P. Baldi and K. Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural Networks, vol.2, issue.1, pp.53-58, 1988.
DOI : 10.1016/0893-6080(89)90014-2

Y. Bengio, P. Simard, and P. Frasconi, Learning long-term dependencies with gradient descent is difficult, IEEE Transactions on Neural Networks, vol.5, issue.2, pp.157-166, 1994.
DOI : 10.1109/72.279181

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7128

J. L. Elman, Finding Structure in Time, Cognitive Science, vol.49, issue.2, pp.179-211, 1990.
DOI : 10.1207/s15516709cog1402_1

S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Computation, vol.4, issue.8, pp.1735-1780, 1997.
DOI : 10.1016/0893-6080(88)90007-X

J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences of the USA, pp.2554-2558, 1982.

P. Koiran, M. Cosnard, and M. Garzon, Computability with low-dimensional dynamical systems, Theoretical Computer Science, vol.132, issue.1-2, pp.113-128, 1994.
DOI : 10.1016/0304-3975(94)90229-1

URL : http://doi.org/10.1016/0304-3975(94)90229-1

W. Maass and H. Markram, Temporal integration in recurrent microcircuits The Handbook of Brain Theory and Neural Networks, pp.1159-1163, 2003.

W. Maass, T. Natschlger, and H. Markram, Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations, Neural Computation, vol.7, issue.11, pp.142531-2560, 2002.
DOI : 10.1038/35009102

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, vol.197, issue.4300, pp.287-289, 1977.
DOI : 10.1126/science.267326

R. Miikkulainen, Subsymbolic Case-Role Analysis of Sentences with Embedded Clauses, Cognitive Science, vol.1, issue.1, pp.47-73, 1996.
DOI : 10.1207/s15516709cog2001_2

C. Moore, Dynamical recognizers: real-time language recognition by analog computers, Theoretical Computer Science, vol.201, issue.1-2, pp.99-136, 1998.
DOI : 10.1016/S0304-3975(97)00028-5

URL : http://doi.org/10.1016/s0304-3975(97)00028-5

M. Morita, Associative memory with nonmonotone dynamics, Neural Networks, vol.6, issue.1, pp.115-126, 1996.
DOI : 10.1016/S0893-6080(05)80076-0

E. Oja, NEURAL NETWORKS, PRINCIPAL COMPONENTS, AND SUBSPACES, International Journal of Neural Systems, vol.01, issue.01, pp.61-68, 1989.
DOI : 10.1142/S0129065789000475

J. B. Pollack, On Connectionist Models of Natural Language Processing, 1987.

J. B. Pollack, Recursive distributed representations, Artificial Intelligence, vol.46, issue.1-2, pp.77-105, 1990.
DOI : 10.1016/0004-3702(90)90005-K

H. T. Siegelmann and E. D. Sontag, On the computational power of neural nets, Proceedings of the fifth annual workshop on Computational learning theory , COLT '92, pp.132-150, 1995.
DOI : 10.1145/130385.130432

G. Sun, C. L. Giles, C. , and H. H. , The neural network pushdown automaton: Architecture, dynamics and training, Summer School on Neural Networks, pp.296-345, 1997.
DOI : 10.1007/BFb0054003

T. Voegtlin, Learning principal components in a contextual space, Proceedings of ESANN'2000, pp.359-364, 2000.

T. Voegtlin and P. F. Dominey, Linear recursive distributed representations, Neural Networks, vol.18, issue.7, 2005.
DOI : 10.1016/j.neunet.2005.01.005

URL : https://hal.archives-ouvertes.fr/inria-00000108

A. S. Weigend, B. A. Huberman, R. , and D. E. , PREDICTING THE FUTURE: A CONNECTIONIST APPROACH, International Journal of Neural Systems, vol.01, issue.03, pp.193-209, 1990.
DOI : 10.1142/S0129065790000102

R. Williams and D. Zipser, A Learning Algorithm for Continually Running Fully Recurrent Neural Networks, Neural Computation, vol.11, issue.2, pp.270-280, 1989.
DOI : 10.1016/0885-064X(88)90021-0