documentclass[a4paper]{report}

69 ...

70 [1] \cmda{\cmdAval}

71 {(Unknown)}

72 {\titlepage 30}

73 {\titlepage 30=\cmda}

74 {Push cmdA 1}

75 Error signaled at line 1 of file tptest.tex:

76 Undefined command \cmdAval.

77 ...

78 [8] \RRetitle{Tralics, a \LaTeX\ to XML translator\\Part I}

79 {(Unknown)}

80 {\titlepage 12}

81 {\titlepage 12=\RRetitle}

82 {Push etitle 1}

83 ...

84 [12] \RRtheme{\THNum}

85 {(Unknown)}

86 {\titlepage 21}

87 {\titlepage 21=\RRtheme}

88 {(Unknown)}

89 {\titlepage 23}

90 {\titlepage 23=\THNum}

INRIA

Tralics, a LATEX to XML translator Part I 207

91 {\par}

92 [13]

93 ...

94 [24] \begin{document}

95 {\begin}

96 {\begin document}

97 +stack: level + 2 for environment

98 {\document}

99 +stack: ending environment document; resuming document.

100 +stack: level - 2 for environment

101 +stack: level set to 1

102 [1] \let\do\noexpand\ignorespaces

103 ++ End of virtual file.

104 atbegindocumenthook= \cmdb {\cmdBval }\let \AtBeginDocument \@notprerr \let \do

105 \noexpand \ignorespaces

106 {(Unknown)}

107 {\titlepage 31}

108 {\titlepage 31=\cmdb}

109 {Push cmdB 1}

110 Error signaled at line 24 of file tptest.tex:

111 Undefined command \cmdBval.

112 {Pop 1: document_v cmdB_t}

113 {\let}

114 {\let \AtBeginDocument \@notprerr}

115 {\let}

116 {\let \do \noexpand}

117 {\ignorespaces}

118 [25] \makeRR

119 {(Unknown)}

120 {\titlepage 0}

121 {\titlepage 0=\makeRR}

122 Error signaled at line 25 of file tptest.tex:

123 No value given for command \cmdp.

124 [1] \cmdc{\cmdCval}

125 ++ End of virtual file.

126 {(Unknown)}

127 {\titlepage 32}

128 {\titlepage 32=\cmdc}

129 {Push cmdC 1}

130 Error signaled at line 25 of file tptest.tex:

131 Undefined command \cmdCval.

132 {Pop 1: document_v cmdC_t}

133 {Push p 1}

134 [26] text

135 ...

136 Output written on tptest.xml (1059 bytes).

137 There were 4 errors.

138 (For more information, see transcript file tptest.log)

6.12 Bootstrap code

At the start of the run, a given number of commands are defined using the following LATEX code:

[1] %% Begin bootstrap commands for latex

[2] \def\lq{‘}\def\rq{’}\def\lbrack{[}\def\rbrack{]}%

[3] \countdef\count@=255 \dimendef\dimen@=0

RT n° 309

208 José Grimm

[4] \newdimen\z@ \z@=0pt \chardef\@ne=1 \chardef\tw@=2

[5] \chardef\active=13 \def\@empty{}%

[6] \countdef\m@ne=10 \m@ne=-1 %

[7] \dimendef\epsfxsize11 \dimendef\epsfysize12\relax

[8] \def\sloppypar{\par\sloppy}\def\endsloppypar{\par}%

[9] {\catcode‘_=13\global\let__}%

[10] {\catcode‘\#=13\global\let#\#}%

[11] {\catcode‘\&=13\global\def&{\char‘&}}%

[12] \catcode‘\~=13\def~{\nobreakspace}%

[13] \newdimen\evensidemargin \newdimen\oddsidemargin

[14] \def\null{\hbox{}}%

[15] \let\dotsc\cdots \let\dotsb\cdots \let\dotsi\cdots \let\dotsm\cdots

[16] \let\mathbbm\mathbb

[17] \let\Href\htmladdnormallink\def\urlfont{}%

[18] \newenvironment{cases}{\left\{\begin{array}{ll}}{\end{array}\right.}%

[19] \def\binom{\genfrac()\z@{}}\def\dbinom{\genfrac(){0pt}0}

\def\tbinom{\genfrac(){0pt}1}%

[20] \def\space{ }

[21] \def\thinspace{ }\def\@firstofone#1{#1}%

[22] \let\verbatimfont\tt\let\verbatimnumberfont\small

[23] \newskip\itemsep\newdimen\itemindent

[24] \newskip\labelsep\newdimen\labelwidth

[25] \newdimen\leftmargin\newdimen\rightmargin

[26] \newdimen\leftmargini\newdimen\leftmarginii

[27] \newdimen\leftmarginiii\newdimen\leftmarginiv

[28] \newdimen\leftmarginv\newdimen\leftmarginvi

[29] \newskip\parsep \let\pounds\textsterling

[30] \long\def \@gobble #1{}\long\def \@gobbletwo #1#2{}

[31] \def\markboth#1#2{\gdef\@themark{{#1}}\mark{{#1}{#2}}}

[32] \def\markright#1{\expandafter\markboth\@themark{#1}}

[33] \let\chaptermark\@gobble\let\sectionmark\@gobble

[34] \let\subsectionmark\@gobble\let\subsubsectionmark\@gobble

[35] \let\paragraphmark\@gobble\let\subparagraphmark\@gobble

[36] \newdimen\fboxsep\fboxsep = 3pt \newdimen\fboxrule

[37] \def\xscale{1.0}\def\yscale{1.0}\def\xscaley{0.0}\def\yscalex{0.0}

[38] \def\@height{height} \def\@depth{depth} \def\@width{width}

[39] \def\@minus{minus}\def\@plus{plus}\def\hb@xt@{\hbox to}

[40] \def\stretch#1{\z@ \@plus #1fill\relax}

[41] \newskip\fill \fill = 0pt plus 1fill

[42] \theoremstyle{plain}\theoremheaderfont{\bfseries}

[43] \def\@namedef#1{\expandafter\def\csname #1\endcsname}

[44] \def\@nameuse#1{\csname #1\endcsname}

[45] \def\I{I}\def\J{J}

[46] \countdef\c@page=0 \c@page=1\def\cl@page{}

[47] \def\thepage{\@arabic\c@page}

[48] \def\@roman#1{\romannumeral#1}\def\@Roman#1{\Romannumeral#1}

[49] \pretolerance=100 \tolerance=200

[50] \def\mod#1{~\@mod\;#1}

[51] \def\bmod#1{\;\@mod\;#1}

[52] \def\pmod#1{\pod{\@mod\; #1}}

[53] \def\pod#1{~(#1)}

[54] \newcount\c@bottomnumber\newcommand\bottomfraction{.3}

[55] \newcount\c@topnumber\newcommand\topfraction{.7}

[56] \def\date#1{\xmlelt{date}{#1}}

[57] \newcounter{enumi}\newcounter{enumii}\newcounter{enumiii}

\newcounter{enumiv}

INRIA

Tralics, a LATEX to XML translator Part I 209

[58] \newcommand\labelitemi{\textbullet}

[59] \newcommand\labelitemii{\normalfont\bfseries \textendash}

[60] \newcommand\labelitemiii{\textasteriskcentered}

[61] \newcommand\labelitemiv{\textperiodcentered}

[62] \newcounter {part}\newcounter {chapter}\newcounter {section}[chapter]

\newcounter {subsection}[section]\newcounter {subsubsection}[subsection]

\newcounter {paragraph}[subsubsection]

\newcounter {subparagraph}[paragraph]

[63] \def\refname{Bibliography}\def\footcitesep{, }\def\citepunct{, }

[64] \newcommand\newblock{\hskip .11em plus.33em minus.07em}

[65] %% End bootstrap commands for latex

The transcript file of Tralics contains a line for each use of \dimendef or friends. Here is the
list of all standard definitions.

{\countdef \count@=\count255}

{\dimendef \dimen@=\dimen0}

{\dimendef \z@=\dimen13}

{\chardef \@ne=\char1}

{\chardef \tw@=\char2}

{\chardef \active=\char13}

{\countdef \m@ne=\count10}

{\dimendef \epsfxsize=\dimen11}

{\dimendef \epsfysize=\dimen12}

{\dimendef \evensidemargin=\dimen14}

{\dimendef \oddsidemargin=\dimen15}

{\skipdef \itemsep=\skip11}

{\dimendef \itemindent=\dimen16}

{\skipdef \labelsep=\skip12}

{\dimendef \labelwidth=\dimen17}

{\dimendef \leftmargin=\dimen18}

{\dimendef \rightmargin=\dimen19}

{\dimendef \leftmargini=\dimen20}

{\dimendef \leftmarginii=\dimen21}

{\dimendef \leftmarginiii=\dimen22}

{\dimendef \leftmarginiv=\dimen23}

{\dimendef \leftmarginv=\dimen24}

{\dimendef \leftmarginvi=\dimen25}

{\skipdef \parsep=\skip13}

{\dimendef \fboxsep=\dimen26}

{\dimendef \fboxrule=\dimen27}

{\skipdef \fill=\skip14}

{\countdef \c@page=\count0}

{\countdef \c@bottomnumber=\count11}

{\countdef \c@topnumber=\count12}

{\countdef \c@enumi=\count13}

{\countdef \c@enumii=\count14}

{\countdef \c@enumiii=\count15}

{\countdef \c@enumiv=\count16}

{\countdef \c@part=\count17}

{\countdef \c@chapter=\count18}

{\countdef \c@section=\count19}

{\countdef \c@subsection=\count20}

{\countdef \c@subsubsection=\count21}

{\countdef \c@paragraph=\count22}

{\countdef \c@subparagraph=\count23}

RT n° 309

210 José Grimm

6.13 The puzzle

The only requirements for the xii file is that ~ is an active character, \\ has category code 0, % is a
comment character, the end of line character is as usual. The file modifies the category code of 7,
F, j and P, in such a way that ‘jdefjx71F71P’ is the same as ‘\def\x#1{#1}’. This is one way of
making the code incomprehensible, the other is to use commands so that ‘six’, ‘geese’ and ‘laying’
are replaced by ‘/sx’, ‘Yegse’ and ‘RyalD’. The programs make the letter H active and defines it
via ‘AHHFLP’. For those who want to write puzzles like this one: is it possible to avoid doubling
the H? Without using all these strange commands, the file could be written as

\let~\catcode ~‘A13 \defA#1{~‘#113\def}

AZZ{}APP{\par}AXX#1{\bigskip On the #1 day of Christmas my true love gave to me}

ABB{PZAZZ{and }a partridge in a pear tree.}

ACC{Ptwo turtle doves}

ADD{Pthree french hens}

AEE{Pfour calling birds}

AFF{Pfive gold rings}

AGG{Psix geese a laying}

AHH{Pseven swans a swimming}

AII{Peight maids a milking}

AJJ{Pnine ladies dancing}

AKK{Pten lords a leaping}

ALL{Peleven pipers piping}

AMM{Ptwelve drummers drumming}

\def\F#1#2#3{}AVV#1\fi{\fi#1}

ATT#1 #2,#3:{\if.#3.\elseT#3:\fiX{#1}\U#1 #2,#3:}

\def\U#1#2#3#4 #5,#6{\F#1#2#3#5\if:#6\elseV\U#6\fi}

Ttwelfth M,eleventh L,tenth K,ninth J,eighth I,seventh H,sixth G,fifth

F,fourth E,third D,second C,first B,:\bye

The size of the file is 698 characters (compare to the 767 of the xii file). Note how the double loop
is constructed. The xii file is made obscure by replacing B, C, D etc., by expression that have
the same expansion, using instead of \F a command that uses some characters (because ‘nine’
and ‘ninth’ start with the same letters, etc.) An interesting point is that we can write a smaller
file, with all loops unrolled, replacing the last 5 lines by the following (this makes a total of 642
characters):

X{first}BX{second}CBX{third}DCBX{fourth}EDCBX{fifth}FEDCBX{sixth}GFEDCB

X{seventh}HGFEDCBX{eighth}IHGFEDCBX{ninth}JIHGFEDCBX{tenth}KJIHGFEDCB

X{eleventh}LKJIHGFEDCBX{twelfth}MLKJIHGFEDCB\bye

6.14 Images

We give here some examples of the \includegraphics command. We consider a file with the
following content. Notice that the clip attribute is set to true if ‘clip’ appears in the list, whether
or not a value has been given. A colon and an underscore in a file name is never interpreted. The
extension is always removed:

\let\IC=\includegraphics

\def\FILE{Logo-INRIA-couleur}

\IC[angle=0,width=3cm,clip=]{\FILE}

\IC[angle=20,width=.5\textwidth,height=.3\textheight]{\FILE.ducon}

\IC[angle=0,width=\columnwidth,height=\textheight]{\FILE.foo_bar}

{\language=1 a:c

\IC[angle=0, =foo,,width=3cm,scale=1,scale=2,clip]{../../a_b:c}

INRIA

Tralics, a LATEX to XML translator Part I 211

}

\framebox{\includegraphics{x_.ps}}

We continue with an example of \epsfbox.

{
\setlength\epsfxsize{50pt}
\setlength\epsfysize{60pt}
\epsfbox{x.ps}
\setlength\epsfysize{70pt}
\epsfbox{x.eps}
\epsfbox{x.epsf}

}

Tralics pretends that there are 4 different images. The translation is:

<figure rend=’inline’ clip=’true’ width=’3cm’ file=’Logo-INRIA-couleur’/>

<figure rend=’inline’ height=’6.cm’ width=’7.5cm’

angle=’20’ file=’Logo-INRIA-couleur’/>

<figure rend=’inline’ height=’20.cm’ width=’15.cm’ file=’Logo-INRIA-couleur’/>

a :c

<figure rend=’inline’ clip=’true’ scale=’2’ width=’3cm’ file=’../../a_b:c’/>

<figure framed=’true’ rend=’inline’ file=’x_’/></p>

<figure height=’60.0pt’ width=’50.0pt’ rend=’inline’ file=’x’/>

<figure height=’70.0pt’ rend=’inline’ file=’x’/>

<figure rend=’inline’ file=’x’/>

The file ‘\jobname.img’ contains the following. The last number is the number of times the
image was included. The second number explains in which format the file has been found. Whether
or not the image file is found is irrelevant. The information given in the file is for information only.

images info, 1=ps, 2=eps, 4=epsi, 8=epsf, 16=pdf, 32=png, 64=gif

see_image("Logo-INRIA-couleur",1+16,3);

see_image("../../a_b:c",0,1);

see_image("x_",0,1);

see_image("x",0,3);

RT n° 309

212 José Grimm

INRIA

Tralics, a LATEX to XML translator Part I 213

Index

\!, 48, 75, 120
\", 113
(, 75
\(, 73
), 75
\), 73
\,, 75, 120
\-, 118
., 75
\., 113
\/, 148
\:, 48, 75
\;, 48, 75
<, 75
\=, 113
>, 75
\>, 48, 75
\@, 148
\@@end, 141
\@Alph, 42, 69
\@Roman, 42
\@alph, 42, 69
\@arabic, 42, 68
\@fnsymbol, 42, 69
\@gobble, 147
\@gobbletwo, 147
\@ifnextchar, 147
\@ifstar, 147
\@ifundefined, 146
\@mathcal, 78
\@mod, 76
\@ne, 52
\@pers, 163
\@roman, 42
\@stpelt, 68
\@whiledim, 69, 131
\@whilenum, 69, 131
\@whilesw, 69, 131
[, 75
\[, 73
\#, 118
#, 19, 51
$, 7, 72

\%, 75, 120
%, 52, 66
\&, 75, 120
\´, 113
\\, 47
\ˆ, 112
^, 21, 110
_, 75, 120
\`, 113
\~, 113
~, 48
\$, 75, 120
|, 75
\|, 77
\{, 75, 121
\}, 75, 121
], 75
\], 73

\a, 68, 112
\AA, 118
\aa, 118
\above, 82
\abovedisplayshortskip, 34
\abovedisplayskip, 34
\abovewithdelims, 82
\accent, 9, 111
\active, 6
\acute, 77
\addattributestodocument, 144
\AddAttToCurrent, 32, 144
\AddAttToLast, 32, 144
address, 96
\addtocounter, 42, 68, 134
\addtolength, 42, 68, 133
\adjdemerits, 36
\advance, 34, 42, 54
\AE, 118
\ae, 118
\afterassignment, 32
\aftergroup, 67
\aleph, 76
align, 73

RT n° 309

214 José Grimm

\allowbreak, 148
\Alph, 42, 69
\alph, 42, 69
\alpha, 75
\amalg, 76
\AND, 135
\and, 135
\angle, 75
\aparaitre, 143
\approx, 76
apr, 95
\arabic, 42
\arc, 172, 198, 199
\arccos, 76
\arcsin, 76
\arctan, 76
\arg, 76
array, 74, 178
article, 95
\ast, 76
\asymp, 76
\AtBeginDocument, 130
\AtEndDocument, 25, 130
\atop, 82
\atopwithdelims, 82
att-angle, 196
att-box-pos, 196
att-box-scale, 191
att-box-width, 191
att-boxed, 191
att-cell-bottomborder, 197
att-cell-center, 197
att-cell-left, 197
att-cell-leftborder, 197
att-cell-right, 197
att-cell-rightborder, 197
att-cell-topborder, 197
att-centering, 196
att-clip, 196
att-cols, 197
att-curve-nbpts, 199
att-dx, 198
att-dy, 198
att-fbox-rend, 196
att-file, 196
att-flush-left, 196
att-flush-right, 196
att-foot-position, 187
att-framed, 191
att-full, 196
att-full-first, 198
att-gloss-type, 190

att-halign, 197
att-height, 196
att-inner-pos, 196
att-junior, 198
att-noindent, 192
att-nom, 198
att-particule, 198
att-place, 187
att-pos, 196
att-prenom, 198
att-quotation, 196
att-quote, 196
att-rend, 196
att-repeat, 198
att-rotate-angle, 192
att-row-space-after, 197
att-row-space-before, 197
att-scale, 196
att-size, 198
att-table-width, 196
att-topic-num, 152, 192
att-unit-length, 199
att-vpos, 196
att-width, 196
att-xdir, 198
att-xpos, 198
att-xscale, 199
att-xscaley, 199
att-ydir, 198
att-ypos, 198
att-yscale, 199
att-yscalex, 199
aug, 95
author, 96

\b, 68, 113
\backslash, 76
\badness, 37
\bar, 77
\baselineskip, 34
\batchmode, 147
\bauthors, 97, 103
\beditors, 103
\begin, 23
\begingroup, 23
\belowdisplayshortskip, 34
\belowdisplayskip, 34
\beta, 75
\bezier, 171, 198
\bf, 5, 46, 78
\bfseries, 46, 189
\bgroup, 26, 66

INRIA

Tralics, a LATEX to XML translator Part I 215

\bibitem, 94
\bibliography, 104
\bibliographystyle, 104
\Big, 84
\big, 14, 84
\bigbreak, 50
\bigcap, 76
\bigcirc, 76
\bigcircle, 172, 198, 199
\bigcup, 76
\Bigg, 84
\bigg, 84
\Biggl, 84
\biggl, 84
\Bigl, 84
\bigl, 84
\bigodot, 76
\bigoplus, 76
\bigotimes, 76
\bigskip, 49
\bigsqcup, 76
\bigtriangledown, 76
\bigtriangleup, 76
\biguplus, 76
\bigvee, 76
\bigwedge, 76
\bindnasrepma, 76
\binoppenalty, 35
\bm, 11
Bmatrix, 74
bmatrix, 74
\boldmath, 11
book, 95
booklet, 95
booktitle, 96
\boolean, 134
\bot, 75
\botmark, 69, 141
\bottom, 75
\bowtie, 76
\Box, 76
\box, 38
\boxmaxdepth, 37
bp, 39
bpers, 97
\bpers, 104, 198
\break, 148
\breve, 77
\brokenpenalty, 35
\bullet, 76
\bye, 151

\C, 68, 113
\c, 68, 113
\cal, 78
calc, 43
\calc, 134
\cap, 76
\caption, 142
cases, 74
\catcode, 6, 38
catperso, 162, 163
cc, 39
\cdot, 76
\cdots, 77
center, 148, 196
\centering, 141, 148, 196
\centerline, 148
\cfoot, 146
chapter, 96
\chapter, 142, 190
\char, 9, 10, 110
\chardef, 26
\chead, 146
check, 150
\check, 77
checkxml, 187
\chi, 75
\circ, 76
\circle, 172, 196, 198
\citation, 97, 104
\cite, 93
\cite@one, 93
\citepunct, 93
\cititem, 103
\cleaders, 143
\cleardoublepage, 148
\clearpage, 148
\cline, 183
\closecurve, 172, 198, 199
\closein, 137
\closeout, 139
\clubpenalty, 35
\clubsuit, 76
cm, 39
\columnwidth, 38
comment, 95, 148
conference, 95
configfile, 150
\cong, 76
\coprod, 76
\copy, 26
\copyright, 118
\cos, 76

RT n° 309

216 José Grimm

\cosh, 76
\cot, 76
\coth, 76
\count@, 26
\countdef, 26
coursenotes, 95
\cr, 181, 184
\crcr, 181, 184
crossref, 96
\csc, 76
\csname, 22, 28, 51, 68
\cup, 76
\curve, 172, 198, 199

\D, 68, 113
\d, 68, 113
\dag, 118
\dagger, 76
\dashbox, 170
\dashline, 172, 198
\dashv, 76
\day, 36
dd, 39
\ddag, 118
\ddagger, 76
\ddddot, 77
\dddot, 77
\ddot, 77
\ddots, 77
debug, 150
dec, 95
\DeclareRobustCommand, 23
\declaretopic, 162, 163
\def, 7
\defaulthyphenchar, 36, 45
\defaultskewchar, 36, 45
\DefineShortVerb, 115
\DefineVerbatimEnvironment, 117
\deg, 76
\delcode, 38
\delimiter, 88
\delimiterfactor, 36
\delimitershortfall, 37
\Delta, 75
\delta, 75
\depthof, 134
description, 145, 190
\det, 76
\dfrac, 77
\DH, 118
\dh, 118
\Diamond, 76

\diamond, 76
\diamondsuit, 76
\dim, 76
\dimendef, 26
\ding, 148
dir, 150
\discretionary, 147
\displayindent, 37
displaymath, 73
\displaystyle, 14, 80, 83
\displaywidowpenalty, 35
\displaywidth, 37
\div, 76
\divide, 34, 42
\DJ, 118
\dj, 118
document, 5, 24, 95
\documentclass, 5, 130
doi, 96
\dot, 77
\doteq, 76
\dots, 75, 120
\dottedline, 172, 198
\doublehyphendemerits, 36
\Downarrow, 75, 77
\downarrow, 75, 77
\dp, 38
\drawline, 172
\dump, 7
dvitops, 187

\edef, 29, 30, 59
edition, 96
editor, 96
\egroup, 26, 67
\eject, 50
\ell, 75
\else, 54, 56, 69
em, 39
\em, 47
\emergencystretch, 37
\emph, 6, 47
\empty, 63
\emptyset, 75
\end, 23
\endcitation, 104
\endgroup, 23, 24
\endguillemets, 118
\endinput, 69, 139, 140
\endlinechar, 36, 47, 59, 109
\endsec, 142, 190
\ensuremath, 79, 84

INRIA

Tralics, a LATEX to XML translator Part I 217

entnames, 149
enumerate, 145, 190
enumi, 37
enumii, 37
enumiii, 37
enumiv, 37
\epsfbox, 147, 211
\epsffile, 147
\epsfig, 147
\epsfxsize, 38
\epsfysize, 38
\epsilon, 75
eqnarray, 73
\eqno, 59, 71
\eqref, 142
\equal, 60, 134
equation, 73
\equiv, 76
\eres, 47
\errhelp, 35
\errmessage, 141
\error, 148
\errorcontextlines, 37
\errorstopmode, 147
\escapechar, 28, 36
\eta, 75
\evensidemargin, 38
\everycr, 35
\everydisplay, 35, 74
\everyhbox, 32, 35, 143
everyjob, 188
\everyjob, 35, 188
\everymath, 35, 74
\everypar, 35
\everyvbox, 32, 35, 143
\everyxbox, 32, 35, 143
ex, 39
\exhyphenpenalty, 35
\exists, 76
\exp, 76
\expandafter, 22, 27, 52, 54, 55, 68
externalprog, 150

\f, 68, 113
\fam, 36, 46, 88
\fancyfoot, 146
\fancyhead, 146
\fancyhf, 146
\fancyinternal, 146
\fancyplain, 146
\fbox, 170, 191
\fboxrule, 38, 169

\fboxsep, 38, 169
feb, 95
\fg, 118
\fi, 29, 54, 56, 69
fill, 39
\fill, 35
\fillbreak, 50
\finalhyphendemerits, 36
findwords, 150
\firstmark, 69, 141
\flat, 75, 120
\floatingpenalty, 36
flushleft, 148, 196
flushright, 148, 196
\fnsymbol, 42, 69
\font, 9
\fontdimen, 45
\fontencoding, 45
\fontfamily, 45
\fontname, 68
\fontseries, 45
\fontshape, 45
\fontsize, 45
foot, 93, 96
\footcite, 93
\footcitepre, 93
\footcitesep, 93
\footnote, 142, 163, 187
\footnotesize, 47, 188
\forall, 76
\FPabs, 122
\FPadd, 122
\FParccos, 126
\FParcsin, 126
\FParcsincos, 126
\FPclip, 122
\FPcos, 125
\FPcot, 125, 126
\FPcsolve, 126
\FPdiv, 123
\FPe, 124
\FPeval, 128
\FPexp, 124
\FPifeq, 124
\FPifgt, 124
\FPifint, 124
\FPiflt, 124
\FPifneg, 124
\FPifpos, 124
\FPifzero, 124
\FPindent, 122
\FPln, 124

RT n° 309

218 José Grimm

\FPlsolve, 126
\FPmax, 123
\FPmin, 123
\FPmul, 122
\FPneg, 122
\FPpascal, 124
\FPpow, 125
\FPprint, 121, 122
\FPqqsolve, 127
\FPqsolve, 126
\FPrand, 124
\FProot, 125
\FPround, 124
\FPseed, 37, 124
\FPset, 121, 122
\FPsgn, 122
\FPsin, 125
\FPsincos, 125
\FPsub, 122
\FPtan, 125, 126
\FPtancot, 125, 126
\FPtruncate, 124
\FPupn, 127
\frac, 77
\frame, 172
\framebox, 169, 170, 191
\frown, 76
\fsc, 147
\futurelet, 27, 62
\fvset, 117

\Gamma, 75
\gamma, 75
\gcd, 76
\gdef, 23, 68
\ge, 76
generatedvi, 187
generateps, 187
\genfrac, 77, 79
\geq, 76
\geqslant, 76
\gets, 76
\gg, 76
\glo, 190
\global, 19, 42, 67, 138
\globaldefs, 36
glossaire, 190
glossary, 145
\glue, 32
\goodbreak, 50
\grave, 77
\gtrless, 76

\guillemets, 118
\guillemotleft, 17, 118
\guillemotright, 17, 118

\H, 68, 113
\h, 68, 113
\halign, 184
\hangafter, 36
\hangindent, 37
\hat, 77
\hbadness, 36
\hbar, 75
\hbox, 23, 80, 83, 94, 143
\hdots, 77
\heartsuit, 76
\heightof, 134
help, 149
\hfil, 48
\hfill, 48
\hfilneg, 48
\hfuzz, 37
\hline, 183
\hoffset, 37
\holdinginserts, 37
\hom, 76
\hookleftarrow, 76
\hookrightarrow, 76
howpublished, 96
\Href, 142
\href, 142
\hrule, 148
\hsize, 37
\hskip, 48, 49, 80
\hspace, 48, 49, 83
\hss, 48
\ht, 38
\htmladdnormallink, 142
\htmlimage, 148
htmlonly, 148
\HTMLset, 147
\Huge, 47, 188
\huge, 47, 188
\hyphenation, 148
\hyphenpenalty, 35

\i, 75, 112, 120
\ieme, 47, 118
\iemes, 47, 118
\ier, 47, 118
\iere, 47, 118
\ieres, 118
\iers, 47, 118

INRIA

Tralics, a LATEX to XML translator Part I 219

\if, 57, 69
\ifcase, 56, 69
\ifcat, 57, 69
\ifdim, 58, 69
\ifeof, 59, 69, 137
\iff, 76
\iffalse, 58, 69
\IfFileExists, 140
\ifFPtest, 121
\ifhbox, 59, 69
\ifhmode, 59, 69
\ifinner, 59, 69
\ifmmode, 59, 69
\ifnextchar, 61
\ifnum, 54, 58, 69
\ifodd, 69
\ifthenelse, 56, 135
\iftrue, 58, 69
\ifvbox, 59, 69
\ifvmode, 59, 69
\ifvoid, 59, 69
\ifx, 27, 59, 69
\ignorespaces, 47, 141
\Im, 75
\imath, 76
\immediate, 148
in, 39
\in, 76
inbook, 95
\include, 69, 140
\includegraphics, 147, 196, 210
incollection, 95
\indent, 49
\inf, 76
\infty, 75
\injlim, 76
\input, 69, 140
\InputIfFileExists, 140
\inputlineno, 37
\insert, 141
\insertbibliohere, 104
institution, 96
\int, 13, 76
interactivebib, 150
interactivemath, 150
\interlinepenalty, 36
\iota, 75
isbn, 96
\isodd, 134
\isproject, 161
isrn, 96
issn, 96

\isundefined, 134
\it, 8, 46, 78
\Item, 190
\item, 7, 20, 146
\itemindent, 38
itemize, 145, 190
\itemsep, 35
\itshape, 8, 46, 188

\j, 120
jan, 95
\jmath, 76
\jobname, 68
\Join, 76
journal, 96
jul, 95
jun, 95

\k, 68, 113
\kappa, 75
\ker, 76
\kern, 32, 80
key, 96, 98

(field in an entry), 92
cite, 91
print, 91, 92
sort, 92, 97

\L, 118
\l, 118
\label, 79, 142
\labelsep, 35
\labelwidth, 38
\Lambda, 75
\lambda, 75
\land, 76
lang-en, 152, 187
lang-fr, 152, 187
\langle, 75, 77
Language, 152, 187
\language, 36, 130
\LARGE, 47, 188
\Large, 47, 188
\large, 47, 188
\lastbox, 143
\lastkern, 141
\lastpenalty, 37, 141
\lastskip, 141
\LaTeX, 118
LaTeXonly, 148
latexonly, 148
latin1, 149
\lbrace, 75, 77

RT n° 309

220 José Grimm

\lccode, 38
\lceil, 75, 77
\ldots, 75, 120
\le, 76
\leaders, 143
\leavevmode, 49, 93
\left, 6, 79
\Leftarrow, 76
\leftarrow, 76
\leftharpoondown, 76
\leftharpoonup, 76
\lefthyphenmin, 37
\leftmargin, 38
\leftmargini, 38
\leftmarginii, 38
\leftmarginiii, 38
\leftmarginiv, 38
\leftmarginv, 38
\leftmarginvi, 38
\Leftrightarrow, 76
\leftrightarrow, 76
\leftskip, 34
\lengthtest, 135
\leq, 76
\leqno, 71
\leqslant, 76
\let, 26
\lfloor, 75, 77
\lfoot, 146
\lg, 76
\lgroup, 75, 77
\lhead, 146
\lim, 76
\liminf, 76
\limits, 84
\limsup, 76
\line, 172, 198
\linebreak, 50
\linepenalty, 35
\lineskip, 34
\lineskiplimit, 37
\linethickness, 172, 198
\linewidth, 38
\ll, 76
\lmoustache, 75, 77
\ln, 76
\lnot, 76
\localisation, 161
\log, 76
\long, 19, 22, 52
\Longleftarrow, 76
\longleftarrow, 76

\Longleftrightarrow, 76
\longleftrightarrow, 76
\longmapsto, 76
\Longrightarrow, 76
\longrightarrow, 76
\loop, 54, 69, 133
\looseness, 36
\lor, 76
\lower, 88
\lowercase, 67, 117
\lsc, 147

\mag, 36
\makeatletter, 25
\makeatother, 25
\makebox, 80, 169
makedvi, 187
makefo, 187
makehtml, 187
\MakeLowercase, 118
makepdf, 187
\MakeUppercase, 118
manual, 95
\mapsto, 76
mar, 95
\mark, 141
mastersthesis, 95
masterthesis, 95
math, 73
\mathaccent, 88, 114
\mathattribute, 87
\mathbb, 12, 78
\mathbbm, 78
\mathbf, 11, 78
\mathbin, 13, 84
\mathcal, 12, 78
\mathchar, 87
\mathchardef, 26, 88
\mathchoice, 14, 77, 79, 84
\mathclose, 13, 84
\mathcode, 38, 88
\mathinner, 13, 84
\mathit, 78
\mathmi, 87
\mathmn, 87
\mathmo, 87
\mathnormal, 78
\mathop, 13, 83, 84
\mathopen, 13, 84
\mathord, 13, 84
\mathpunct, 13, 84
\mathrel, 13, 84

INRIA

Tralics, a LATEX to XML translator Part I 221

\mathring, 77
\mathrm, 78
\mathsf, 78
\mathsurround, 37
\mathtt, 78
\mathversion, 11
matrix, 74
\max, 76
\maxdeadcycles, 36
\maxdepth, 37
may, 95
\mbox, 80, 83, 169
\mdseries, 46
\meaning, 68
\medbreak, 50
\medmuskip, 35, 48
\medskip, 49
\message, 141
\mho, 76
\mid, 76
\min, 76
minipage, 171
misc, 95
\mkern, 148
mm, 39
\models, 76
module, 162
\moduleref, 163
month, 96
\month, 36
\motscle, 8
\moveleft, 143
\moveright, 143
\mp, 76
\mu, 75
\multicolumn, 81, 183
\multimap, 76
\multiply, 34, 42
\multiput, 171, 198
\muskip, 38
\muskipdef, 26

\nabla, 75
\natural, 75, 120
\ne, 76
\nearrow, 76
\neg, 76
\neq, 76
\newboolean, 57, 134
\newbox, 29
\newcolumntype, 181
\newcommand, 22

\newcount, 29
\newcounter, 29, 42
\newdimen, 29
\newenvironment, 24
\newif, 57
\newlength, 42, 58
\newline, 50
\newlinechar, 36
\newskip, 29
\newtheorem, 8
\newtoks, 29, 41
\NG, 118
\ng, 118
\ni, 76
\No, 118
\no, 119
no-footnote-hack, 187
\noalign, 184
nobibyearerror, 151
\nobreak, 148
\nobreakspace, 48, 78, 115, 121
\nocentering, 35, 142, 171
\nocite, 94, 96
noconfig, 150
noentnames, 149
\noexpand, 29, 30, 57, 68
\noindent, 49, 73
\nolimits, 84
\nolinebreak, 50, 84
\nonscript, 84
\nonstopmode, 147
\nonumber, 84
\nopagebreak, 50
\normalfont, 8
\normalsize, 47, 188
\NOT, 135
\not, 76, 135
note, 96
\notin, 76
notrivialmath, 149
noundefmac, 150
nov, 95
noxmlerror, 150
nozerowidthspace, 149
\nu, 75
\nulldelimiterspace, 37
number, 96
\number, 29, 42, 52, 64, 68
\numberedverbatim, 117
\Numero, 118
\numero, 119
\nwarrow, 76

RT n° 309

222 José Grimm

\O, 118
\o, 118, 119
oct, 95
\oddsidemargin, 38
\odot, 76
\Oe, 118
\oe, 118
\of, 79
\og, 119
\oint, 76
\oldstylenums, 189
\Omega, 75
\omega, 75
\ominus, 76
\omit, 183
\openin, 137
\openout, 139
\oplus, 76
\OR, 135
\or, 69, 135
organization, 96
\oslash, 76
\otimes, 76
\outer, 19
\output, 35
\outputpenalty, 36
\oval, 172, 198
\over, 14, 21, 82
\overbrace, 77
\overfullrule, 37
\overleftarrow, 77
\overline, 77, 189
\overrightarrow, 77
\overset, 77
\overwithdelims, 82
\owns, 76

\P, 119
page, 37
\pagebreak, 50
pages, 96
\par, 49, 66
paragraph, 37
\paragraph, 142, 190
\parallel, 76
\parbox, 171, 180
\parfillskip, 35
\parindent, 37, 49
\parsep, 35
\parshape, 35
\parskip, 34
part, 37

\part, 142, 190
\partial, 75
participant, 163
participante, 163
participantes, 163
participants, 163
\patterns, 148
\pausing, 36
pc, 39
\penalty, 32, 141
\perp, 76
\pers, 163
phdthesis, 95
\Phi, 75
\phi, 75
\Pi, 75
\pi, 75
picture, 168
\pm, 76
pmatrix, 74
\postdisplaypenalty, 36
\Pr, 76
preamble, 25, 95
\prec, 76
\preceq, 76
\predisplaypenalty, 36
\predisplaysize, 37
\pretolerance, 35
\prime, 14
\proclaim, 8
\prod, 76
\project, 161
\projet, 161
\projlim, 76
\propto, 76
\protect, 30, 148
\provideboolean, 134
\providecommand, 23
ps, 150
\psfig, 147
\Psi, 75
\psi, 75
pt, 39
publisher, 96
\put, 171, 198

\qbezier, 171
\qquad, 48, 75, 121
\quad, 48, 75, 121
quotation, 148, 196
quote, 148, 196

\r, 68, 113

INRIA

Tralics, a LATEX to XML translator Part I 223

\radical, 88
\raggedleft, 148
\raggedright, 148
\raise, 88
\RAlabel, 148
\rangle, 75, 77
\RAstartprojet, 163
\ratio, 43, 134
rawhtml, 148
\rbrace, 75, 77
\rceil, 75, 77
\Re, 75
\read, 137
\real, 43, 134
\ref, 142
refer, 93, 96
\refname, 104
\refstepcounter, 43, 68
\relax, 30, 40, 42, 54, 79, 138
\relpenalty, 35
\renewcommand, 22
\renewenvironment, 22
\rfloor, 75, 77
\rfoot, 146
\rgroup, 75, 77
\rhead, 146
\rho, 75
\right, 6, 79
\Rightarrow, 76
\rightarrow, 76
\rightharpoondown, 76
\rightharpoonup, 76
\righthyphenmin, 37
\rightmargin, 38
\rightskip, 35
\rm, 46, 78, 83
\rmfamily, 46
\rmoustache, 75, 77
robust, 22, 30
\Roman, 42, 69
\roman, 42, 69
\Romannumeral, 42, 68
\romannumeral, 42, 64, 68
\root, 77
\rotatebox, 170, 192
\rrrt, 142

\S, 119
\SaveVerb, 68, 115
\sb, 26
\sbox, 64
\sc, 47

\scalebox, 170, 191
\scaleput, 171, 198
scanint, 55
school, 96
\scriptscriptstyle, 14, 80, 83
\scriptscritpfont, 46
\scriptsize, 47, 188
\scriptspace, 37
\scriptstyle, 14, 80, 83
\scritpfont, 46
\scrollmode, 147
\scshape, 46, 188
\searrow, 76
\sec, 76
\section, 5, 142, 190
section-vals, 187
\selectfont, 8, 45
sep, 95
series, 96
\setboolean, 58, 134
\setbox, 26
setcounter, 42
\setcounter, 68, 133
\setlanguage, 141
\setlength, 42, 68, 133
\setminus, 76
\sf, 46, 78
\sfcode, 38
\sffamily, 46, 189
\sharp, 75, 121
shell-escape, 150
\shipout, 141
\show, 33, 164
\showbox, 32, 164
\showboxbreadth, 32, 36
\showboxdept, 32, 36
\showlists, 164
\showthe, 33, 34, 164
\Sigma, 75
\sigma, 75
silent, 149
\sim, 76
\simeq, 76
\sin, 13, 76
\sinh, 76
\skip, 38, 58
\skipdef, 26
\sl, 46, 78
\slash, 119
\sloppy, 148
\slshape, 46, 188
\small, 47, 188

RT n° 309

224 José Grimm

\smallbreak, 50
\smallint, 76
\smallskip, 49
\smile, 76
sp, 39
\sp, 26
space, 5, 6, 20, 23, 51, 62, 66
\space, 47, 48, 63
\spaceskip, 35
\spadesuit, 76
\span, 184
\special, 32, 148
split, 73
\splitbotmark, 69, 141
\splitfirstmark, 69, 141
\splitmaxdepth, 37
\splittopskip, 35
\sqcap, 76
\sqcup, 76
\sqrt, 77
\sqsubset, 76
\sqsubseteq, 76
\sqsupset, 76
\sqsupseteq, 76
\square, 76
\SS, 118, 119
\ss, 118, 119
\stackrel, 77
\star, 76
\stepcounter, 43
string, 95
\string, 22, 28, 29, 30, 68
subequations, 148
\subfigure, 192
\subitem, 148
subparagraph, 37
\subparagraph, 142, 190
subsection, 37
\subsection, 5, 142, 190
\subset, 76
\subseteq, 76
subsubsection, 37
\subsubsection, 142, 190
\succ, 76
\succeq, 76
\sum, 76
\sup, 76
\supset, 76
\supseteq, 76
\surd, 75
\swarrow, 76

\T, 68, 113
table, 178
\tabskip, 35
tabular, 178
\tagcurve, 172, 198, 199
\tan, 76
\tanh, 76
\tau, 75
techreport, 95
\TeX, 119
\texorpdfstring, 5
\text, 80, 83
\textacutedbl, 119
\textasciiacute, 119
\textasciiacutex, 119
\textasciicedilla, 119
\textasciidieresis, 119
\textasciigrave, 119
\textasciimacron, 119
\textbackslash, 119
\textbaht, 119
\textbf, 46
\textbrokenbar, 119
\textbullet, 119
\textcelsius, 119
\textcent, 119
\textcircledP, 119
\textcopyright, 119
\textcurrency, 119
\textdagger, 119
\textdaggerdbl, 119
\textdegree, 119
\textdiv, 119
\textdollar, 119
\textdong, 119
\textestimated, 119
\texteuro, 16, 119
\textexclamdown, 119
\textflorin, 119
\textfont, 46
\textfrenchfranc, 119
\textgravedbl, 119
\textheight, 38
\textinterrobang, 119
\textit, 46, 188
\textlira, 119
\textlnot, 119
\textlquill, 119
\textmd, 46
\textmho, 119
\textmu, 119
\textnaira, 119

INRIA

Tralics, a LATEX to XML translator Part I 225

\textnospace, 120
\textnumero, 120
\textohm, 120
\textonehalf, 120
\textonequarter, 120
\textonesuperior, 120
\textordfeminine, 120
\textordmasculine, 120
\textparagraph, 120
\textperiodcentered, 120
\textpertenthousand, 120
\textperthousand, 120
\textpm, 120
\textquestiondown, 120
\textrecipe, 120
\textreferencemark, 120
\textregistered, 120
\textrm, 46
\textrquill, 120
\textsc, 46
\textsection, 120
\textservicemark, 120
\textsf, 46
\textsl, 46
\textsofthyphen, 120
\textsterling, 120
\textstyle, 14, 83
\textsubscript, 189
\textsuperscript, 47, 189
\textthreequarters, 120
\textthreesuperior, 120
\texttimes, 120
\texttrademark, 120
\texttt, 46
\texttwosuperior, 120
\textup, 46
\textvisiblespace, 115, 120
\textwidth, 38
\textwon, 120
\textyen, 120
\textystyle, 80
\tfrac, 77
\TH, 118, 119
\th, 118, 119
\the, 6, 29, 33, 34, 69
thebibliography, 104
\theme, 161
theme-vals, 187
\theorembodyfont, 135
\theoremheaderfont, 135
\theoremstyle, 135
\Theta, 75

\theta, 75
\thicklines, 172, 198
\thickmuskip, 35, 48
\thinlines, 172, 198
\thinmuskip, 35, 48
\tilde, 77
\time, 36
\times, 76
\tiny, 47, 188
title, 96
\to, 76
\toappear, 143
\toks, 38
\toksdef, 26
\tolerance, 35
\top, 75
\topmark, 69, 141
\topskip, 35
\tracingall, 164
\tracingcommands, 36, 164, 165
\tracinglostchars, 36, 164
\tracingmacros, 36, 164, 165
\tracingonline, 36, 164
\tracingoutput, 36, 164
\tracingpages, 36, 164
\tracingparagraphs, 36, 164
\tracingrestores, 36, 164, 165
\tracingstats, 36, 165
\tralicsversion, 68
\triangle, 75
\triangleleft, 76
\triangleright, 76
true, 39
\tt, 5, 46, 78
\ttfamily, 46, 189
\tw@, 52
type, 96, 150
\typeout, 141

\u, 68, 113
\uccode, 38
\uchyph, 36
\UndefineShortVerb, 115
\underbrace, 77
\underleftarrow, 77
\underline, 77, 189
\underrightarrow, 77
\underset, 77
\unhbox, 141
\unhcopy, 141
\unitlength, 38, 168
\unkern, 141

RT n° 309

226 José Grimm

\unnumberedverbatim, 117
\unpenalty, 141
unpublished, 95
\unskip, 47, 141
\unvbox, 141
\unvcopy, 141
\Uparrow, 75, 77
\uparrow, 75, 77
\Updownarrow, 75, 77
\updownarrow, 75, 77
\uplus, 76
\uppercase, 117
\upshape, 46, 188
\Upsilon, 75
\upsilon, 75
\UR, 162
ur-vals, 187
url, 96
\url, 142, 187, 193
url-font, 187
\urlfont, 187
use-allsizes, 188
use-font-elt, 188
\usepackage, 130
\UseVerb, 68, 115
utf8, 149

\V, 68, 113
\v, 68, 113
\vadjust, 141
\valign, 184
\value, 42, 68
\varepsilon, 75
\varkappa, 75
\varphi, 75
\varpi, 75
\varrho, 75
\varsigma, 75
\vartheta, 75
\vbadness, 36
\vbox, 143
\vcenter, 88
\Vdash, 76
\vdash, 76
\vdots, 77
\vec, 77
\vector, 172, 198
\vee, 76
\verb, 25
\Verbatim, 116
verbatim, 116
\verbatimfont, 115

\verbatimnumberfont, 116
\verbatimprefix, 115
verbose, 149
\verbprefix, 115
version, 149
\Vert, 75, 77
\vert, 75, 77
\vfil, 49
\vfill, 49
\vfilneg, 49
\vfuzz, 37
Vmatrix, 74
vmatrix, 74
\voffset, 37
volume, 96
\vrule, 148
\vsize, 37
\vskip, 49, 80
\vspace, 49
\vsplit, 143
\vss, 49
\vtop, 143

\wd, 38
\wedge, 76
\whiledo, 131
\widehat, 77
\widetilde, 77
\widowpenalty, 35
\widthof, 134
\wp, 75
\wr, 76
\write, 30, 32, 139

\xbox, 94, 143
\xdef, 28, 29
\Xi, 75
\xi, 75
\xleaders, 143
xml, 150
xml-accueil-name, 194
xml-arc-name, 198
xml-bezier-name, 198
xml-biblio, 196
xml-bigcircle-name, 198
xml-box-name, 191
xml-bpers-name, 198
xml-caption-name, 152, 193
xml-cell-name, 197
xml-circle-name, 198
xml-closecurve-name, 198
xml-composition-ra-name, 152, 194

INRIA

Tralics, a LATEX to XML translator Part I 227

xml-curve-name, 198
xml-dashline-name, 198
xml-div0-name, 190
xml-div1-name, 190
xml-div2-name, 190
xml-div3-name, 190
xml-div4-name, 190
xml-div5-name, 190
xml-div6-name, 190
xml-dottedline-name, 198
xml-expanded-project-name, 152
xml-fbox-name, 191
xml-figure-env-name, 193
xml-figure-name, 196
xml-font-bold, 189
xml-font-it, 188
xml-font-large1, 188
xml-font-large2, 188
xml-font-large3, 188
xml-font-large4, 188
xml-font-large5, 188
xml-font-medium, 189
xml-font-normalsize, 188
xml-font-roman, 189
xml-font-sansserif, 189
xml-font-sc, 188
xml-font-slanted, 188
xml-font-small, 188
xml-font-small1, 188
xml-font-small2, 188
xml-font-small3, 188
xml-font-small4, 188
xml-font-tt, 189
xml-font-upright, 188
xml-fontr-large, 188
xml-footnote-name, 187
xml-glo-name, 190
xml-gloitem-name, 189
xml-graphic-name, 193
xml-head-name, 190
xml-item-name, 189
xml-keywords-name, 191
xml-labelitem-name, 189
xml-line-name, 198
xml-linethickness-name, 198
xml-list-name, 189
xml-mbox-name, 192
xml-multiput-name, 198
xml-oldstyle-name, 189
xml-oval-name, 198
xml-overline-name, 189
xml-picture-name, 198

xml-project-name, 152, 193
xml-put-name, 198
xml-rotatebox-name, 192
xml-row-name, 197
xml-scalebox-name, 191
xml-scaleput-name, 198
xml-scaption-name, 152, 193
xml-sub-name, 189
xml-subfigure-name, 192
xml-sup-name, 189
xml-table-env-name, 193
xml-Table-name, 193
xml-table-name, 197
xml-tagcurve-name, 198
xml-term-name, 192
xml-texte-name, 192
xml-theorem-head, 195
xml-theorem-name, 195
xml-thicklines-name, 198
xml-thinlines-name, 198
xml-topic-name, 192
xml-topic-title, 152
xml-underline-name, 189
xml-vector-name, 198
xml-xref-name, 193
xml-xtheorem-name, 194
\XMLaddatt, 33, 145
xmlall, 150
\XMLcite, 93
\XMLcurrentid, 33, 37, 94
xmlelement, 144
\xmlelt, 143
\xmlemptyelt, 143
xmlfo, 150
xmlhtml, 150
\XMLlastid, 33, 37, 94
\xmllatex, 143
xmllint, 150
xmlonly, 148
\XMLsolvecite, 94
xmltex, 150
\xscale, 171, 199
\xscaley, 171, 199
\xspace, 69, 141
\xspaceskip, 35

year, 93, 96, 150
\year, 36
\yscale, 171, 199
\yscalex, 171, 199

\z@, 37
\zeta, 75

RT n° 309

228 José Grimm

INRIA

Tralics, a LATEX to XML translator Part I 229

Bibliography

[1] David Carlisle, Michel Goossens, and Sebastian Rahtz. De XML à PDF avec xmltex et Pas-
siveTEX. In Cahiers Gutenberg, number 35-36, pages 79–114, 2000.

[2] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX companion. Addison
Wesley, 1993.

[3] José Grimm. Outils pour la manipulation du rapport d’activité. Technical Report RT-0265,
Inria, 2002.

[4] Donald E. Knuth. The TEXbook. Addison Wesley, 1984.

[5] Philippe Louarn. Une expérience d’utilisation de LaTeX : le Rapport d’activité de l’INRIA.
Cahiers Gutenberg, (0):17–24, apr 1988.

[6] Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, and Chris Rowley. The
LATEX companion, second edition. Addison Wesley, 2004.

[7] The Unicode Consortium. The Unicode Standard, version 4.0. Addison Wesley, 2003.

[8] W3C. Extensible Markup Language (XML) 1.0 (Third Edition). http://www.w3.org/TR/REC-
xml/, 1998. Third edition published in 2004.

[9] W3C. Extensible Markup Language (XML) 1.1. http://www.w3.org/TR/xml11/, 2004.

RT n° 309

230 José Grimm

INRIA

Tralics, a LATEX to XML translator Part I 231

Contents

1 Introduction 3

1.1 A short history of the Raweb . 3

1.2 Birth of Tralics . 4

1.3 Main objectives . 5

1.4 An example . 6

1.5 Some remarks on the Translation . 7

1.6 Category codes and characters . 9

1.7 Considerations about mathematics . 11

1.8 Some subleties of TEX . 15

1.9 Language options . 16

2 Expansion 19

2.1 Defining new commands . 19

2.2 Defining commands in LATEX . 22

2.3 Some small examples . 25

2.4 Variables in TEX . 31

2.5 All the variables . 34

2.6 Using the variables . 39

2.7 Counters . 42

2.8 Fonts . 45

2.9 Spaces . 47

2.10 Conditional expansion . 50

2.11 Conditionals in TEX . 55

2.12 A nontrivial command \verb . 66

2.13 Expandable tokens . 68

3 Mathematics 71

3.1 Introduction . 71

3.2 The basic objects . 73

3.3 Parsing a math formula . 77

3.4 Translation of arrays . 81

3.5 Trivial math . 81

RT n° 309

232 José Grimm

3.6 Conversion to XML . 82

3.7 Final math mode hacks . 86

3.8 Extensions . 87

4 Translating a bibliography 89

4.1 Introduction . 89

4.2 Citing a document . 92

4.3 Using Tralics instead of bibtex . 95

4.4 The format of a name . 99

4.5 Commands for the bbl . 103

4.6 Other commands . 104

5 Other commands 109

5.1 Character encoding . 109

5.2 Characters and Accents . 111

5.3 Verbatim material . 115

5.4 Case change . 117

5.5 Simple commands . 118

5.6 The fp package . 121

5.7 Action before translation . 130

5.8 Other expandable commands . 131

5.9 Other non-expandable commands . 141

6 Running Tralics 149

6.1 The command line arguments . 149

6.2 The standard configuration file . 151

6.3 The action before translation . 155

6.4 Translating the Raweb . 158

6.5 Tracing commands . 164

6.6 Pictures and friends . 168

6.7 The title page . 173

6.8 Array and Tables . 178

6.9 Actions declared in the configuration file . 187

6.10 A sample configuration file . 202

6.11 Trace of titlepage . 205

6.12 Bootstrap code . 207

6.13 The puzzle . 210

6.14 Images . 210

INRIA

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau- Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-0803

