
HAL Id: inria-00000205
https://inria.hal.science/inria-00000205

Submitted on 16 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Optimal Best-first Search Algorithm for Solving
Infinite Horizon DEC-POMDPs

Daniel Szer, François Charpillet

To cite this version:
Daniel Szer, François Charpillet. An Optimal Best-first Search Algorithm for Solving Infinite Hori-
zon DEC-POMDPs. 16th European Conference on Machine Learning - ECML’2005, Oct 2005,
Porto/Portugal. �inria-00000205�

https://inria.hal.science/inria-00000205
https://hal.archives-ouvertes.fr


An Optimal Best-first Search Algorithm for

Solving Infinite Horizon DEC-POMDPs

Daniel Szer and François Charpillet

INRIA Lorraine - LORIA
MAIA Group

54506 Vandœuvre-lès-Nancy, France
{szer, charp}@loria.fr
http://maia.loria.fr

Abstract. In the domain of decentralized Markov decision processes,
we develop the first complete and optimal algorithm that is able to ex-
tract deterministic policy vectors based on finite state controllers for a
cooperative team of agents. Our algorithm applies to the discounted in-
finite horizon case and extends best-first search methods to the domain
of decentralized control theory. We prove the optimality of our approach
and give some first experimental results for two small test problems. We
believe this to be an important step forward in learning and planning in
stochastic multi-agent systems.

1 Introduction

Efficient learning and planning algorithms for problems within distributed and
only partially observable stochastic environments can be particularly useful in
a large number of todays research areas, such as network traffic routing [1],
decentralized supply chains [7], or the control of a robot team for space explo-
ration [12] or humanitarian missions [11]. Formalizing the problem of optimal
control in a rigorous way is an important part of the solution, and the theory of
Markov Decision Processes (MDPs) has been shown to be particularly powerful
in that context [16]. It is only recently however, that the Markov framework has
been extended to problems of decentralized control [5], [3]. The major additional
complexity in multi-agent decision making lies in the fact that agents may have
different partial information about both the underlying system state and the
local information held by the remaining agents. Reasoning about the potential
private information of a teammate may in fact lead into an infinite loop of ”I
believe that you believe”-like assumptions. This is the reason why solving de-
centralized partially observable MDPs optimally is significantly harder, namely
NEXP-complete [3], than solving their centralized counterparts.

While some important progress has been made in solving single-agent MDPs, we
still lack in efficient algorithms for the multi-agent case. Depending on the prob-
lem constraints, different solution concepts are required, and for some of them,
optimal non-trivial algorithms have not yet been established. Characterizing the



optimal solution of a general decentralized MDP however constitutes a crucial
step toward both efficient approximation techniques and learning algorithms.
We will focus in this paper on infinite horizon problems that can be solved us-
ing deterministic finite memory controllers, and we are able to present the first
complete algorithm to solve this class of problems optimally. Our approach is
an extension of best-first search techniques to decentralized control theory and
shows to be very effective compared to existing solutions.

In the remainder of the paper, we will introduce the DEC-POMDP framework
for decentralized decision making under uncertainty and expose some existing
approaches within this problem family, before describing our search method and
related experimental results.

2 Decentralized Markov Decision Processes

The family of Markov decision processes describes discrete stochastic systems
that evolve under the influence of one or multiple controllers. With each transi-
tion of the system is associated a reward value, and the objective of the controller
is to select precisely that sequence of actions that maximizes the collection of
rewards in the long run. For the case of several distributed but cooperative con-
trollers, their objective is to act selfishly as to maximize the reward collected by
the team.

2.1 The DEC-POMDP Model

We base our work on the DEC-POMDP formalism introduced by [3], although
alternative definitions are equally allowed.

Definition 1 (DEC-POMDP). An n-agent DEC-POMDP is given as a tuple
〈S, {Ai}, P, R, {Ωi}, O, p0〉, where

– S is a finite set of states
– Ai is a finite set of actions, available to agent i

– P (s, a1, . . . an, s′) is a function of transition probabilities
– R(s, a1, . . . an, s′) is a reward function
– Ωi is a finite set of observations for agent i

– O(s, a1, . . . an, o1, . . . on, s′) is a function of observation probabilities
– p0 is the initial state distribution of the system

Solving a DEC-POMDP can be seen as finding a set of n policies, one for each
controller, that yield maximum reward when being executed synchronously. The
optimization problem can therefore be stated as maximizing the following ex-
pectation value

E

[

∞
∑

t=0

γtR (st, (a1, . . . an)t, st+1)
∣

∣

∣
p0

]

with 0 ≤ γ < 1 (1)



where γ is a discount factor to avoid infinite sums. We will denote qi the
policy associated with agent i. In order to be optimal, the Markov assump-
tion requires a policy to depend on the whole information available to the
agent at time t, namely its complete history of past observations and actions:
(qi)t = qi((ai)0, . . . (ai)t−1, (oi)0, . . . (oi)t | p0). For infinite horizon problems
however, this would require a controller to have infinite memory, which is not
always possible. We will therefore specify the nature of the controller in more
detail.

2.2 Policies for DEC-POMDPs

A widely accepted class of policies for single-agent POMDPs can be represented
as policy graphs. A policy graph can be described by a set of nodes, which
contain the actions to be executed, and a set of arcs, which are parametrized by
the observations the agent gets. A step in policy execution consists of executing
the action given by the current node, and transitioning to the next node, based
on the observation signal that occurred. For finite horizon problems, an optimal
policy graph can always be represented as a tree [10], whereas for the infinite
horizon case, loops have to be allowed. A policy graph with loops is called a
finite state controller :

Definition 2 (FSC). A finite state controller (FSC) is a policy graph, defined
as q = 〈N, α, η, n0〉, where

– N denotes a set of nodes
– α = α(n) is the action selected in node n

– η = η(n, o) is the successor node when observation o is perceived in node n

– n0 is the starting node

An example of a 3-node FSC is given in Figure 1. For the case of decentralized
problems with multiple controllers, the goal is it to find a set of FSCs, one
for each agent, such that their concurrent execution maximizes the expectation
value given in (1). We will call such a set a policy vector :

Definition 3 (Policy Vector). A policy vector δ is defined as δ = (q1, . . . qn),
such that qi constitutes a policy, in our case a FSC, assigned to agent i.

As stated earlier, finite memory controllers are naturally limited in treating
infinite horizon problems, and increasing the controller size will in general lead
to higher rewards. We therefore state our optimization criterion as finding the
best policy vector for a given controller size.

2.3 Related Work

Solving cooperative but decentralized Markov decision processes has only been
recently addressed by the research community. After the establishement of the
formal DEC-POMDP model by [3], and the alternative MTDP model by [17], the
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Fig. 1. A deterministic finite state controller with 3 nodes for a problem with 2 actions
(a and b) and 2 observations (o1 and o2).

first optimal algorithm for finite horizon problems, based on dynamic program-
ming, has been suggested in [9]. We recently proposed an alternative approach,
based on heuristic search [19]. Furthermore, there exist several suboptimal so-
lutions that adopt concepts from game theory, such as described in [6], [14],
or that use local optimization techniques as described in [15]. Although these
algorithms are often much easier to apply, the quality of their solution can be
more or less unsatisfactory depending on the problem. A first attempt to solve
general DEC-POMDPs with infinite horizon has been made by Bernstein et al.
in [4]. Their algorithm is based on policy iteration for stochastic finite state con-
trollers, and is therefore related to our approach, although it is not guaranteed
to produce optimal controllers. We will indeed be able to show that, while we re-
strict ourselves to deterministic automata only, our algorithm outperforms their
approach on the test problems we studied. There exist several algorithms that
treat special subclasses of decentralized MDPs, such as transition independent
DEC-MDPs, where agents do not interfere directly while execution [2].

3 Best-first Search for Infinite Horizon DEC-POMDPs

Solving Markov decision problems usually involves maximizing an evaluation
function in either state space or policy space, with our approach being an exam-
ple for the latter.

3.1 Searching in the Space of Policy Vectors

Forward search in the space of policy vectors can be considered as an incre-
mental construction of an optimal policy based on evaluations of only partially
completed policy stubs. In each step, the most promising stub is selected and
further developed, hence the best-first approach. A section of such a search tree



is shown in Figure 2. We recall that δ = (q1, . . . qn) denotes a policy vector of
FSCs. For a completely defined policy vector, we set Vδ(p0) as the value of ex-
ecuting δ in p0, which is nothing more than the expectation introduced in (1).
We then state our maximization problem as follows:

δ∗ = argmax
δ

Vδ(p0) (2)

Evaluating policy vectors can be done using the model parameters P , R, and
O of the DEC-POMDP. We will describe this in more detail in the following
subsections.
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Fig. 2. A section of the multi-agent best-first search tree, showing a partially defined
policy vector for 2 agents, and one of its stronger constrained child vectors.

3.2 Evaluating Partially Defined Policy Vectors

Because of the incremental nature of the search process, we will have to empha-
size on what we understand by a policy stub. We recall that each FSC is defined
by its number of nodes N , and its two functions α : N → A and η : N ×O → N .
A policy stub is a FSC where either α or η or both are only partially defined.
Obviously, any partially defined FSC can be completed easily at random by
assigning actions and successor nodes at those points where α and η are not
constrained. The crucial step however consists in estimating efficiently all possi-
ble completions of a policy stub, in order to determine whether or not to expand
the corresponding leaf node of the search tree. Heuristic search methods such



as A* have been shown to be very efficient in those cases where an upper bound
estimate for the set of possible completions can be established. In order to show
that a similar upper bound can indeed be defined in our case, we will introduce
two mappings that specify the current constrainment of the FSCs:

Λi(n) =

{

{αi(n)}, if αi is defined in n

A, otherwise

Πi(n, o) =

{

{ηi(n, o)}, if ηi is defined for n and o

N, otherwise

Similarly, we define the multi-controller extensions Λ(n) = (Λ1(n), . . . Λn(n))
and Π(n,o) = (Π1(n, o), . . . Πn(n, o)).

It has been pointed out by Sondik and later by Hansen [8] that evaluating a
policy represented as a FSC consists in solving a system of linear equations. In
fact, the cross-product between a FSC and a POMDP constitutes itself a finite
MDP [13]. We extend this result to the multi-agent case:

Definition 4 (Multi-agent cross-product MDP). Given a DEC-POMDP
〈S, {Ai}, P, R, {Ωi}, O, p0〉 and a policy vector δ = 〈{Ni}, {αi}, {ηi}〉, we define
a cross-product MDP 〈S, A, P , R〉, with

– S = (×
i
Ni) × S

– A = ×
i
(Ai × NΩi

i )

– P ((n, s), (a, ηn), (n′, s′)) = P (s,a, s′)
∑

o∈×Ω

O(s,a,o, s′)

s.t. ηn(o)=n′

– R((n, s), (a, ηn), (n′, s′)) = R(s,a, s′)

and where ηn is a mapping that - given a vector of nodes n - determines a vector
of successor nodes n′ for each vector of observations o, ηn : Ω → N.

Solving the cross-product MDP can be done through common dynamic program-
ming techniques, leading to a value function over the augmented state space S

and the following fixed point:

V δ(n, s) = max
a∈Λ(n)

{

∑

s′,o

P (s′,o|s,a)
[

R(s,a, s′) + γ max
n′∈Π(n,o)

V δ(n
′, s′)

]

}

(3)

This value function is the multi-agent extension of the one given in [13].

Lemma 1. For any policy vector δ′ that can be obtained from δ by adding further
constraints on Λ or Π, V δ ≥ V δ′ .

Proof. The lemma states that V δ is indeed an upper bound for all policy vectors
that might result from δ by further constraining it. This is true since constraining
Λ or Π will simply result in reducing the set of options under the max-operators
max

a∈Λ(n)
and max

n′∈Π(n,o)
in (3), and the value function can therefore never increase.



If the vector of FSCs is completely defined, the cross-product MDP degenerates
to a simple Markov chain, and the upper bound coincides with the true value of
the policy vector. We can evaluate an upper bound for the value of any partially
defined policy vector and start state distribution p0:

V δ(p0) = max
n

∑

si

p0(si)V δ(n, si) (4)

3.3 An Optimal Heuristic Search Algorithm for Decentralized
POMDPs

Theorem 1. The heuristic best-first search algorithm in [Algorithm 1] is com-
plete and returns the optimal solution for the given controller size.

Proof. The search process will eventually terminate in the worst case after enu-
merating all possible policy vectors, which means after constructing the complete
search tree. The leaf node with the highest value then contains an optimal solu-
tion to the problem. If the search terminates earlier and returns a policy vector
δ, we can guarantee by the ”best-first” property that no other active leaf node
presents a higher evaluation. Since the evaluation function itself constitutes an
upper bound for the value of any further constrained policy vector, we know
that all unvisited child nodes will present values that fall below this bounded.
This excludes the existence of any policy vector with a higher value, and thus
guarantees the optimality of the solution.

Algorithm 1 Best-first search for infinite horizon DEC-POMDPs

Require: D0 initialized with the skeleton of an unconstrained policy vector
1: repeat

2: Select δ∗ ∈ Di such that ∀δ ∈ Di: V δ(p0) ≤ V δ∗(p0)

3: Construct δ∗
′

, the next child of δ∗

4: if δ∗
′

is an improved suboptimal solution then

5: Report δ∗
′

6: for all δ ∈ Di do

7: if V δ(p0) ≤ V
δ∗

′ (p0) then

8: Di ← Di \ δ

9: end if

10: end for

11: end if

12: Di ← Di ∪ δ∗
′

13: if δ∗ is fully expanded then

14: Di ← Di \ δ∗

15: end if

16: until ∃δ∗ ∈ Di s.t. δ∗ is complete and ∀δ ∈ Di: V δ(p0) ≤ V δ∗(p0) = Vδ∗(p0)



4 Experimental Results

We tested the heuristic search approach on two problems that have already
been studied before in [4], namely a broadcast channel problem, and a 2-robot
navigation task. The discount rate for all problems is γ = 0.9.

4.1 A Broadcast Channel Problem

The first setting simulates a simplified multi-access broadcast channel, where
agents are situated at the nodes of the system. Each agent has to decide whether
or not to send one of the messages from its message buffer. Sending is exclusive,
which means that only one message can go through a channel at each time. If
both agents try to send a message at the same time over the same channel, a
collision occurs, and messages will remain in the buffer. The problem is partially
observable and hence decentralized, since agents can only observe the state of
their own message buffers but do not know whether or not any other agent has
something to send as well. The common goal of all participating agents is to
maximize the throughput of the system, with a reward of 1.0 given for any mes-
sage that has been transmitted. In the experiments we conducted, there are 2
agents and 2 possible actions for each one of them (send, not send). The buffer
size is 1, and the number of global states thus is 4, namely the cross-product
of the local buffer states. There are 6 possible observations, characterized by
the local buffer state (empty, full) and a status flag of the channel from the
previous time step (idle, active, collision). New messages arrive with a rate
of p1 = 0.9 for agent 1, and p2 = 0.1 for agent 2.

The highest possible discounted sum of rewards that can be attained for this
problem assuming full global observability is

∑

t γt(1.0) = 9.0, which would
mean that a message could be transmitted at each time step. Surprisingly, we
can see in Figure 5 that this value is almost attained in our case with just a
deterministic single-node FSC, althought the problem is now decentralized and
only partially observable. The bounded policy iteration approach for stochastic
controllers produces less competitive policies.

Buffert Action Buffert+1 Prob

empty (any) empty 1.0− pi

full pi

full send empty 1.0− pi

full pi

not send empty 0.0
full 1.0

Fig. 3. Channel problem: Transition
probabilities for each one of the buffers.

0.1

0.1 0.1

0.6

0.1

Fig. 4. Navigation task: Transition prob-
abilities for action North.



4.2 A Robot Navigation Task

In the second problem, two agents navigate on a two by two grid-world, without
interfering with each other. Their goal is to stay both on the same grid cell -
which produces a reward of 1.0 - but their observation capabilities are limited
so they don’t see each other, and they also have limited sensing capabilities
concerning the environment: There are only 4 observations, indicating whether
there is a wall to their left and/or to their right. Each agent has 5 actions to
move in any direction or stay on its current cell, but transitions are stochastic
as given by Figure 4: The agent only moves with probability 0.6 to its intended
direction. The problem has 16 states. Figure 5 shows that the search algorithm
is again more competitive than the policy iteration approach. However, it takes
more time to converge and may in the end run out of memory.
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Fig. 5. Value of optimal deterministic policy vector for the heuristic approach, and
average value per trial run for two versions of bounded policy iteration on stochastic
controllers. Left: Channel problem - Right: Robot problem.

The experimental results show that the advantage of using stochastic con-
trollers, which have the theoretical ability to produce higher average rewards
than deterministic ones [18], might be more than consumed by the local op-
timality of the algorithms that compute them. In addition, the deterministic
controllers with more than one node are degenerated versions of the one con-
troller case: In the given example problems, having a larger memory does not
necessary help, which is why the value of the deterministic controllers do not
increase with increasing size.

5 Discussion

We have presented a new optimal algorithm to solve a particular class of decen-
tralized POMDPs with infinite horizon. It is able to compute better controllers
than a very recent policy iteration algorithm on two test problems, although



it still suffers from the proved complexity of this class of problems. It should
be a valuable step forward in establishing more efficient algorithms and ap-
proximation techniques. There are other possible ways of tackling problems of
decentralized control: Instead of constraining the controller size, one could for
example impose a bound on the solution quality. It remains an open problem,
whether decentralized policy vectors can also be learned in an efficient way when
the environment is only partially observable.
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