
HAL Id: inria-00000200
https://inria.hal.science/inria-00000200v2

Submitted on 11 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decidability of Type-checking in the Calculus of
Algebraic Constructions with Size Annotations

Frédéric Blanqui

To cite this version:
Frédéric Blanqui. Decidability of Type-checking in the Calculus of Algebraic Constructions with Size
Annotations. 14th Annual Conference of the EACSL, Aug 2005, Oxford, United Kingdom. pp.135–
150, �10.1007/11538363_11�. �inria-00000200v2�

https://inria.hal.science/inria-00000200v2
https://hal.archives-ouvertes.fr


in
ri

a-
00

00
02

00
, v

er
si

on
 2

 -
 1

1 
Se

p 
20

06

De
idability of Type-
he
king in the Cal
ulus ofAlgebrai
 Constru
tions with Size AnnotationsFrédéri
 BlanquiLaboratoire Lorrain de Re
her
he en Informatique et Automatique (LORIA)Institut National de Re
her
he en Informatique et Automatique (INRIA)615 rue du Jardin Botanique, BP 101, 54602 Villers-lès-Nan
y, Fran
eblanqui�loria.frAbstra
t. Sin
e Val Tannen's pioneering work on the 
ombination ofsimply-typed λ-
al
ulus and �rst-order rewriting [11℄, many authors have
ontributed to this subje
t by extending it to ri
her typed λ-
al
uli andrewriting paradigms, 
ulminating in the Cal
ulus of Algebrai
 Constru
-tions. These works provide theoreti
al foundations for type-theoreti
proof assistants where fun
tions and predi
ates are de�ned by orientedhigher-order equations. This kind of de�nitions subsumes usual indu
tivede�nitions, is easier to write and provides more automation.On the other hand, 
he
king that su
h user-de�ned rewrite rules, when
ombined with β-redu
tion, are strongly normalizing and 
on�uent, andpreserve the de
idability of type-
he
king, is more di�
ult. Most ter-mination 
riteria rely on the term stru
ture. In a previous work, weextended to dependent types and higher-order rewriting, the notion of�sized types� studied by several authors in the simpler framework of ML-like languages, and proved that it preserves strong normalization.The main 
ontribution of the present paper is twofold. First, we provethat, in the Cal
ulus of Algebrai
 Constru
tions with size annotations,the problems of type inferen
e and type-
he
king are de
idable, providedthat the sets of 
onstraints generated by size annotations are satis�ableand admit most general solutions. Se
ond, we prove the latter proper-ties for a size algebra ri
h enough for 
apturing usual indu
tion-basedde�nitions and mu
h more.1 Introdu
tionThe notion of �sized type� was �rst introdu
ed in [21℄ and further studied byseveral authors [20, 3, 1, 31℄ as a tool for proving the termination of ML-likefun
tion de�nitions. It is based on the semanti
s of indu
tive types as �xpointsof monotone operators, rea
hable by trans�nite iteration. For instan
e, naturalnumbers are the limit of (Si)i<ω , where Si is the set of natural numbers smallerthan i (indu
tive types with 
onstru
tors having fun
tional arguments requireordinals bigger than ω). The idea is then to re�e
t this in the syntax by addingsize annotations on types indi
ating in whi
h subset Si a term is. For instan
e,subtra
tion on natural numbers 
an be assigned the type − : natα ⇒ natβ ⇒
natα, where α and β are impli
itly universally quanti�ed, meaning that the size



of its output is not bigger than the size of its �rst argument. Then, one 
anensure termination by restri
ting re
ursive 
alls to arguments whose size � bytyping � is smaller. For instan
e, the following ML-like de�nition of ⌈ x
y+1⌉:letre
 div x y = mat
h x with| O -> O| S x' -> S (div (x' - y) y)is terminating sin
e, if x is of size at most α and y is of size at most β, then x′is of size at most α− 1 and (x′ − y) is of size at most α− 1 < α.The Cal
ulus of Constru
tions (CC) [17℄ is a powerful type system withpolymorphi
 and dependent types, allowing to en
ode higher-order logi
. TheCal
ulus of Algebrai
 Constru
tions (CAC) [8℄ is an extension of CC where fun
-tions are de�ned by higher-order rewrite rules. As shown in [10℄, it subsumes theCal
ulus of Indu
tive Constru
tions (CIC) [18℄ implemented in the Coq proofassistant [15℄, where fun
tions are de�ned by indu
tion. Using rule-based def-initions has numerous advantages over indu
tion-based de�nitions: de�nitionsare easier (e.g. A
kermann's fun
tion), more propositions 
an be proved equiv-alent automati
ally, one 
an add simpli�
ation rules like asso
iativity or usingrewriting modulo AC [6℄, et
. For proving that user-de�ned rules terminate when
ombined with β-redu
tion, [8℄ essentially 
he
ks that re
ursive 
alls are madeon stru
turally smaller arguments.In [7℄, we extended the notion of sized type to CAC, giving the Cal
ulus ofAlgebrai
 Constru
tions with Size Annotations (CACSA). We proved that, when
ombined with β-redu
tion, user-de�ned rules terminate essentially if re
ursive
alls are made on arguments whose size � by typing � is stri
tly smaller, bypossibly using lexi
ographi
 and multiset 
omparisons. Hen
e, the following rule-based de�nition of ⌈ x

y+1⌉:
0 / y → 0

(s x) / y → s ((x − y) / y)is terminating sin
e, in the last rule, if x is of size at most α and y is of sizeat most β, then (s x) is of size at most α + 1 and (x − y) is of size at most
α < α + 1. Note that this rewrite system 
annot be proved terminating by
riteria only based on the term stru
ture, like RPO or its extensions to higher-order terms [22, 29℄. Note also that, if a term t is stru
turally smaller than a term
u, then the size of t is smaller than the size of u. Therefore, CACSA proves thetermination of any indu
tion-based de�nition like CIC/Coq, but also de�nitionslike the previous one. To our knowledge, this is the most powerful termination
riterion for fun
tions with polymorphi
 and dependent types like in Coq. Thereader 
an �nd other 
onvin
ing examples in [7℄.However, [7℄ left an important question open. For the termination 
riterion towork, we need to make sure that size annotations assigned to fun
tion symbolsare valid. For instan
e, if subtra
tion is assigned the type − : natα ⇒ natβ ⇒
natα, then we must make sure that the de�nition of − indeed outputs a termwhose size is not greater than the size of its �rst argument. This amounts to




he
k that, for every rule in the de�nition of −, the size of the right hand-sideis not greater than the size of the left hand-side. This 
an be easily veri�ed byhand if, for instan
e, the de�nition of − is as follows:
0 − x → 0
x − 0 → x

(s x) − (s y) → x − yThe purpose of the present work is to prove that this 
an be done automat-i
ally, by inferring the size of both the left and right hand-sides, and 
he
kingthat the former is smaller than the latter.Fig. 1. Insertion sort on polymorphi
 and dependent lists
nil : (A : ⋆)listαA 0

cons : (A : ⋆)A ⇒ (n : nat)listαA n ⇒ listsαA (sn)
if_in_then_else : bool ⇒ (A : ⋆)A ⇒ A ⇒ A

insert : (A : ⋆)(≤: A ⇒ A ⇒ bool)A ⇒ (n : nat)listαA n ⇒ listsαA (sn)
sort : (A : ⋆)(≤: A ⇒ A ⇒ bool)(n : nat)listαA n ⇒ listαA n

if true in A then u else v → u
if false in A then u else v → v
insert A ≤ x _ (nil _) → cons A x 0 (nil A)

insert A ≤ x _ (cons _ y n l) → if x ≤ y in list A (s (s n))
then cons A x (s n) (cons A y n l)
else cons A y (s n) (insert A ≤ x n l)

sort A ≤ _ (nil _) → nil A
sort A ≤ _ (cons _ x n l) → insert A ≤ x n (sort A ≤ n l)We now give an example with dependent and polymorphi
 types. Let ⋆ bethe sort of types and list : ⋆⇒ nat⇒ ⋆ be the type of polymorphi
 lists of �xedlength whose 
onstru
tors are nil and cons. Without ambiguity, s is used for thesu

essor fun
tion both on terms and on size expressions. The fun
tions insertand sort de�ned in Figure 1 have size annotations satisfying our termination
riterion. The point is that sort preserves the size of its list argument and thus
an be safely used in re
ursive 
alls. Che
king this automati
ally is the goal ofthis work.An important point is that the ordering naturally asso
iated with size anno-tations implies some subtyping relation on types. The 
ombination of subtypingand dependent types (without rewriting) is a di�
ult subje
t whi
h has beenstudied by Chen [12℄. We reused many ideas and te
hniques of his work fordesigning CACSA and proving important properties like β-subje
t redu
tion(preservation of typing under β-redu
tion) [5℄.Another important point is related to the meaning of type inferen
e. In ML,type inferen
e means 
omputing a type of a term in whi
h the types of free andbound variables, and fun
tion symbols (letre
's in ML), are unknown. In otherwords, it 
onsists in �nding a simple type for a pure λ-term. Here, type inferen
emeans 
omputing a CACSA type, hen
e dependent and polymorphi
 (CACSA




ontains Girard's system F), of a term in whi
h the types and size annotations offree and bound variables, and fun
tion symbols, are known. In dependent typetheories, this kind of type inferen
e is ne
essary for type-
he
king [16℄. In otherwords, we do not try to infer relations between the sizes of the arguments of afun
tion and the size of its output like in [13, 4℄. We try to 
he
k that, with theannotated types de
lared by the user for its fun
tion symbols, rules satisfy thetermination 
riterion des
ribed in [7℄.Moreover, in ML, type inferen
e amounts to solve equality 
onstraints inthe type algebra. Here, type inferen
e amounts to solve equality and ordering
onstraints in the size algebra. The point is that the ordering on size expressionsis not anti-symmetri
: it is a quasi-ordering. Thus, we have a 
ombination ofuni�
ation and symboli
 quasi-ordering 
onstraint solving.Finally, be
ause of the 
ombination of subtyping and dependent typing, thede
idability of type-
he
king requires the existen
e of minimal types [12℄. Thus,we must also prove that a satis�able set of equality and ordering 
onstraints hasa smallest solution, whi
h is not the 
ase in general. This is in 
ontrast withnon-dependently typed frameworks.Outline. In Se
tion 2, we de�ne terms and types, and study some propertiesof the size ordering. In Se
tion 3, we give a general type inferen
e algorithm andprove its 
orre
tness and 
ompleteness under general assumptions on 
onstraintsolving. Finally, in Se
tion 4, we prove that these assumptions are ful�lled for thesize algebra introdu
ed in [3℄ whi
h, although simple, is ri
h enough for 
apturingusual indu
tive de�nitions and mu
h more, as shown by the �rst example above.Missing proofs are given in [9℄.2 Terms and typesSize algebra. Indu
tive types are annotated by size expressions from the fol-lowing algebra A:
a ::= α | sa | ∞where α ∈ Z is a size variable. The set A is equipped with the quasi-ordering

≤A de�ned in Figure 2. Let ≃A = ≤A ∩ ≥A be its asso
iated equivalen
e.Let ϕ, ψ, ρ, . . . denote size substitutions, i.e. fun
tions from Z to A. One 
aneasily 
he
k that ≤A is stable by substitution: if a ≤A b then aϕ ≤A bϕ. Weextend ≤A to substitutions: ϕ ≤A ψ i�, for all α ∈ Z, αϕ ≤A αψ.We also extend the notion of �more general substitution� from uni�
ationtheory as follows: ϕ is more general than ψ, written ϕ ⊑ ψ, i� there is ϕ′ su
hthat ϕϕ′ ≤A ψ.Terms.We assume the reader familiar with typed λ-
al
uli [2℄ and rewriting[19℄. Details on CAC(SA) 
an be found in [8, 7℄. We assume given a set S = {⋆,2}of sorts (⋆ is the sort of types and propositions; 2 is the sort of predi
ate types),a set F of fun
tion or predi
ate symbols, a set CF2 ⊆ F of 
onstant predi
atesymbols, and an in�nite set X of term variables. The set T of terms is:



Fig. 2. Ordering on size expressions(re�) a ≤A a (trans) a ≤A b b ≤A c

a ≤A c(mon) a ≤A b

sa ≤A sb
(su

) a ≤A b

a ≤A sb
(infty) a ≤A ∞

t ::= s | x | Ca | f | [x : t]t | (x : t)t | ttwhere s ∈ S, x ∈ X , C ∈ CF2, a ∈ A and f ∈ F \ CF2. A term [x : t]u isan abstra
tion. A term (x : T )U is a dependent produ
t, simply written T ⇒ Uwhen x does not o

ur in U . Let t denote a sequen
e of terms t1, . . . , tn of length
|t| = n.Every term variable x is equipped with a sort sx and, as usual, termsequivalent modulo sort-preserving renaming of bound variables are identi�ed.Let V(t) be the set of size variables in t, and FV(t) be the set of term vari-ables free in t. Let θ, σ, . . . denote term substitutions, i.e. fun
tions from Xto T . For our previous examples, we have CF2 = {nat, list, bool} and F =
CF2 ∪ {0, s, /, nil, cons, insert, sort}.Rewriting. Terms only built from variables and symbol appli
ations ft aresaid to be algebrai
. We assume given a set R of rewrite rules l → r su
h that
l is algebrai
, l = f l with f /∈ CF2 and FV(r) ⊆ FV(l). Note that, while lefthand-sides are algebrai
 and thus require synta
ti
 mat
hing only, right hand-sides may have abstra
tions and produ
ts. β-redu
tion and rewriting are de�nedas usual: C[[x : T ]u v] →β C[u{x 7→ v}] and C[lσ] →R C[rσ] if l → r ∈ R. Let
→ =→β ∪ →R and →∗ be its re�exive and transitive 
losure. Let t ↓ u i� thereexists v su
h that t→∗ v ∗← u.Typing. We assume that every symbol f is equipped with a sort sf and atype τf = (x : T )U su
h that, for all rules f l→ r ∈ R, |l| ≤ |T | (f is not appliedto more arguments than the number of arguments given by τf ). Let Fs (resp.
X s) be the set of symbols (resp. variables) of sort s. As usual, we distinguishthe following 
lasses of terms where t is any term:� obje
ts: o ::= x ∈ X ⋆ | f ∈ F⋆ | [x : t]o | ot� predi
ates: p ::= x ∈ X2 | Ca ∈ CF2 | f ∈ F2 \ CF2 | [x : t]p | (x : t)p | pt� kinds: K ::= ⋆ | (x : t)KExamples of obje
ts are the 
onstru
tors of indu
tive types 0, s, nil, cons, . . .and the fun
tion symbols −, /, insert, sort, . . .. Their types are predi
ates: indu
-tive types bool, nat, list, . . ., logi
al 
onne
tors ∧,∨, . . ., universal quanti�
ations
(x : T )U, . . . The types of predi
ates are kinds: ⋆ for types like bool or nat,
⋆⇒ nat⇒ ⋆ for list, . . .An environment Γ is a sequen
e of variable-term pairs. An environment isvalid if a term is typable in it. The typing rules of CACSA are given in Figure 4and its subtyping rules in Figure 3. In (symb), ϕ is an arbitrary size substitution.This re�e
ts the fa
t that, in type de
larations, size variables are impli
itly



universally quanti�ed, like in ML. In 
ontrast with [12℄, subtyping uses no sortingjudgment. This simpli�
ation is justi�ed in [5℄.In 
omparison with [5℄, we added the side 
ondition V(t) = ∅ in (size). Itdoes not a�e
t the properties proved in [5℄ and ensures that the size orderingis 
ompatible with subtyping (Lemma 2). By the way, one 
ould think of tak-ing the more general rule Cat ≤ Cbu with t ≃A u. This would eliminate theneed for equality 
onstraints and thus simplify a little bit the 
onstraint solvingpro
edure. More generally, one 
ould think in taking into a

ount the monotonyof type 
onstru
tors by having, for instan
e, list nata ≤ list natb whenever
a ≤A b. This requires extensions to Chen's work [12℄ and proofs of many nontrivial properties of [5℄ again, like Theorem 1 below or subje
t redu
tion for β.Fig. 3. Subtyping rules(re�) T ≤ T (size) Ca

t ≤ Cb
t (C ∈ CF2, a ≤A b, V(t) = ∅)(prod) U ′ ≤ U V ≤ V ′

(x : U)V ≤ (x : U ′)V ′
(
onv) T ′ ≤ U ′

T ≤ U
(T ↓ T ′, U ′ ↓ U)(trans) T ≤ U U ≤ V

T ≤ VFig. 4. Typing rules(ax) ⊢ ⋆ : 2 (prod) Γ ⊢ U : s Γ, x : U ⊢ V : s′

Γ ⊢ (x : U)V : s′(size) ⊢ τC : 2

⊢ Ca : τC

(C ∈ CF2, a ∈ A) (symb) ⊢ τf : sf

⊢ f : τfϕ
(f /∈ CF2)(var) Γ ⊢ T : sx

Γ, x : T ⊢ x : T
(x /∈dom(Γ )) (weak) Γ ⊢ t : T Γ ⊢ U : sx

Γ, x : U ⊢ t : T
(x /∈dom(Γ ))(abs) Γ, x : U ⊢ v : V Γ ⊢ (x : U)V : s

Γ ⊢ [x : U ]v : (x : U)V
(app) Γ ⊢ t : (x : U)V Γ ⊢ u : U

Γ ⊢ tu : V {x 7→ u}(sub) Γ ⊢ t : T Γ ⊢ T ′ : s

Γ ⊢ t : T ′
(T ≤ T ′)

∞-Terms. An ∞-term is a term whose only size annotations are ∞. Inparti
ular, it has no size variable. An ∞-environment is an environment madeof∞-terms. This 
lass of terms is isomorphi
 to the 
lass of (unannotated) CACterms. Our goal is to be able to infer annotated types for these terms, by usingthe size annotations given in the type de
larations of 
onstru
tors and fun
tionsymbols 0, s, /, nil, cons, insert, sort, . . .Sin
e size variables are intended to o

ur in obje
t type de
larations only,and sin
e we do not want mat
hing to depend on size annotations, we assume



that rules and type de
larations of predi
ate symbols nat, bool, list, . . . are madeof ∞-terms. As a 
onsequen
e, we have:Lemma 1. � If t→R t′ then, for all ϕ, tϕ→R t′ϕ.� If Γ ⊢ t : T then, for all ϕ, Γϕ ⊢ tϕ : Tϕ.We make three important assumptions:(1) R preserves typing: for all l → r ∈ R, Γ , T and σ, if Γ ⊢ lσ : T then
Γ ⊢ rσ : T . It is generally not too di�
ult to 
he
k this by hand. However,as already mentioned in [7℄, �nding su�
ient 
onditions for this to hold ingeneral does not seem trivial.(2) β ∪ R is 
on�uent. This is for instan
e the 
ase if R is 
on�uent and left-linear [24℄, or if β ∪R is terminating and R is lo
ally 
on�uent.(3) β∪R is terminating. In [7℄, it is proved that β∪R is terminating essentiallyif, in every rule f l → r ∈ R, re
ursive 
alls in r are made on terms whosesize � by typing � are smaller than l, by using lexi
ographi
 and multiset
omparisons. Note that, with type-level rewriting, 
on�uen
e is ne
essaryfor proving termination [8℄.Important remark. One may think that there is some vi
ious 
ir
le here: weassume the termination for proving the de
idability of type-
he
king, while type-
he
king is used for proving termination! The point is that termination 
he
ksare done in
rementally. At the beginning, we 
an 
he
k that some set of rewriterules R1 is terminating in the system with β only. Indeed, we do not need to use

R1 in the type 
onversion rule (
onv) for typing the terms of R1. Then, we 
an
he
k in β ∪R1 that some new set of rules R2 is terminating, and so on. . .Various properties of CACSA have already been studied in [5℄. We refer thereader to this paper if ne
essary. For the moment, we just mention two importantand non trivial properties based on Chen's work on subtyping with dependenttypes [12℄: subje
t redu
tion for β and transitivity elimination:Theorem 1 ([5℄). T ≤ U i� T↓ ≤s U↓, where ≤s is the restri
tion of ≤ to(re�), (size) and (prod).We now give some properties of the size and substitution orderings. Let →Abe the 
on�uent and terminating relation on A generated by the rule s∞→∞.Lemma 2. Let a↓ be the normal form of a w.r.t. →A.� a ≃A b i� a↓= b↓.� If ∞ ≤A a or sk+1a ≤A a then a↓=∞.� If a ≤A b and ϕ ≤A ψ then aϕ ≤A bψ.� If ϕ ≤A ψ and U ≤ V then Uϕ ≤ V ψ.Note that ∞-terms are in A-normal form. The last property (
ompatibilityof size ordering wrt subtyping) follows from the restri
tion V(t) = ∅ in (size).



3 De
idability of typingIn this se
tion, we prove the de
idability of type inferen
e and type-
he
king for
∞-terms under general assumptions that will be proved in Se
tion 4. We beginwith some informal explanations.How to do type inferen
e? The 
riti
al 
ases are (symb) and (app). In (symb),a symbol f 
an be typed by any instan
e of τf , and two di�erent instan
es may bene
essary for typing a single term (e.g. s(sx)). For type inferen
e, it is thereforene
essary to type f by its most general type, namely a renaming of τf with freshvariables, and to instantiate it later when ne
essary.Assume now that we want to infer the type of an appli
ation tu. We naturallytry to infer a type for t and a type for u using distin
t fresh variables. Assume thatwe get T and U ′ respe
tively. Then, tu is typable if there is a size substitution
ϕ and a produ
t type (x : P )Q su
h that Tϕ ≤ (x : P )Q and U ′ϕ ≤ P .After Theorem 1, 
he
king whether A ≤ B amounts to 
he
k whether A↓ ≤s
B↓, and 
he
king whether A ≤s B amounts to apply the (prod) rule as mu
has possible and then to 
he
k that (re�) or (size) holds. Hen
e, Tϕ ≤ (x : P )Qonly if T↓ is a produ
t. Thus, the appli
ation tu is typable if T↓ = (x : U)V andthere exists ϕ su
h that U ′↓ϕ ≤s Uϕ. Finding ϕ su
h that Aϕ ≤s Bϕ amountsto apply the (prod) rule on A ≤s B as mu
h as possible and then to �nd ϕ su
hthat (re�) or (size) holds. So, a subtyping problem 
an be transformed into a
onstraint problem on size variables.We make this pre
ise by �rst de�ning the 
onstraints that 
an be generated.De�nition 1 (Constraints). Constraint problems are de�ned as follows:

C ::= ⊥ | ⊤ | C ∧ C | a = b | a ≤ bwhere a, b ∈ A, = is 
ommutative, ∧ is asso
iative and 
ommutative, C ∧ C =
C ∧⊤ = C and C ∧⊥ = ⊥. A �nite 
onjun
tion C1 ∧ . . .∧Cn is identi�ed with ⊤if n = 0. A 
onstraint problem is in 
anoni
al form if it is neither of the form
C ∧ ⊤, nor of the form C ∧ ⊥, nor of the form C ∧ C ∧ D. In the following, wealways assume that 
onstraint problems are in 
anoni
al form. An equality (resp.inequality) problem is a problem having only equalities (resp. inequalities). Aninequality ∞ ≤ α is 
alled an ∞-inequality. An inequality spα ≤ sqβ is 
alled alinear inequality. Solutions to 
onstraint problems are de�ned as follows:� S(⊥) = ∅,� S(⊤) is the set of all size substitutions,� S(C ∧ D) = S(C) ∩ S(D),� S(a = b) = {ϕ | aϕ = bϕ},� S(a ≤ b) = {ϕ | aϕ ≤A bϕ}.Let Sℓ(C) = {ϕ | ∀α, αϕ↓ 6=∞} be the set of linear solutions.We now prove that a subtyping problem 
an be transformed into 
onstraints.Lemma 3. Let S(U, V ) be the set of substitutions ϕ su
h that Uϕ ≤s V ϕ. Wehave S(U, V ) = S(C(U, V )) where C(U, V ) is de�ned as follows:



� C((x : U)V, (x : U ′)V ′) = C(U ′, U) ∧ C(V, V ′),� C(Cau, Cbv) = a ≤ b ∧ E0(u1, v1) ∧ . . . ∧ E0(un, vn) if |u| = |v| = n,� C(U, V ) = E1(U, V ) in the other 
ases,and E i(U, V ) is de�ned as follows:� E i((x :U)V, (x :U ′)V ′) = E i([x :U ]V, [x :U ′]V ′) = E i(UV,U ′V ′)
= E i(U,U ′) ∧ E i(V, V ′),� E1(Ca, Cb) = a = b,� E0(Ca, Cb) = a = b ∧∞ ≤ a,� E i(c, c) = ⊤ if c ∈ S ∪ X ∪ F \ CF2,� E i(U, V ) = ⊥ in the other 
ases.Proof. First, we 
learly have ϕ ∈ S(E1(U, V )) i� Uϕ = V ϕ, and ϕ ∈ S(E0(U, V ))i� Uϕ = V ϕ and V(Uϕ) = ∅. Thus, S(U, V ) = S(C(U, V )). ⊓⊔Fig. 5. Type inferen
e rules(ax) Γ ⊢

Y

a ⋆ : 2 (prod) Γ ⊢
Y

a U : sx Γ, x : U ⊢
Y

a V : s′

Γ ⊢Ya (x : U)V : s′(size) Γ ⊢
Y

a C∞ : τC (C ∈ CF2) (symb) Γ ⊢
Y

a f : τfρ
Y

(f /∈ CF2)(var) Γ ⊢
Y

a x : xΓ (x∈dom(Γ )) (abs) Γ ⊢
Y

a U : sx Γ, x : U ⊢
Y

a v : V

Γ ⊢Ya [x : U ]v : (x : U)V
(V 6= 2)(app) Γ ⊢

Y

a t : T Γ ⊢
Y∪V(T)

a u : U ′

Γ ⊢Ya tu : V ϕρ
Y
{x 7→ u}

(T↓ = (x : U)V , C = C(U ′↓, U),
S(C) 6= ∅, ϕ = mgs(C))For renaming symbol types with variables outside some �nite set of alreadyused variables, we assume given a fun
tion ρ whi
h, to every �nite set Y ⊆ Z,asso
iates an inje
tion ρ

Y
from Y to Z\Y. In Figure 5, we de�ne a type inferen
ealgorithm ⊢Ya parametrized by a �nite set Y of (already used) variables under thefollowing assumptions:(1) It is de
idable whether S(C) is empty or not.(2) If S(C) 6=∅ then C has a most general solution mgs(C).(3) If S(C) 6= ∅ then mgs(C) is 
omputable.It would be interesting to try to give a modular presentation of type inferen
eby 
learly separating 
onstraint generation from 
onstraint solving, as it is donefor ML in [25℄ for instan
e. However, for dealing with dependent types, oneat least needs higher-order pattern uni�
ation. Indeed, assume that we have a
onstraint generation algorithm whi
h, for a term t and a type (meta-)variable

X , 
omputes a set C of 
onstraints on X whose solutions provide valid instan
esof X , i.e. valid types for t. Then, in (app), if the 
onstraint generation gives
C1 for t : Y and C2 for u : Z, then it should give something like C1 ∧ C2 ∧
(∃U.∃V. Y =βη (x : U)V x ∧ Z ≤ U ∧X=βη V u) for tu : X .



We now prove the 
orre
tness, 
ompleteness and minimality of ⊢Ya , assumingthat symbol types are well sorted (⊢ τf : sf for all f).Theorem 2 (Corre
tness). If Γ is a valid ∞-environment and Γ ⊢Ya t : T ,then Γ ⊢ t : T , t is an ∞-term and V(T ) ∩ Y = ∅.Proof. By indu
tion on ⊢Ya . We only detail the (app) 
ase.(app) By indu
tion hypothesis, Γ ⊢ t : T , Γ ⊢ u : U ′ and t and u are∞-terms.Thus, tu is an ∞-term. By Lemma 1, Γ ⊢ t : Tϕ and Γ ⊢ u : U ′ϕ. Sin
e
Tϕ↓= (x : Uϕ)V ϕ, we have Tϕ 6= 2 and Γ ⊢ Tϕ : s. By subje
t redu
tion,
Γ ⊢ (x : Uϕ)V ϕ : s. Hen
e, by (sub), Γ ⊢ t : (x : Uϕ)V ϕ. By Lemma 3,
S(C) = S(U ′↓, U) and U ′↓ϕ ≤s Uϕ. Sin
e Γ ⊢ Uϕ : s′, by (sub), Γ ⊢ u : Uϕ.Therefore, by (app), Γ ⊢ tu : V ϕ{x 7→ u} and Γ ⊢ tu : V ϕρ

Y
{x 7→ u} sin
e

V(u) = ∅. ⊓⊔Theorem 3 (Completeness and minimality). If Γ is an ∞-environment, tis an ∞-term and Γ ⊢ t : T , then there are T ′ and ψ su
h that Γ ⊢Ya t : T ′ and
T ′ψ ≤ T .Proof. By indu
tion on ⊢. We only detail some 
ases.(symb) Take T ′ = τfρY and ψ = ρ−1

Y
ϕ.(app) By indu
tion hypothesis, there exist T , ψ1, U ′ and ψ2 su
h that Γ ⊢Ya

t : T , Tψ1 ≤ (x : U)V , Γ ⊢Y∪V(T )

a u : U ′ and U ′ψ2 ≤ U . By Lemma 2,
V(U ′) ∩ V(T ) = ∅. Thus, dom(ψ1) ∩ dom(ψ2) = ∅. So, let ψ = ψ1 ⊎ ψ2. ByLemma 1, T↓ψ ≤s (x : U↓)V ↓. Thus, T↓ = (x : U1)V1, U↓ ≤ U1ψ and V1ψ ≤
V ↓. Sin
e U ′ψ ≤ U and U↓ ≤ U1ψ, we have U ′↓ ψ ≤ U1ψ and, by Lemma 1,
U ′↓ ψ ≤s U1ψ. Thus, ψ ∈ S(U ′↓, U1). By Lemma 3, S(U ′↓, U1) = S(C) with
C = C(U ′↓, U1). Thus, S(C) 6= ∅ and there exists ϕ = mgs(C). Hen
e, Γ ⊢Ya
tu : V1ϕρYθ where θ = {x 7→ u}. We are left to prove that there exists ϕ′ su
hthat V1ϕρYθϕ

′ ≤ V θ. Sin
e ϕ = mgs(C), there exists ψ′ su
h that ϕψ′ ≤A ψ.So, let ϕ′ = ρ−1
Y
ψ′. Sin
e V(u) = ∅, θ 
ommutes with size substitutions. Sin
e

V1ψ ≤ V ↓ ≤ V , by Lemma 2, V1ϕρY θϕ
′ = V1ϕψ

′θ ≤ V1ψθ ≤ V θ. ⊓⊔Theorem 4 (De
idability of type-
he
king). Let Γ be an ∞-environment,
t be an ∞-term and T be a type su
h that Γ ⊢ T : s. Then, the problem ofknowing whether there is ψ su
h that Γ ⊢ t : Tψ is de
idable.Proof. The de
ision pro
edure 
onsists in (1) trying to 
ompute the type T ′su
h that Γ ⊢Ya t : T ′ by taking Y = V(T ), and (2) trying to 
ompute ψ =
mgs(C(T ′, T )). Every step is de
idable.We prove its 
orre
tness. Assume that Γ ⊢Ya t : T ′, Y = V(T ) and ψ =
mgs(C(T ′, T )). Then, T ′ψ ≤ Tψ and, by Theorem 2, Γ ⊢ t : T ′. By Lemma 1,
Γ ⊢ t : T ′ψ. Thus, by (sub), Γ ⊢ t : Tψ.We now prove its 
ompleteness. Assume that there is ψ su
h that Γ ⊢ t : Tψ.Let Y = V(T ). Sin
e Γ is valid and V(Γ ) = ∅, by Theorem 3, there are T ′ and
ϕ su
h that Γ ⊢Ya t : T ′ and T ′ϕ ≤ Tψ. This means that the de
ision pro
edure
annot fail (ψ ⊎ ϕ ∈ S(T ′, T )). ⊓⊔



4 Solving 
onstraintsIn this se
tion, we prove that the satis�ability of 
onstraint problems is de
idable,and that a satis�able problem has a smallest solution. The proof is organizedas follows. First, we introdu
e simpli�
ation rules for equalities similar to usualuni�
ation pro
edures (Lemma 4). Se
ond, we introdu
e simpli�
ation rules forinequalities (Lemma 5). From that, we 
an dedu
e some general result on theform of solutions (Lemma 7). We then prove that a 
onjun
tion of inequalities hasalways a linear solution (Lemma 8). Then, by using linear algebra te
hniques,we prove that a satis�able inequality problem has always a smallest solution(Lemma 11). Finally, all these results are 
ombined in Theorem 5 for provingthe assumptions of Se
tion 3.Let a state S be ⊥ or a triplet E|E ′|C where E and E ′ are 
onjun
tions ofequalities and C a 
onjun
tion of inequalities. Let S(⊥) = ∅ and S(E|E ′|C) =
S(E ∧ E ′ ∧ C) be the solutions of a state. A 
onjun
tion of equalities E is insolved form if it is of the form α1 = a1 ∧ . . . ∧ αn = an (n ≥ 0) with thevariables αi distin
t from one another and V(a) ∩ {α} = ∅. It is identi�ed withthe substitution {α 7→ a}.Fig. 6. Simpli�
ation rules for equalities
(1) E ∧ sa = sb | E ′ | C  E ∧ a = b | E ′ | C
(2) E ∧ a = a | E ′ | C  E | E ′ | C
(3) E ∧ a = sk+1a | E ′ | C  ⊥
(4) E ∧∞ = sk+1a | E ′ | C  ⊥
(5) E ∧ α = a | E ′ | C  E{α 7→a} | E ′{α 7→a} ∧ α = a | C{α 7→a} if α /∈V(a)The simpli�
ation rules on equalities given in Figure 6 
orrespond to the usualsimpli�
ation rules for �rst-order uni�
ation [19℄, ex
ept that substitutions arepropagated into the inequalities.Lemma 4. The relation of Figure 6 terminates and preserves solutions: if S1  

S2 then S(S1) = S(S2). Moreover, any normal form of E|⊤|C is either ⊥ or ofthe form ⊤|E ′|C′ with E ′ in solved form and V(C′) ∩ dom(E ′) = ∅.We now introdu
e a notion of graphs due to Pratt [26℄ that allows us to dete
tthe variables that are equivalent to ∞. In the following, we use other standardte
hniques from graph 
ombinatori
s and linear algebra. Note however that weapply them on symboli
 
onstraints, while they are generally used on numeri
al
onstraints. What we are looking for is substitutions, not numeri
al solutions.In parti
ular, we do not have the 
onstant 0 in size expressions (although it
ould be added without having to 
hange many things). Yet, for proving thatsatis�able problems have most general solutions, we will use some isomorphismbetween symboli
 solutions and numeri
al ones (see Lemma 10).De�nition 2 (Dependen
y graph). To a 
onjun
tion of linear inequalities
C, we asso
iate a graph GC on V(C) as follows. To every 
onstraint spα ≤ sqβ,



we asso
iate the labeled edge α p−q
−→ β. The 
ost of a path α1

p1
−→ . . .

pk−→ αk+1 is
Σk
i=1pi. A 
y
li
 path (i.e. when αk+1 = α1) is in
reasing if its 
ost is > 0.Fig. 7. Simpli�
ation rules for inequalities

(1) C ∧ a ≤ sk∞  C
(2) C ∧ D  C ∧ {∞ ≤ α | α ∈ V(D)} if GD is in
reasing
(3) C ∧ sk∞ ≤ slα  C{α 7→ ∞} ∧∞ ≤ α if α ∈ V(C)A 
onjun
tion of inequalities C is in redu
ed form if it is of the form C∞ ∧ Cℓwith C∞ a 
onjun
tion of ∞-inequalities, Cℓ a 
onjun
tion of linear inequalitieswith no in
reasing 
y
le, and V(C∞) ∩ V(Cℓ) = ∅.Lemma 5. The relation of Figure 7 on inequality problems terminates and pre-serves solutions. Moreover, any normal form is in redu
ed form.Lemma 6. If C is a 
onjun
tion of inequalities then S(C) 6= ∅. Moreover, if Cis a 
onjun
tion of ∞-inequalities then S(C) = {ϕ | ∀α ∈ V(C), αϕ↓=∞}.Lemma 7. Assume that E|⊤|C has normal form ⊤|E ′|C′ by the rules of Figure6, and C′ has normal form D by the rules of Figure 7. Then, S(E ∧ C) 6= ∅,

E ′ = mgs(E) and every ϕ ∈ S(E ∧ C) is of the form E ′(υ ⊎ ψ) with υ ∈ S(D∞)and ψ ∈ S(Dℓ).Proof. The fa
t that, in this 
ase, S(E) 6= ∅ and E ′ = mgs(E) is a well knownresult on uni�
ation [19℄. Sin
e S(E ∧ C) = S(E ′ ∧ D), V(E ′) ∩ V(D) = ∅ and
S(D) 6= ∅, we have S(E ∧C) 6= ∅. Furthermore, every ϕ ∈ S(E ∧C) is of the form
E ′ϕ′ sin
e S(E ′ ∧ D) ⊆ S(E ′). Now, sin
e V(D∞) ∩ V(Dℓ) = ∅, ϕ′ = υ ⊎ ψ with
υ ∈ S(D∞) and ψ ∈ S(Dℓ). ⊓⊔Hen
e, the solutions of a 
onstraint problem 
an be obtained from the solu-tions of the equalities, whi
h is a simple �rst-order uni�
ation problem, and fromthe solutions of the linear inequalities resulting of the previous simpli�
ations.In the following, let C be a 
onjun
tion of K linear inequalities with noin
reasing 
y
le, and L be the biggest label in absolute value in GC . We �rstprove that C has always a linear solution by using Bellman-Ford's algorithm.Lemma 8. Sℓ(C) 6= ∅.Proof. Let succ(α) = {β | α

p
−→ β ∈ GC} and succ∗ be the re�exive andtransitive 
losure of succ. Choose γ ∈ Z \ V(C), a set R of verti
es in GC su
hthat succ∗(R) 
overs GC , and a minimal 
ost qβ ≥ KL for every β ∈ R. Letthe 
ost of a vertex αk+1 along a path α1

p1
−→ α2

p2
−→ . . . αk+1 with α1 ∈ Rbe qα1 + Σk

i=1pi. Now, let ωβ be the maximal 
ost for β along all the possiblepaths from a vertex in R. We have ωβ ≥ 0 sin
e there is no in
reasing 
y
le.Hen
e, for all edge α p
−→ β ∈ GC , we have ωα + p ≤ ωβ. Thus, the substitution

ϕ = {α 7→ sωαγ | α ∈ V(C)} ∈ Sℓ(C). ⊓⊔



We now prove that any solution has a more general linear solution. Thisimplies that inequality problems are always satis�able and that the satis�abilityof a 
onstraint problem only depends on its equalities.Lemma 9. If ϕ ∈ S(C) then there exists ψ ∈ Sℓ(C) su
h that ψ ≤A ϕ.We now prove that Sℓ(C) has a smallest element. To this end, assume thatinequalities are ordered and that V(C) = {α1, . . . , αn}. We asso
iate to C anadja
en
y-like matrix M = (mi,j) with K lines and n 
olumns, and a ve
tor
v = (vi) of length K as follows. Assume that the i-th inequality of C is of theform spαj ≤ sqαk. Then, mi,j = 1, mi,k = −1, mi,l = 0 if l /∈ {j, k}, and
vi = q − p. Let P = {z ∈ Qn | Mz ≤ v, z ≥ 0} and P ′ = P ∩ Zn.To a substitution ϕ ∈ Sℓ(C), we asso
iate the ve
tor zϕ su
h that zϕi is thenatural number p su
h that αiϕ = spβ.To a ve
tor z ∈ P ′, we asso
iate a substitution ϕz as follows. Let {G1, . . . , Gs}be the 
onne
ted 
omponents of GC . For all i, let ci be the 
omponent numberto whi
h αi belongs. Let β1, . . . , βs be variables distin
t from one another andnot in V(C). We de�ne αiϕz = sziβci .We then study the relations between symboli
 and numeri
al solutions.Lemma 10.� If ϕ ∈ Sℓ(C) then zϕ ∈ P ′. Furthermore, if ϕ ≤A ϕ′ then zϕ ≤ zϕ′.� If z ∈ P ′ then ϕz ∈ Sℓ(C). Furthermore, if z ≤ z′ then ϕz ≤A ϕz′ .� zϕz = z and ϕzϕ ⊑ ϕ.Finally, we are left to prove that P ′ has a smallest element. The proof useste
hniques from linear algebra.Lemma 11. There is a unique z∗ ∈ P ′ su
h that, for all z ∈ P ′, z∗ ≤ z.An e�
ient algorithm for 
omputing the smallest solution of a set of linearinequalities with at most two variables per inequality 
an be found in [23℄. Amore e�
ient algorithm 
an perhaps be obtained by taking into a

ount thespe
i�
ities of our problems.Gathering all the previous results, we get the de
idability.Theorem 5 (De
idability). Let C be a 
onstraint problem. Whether S(C) isempty or not 
an be de
ided in polynomial time w.r.t. the size of equalities in C.Furthermore, if S(C) 6= ∅ then S(C) has a smallest solution that is 
omputablein polynomial time w.r.t. the size of inequalities.5 Con
lusion and related worksIn Se
tion 3, we give a general algorithm for type inferen
e with size annotationsbased on 
onstraint solving, that does not depend on the size algebra. For having
ompleteness, we require satis�able sets of 
onstraints to have a 
omputable mostgeneral solution. In Se
tion 4, we prove that this is the 
ase if the size algebra is



built from the symbols s and∞ whi
h, although simple, 
aptures usual indu
tivede�nitions (sin
e then the size 
orresponds to the number of 
onstru
tors) andmu
h more (see the introdu
tion and [7℄).A natural extension would be to add the symbol + in the size algebra, fortyping list 
on
atenation in a more pre
ise way for instan
e. We think that thete
hniques used in the present work 
an 
ope with this extension. However, with-out restri
tions on symbol types, one may get 
onstraints like 1 ≤ α+β and loosethe uni
ity of the smallest solution. We think that simple and general restri
-tions 
an be found to avoid su
h 
onstraints to appear. Now, if symbols like ×are added to the size algebra, then we lose linearity and need more sophisti
atedmathemati
al tools.The point is that, be
ause we 
onsider dependent types and subtyping, we arenot only interested in satis�ability but also in minimality and uni
ity, in orderto have 
ompleteness of type inferen
e [12℄. There exist many works on typeinferen
e and 
onstraint solving. We only mention some that we found more orless 
lose to ours: Zenger's indexed types [32℄, Xi's Dependent1 ML [30℄, Oderskyet al 's ML with 
onstrained types [25℄, Abel's sized types [1℄, and Barthe et al 'sstaged types [4℄. We note the following di�eren
es:Terms. Ex
ept [4℄, the previously 
ited works 
onsider λ-terms à la Curry,i.e. without types in λ-abstra
tions. Instead, we 
onsider λ-terms à la Chur
h,i.e. with types in λ-abstra
tions. Note that type inferen
e with λ-terms à laCurry and polymorphi
 or dependent types is not de
idable. Furthermore, theyall 
onsider fun
tions de�ned by �xpoint and mat
hing on 
onstru
tors. Instead,we 
onsider fun
tions de�ned by rewrite rules with mat
hing both on 
onstru
torand de�ned symbols (e.g. asso
iativity and distributivity rules).Types. If we disregard 
onstraints atta
hed to types, they 
onsider simpleor polymorphi
 types, and we 
onsider fully polymorphi
 and dependent types.Now, our data type 
onstru
tors 
arry no 
onstraints: 
onstraints only 
ome upfrom type inferen
e. On the other hand, the 
onstru
tors of Zenger's indexeddata types must satisfy polynomial equations, and Xi's index variables 
an beassigned boolean propositions that must be satis�able in some given model (e.g.Presburger arithmeti
). Expli
it 
onstraints allow a more pre
ise typing andmore fun
tion de�nitions to be a

epted. For instan
e (see [7℄), in order forqui
ksort to have type listα ⇒ listα, we need the auxiliary pivot fun
tion to havetype nat∞ ⇒ listα ⇒ listβ×listγ with the 
onstraint α = β+γ. And, if qui
ksorthas type list∞ ⇒ list∞ then a rule like f (cons x l)→ g x (f (quicksort l)) isreje
ted sin
e (quicksort l) 
annot be proved to be smaller than (cons x l). Thesame holds in [1, 4℄.Constraints. In 
ontrast with Xi and Odersky et al who 
onsider the 
on-straint system as a parameter, giving DML(C) and HM(X) respe
tively, we 
on-sider a �xed 
onstraint system, namely the one introdu
ed in [3℄. It is 
lose tothe one 
onsidered by Abel whose size algebra does not have∞ but whose typeshave expli
it bounded quanti�
ations. Indu
tive types are indeed interpretedin the same way. We already mentioned also that Zenger 
onsiders polynomial1 By �dependent�, Xi means 
onstrained types, not full dependent types.



equations. However, his equivalen
e on types is de�ned in su
h a way that, forinstan
e, listα is equivalent to list2α, whi
h is not very natural. So, the nextstep in our work would be to 
onsider expli
it 
onstraints from an abstra
t
onstraint system. By doing so, Odersky et al get general results on the 
om-pleteness of inferen
e. Sulzmann [28℄ gets more general results by swit
hing toa fully 
onstrained-based approa
h. In this approa
h, 
ompleteness is a
hievedif every 
onstraint 
an be represented by a type. With term-based inferen
e anddependent types, whi
h is our 
ase, 
ompleteness requires minimality whi
h isnot always possible [12℄.Constraint solving. In [4℄, Barthe et al 
onsider system F with ML-likede�nitions and the same size annotations. Sin
e they have no dependent type,they only have inequality 
onstraints. They also use dependan
y graphs for elim-inating ∞, and give a spe
i�
 algorithm for �nding the most general solution.But they do not study the relations between linear 
onstraints and linear pro-gramming. So, their algorithm is less e�
ient than [23℄, and 
annot be extendedto size annotations like a+ b, for typing addition or 
on
atenation.Inferen
e of size annotations. As already mentioned in the introdu
tion,we do not infer size annotations for fun
tion symbols like [13, 4℄. We just 
he
kthat fun
tion de�nitions are valid wrt size annotations, and that they preservetermination. However, �nding annotations that satisfy these 
onditions 
an eas-ily be expressed as a 
onstraint problem. Thus, the te
hniques used in this paper
an 
ertainly be extended for inferring size annotations too. For instan
e, if wetake − : natα⇒natβ⇒natX , the rules of − given in the introdu
tion are validwhenever 0 ≤ X , α ≤ X and X ≤ X , and the most general solution of this
onstraint problem is X = α.A
knowledgments. I would like to thank very mu
h Miki Hermann, Hong-wei Xi, Christophe Ringeissen and Andreas Abel for their 
omments on a pre-vious version of this paper.Referen
es1. A. Abel. Termination 
he
king with types. Theoreti
al Informati
s and Appli
a-tions, 38(4):277�319, 2004.2. H. Barendregt. Lambda 
al
uli with types. In S. Abramsky, D. Gabbay, andT. Maibaum, editors, Handbook of logi
 in 
omputer s
ien
e, volume 2. OxfordUniversity Press, 1992.3. G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based ter-mination of re
ursive de�nitions. Mathemati
al Stru
tures in Computer S
ien
e,14(1):97�141, 2004.4. G. Barthe, B. Grégoire, and F. Pastawski. Pra
ti
al inferen
e for type-based termi-nation in a polymorphi
 setting. In Pro
eedings of the 7th International Conferen
eon Typed Lambda Cal
uli and Appli
ations, Le
ture Notes in Computer S
ien
e3461, 2005.5. F. Blanqui. Full version of [7℄. Available on the web.



6. F. Blanqui. Rewriting modulo in Dedu
tion modulo. In Pro
eedings of the 14thInternational Conferen
e on Rewriting Te
hniques and Appli
ations, Le
ture Notesin Computer S
ien
e 2706, 2003.7. F. Blanqui. A type-based termination 
riterion for dependently-typed higher-orderrewrite systems. In Pro
eedings of the 15th International Conferen
e on RewritingTe
hniques and Appli
ations, Le
ture Notes in Computer S
ien
e 3091, 2004.8. F. Blanqui. De�nitions by rewriting in the Cal
ulus of Constru
tions. Mathemati
alStru
tures in Computer S
ien
e, 15(1):37�92, 2005.9. F. Blanqui. Full version. See http://www.loria.fr/~blanqui/, 2005.10. F. Blanqui. Indu
tive types in the Cal
ulus of Algebrai
 Constru
tions. Funda-menta Informati
ae, 65(1-2):61�86, 2005.11. V. Breazu-Tannen. Combining algebra and higher-order types. In Pro
eedings ofthe 3rd IEEE Symposium on Logi
 in Computer S
ien
e, 1988.12. G. Chen. Subtyping, Type Conversion and Transitivity Elimination. PhD thesis,Université Paris VII, Fran
e, 1998.13. W. N. Chin and S. C. Khoo. Cal
ulating sized types. Journal of Higher-Order andSymboli
 Computation, 14(2-3):261�300, 2001.14. H. Comon. Solving symboli
 ordering 
onstraints. International Journal of Foun-dations of Computer S
ien
e, 1(4):387�412, 1990.15. Coq-Development-Team. The Coq Proof Assistant Referen
e Manual - Version8.0. INRIA Ro
quen
ourt, Fran
e, 2004. http://
oq.inria.fr/.16. T. Coquand. An algorithm for testing 
onversion in type theory. In G. Huetand G. Plotkin, editors, Logi
al Frameworks, pages 255�279. Cambridge UniversityPress, 1991.17. T. Coquand and G. Huet. The Cal
ulus of Constru
tions. Information and Com-putation, 76(2-3):95�120, 1988.18. T. Coquand and C. Paulin-Mohring. Indu
tively de�ned types. In Pro
eedingsof the International Conferen
e on Computer Logi
, Le
ture Notes in ComputerS
ien
e 417, 1988.19. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,Handbook of Theoreti
al Computer S
ien
e, volume B, 
hapter 6. North-Holland,1990.20. E. Giménez. Stru
tural re
ursive de�nitions in type theory. In Pro
eedings of the25th International Colloquium on Automata, Languages and Programming, Le
tureNotes in Computer S
ien
e 1443, 1998.21. J. Hughes, L. Pareto, and A. Sabry. Proving the 
orre
tness of rea
tive systemsusing sized types. In Pro
eedings of the 23th ACM Symposium on Prin
iples ofProgramming Languages, 1996.22. J.-P. Jouannaud and A. Rubio. The Higher-Order Re
ursive Path Ordering. InPro
eedings of the 14th IEEE Symposium on Logi
 in Computer S
ien
e, 1999.23. G. Lueker, N. Megiddo, and V. Rama
handran. Linear programming with twovariables per inequality in poly-log time. SIAM Journal on Computing, 19(6):1000�1010, 1990.24. F. Müller. Con�uen
e of the lambda 
al
ulus with left-linear algebrai
 rewriting.Information Pro
essing Letters, 41(6):293�299, 1992.25. M. Odersky, M. Sulzmann, and M. Wehr. Type inferen
e with 
onstrained types.Theory and Pra
ti
e of Obje
t Systems, 5(1):35�55, 1999.26. V. Pratt. Two easy theories whose 
ombination is hard. Te
hni
al report, MIT,United States, 1977.27. A. S
hrijver. Theory of linear and integer programming. Wiley-Inters
ien
e Seriesin Dis
rete Mathemati
s and Optimization. John Wiley and Sons, 1986.



28. M. Sulzmann. A general type inferen
e framework for Hindley/Milner style sys-tems. In Pro
eedings of the 5th Fuji International Symposium on Fun
tional andLogi
 Programming, Le
ture Notes in Computer S
ien
e 2024, 2001.29. D. Walukiewi
z-Chrz¡sz
z. Termination of rewriting in the Cal
ulus of Constru
-tions. Journal of Fun
tional Programming, 13(2):339�414, 2003.30. H. Xi. Dependent types in pra
ti
al programming. PhD thesis, Carnegie-Mellon,Pittsburgh, United States, 1998.31. H. Xi. Dependent types for program termination veri�
ation. Journal of Higher-Order and Symboli
 Computation, 15(1):91�131, 2002.32. C. Zenger. Indexed types. Theoreti
al Computer S
ien
e, 187(1-2):147�165, 1997.Proofs5.1 Remark about 
onstraint solvingOne 
ould think of using Comon's work [14℄ but it is not possible for severalreasons:� We 
onsider two kinds of 
onstraints: equality 
onstraints a = b where = isinterpreted by the synta
ti
 equality, and inequality 
onstraints a ≤ b where
≤ is interpreted by the quasi-ordering ≤A on size expressions. Instead of largeinequalities, Comon 
onsiders stri
t inequalities a < b where < is interpretedby the lexi
ographi
 path ordering (LPO). Sin
e ≤A is a quasi-ordering, wedo not have a ≤A b⇔ a <A b ∨ a = b.� Even though one 
an get rid of ∞ symbols in a �rst step, thing that we do inLemmas 7 and 9, Comon assumes that there is at least one 
onstant symbol.Indeed, he studies the ground solutions of a boolean 
ombination of equationsand inequations. However, without ∞, we have no ground term. It does notmatter sin
e we do not restri
t ourself to ground solutions.5.2 Proof of Lemma 4The relation  stri
tly de
reases the measure (s(E), c(E))lex where s(E) is thenumber of 
onstraints and c(E) the number of symbols. Its 
orre
tness is easily
he
ked. Now, let S = E|E ′|C′ be a normal form of E|⊤|C. If E 6= ⊤ then S isredu
ible. Now, one 
an easily 
he
k that, if E1|E ′1|C1  E2|E ′2|C2, E ′1 is in solvedform and V(C1)∩dom(E ′1) = ∅, then E ′2 is in solved form and V(C2)∩dom(E ′2) = ∅.So, E ′ is in solved form and V(C′) ∩ dom(E ′) = ∅.5.3 Proof of Lemma 5The relation stri
tly de
reases the measure (c(C), v(C))lex where c(C) is the num-ber of symbols and variables and v(C) the multiset of o

urren
es of ea
h vari-able in C. We now prove the 
orre
tness of these rules. (1) is trivial. (3) followsfrom Lemma 2. For (2), let D′ =

∧

{∞ ≤ α | α ∈ V(D)}. We 
learly have
S(D′) ⊆ S(D). Assume that GD = α1

p1
−→ . . .

pk−→ α1 and θ ∈ S(D). If αiθ↓=∞



then, for all i, αiθ↓= ∞ and θ ∈ S(D′). Otherwise, there exist γ ∈ Z and, forall i, mi ∈ N su
h that αiθ = smiγ, m1 + p1 ≤ m2, . . . , mk + pk ≤ m1. Thus,
Σk
i=1mi +Σk

i=1pi ≤ Σk
i=1mi. Hen
e, Σk

i=1pi ≤ 0 whi
h is not possible sin
e GDis in
reasing. Finally, a normal form is 
learly in redu
ed form.5.4 Proof of Lemma 6Let S = {ϕ | ∀α ∈ V(C), αϕ↓= ∞}. We prove that S ⊆ S(C). Let ϕ = {α 7→
∞ | α ∈ V(C)} and a ≤ b ∈ C. We have a = ska′ and b = slb′ with a′, b′ ∈
Z ∪ {∞}. So, by Lemma 2, aϕ = sk∞ ≤A bϕ = sl∞ and ϕ ∈ S(C).Assume now that C is a 
onjun
tion of ∞-inequalities. Let ϕ ∈ S(C) and
α ∈ V(C). Sin
e α ∈ V(C), there exists a 
onstraint ∞ ≤ α in C. Thus, byLemma 2, αϕ↓=∞ and ϕ ∈ S.5.5 Proof of Lemma 9We 
an assume w.l.o.g. that dom(ϕ) ⊆ V(C). If, for all α ∈ V(C), αϕ↓= ∞,then any ψ ∈ Sℓ(C) 6= ∅ works. Otherwise, there exists α ∈ V(C), γ and psu
h that αϕ = spγ. W.l.o.g., we 
an assume that C has only one 
onne
ted
omponent. Let Dℓ = {α ∈ dom(ϕ) | αϕ ↓6= ∞}, D∞ = dom(ϕ) \ Dℓ and
D′

∞ = {β ∈ D∞ | spα ≤ sqβ ∈ C ⇒ αϕ↓6= ∞}. For every α ∈ Dℓ, let ωα bethe integer k su
h that αϕ = skγ. Let C1 = {spα ≤ sqβ | αϕ↓6= ∞, βϕ↓6= ∞},
C2 = {spα ≤ sqβ | αϕ↓6= ∞, βϕ↓= ∞}, C3 = {spα ≤ sqβ | αϕ↓= ∞, βϕ↓= ∞}and C′3 = C3 ⊎ {β ≤ β | β ∈ D′

∞}. We have C = C1 ⊎ C2 ⊎ C3. After the proof ofLemma 8, by taking R ⊇ D′
∞ and qβ = max{KL,ωα + p− q | spα ≤ sqβ ∈ C}for every β ∈ D′

∞, there exists ϕ′ ∈ Sℓ(C′3). We have dom(ϕ′) = V(C′3) = D∞.Let ψ = ϕ|Dℓ ⊎ ϕ
′. We 
learly have ψ linear and ψ ≤A ϕ. We now prove that

ψ ∈ Sℓ(C). We have ψ|V(C1) = ϕ|V(C1) ∈ S(C1) and ψ|V(C3) = ϕ′|V(C3) ∈ S(C3).Let now spα ≤ sqβ ∈ C2. We must 
he
k that spαϕ ≤ sqβϕ′. It follows from thede�nition of ϕ′.5.6 Proof of Lemma 10� Assume that the i-th inequality is of the form spαj ≤ sqαk. We must provethat zϕj −zϕk ≤ q−p. By assumption, spαjϕ ≤A sqαkϕ. Hen
e, p+zϕj ≤ q+zϕk .The se
ond 
laim is immediate.� Assume that the i-th inequality is of the form spαj ≤ sqαk. We must provethat spαjϕz ≤A sqαkϕz , that is, sp+zjβcj ≤A sq+zkβck . Sin
e αj and αk are
onne
ted in GC , cj = ck. And, by assumption, zj − zk ≤ q − p.� zϕzi is the integer p su
h that αiϕz = spβ, and αiϕz = sziβci . Thus, p = zi.� αiϕzϕ = sz
ϕ
i βci , and zϕi is the integer p su
h that αiϕ = spβ. Every variableof a 
onne
ted 
omponent c is mapped by ϕ to the same variable γc. Let ψbe the substitution whi
h asso
iates γc to βc. We have αiϕzϕψ = spβciψ =

spγci = αiϕ. Thus, ϕzϕ ⊑ ϕ.



5.7 Proof of Lemma 11Lemma 11 is Lemma 12 (6) below.See for instan
e [27℄ for details on polyhedrons, i.e. sets of the form {z ∈
Qn | Mz ≤ v}. Note that P = {z ∈ Qn | M ′z ≤ v′} with M ′ =

(

M
−I

) and
v′ =

(

v
0

), where I is the identity matrix. We say that a bit ve
tor is a ve
torwhose 
omponents are in {0, 1}. Given two ve
tors za and zb, min{za, zb} is theve
tor z su
h that zi = min{zai , z
b
i }.Lemma 12.(1) P is pointed, i.e. his lineality spa
e {z∈Qn|M ′z = 0} has dimension 0.(2) P is integral, i.e. P is the 
onvex hull of P ′.(3) P is in�nite.(4) Every minimal proper fa
e of P has for dire
tion a bit ve
tor.(5) If za, zb ∈ P then min{za, zb} ∈ P .(6) There is a unique z∗ ∈ P ′ su
h that, for all z ∈ P ′, z∗ ≤ z.Proof. (1) If M ′z = 0 then −Iz = 0 and z = 0.(2) P is integral sin
e the transpose ofM is totally unimodular: it is a {0,±1}-matrix with in ea
h 
olumn exa
tly one +1 and one −1 ([27℄ p. 274).(3) As any polyhedron, there is a polytope Q su
h that P = Q+ char.cone(P )([27℄ p. 88), where char.cone(P ) = {z ∈ Qn | M ′z ≤ 0} is the 
hara
teristi

one of P . Sin
e every row ofM has exa
tly one +1 and one −1, the sum ofthe 
olumns ofM is 0. Thus, the ve
tor 1 whose 
omponents are all equal to

1 belongs to char.cone(P ) and, either P = ∅ or P is in�nite. After Lemma8, Sℓ(C) 6= ∅. Thus, P is in�nite.(4) For every minimal proper fa
e F of P , there exist a row submatrix (L u) of
(M ′ v′) and two rows (ai v′i) and (aj v′j) of (M ′ v′) su
h that rank(L) =

rank(M ′) − 1 and F = {z ∈ Qn | Lz = u, taiz ≤ v′i,
tajz ≤ v′j} ([27℄ p.105). The dire
tion of F is given by Ker(L) = {z ∈ Qn | Lz = 0}. Let ej bethe unit ve
tor su
h that ejj = 1 and eji = 0 if i 6= j. Sin
e rank(M ′) = n,

rank(L) = n− 1 and there exists k ≤ n su
h that {Lej | j 6= k} is a familyof linearly independent ve
tors. Thus, N =

(

L
tek

) is not singular. Let w =

N−1ek. If Lz = 0 then Nz = zke
k and z = zkw. We have N−1 =

tcom(N)

det(N)where tcom(N) is the transpose matrix of the 
ofa
tors of N . Now, one 
aneasily prove that, if every row (or 
olumn) of a matrix U is either 0, ±ejor ej − ek with j 6= k, then det(U) ∈ {0,±1}. Hen
e, det(N) = ±1 and
w is a {0,±1}-ve
tor. The equations satis�ed by z in Lz = 0 are either
zi = 0 or zi = zj. If there is no equation involving zi then Ker(L) = Qeiand w = ±ei. Otherwise, w ≥ 0 or w ≤ 0. Sin
e w 
an be repla
ed by −ww.l.o.g, w 
an always be de�ned as a bit ve
tor.



(5) Let z = min{za, zb}. If za ≤ zb or zb ≤ za, this is immediate. Assume nowthat there are i 6= j su
h that zai < zbi and zaj > zbj . Sin
e every minimalproper fa
e of P has for dire
tion a bit ve
tor, we must have z ∈ P .(6) Let c = min{1z | z ∈ P}, F = {z ∈ P | 1z = c}, z∗ ∈ F and z ∈ P .Assume that z∗ 6≤ z. Then, z′ = min{z∗, z} ∈ P and 1z′ < 1z∗, whi
h isnot possible. Thus, z∗ ≤ z and F = {z∗}. Now, sin
e P is integral, z∗ ∈ P ′.
⊓⊔5.8 Proof of Theorem 5We 
an assume that C 6= ⊥. Let C= be the equalities of C and C≤ be theinequalities of C. Compute the normal form of C=|⊤|C≤ w.r.t. the rules of Figure6. This 
an be done in polynomial time w.r.t. the size of equalities. If the normalform is ⊥ then S(C) = ∅ and we are done. Otherwise, it is of the form ⊤|E|D. Let

D∞⊎Dℓ be the normal form of D w.r.t. the rules of Figure 7. It 
an be 
omputedin polynomial time w.r.t. the size of 
onstraints. Let P = {z ∈ Qn | M ′z ≤ v′}where M ′ and v′ are the matrix and the ve
tor asso
iated to Dℓ. Compute
c = min{1z | z ∈ P} and z∗ ∈ {z ∈ P | 1z = c}. This 
an be done in polynomialtime w.r.t. the size of 
onstraints sin
e P is integral (see [27℄ p. 232). Finally,let mgs(C) = E(υ ⊎ ϕz∗) where υ ∈ S(D∞). We prove that this is the smallestsolution.Let ϕ ∈ S(C). By Lemma 7, ϕ = E(υ′⊎ϕ′) where υ′ ∈ S(D∞) and ϕ′ ∈ S(Dℓ).By Lemma 9, there exists ψ ∈ Sℓ(Dℓ) su
h that ψ ⊑ ϕ′. By Lemma 10, zψ ∈ P ′.By Lemma 11, z∗ ≤ zψ. By Lemma 10, ϕz∗ ⊑ ϕzψ . By Lemma 10, ϕzψ ⊑ ψ.Thus, ϕz∗ ⊑ ϕ′ and mgs(C) ⊑ ϕ sin
e υ ≃A υ′.


