N

HAL

open science

On automating networked enterprise management
Ustun Yildiz, Olivier Perrin, Claude Godart

» To cite this version:

Ustun Yildiz, Olivier Perrin, Claude Godart.

On automating networked enterprise management.

International Workshop on Enterprise and Networked Enterprises Interoperability - ENEI’2005, Sep
2005, Nancy/France, pp.363-374, 10.1007/11678564_32 . inria-00000229

HAL Id: inria-00000229
https://inria.hal.science/inria-00000229
Submitted on 16 Sep 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00000229
https://hal.archives-ouvertes.fr

On Automating Networked Enterprise Management

Ustun Yildiz, Olivier Perrin and Claude Godart

LORIA-INRIA
BP.239 Campus Scientifique
54500 Vandceuvreds-Nancy, FRANCE
{yildiz, operrin, godart@oria.fr}

Abstract. With the new middleware IT technologies such as Web Services and
peer-to-peer computing facilities, a Virtual Enterprise can be built eashéev-

ing some problems of interoperability. Although existing standards deakwiith
tactic issues they are primitive for the maintenance of VE while the prosesse
fulfilled in the untrusted and dynamic environment of the Web. In this payeer
investigate the problems of maintenance and propose a generic mddelrilze
used for the automation purposes of monitoring and management. T¢feme
nism we propose models the process of the Virtual Enterprise and thgeptive

of process manager. Thus, it automates the maintenance accordireglé&iped
configurations.

1 Introduction

The Web services standards such as UDDI [8], WSDL [3] and SAM&Prhake inter-
organizational interactions easier than in the past. Lik®ipus generations of middle-
ware supports, they aim to facilitate application inteigratAlthough they can achieve
some of important interoperability problems and make lyeseupled collaborations
easier, they are too primitive for the automated invocasiod composition of services
and for the maintenance of built compositions. To deal withsk issues, existing WS
standards need to be supported with additional languagdstextures, and related ap-
proaches. We notice various efforts in the research litegatuch as BPELAWS [7],
OWL-S [5], WSLA [4] that aim to complement existing standardthvadditional fea-
tures providing formal specification for automated disecgveomposition, and execu-
tion of WS based virtual collaborations.

However, the use of a set of services in tandem to achievecsprgoal with a num-
ber of constraints, goes beyond the use of common data feremnat exchange mecha-
nisms. It requires complex, dynamic, adaptive mechani$iaisgermit to monitor and
manage WS collaborative processes with minimal problemsliatility, performance
and cost. In this paper, we review some difficulties of th@a#ted monitoring which
is the core part of process management frameworks and waiexglr initial ideas
about our monitoring approach and framework.

The rest of paper is organized as follows, the next sectitaild¢he problem state-
ment while Section 3 explains the overview of our approaaxtNve detail the mecha-
nism of our approach. Section 5 gives a case study where pupagh can be deployed.
Section 6 reviews similar works, then we conclude and maksausision about our fu-
ture work.

2 Problem Statement

A Web service based Virtual Enterprise(VE) gathers autangrorganizations that
provide particular capabilities to enact a collaboratiusibess process. As in tradi-
tional business activities, the virtual collaboration laasumber of goals such as the
respect of mutual commitments, the increase of benefitgjebeease of risks and the
protection of privacy. In the highly dynamic and untrustedisnment of the Web,
it is unrealistic to expect the outcome of a complex procedsetas planned initially.
From a process management automation point of view, theuéracof collaborative
process should be supported by additional mechanisms énatitpthe monitoring of
its behavior. The observation of process activities helpggss managers to analyze
the performance of contributors, to detect anomalous behthat can cause lately un-
wanted situations or to review management alternativésctraincrease benefits. The
challenge of aideal monitoring agent -human or software- is to fulfill its taskaineal-
time, accurate, reliable and autonomous manner. The tigigof existing middleware
technologies and antagonist nature of different businestufes make the setup of an
ideal monitoring support very difficult. For example, if a nitmring agent requires a
key data which characterizes the state of an observed samitif this data is private to
the service that holds it then the outcome of the monitorargrmot be efficient, or there
is always a network delay between the occurrence and daneatie of an event in the
observed system. The second important issue is indirezlflyed to similar limitations,
the process monitor decides what characterizes an undesirganted behavior of an
activity while there are no certain and precise facts. Arcatien can be considered as
a normal behavior by a monitoring agent and as abnormal i@hayanother. Most of
the time, the monitoring analysis can have fuzzy naturessital monitoring solutions
that we detailed some in the Related Work section, try to egmponventional process
properties such as deadlines or costs with exception basdykés. First, this approach
that does not provide any predictive indication concertiegfuture states of activities
can not be an efficient support for the ad-hoc nature of Welbicgsr context where
there are numerous management alternatives at the disfidaeks for rich semantics
and support that can permit process monitor to expresstéseisted features.

We focus on pro-active and predictive business managemichvgoes one step
further comparing to classical management approachesrye provide monitoring
analysis as close as possible to realistic facts. Our aim @rdvide a generic sup-
port for human process managers permitting to define, caarthetr interested process
measures.

3 Overview of our approach

Our approach aims to provide a support composed by strg;taomcepts and algo-
rithms to facilitate the automated monitoring of WS basetluair enterprises. In this
context, we consider a VE as an organization that crossesahedary between the
virtual and physical world. Because an information systeat provides a service is a
part of an overall process that makes effects in the physicdd.

3.1 Virtual enterprise process model

This section provides a brief introduction to process medéVirtual enterprises. The
first step of the process management is the selection of tiiecss to compose. The
process manager chooses services according to their doatties they provide and
process constraints, it defines the dependencies thabex@ig them. The process can
be initially scheduled or the services can be dynamicaltysen during the enactment.
The process manager can compose services using compuiatiems(e.g. Workflow
Patterns [9]). Although there is a flexibility, the process la number of global con-
straints that must be respected such as the global cost adéirtee Another important
point that concerns the composition is the dependenciemgreervices. Among de-
pendencies, there are different degrees that can tightlglemne service with another.
For example, a service is supposed to begin its executiopiEdcise date and it needs
the output of another service at this date. If the formesfiien it will cause cascading
impacts on service that follow it. As a matter of monitorirgsystem designer puts
emphasis on critical dependencies.

3.2 Service behavior

The service behavior is the characterization of the ingteed service operation such
as the way it produces and consumes events, it respondsacations or it operates
on business metrics. In the previous section, we mentionadthe monitoring out-
come can not be the result of ateal analyze. To model the monitoring analysis of a
monitoring agent, we consider two kinds of monitoring aaely

1. Exact output (EQ)The exact output is the result of an justified analyze dona by
monitoring mechanism. In such cases, the output of montjodiescribes a situa-
tion that really happened or will certainly happen.

2. Indicational output (I0) The second type consists of analysis that give precise
information about process states and behavior.

The EO is specified using predicates in first order logic and do ngedd on any
subjective analyze. The predicates depict relationshipsng involving entities. If the
predicates that illustrate thealthyexecution hold then the process enacts or will enact
as planned. If the predicates that illustratevantedexecutions hold then the service
can fail or can not be enacted as planned. For example, a&sehat uploads a certain
amount data over a network will precisely falil if the rest aftal can not be uploaded
before the deadline using the maximum bandwidth of the sersdnsumer.

ThelO consists of sophisticated analysis that takes as inputiestaiew of the in-
volving entities and gives indications about run-time gegevaluation as output. The
indications can be behavior analysis such as complianeggtam or violation of ex-
pected behavior, performance analysis such as low, nomneaitstanding performance,
or any analyze required by process manager.

4 Putting automation into practice

The key of our approach is to configure the monitoring podiciea VE at high level ab-
stract processes. The configuration consists of the mirfingetrics and events involv-

ing in the process. Precisely, we choose measurable dhigstis to express the analysis
in order to provide a good support for the comparison of un@ete or undetermined
behavior.

4.1 Definition of entities to compute

The process that will be enacted by different services hasvaer of constraints and
has an initial execution plan. Each service guarantees dewuoficommitments such as
the beginning date, end date, their capabilities and asmatgualities to provide. The
process manager has the unambiguous knowledge of the progestraints and the
agreed behavior of services. The second set of informadi@ompute is the run-time
behavior of the services. The run-time behavior expresseproperties of the opera-
tions done by the service related to its agreement with serwansumer. The behavior
of the service can be examined in a single instantiation twops. Thus, its behavior
is stored in process logs and it is compared to its agreediggec Besides these two
observable and objective phenomena, the process mandgersdan expected(or de-
sired) execution of the used service. The expected behak@service can be defined
using the critical relationships, dependencies, previgmesof the service or with the
expertise of the process manager. For example, there iS@tdependency between
two services such as a service needs the output of its precediore a precise date
to begin its execution, otherwise it fails and causes a dentagrocess manager. If
the preceding service has the habit to fulfill its task faobethe deadline, the process
manager can be concerned when it does not as previously ake areliable compo-
sition the process manager may want the service to fulfitibisk as soon as possible.
Contrary to classical approaches, we do not rely the exgdagbavior of the service
only to its former execution results. It can be calculatedh®/run-time environment
of that time also. For example, if there are circulation peots, a delivery service can
be expected to be later than usual. The goal of monitoringdwork is to check the
conformity of the run-time behavior of the service and itpeoted behavior.

Process description We call P, the description of the process. It consists of process
constraints, actors, objects, services to compose anduhktaiive and quantitative
properties of the process. The Process Manager plans tia éxiecution of the process
defining the relationships among the entities involved sghocess. Briefly, the s
describes what a process is supposed to provide when itriscta

Process behaviorWe call C, the current state of the process. The process behavior
consists of features that illustrate the current state ofiges such as received QoS,
fulfilled steps, underlying network activities or any infieation that can illustrate the
current state of observed services. Theharacterizes what the process has been doing
since its start.

Process expected behavidWe call Q, is the description of the expected execution of
process described By. For example, let's suppose there is service that consisds o
good delivery before a deadline. The good can be delivereshyatime between the

activation date of the service and its deadline. If the servequester is concerned by

the failure of this service, it can consider to take precmgibefore the deadline. In
case where there are no alternatives to execute brfooerrs before the deadline then
this precise date can be a critical point of the service tiaservice requester expects
the fulfillment of the service. The expected execution ofraise can defined by using
various features such as the reputation of the service. Xamgle, let's suppose the
service delivered the good alwayhours after its invocation in the previous invocations
then its behavior can be its expected execution.

4.2 Monitoring engine

We introduce a monitoring function that takes a process(or a party of a process) as
input, uses disposed information to analyze its state andneEO or |O.

Due to lack of space and facilitation of the lecture, we coesa set of sub-services
that compose a complex service that can be observed indepindrhe technique
that we use for sub-processes can be easily thought for dvegs in general. A sub-
process, itself, can be considered as a basic service. &onxeg, a service that delivers
several goods with different properties in different catgeafter the reception of an
order. We can consider the deliverance of each good as areabgs. The motivation

of our approach is to not detail complex interactions oro@sioutputs that can have
place but to show how the behavior of a service can be modeled.

Definition 1 (Monitoring function). The M is a function that takes as input a running
service and returns either an information that depicts acjge and justified state(EO)
or analysis(lO) about this service.

LetS the set of monitored services that compose the processiloeddyP,

M:S§ —1]0,1]

The return value of\ has different meanings, the two return values\dfcorrespond
to EC:

Letse S, s is sub-process(or a service) of an ovef|l
if M(s) =1 then the service is provided or will be certainly prowddss planned,
if M(s) =0 then the service is failed or will not be provided as pkhn

The intermediate values ih0, 1] characterize the run-time behavior of monitored
service, the convergence toward 1 can illustrate the cdioplef a running service as
planned, or an outstanding performance. The convergem@dd can illustrate the
deviation of a service from its expected behavior or an irtzgty.

The algorithm below depicts partially the intern mechan@si\ function while it
illustrateslO.

e ['is the set of predicates that illustrate the planned ful&iinof observed service,
they consist of relationships betweghand(C. In case they hold, the service is
fulfilled or will be certainly fulfilled as planned,

e /Aisthe set of predicates that illustrate the failure of aisergontrary to its planned
fulfillment, in case they hold the service is failed or wilrtznly fail,

s; € P, is an output, effect, or step of a service, it is describedimntitative and
gualitative features such as a service that uploads data.

c; € C, is a set of information associated with run-time It can be the amount
transfered data, current time, underlying network adéigitelated to transfer etc.

c{ is one particular aspect that characterizes the contextefample,cg can be

the temporal context of;, andcf“ can the fact that concerns only the received
amount of data,

Agi depicts the relation of; and its run-time state;, A?: is composed by A%,
ASI AS;+1 ...}, the states that describe the current state depending gle sis-

pects For example, the completion of the service can bterkta received amount
of data then theﬁsl+1 will characterize the current state of service using the rat

or difference of received and total amount of data to transfermally,A”+1 will

converge to 1 while the received amount of data increased]ldre constant while
there is no reception of data.

EachAz;‘. has a weight in the composition &f;, we call a Weightu{, andv;, the
sum all Qveights,

Algorithm 1 : Monitoring function computation algorithm

VAe A VyeTl, Ase]0, 1],

1: while(=X and ﬁ'y)

2: for(all runnings;)

3 for (all associated;)
4 Ay e AN+ LAY
5 end for '
6: end for

7. end while

The above algorithm depicts partially the monitoring fuocthat computes a serviee
We chose the part that concerns the analyze of a running akeals;. We do not depict
the predicates that illustrateO as they consist of conditional relationships. This algo-
rithm iterates(1-7) as long as the predicates that illtstitzeEO do not hold. For each
observeds;, a A7 is calculated(4) using all of the differemi;i and their weights(3-

5). As the algorithm iterateg\;’ can have different values over observation interval.
Continuous values o\’ can show the changes of the service since its invocation, its
completion, its |rregular behavior etc. The analysis magsibgle s;s can be gathered

to have thdO of the servicesin order to make more general analysis.

The operation of the monitoring function is the subject @& grocess manager. It

leaves much room for configuration, the process managertathe state of a service
to the properties it desires. If the outcome of a serviceistsef an instantaneous fea-
ture, it is hard to model its behavior because one propedtydan be interpreted is the
response time to an invocation. But its behavior can be neddel multiple instantia-
tions using the quality of the its operation after each iafme.

4.3 Process decision engine

The decision engine uses the output of the monitoring fongtt consists of comparing
the run-time behavior of the service to its expected bemalfithe running service is
not likely to be fulfilled or gives a bad performance, it candi®rted and a better
service can be chosen. If the running service gives bad sigththe alternatives are not
desirable because of their cost or risk, the running semdcebe kept. In this paper,
we are not concerned by how one can define the expected bebé&@service using
dependencies or previous executions, we will study it imid»et work. To facilitate the
selection of relevant execution plans, we define qualitperties for each management
decision that can be done.

The set of alternativesThe setW;={w}, w?,...,w?, ...} is a finite set of actions that
can be done whes, of a service is enacting. Each elemerit of W; has:

an associated cost?, an incomeg}*, a riskr}’, and can have an associated get
that includes its forward choices. We do not mention the s&Vdhat includes all sets
W; for all the whole process that uses the observed servicemEmagement decision
consists of choosing one of the alternatives/df including the kept of the existing
enactment. As the new services are discovered continyamrstyhen the number of
possible actions decreases over the execution, the chigiof)V; can change. The
critical points that we have mentioned in 4.1 are actuakypbints that the elements of
W; are very limited. In the critical points, the element3/#f can be only canceling or
keeping the execution. We define a decision funcfibthat takes a service and the set
of management alternatives that can be done during its 8gacs input, and returns
a alternative to execute as output.

Definition 2 (Decision function). The decision functiof, is a function that takes as
input a service and alternatives that can be performed.tlings the best decision that
corresponds to its inputs.

D:SxW—W

As we did in the definition of monitoring function, we defifdepartially. The algorithm
2 computes the monitoring result of a servigewith its alternatives within/V; and
gives the best decision corresponding to the statg.of

o A’iis the result of monitoring analyze done for

e qi., isthe expected state ef in the context;. For example, |E§ consists of data to
transfer thery; ; is the expected amount of data that is supposed to be tradsfer

* gi., is calculated likeA?:, different weights are taken into account, we il the
weight of eachy; .; andd;, the sum of all weights,

e m,, isthe depicté the deviation from expected execution,

e O is an operator that returns the difference of an expectedutiom and current
execution,

Algorithm 2 : Management function computation algorithm
Vae A Vyerl, q.€]0,1[
1: while(=X and —v)
2. for(all runningp;)
: for (all associated;)

3

9

4 Gic; = Gic; ¥ 5-dics
5: end for '
6: ms, <A O i,
7 if mg, >0 then keep executiorlse
8 review alternativesnd if

9: end for

10: end while

In the above algorithm, for each an expected execution is calculated(3-5). The
algorithm calls the monitoring function(6) and uses itaimetvalue A?: in order to
compare to its expected value. The management policy we insehis algorithm is
very basic, if the expected and current state are equal oe thean outstanding per-
formance then the running service is kept(7), else the ma&anagt alternatives(besides
keeping the execution) are reviewed(8). This process caedudted by the choice of an
alternative which is better than keeping the running servithe alternatives are taken
into account basic properties such as income, cost, riskfanelternatives that can
follow them.

To compare the expected and current state of a running semwie use a special
operator of comparisore() that expresses only concerned differences. The algorithm
we used, can be extended easily to express the general beb&aiservice, for example
the record of differences between expected and curreetatat| s;s can be illustrated
as its general quality over its use of its sub-processes.

5 A case study: Distributed software production

This section presents a simple example of collaborativeveoé production process.
According to [1], it has been estimated that the softwaresliggment industry has an
85% failure rate in the development of software productss Tireans that most of the
time, the outcome of a software production does not accampis planned results.
When the development occurs over the Web, the productionnbesanore difficult.
The processes and entities involving in them should be oiggly managed.

The scenario we use in this paper can be resumed as folloesaht war e
house(SH) , a software development agent that produces software tbusers, has
customers that place orders including the complete and bigailous description of
the software they require. TH&H makes a production planning and dispatches differ-
ent components and steps of production among its parsers(ce(s)) that provide
corresponding services(functional core development; inderface development, de-
livery to end-user, payment service ...). The agreemeSHdidind its customer depicts
the aspects related to quality of required software suchaswmber of time that the

software can crash in a precise period or the execution tfraeoperation and the fea-
tures related to classical production process such as groeélivery date or payment
process. Th&H plans an initial production and makes best effort to resjiectgree-
ment. During the production proce&#{ has initiatives. Basically, it can abort a service
that does not show its expected performance, it can chookeaper service instead
of an activated service canceling the latter, or for a riskpahdency it can choose
providers having good reputation. Due to lack of space, waa@x one step of the
complete production scenario. The figure 1 depicts thredcssr used in the produc-

@QGB

Delivery over 10 days Test results

Service CD 1.day 200KB 8 crashes
Total size = 10000 KB 2.day 2000KB 24 crashes
QoS = 30 crashes for 1000 op. 3.day 500KB 5 crashes
Completion time = 10 days 4.day 800KB 6 crashes

Table A 5.day 800KB 13 crashes
6.day 500KB 20 crashes
7.day 3500KB 12 crashes
8.day 1000KB 4 crashes
9.day 500KB 18 crashes
10.day 200KB 6 crashes

Table B

Fig. 1. An example of service composition

tion, Core Devel opnment (CD) service,GUl Devel opnent (GD) service, and
Del i very(DS) service. There are serial dependencies among sen@eand DS
use the outcome of the preceding services. g;ite observe consists of the production
of a software functional core composed by independent coemis(which has 10MB
size), an expected quality(less than 30 crashes for 100@bqes invoked), all of the
components must be delivered at most in 10 days. In this ebeanvp suppose the sep-
arate components are delivered when their production anpleted. The elements we
mentioned above, describe the service outcome to obseheesyistem designer de-
fines a monitoring and management policy for this services @drrespondindO of
this service can be defined by various ways. The completi@enfice can be associ-
ated to the amount received components proportionally éddtel expected amount.
In this case, théO of the service converges toward 1 according to the relatfae-o
ceived and total expected amount of components to trarnsfere figure 2, graphic(1)
illustrates thdO associated with this relation. As example of the delivery,used the
data of Table B in the figure 1. The implementation of corresiiag M function is
the proportion of received and total amount of data. If theteay designer lies th®©

to this relation then the default output 84 is a certain value close to 0. We can not

consider 0 because, it corresponds a service which is rfiteftilas planned and also
we can consider 1 as a return value if the service is fulfilledestain to be fulfilled
as planned. In the graphic(3), the system designer thategested in temporal context
associates the output to the relation of current time andllolea Thus, he does not
take the other metrics into account, he considers the seayiproaches to its failure as
long as its is not fulfilled completely. In this interpretati logically, the default state
of the service is very close to 1 but its not equal either to fody as long as there is
certain information about the fulfillment or failure of thersice. In the same figure, the
graphic(2) illustrates the state of service according &rithmber of crashes detected
for each delivered component. As 30 crashes charactehieefailure of the service,
the output is close to 1 when the number of crashes is not highe same figure, the

Indicational output (received — total amount) Expected output (received — total amount)

1 1 od
0.8 0.8 4
0 (1) | o0 (1)
0.4 0.4
02 V‘/ 021 /
0 04

Indicational output (separate crash tests — limit crash) Expected output (separate crash tests — limit crash)
1 1
0.8 0.8
0.6 0.6
'
04 @ | oa @)
0.2 0.2
0 0
Indicational output (current time - deadline) Expected output (current time - deadline)

1 1
0.8 0.8 N
0.6 0.6 s 2
04 GB) | oa J @)
0.2 J \ 0.2

Fig. 2. Examples of monitoring output and corresponding expected states

graphic(1’) depicts the expected state of the service dwgto the relation of (1). The
intention of system designer consists of the expectatioegiilar component delivery
that will begin with the invocation and end before the dezllif we compare visually
or arithmetically two illustrations, there is no importataviations. In the graphic(2’),

the expectation of the system designer consists of a cdreptiality for each delivered
product. In this case, the comparison of the service behtwiexpected behavior gives
the signs of deviation from expectations. The expectatigpiaded in graphic(3’) can
be interpreted as follows, the service is expected to camjitte fulfillment before the
deadline. In our example, the service we considered enddlfithnent just before its
deadline. As result, at a certain date, the managementidonconsiders this service
deviates from its expected execution.

The most efficient way of computation is to gather all of sepaillustrations in a
single illustration. Their importance in the compositiaande characterized with the
weights. Actually, the graphics(1, 2, 3) correspond toeh@;, the graphic that will

fusion them with their weights will bed;:. The graphics(1’, 2 3’) correspond to three
¢i,; and respectively their fusion will be thg,_, of the service.

‘In the graphics, we do not label the x line, the observationamcur over the time
or single events.

6 Related Work

The work of Xu [11] is one of the closest works to ours. The atglconsider the col-
laborative process as an e-contract. The parties havefpredenutual commitments
composed by predefined actions series. Within the commisnéme actions are in-
terconnected with temporal relationships that called taimds. The commitments are
observed during the enactment, the monitoring party pugsdguon constraints, the
guards capture how far the commitments have progressdtré ts a non-compliance
to prescribed scheme of actions, the concerned partievéfied.

Sayal et al. present in [6] a set of integrated tools that stpqusiness and IT users
in managing process execution quality. The authors pravidata model and a generic
architecture(HP Process Manager) to model and computextimiion of processes.
Although the approach is interesting, it suffers heavy yrebf workflow log data.

Cardoso et al. [2] propose a model to manage workflow comperfeam a QoS
perspective. The QoS presented includes three dimengiores: cost, and reliability.
The QoS measures are applied separately to each workflowanasken they are auto-
matically computed for the overall QoS of the workflow.

In the literature, there are many examples of Web serviceposition propositions
that rely the behavior of a Web service to its network leveivdes such as response
time to any invocation, availability, the probability ofsfgonse to any invocation etc. In
these approaches, the metrics and events that parameierizehavior a service do not
characterize the process manager perspective. In our werlire mainly concerned by
high level business properties of the processes.

7 Conclusion and outlook

In this paper, we examined the problem of VE maintenanceimvitite context of WS.
In the dynamic context of the Web, each process manager hadigitlual policy that
governs the processes. We proposed a generic mechanisoathbe used to express

monitoring and management policies computing basic saméadtures of services.
Our proposition includes a monitoring function that can poie basic relationships
among process metrics, events, and objects. The monitsripmcessed with measur-
able and continuous indications of how likely the processnacted. The management
mechanism we propose, uses a similar mechanism to deal iffithedt alternatives.
It permits the automated comparison of different altexeatiaccording to their basic
properties.

This paper depicts the preliminary concepts our future work aim is to provide a
framework that can monitor and verify the run-time behawitthe Web processes and
also manage the composition of Web services according tmtheagement policies.
The model we proposed requires a complex data model thagxpitess basic properties
of processes and the features that characterize their kégrpance indicators. The
technologies that can support our effort are data warehgusid mining techniques,
complex event processing, workflow and business policy g@mant approaches.

References

1. Jones Caper. Minimizing the risks of software developme€ntter IT Journa) 11(6), June
1998.

2. Jorge Cardoso, Amit P. Sheth, John A. Miller, Jonathan Arnold Kagsg Kochut. Quality
of service for workflows and web service processk$Veb Sem1(3):281-308, 2004.

3. Erik Christensen, Francisco Curbera, Greg Meredith, and SawWerawarana. Web
Services Description Language (WSDL).1.W3C, 1.1 edition, March 2001. URL:
http://www.w3c.org/TR/wsdl.

4. Alexander Keller and Heiko Ludwig. The wsla framework: Specifyémgl monitoring ser-
vice level agreements for web servicdsNetwork Syst. Managel1(1), 2003.

5. David Martin(editor), Mark Burstein, Jerry Hobbs, Ora Lassila,vDMcDermott, Sheila
Mcllraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, TerrynBajvren Sirin,
Naveen Srinivasan, and Katia Sycar@WL-S: Semantic Markup for Web Servic2804.
URL: http://www.daml.org/services/owl-s/1.1/.

6. Mehmet Sayal, Akhil Sahai, Vijay Machiraju, and Fabio Casati. Semanttysis of e-
business operationd. Network Syst. Managel1(1), 2003.

7. T.Andrews, F.Curbera, H.Dholakia, Y.Goland, J.Klein, F.Laym K.Liu, D.Roller,
D.Smith, S.Thatte, |.Trickovic, and S.Weerawarana. Businesepsoexecution language
for web services. BEA, IBM, Microsoft, SAP, Siebel, 2003.

8. UDDI. Universal Description, Discovery, and Integration of Business for tbg Wctober
2001. URL: http://www.uddi.org.

9. Wil M. P. van der Aalst, Boudewijn F. van Dongen, Joachim Herbsird 8aruster, Guido
Schimm, and A. J. M. M. Weijters. Workflow mining: A survey of issues approaches.
Data Knowl. Eng.47(2):237-267, 2003.

10. W3C. Simple Object Access Protocol (SOAP) ,1.12000. URL:
http://www.w3c.org/TR/SOAP.

11. Lai Xu and Manfred A. Jeusfeld. Detecting violators of multi-partyntcacts. In
CooplS/DOA/ODBASE (1pages 526-543, 2004.

