
HAL Id: inria-00000229
https://inria.hal.science/inria-00000229

Submitted on 16 Sep 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On automating networked enterprise management
Ustun Yildiz, Olivier Perrin, Claude Godart

To cite this version:
Ustun Yildiz, Olivier Perrin, Claude Godart. On automating networked enterprise management.
International Workshop on Enterprise and Networked Enterprises Interoperability - ENEI’2005, Sep
2005, Nancy/France, pp.363-374, �10.1007/11678564_32�. �inria-00000229�

https://inria.hal.science/inria-00000229
https://hal.archives-ouvertes.fr

On Automating Networked Enterprise Management

Ustun Yildiz, Olivier Perrin and Claude Godart

LORIA-INRIA
BP.239 Campus Scientifique

54500 Vandœuvre-lès-Nancy, FRANCE
{yildiz, operrin, godart@loria.fr}

Abstract. With the new middleware IT technologies such as Web Services and
peer-to-peer computing facilities, a Virtual Enterprise can be built easierachiev-
ing some problems of interoperability. Although existing standards deal withsyn-
tactic issues they are primitive for the maintenance of VE while the processes are
fulfilled in the untrusted and dynamic environment of the Web. In this paper, we
investigate the problems of maintenance and propose a generic model that can be
used for the automation purposes of monitoring and management. The mecha-
nism we propose models the process of the Virtual Enterprise and the perspective
of process manager. Thus, it automates the maintenance according to predefined
configurations.

1 Introduction

The Web services standards such as UDDI [8], WSDL [3] and SOAP [10] make inter-
organizational interactions easier than in the past. Like previous generations of middle-
ware supports, they aim to facilitate application integration. Although they can achieve
some of important interoperability problems and make loosely-coupled collaborations
easier, they are too primitive for the automated invocationand composition of services
and for the maintenance of built compositions. To deal with these issues, existing WS
standards need to be supported with additional languages, architectures, and related ap-
proaches. We notice various efforts in the research literature such as BPEL4WS [7],
OWL-S [5], WSLA [4] that aim to complement existing standards with additional fea-
tures providing formal specification for automated discovery, composition, and execu-
tion of WS based virtual collaborations.

However, the use of a set of services in tandem to achieve a precise goal with a num-
ber of constraints, goes beyond the use of common data formats and exchange mecha-
nisms. It requires complex, dynamic, adaptive mechanisms that permit to monitor and
manage WS collaborative processes with minimal problems of reliability, performance
and cost. In this paper, we review some difficulties of the automated monitoring which
is the core part of process management frameworks and we explain our initial ideas
about our monitoring approach and framework.

The rest of paper is organized as follows, the next section details the problem state-
ment while Section 3 explains the overview of our approach. Next, we detail the mecha-
nism of our approach. Section 5 gives a case study where our approach can be deployed.
Section 6 reviews similar works, then we conclude and make a discussion about our fu-
ture work.

2 Problem Statement

A Web service based Virtual Enterprise(VE) gathers autonomous organizations that
provide particular capabilities to enact a collaborative business process. As in tradi-
tional business activities, the virtual collaboration hasa number of goals such as the
respect of mutual commitments, the increase of benefits, thedecrease of risks and the
protection of privacy. In the highly dynamic and untrusted environment of the Web,
it is unrealistic to expect the outcome of a complex process to be as planned initially.
From a process management automation point of view, the execution of collaborative
process should be supported by additional mechanisms that permit the monitoring of
its behavior. The observation of process activities helps process managers to analyze
the performance of contributors, to detect anomalous behavior that can cause lately un-
wanted situations or to review management alternatives that can increase benefits. The
challenge of anidealmonitoring agent -human or software- is to fulfill its task ina real-
time, accurate, reliable and autonomous manner. The limitations of existing middleware
technologies and antagonist nature of different business features make the setup of an
ideal monitoring support very difficult. For example, if a monitoring agent requires a
key data which characterizes the state of an observed service and if this data is private to
the service that holds it then the outcome of the monitoring can not be efficient, or there
is always a network delay between the occurrence and detection time of an event in the
observed system. The second important issue is indirectly related to similar limitations,
the process monitor decides what characterizes an undesired or wanted behavior of an
activity while there are no certain and precise facts. An execution can be considered as
a normal behavior by a monitoring agent and as abnormal behavior by another. Most of
the time, the monitoring analysis can have fuzzy nature. Classical monitoring solutions
that we detailed some in the Related Work section, try to compute conventional process
properties such as deadlines or costs with exception based analysis. First, this approach
that does not provide any predictive indication concerningthe future states of activities
can not be an efficient support for the ad-hoc nature of Web services context where
there are numerous management alternatives at the disposal. It lacks for rich semantics
and support that can permit process monitor to express its interested features.

We focus on pro-active and predictive business management which goes one step
further comparing to classical management approaches. We try to provide monitoring
analysis as close as possible to realistic facts. Our aim is to provide a generic sup-
port for human process managers permitting to define, compute their interested process
measures.

3 Overview of our approach

Our approach aims to provide a support composed by structures, concepts and algo-
rithms to facilitate the automated monitoring of WS based virtual enterprises. In this
context, we consider a VE as an organization that crosses theboundary between the
virtual and physical world. Because an information system that provides a service is a
part of an overall process that makes effects in the physicalworld.

3.1 Virtual enterprise process model

This section provides a brief introduction to process models of virtual enterprises. The
first step of the process management is the selection of the services to compose. The
process manager chooses services according to their functionalities they provide and
process constraints, it defines the dependencies that existamong them. The process can
be initially scheduled or the services can be dynamically chosen during the enactment.
The process manager can compose services using computationpatterns(e.g. Workflow
Patterns [9]). Although there is a flexibility, the process has a number of global con-
straints that must be respected such as the global cost or a deadline. Another important
point that concerns the composition is the dependencies among services. Among de-
pendencies, there are different degrees that can tightly couple one service with another.
For example, a service is supposed to begin its execution at aprecise date and it needs
the output of another service at this date. If the former fails then it will cause cascading
impacts on service that follow it. As a matter of monitoring,a system designer puts
emphasis on critical dependencies.

3.2 Service behavior

The service behavior is the characterization of the instantiated service operation such
as the way it produces and consumes events, it responds to invocations or it operates
on business metrics. In the previous section, we mentioned that the monitoring out-
come can not be the result of anideal analyze. To model the monitoring analysis of a
monitoring agent, we consider two kinds of monitoring analyze:

1. Exact output (EO): The exact output is the result of an justified analyze done bya
monitoring mechanism. In such cases, the output of monitoring describes a situa-
tion that really happened or will certainly happen.

2. Indicational output (IO): The second type consists of analysis that give precise
information about process states and behavior.

The EO is specified using predicates in first order logic and do not depend on any
subjective analyze. The predicates depict relationships among involving entities. If the
predicates that illustrate thehealthyexecution hold then the process enacts or will enact
as planned. If the predicates that illustrateunwantedexecutions hold then the service
can fail or can not be enacted as planned. For example, a service that uploads a certain
amount data over a network will precisely fail if the rest of data can not be uploaded
before the deadline using the maximum bandwidth of the service consumer.

TheIO consists of sophisticated analysis that takes as input broadest view of the in-
volving entities and gives indications about run-time process evaluation as output. The
indications can be behavior analysis such as compliance, deviation or violation of ex-
pected behavior, performance analysis such as low, normal or outstanding performance,
or any analyze required by process manager.

4 Putting automation into practice

The key of our approach is to configure the monitoring policies of a VE at high level ab-
stract processes. The configuration consists of the mining of metrics and events involv-

ing in the process. Precisely, we choose measurable illustrations to express the analysis
in order to provide a good support for the comparison of uncomplete or undetermined
behavior.

4.1 Definition of entities to compute

The process that will be enacted by different services has a number of constraints and
has an initial execution plan. Each service guarantees a number of commitments such as
the beginning date, end date, their capabilities and associated qualities to provide. The
process manager has the unambiguous knowledge of the process constraints and the
agreed behavior of services. The second set of information to compute is the run-time
behavior of the services. The run-time behavior expresses the properties of the opera-
tions done by the service related to its agreement with service consumer. The behavior
of the service can be examined in a single instantiation or inloops. Thus, its behavior
is stored in process logs and it is compared to its agreed execution. Besides these two
observable and objective phenomena, the process manager defines an expected(or de-
sired) execution of the used service. The expected behaviorof a service can be defined
using the critical relationships, dependencies, previoususe of the service or with the
expertise of the process manager. For example, there is a critical dependency between
two services such as a service needs the output of its preceding before a precise date
to begin its execution, otherwise it fails and causes a damage to process manager. If
the preceding service has the habit to fulfill its task far before the deadline, the process
manager can be concerned when it does not as previously or to make a reliable compo-
sition the process manager may want the service to fulfill itstask as soon as possible.
Contrary to classical approaches, we do not rely the expected behavior of the service
only to its former execution results. It can be calculated bythe run-time environment
of that time also. For example, if there are circulation problems, a delivery service can
be expected to be later than usual. The goal of monitoring framework is to check the
conformity of the run-time behavior of the service and its expected behavior.

Process descriptionWe callP, the description of the process. It consists of process
constraints, actors, objects, services to compose and the qualitative and quantitative
properties of the process. The Process Manager plans the initial execution of the process
defining the relationships among the entities involved in the process. Briefly, the setP
describes what a process is supposed to provide when it is started.

Process behaviorWe call C, the current state of the process. The process behavior
consists of features that illustrate the current state of services such as received QoS,
fulfilled steps, underlying network activities or any information that can illustrate the
current state of observed services. TheC characterizes what the process has been doing
since its start.

Process expected behaviorWe callQ, is the description of the expected execution of
process described byP. For example, let’s suppose there is service that consists of a
good delivery before a deadline. The good can be delivered atany time between the
activation date of the service and its deadline. If the service requester is concerned by

the failure of this service, it can consider to take precautions before the deadline. In
case where there are no alternatives to execute beforex hours before the deadline then
this precise date can be a critical point of the service that the service requester expects
the fulfillment of the service. The expected execution of a service can defined by using
various features such as the reputation of the service. For example, let’s suppose the
service delivered the good alwaysy hours after its invocation in the previous invocations
then its behavior can be its expected execution.

4.2 Monitoring engine

We introduce a monitoring functionM that takes a process(or a party of a process) as
input, uses disposed information to analyze its state and returnsEOor IO.
Due to lack of space and facilitation of the lecture, we consider a set of sub-services
that compose a complex service that can be observed independently. The technique
that we use for sub-processes can be easily thought for the process in general. A sub-
process, itself, can be considered as a basic service. For example, a service that delivers
several goods with different properties in different contexts after the reception of an
order. We can consider the deliverance of each good as a sub-process. The motivation
of our approach is to not detail complex interactions or various outputs that can have
place but to show how the behavior of a service can be modeled.

Definition 1 (Monitoring function). TheM is a function that takes as input a running
service and returns either an information that depicts a precise and justified state(EO)
or analysis(IO) about this service.
LetS the set of monitored services that compose the process described byP,

M: S −→ [0,1]

The return value ofM has different meanings, the two return values ofM correspond
to EO:

Let s∈ S, s is sub-process(or a service) of an overallP,
if M(s) = 1 then the service is provided or will be certainly provided as planned,
if M(s) = 0 then the service is failed or will not be provided as planned,

The intermediate values in]0,1[characterize the run-time behavior of monitored
service, the convergence toward 1 can illustrate the completion of a running service as
planned, or an outstanding performance. The convergence toward 0 can illustrate the
deviation of a service from its expected behavior or an irregularity.
The algorithm below depicts partially the intern mechanismof M function while it
illustratesIO.

• Γ is the set of predicates that illustrate the planned fulfillment of observed service,
they consist of relationships betweenP andC. In case they hold, the service is
fulfilled or will be certainly fulfilled as planned,

• Λ is the set of predicates that illustrate the failure of a service contrary to its planned
fulfillment, in case they hold the service is failed or will certainly fail,

• si ∈ P, is an output, effect, or step of a service, it is described byquantitative and
qualitative features such as a service that uploads data.

• ci ∈ C, is a set of information associated with run-timesi. It can be the amount
transfered data, current time, underlying network activities related to transfer etc.

• c
j
i is one particular aspect that characterizes the context. For example,cj

i can be
the temporal context ofci, andc

j+1

i can the fact that concerns only the received
amount of data,

• ∆si
ci

depicts the relation ofsi and its run-time stateci, ∆pi
ci

is composed by{∆si

c0
i

,

... ∆si

c
j

i

, ∆si

c
j+1

i

...}, the states that describe the current state depending on single as-

pects. For example, the completion of the service can be related to received amount
of data then the∆si

c
j+1

i

will characterize the current state of service using the rate

or difference of received and total amount of data to transfer. Normally,∆si

c
j+1

i

will

converge to 1 while the received amount of data increases, orwill be constant while
there is no reception of data.

• Each∆si

c
j

i

has a weight in the composition of∆si
ci

, we call a weightυj
i , andυi, the

sum all weights,

Algorithm 1 : Monitoring function computation algorithm

∀λ ∈ Λ, ∀γ ∈ Γ , ∆si
ci
∈]0,1[,

1: while(¬λ and¬γ),
2: for (all runningsi)
3: for (all associatedcj

i)

4: ∆si
ci
← ∆si

ci
+ υ

j

i

υi
∆si

c
j

i

5: end for
6: end for
7: end while

The above algorithm depicts partially the monitoring function that computes a services.
We chose the part that concerns the analyze of a running or invokedsi. We do not depict
the predicates that illustrateEO as they consist of conditional relationships. This algo-
rithm iterates(1-7) as long as the predicates that illustrate theEO do not hold. For each
observedsi, a ∆si

ci
is calculated(4) using all of the different∆si

c
j

i

and their weights(3-

5). As the algorithm iterates∆si
ci

can have different values over observation interval.
Continuous values of∆si

ci
can show the changes of the service since its invocation, its

completion, its irregular behavior etc. The analysis made by singlesis can be gathered
to have theIO of the services in order to make more general analysis.

The operation of the monitoring function is the subject of the process manager. It
leaves much room for configuration, the process manager can rely the state of a service
to the properties it desires. If the outcome of a service consists of an instantaneous fea-
ture, it is hard to model its behavior because one property that can be interpreted is the
response time to an invocation. But its behavior can be modeled in multiple instantia-
tions using the quality of the its operation after each invocation.

4.3 Process decision engine

The decision engine uses the output of the monitoring function, it consists of comparing
the run-time behavior of the service to its expected behavior. If the running service is
not likely to be fulfilled or gives a bad performance, it can beaborted and a better
service can be chosen. If the running service gives bad signsand the alternatives are not
desirable because of their cost or risk, the running servicecan be kept. In this paper,
we are not concerned by how one can define the expected behavior of a service using
dependencies or previous executions, we will study it in thenext work. To facilitate the
selection of relevant execution plans, we define quality properties for each management
decision that can be done.

The set of alternativesThe setWi={w1
i , w2

i , ..., wn
i , ...} is a finite set of actions that

can be done whensi of a service is enacting. Each elementwn
i ofWi has:

an associated costctni , an incomegn
i , a risk rn

i , and can have an associated setfcn
i

that includes its forward choices. We do not mention the set of W that includes all sets
Wi for all the whole process that uses the observed service. Themanagement decision
consists of choosing one of the alternatives ofWi including the kept of the existing
enactment. As the new services are discovered continuously, or when the number of
possible actions decreases over the execution, the cardinality of Wi can change. The
critical points that we have mentioned in 4.1 are actually the points that the elements of
Wi are very limited. In the critical points, the elements ofWi can be only canceling or
keeping the execution. We define a decision functionD that takes a service and the set
of management alternatives that can be done during its execution as input, and returns
a alternative to execute as output.

Definition 2 (Decision function). The decision functionD, is a function that takes as
input a service and alternatives that can be performed. It returns the best decision that
corresponds to its inputs.

D : S ×W −→W

As we did in the definition of monitoring function, we defineD partially. The algorithm
2 computes the monitoring result of a servicesi with its alternatives withinWi and
gives the best decision corresponding to the state ofsi.

• ∆si
ci

is the result of monitoring analyze done forsi

• qici
is the expected state ofsi in the contextci. For example, ifcj

i consists of data to
transfer thenqic

j

i

is the expected amount of data that is supposed to be transfered,

• qici
is calculated like∆si

ci
, different weights are taken into account, we callϑ

j
i , the

weight of eachqic
j

i

andϑi, the sum of all weights,
• msi

is the depicts the deviation from expected execution,
• ⊖ is an operator that returns the difference of an expected execution and current

execution,

Algorithm 2 : Management function computation algorithm

∀λ ∈ Λ, ∀γ ∈ Γ , qici
∈]0,1[

1: while(¬λ and¬γ)
2: for (all runningpi)
3: for (all associatedcj

i)

4: qici
← qici

+ ϑ
j

i

ϑi
qic

j

i

5: end for
6: msi

←∆si
ci
⊖ qici

7: if msi
≥0 then keep executionelse

8: review alternativesend if
9: end for
10: end while

In the above algorithm, for eachsi an expected execution is calculated(3-5). The
algorithm calls the monitoring function(6) and uses its return value∆si

ci
in order to

compare to its expected value. The management policy we usedin this algorithm is
very basic, if the expected and current state are equal or there is an outstanding per-
formance then the running service is kept(7), else the management alternatives(besides
keeping the execution) are reviewed(8). This process can beresulted by the choice of an
alternative which is better than keeping the running service. The alternatives are taken
into account basic properties such as income, cost, risk andthe alternatives that can
follow them.

To compare the expected and current state of a running service, we use a special
operator of comparison (⊖) that expresses only concerned differences. The algorithm
we used, can be extended easily to express the general behavior of a service, for example
the record of differences between expected and current state of allsis can be illustrated
as its general quality over its use of its sub-processes.

5 A case study: Distributed software production

This section presents a simple example of collaborative software production process.
According to [1], it has been estimated that the software development industry has an
85% failure rate in the development of software products. This means that most of the
time, the outcome of a software production does not accomplish its planned results.
When the development occurs over the Web, the production becomes more difficult.
The processes and entities involving in them should be rigorously managed.

The scenario we use in this paper can be resumed as follows, the software
house(SH), a software development agent that produces software for end-users, has
customers that place orders including the complete and unambiguous description of
the software they require. TheSH makes a production planning and dispatches differ-
ent components and steps of production among its partners(service(s)) that provide
corresponding services(functional core development, user interface development, de-
livery to end-user, payment service ...). The agreement ofSH and its customer depicts
the aspects related to quality of required software such as the number of time that the

software can crash in a precise period or the execution time of a operation and the fea-
tures related to classical production process such as product delivery date or payment
process. TheSH plans an initial production and makes best effort to respectits agree-
ment. During the production process,SH has initiatives. Basically, it can abort a service
that does not show its expected performance, it can choose a cheaper service instead
of an activated service canceling the latter, or for a risky dependency it can choose
providers having good reputation. Due to lack of space, we explain one step of the
complete production scenario. The figure 1 depicts three services used in the produc-

CD
GD

DS

Service CD

Total size = 10000 KB

QoS = 30 crashes for 1000 op.

Completion time = 10 days

1.day 200KB 8 crashes

2.day

3.day

4.day

5.day

6.day

7.day

8.day

9.day

10.day

2000KB 24 crashes

500KB 5 crashes

800KB 6 crashes

800KB 13 crashes

500KB 20 crashes

3500KB 12 crashes

1000KB 4 crashes

500KB 18 crashes

200KB 6 crashes

Delivery over 10 days Test results

Table A

Table B

Fig. 1.An example of service composition

tion, Core Development(CD) service,GUI Development(GD) service, and
Delivery(DS) service. There are serial dependencies among services,GD andDS
use the outcome of the preceding services. Thesi to observe consists of the production
of a software functional core composed by independent components(which has 10MB
size), an expected quality(less than 30 crashes for 1000 operations invoked), all of the
components must be delivered at most in 10 days. In this example, we suppose the sep-
arate components are delivered when their production are completed. The elements we
mentioned above, describe the service outcome to observe. The system designer de-
fines a monitoring and management policy for this service. The correspondingIO of
this service can be defined by various ways. The completion ofservice can be associ-
ated to the amount received components proportionally to the total expected amount.
In this case, theIO of the service converges toward 1 according to the relation of re-
ceived and total expected amount of components to transfer.In the figure 2, graphic(1)
illustrates theIO associated with this relation. As example of the delivery, we used the
data of Table B in the figure 1. The implementation of correspondingM function is
the proportion of received and total amount of data. If the system designer lies theIO
to this relation then the default output ofM is a certain value close to 0. We can not

consider 0 because, it corresponds a service which is not fulfilled as planned and also
we can consider 1 as a return value if the service is fulfilled or certain to be fulfilled
as planned. In the graphic(3), the system designer that is interested in temporal context
associates the output to the relation of current time and deadline. Thus, he does not
take the other metrics into account, he considers the service approaches to its failure as
long as its is not fulfilled completely. In this interpretation, logically, the default state
of the service is very close to 1 but its not equal either to 1 orto 0 as long as there is
certain information about the fulfillment or failure of the service. In the same figure, the
graphic(2) illustrates the state of service according to the number of crashes detected
for each delivered component. As 30 crashes characterizes the failure of the service,
the output is close to 1 when the number of crashes is not high.In the same figure, the

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Indicational output (received – total amount)

Indicational output (separate crash tests – limit crash)

Indicational output (current time - deadline)

(1)

(2)

(3)

0

0.2

0.4

0.6

0.8

1

Expected output (received – total amount)

0

0.2

0.4

0.6

0.8

1

(1')

(2')

Expected output (separate crash tests – limit crash)

0

0.2

0.4

0.6

0.8

1

(3')

Expected output (current time - deadline)

Fig. 2.Examples of monitoring output and corresponding expected states

graphic(1’) depicts the expected state of the service according to the relation of (1). The
intention of system designer consists of the expectation ofregular component delivery
that will begin with the invocation and end before the deadline. If we compare visually
or arithmetically two illustrations, there is no importantdeviations. In the graphic(2’),

the expectation of the system designer consists of a constant quality for each delivered
product. In this case, the comparison of the service behavior to expected behavior gives
the signs of deviation from expectations. The expectation depicted in graphic(3’) can
be interpreted as follows, the service is expected to complete its fulfillment before the
deadline. In our example, the service we considered ends itsfulfillment just before its
deadline. As result, at a certain date, the management function considers this service
deviates from its expected execution.

The most efficient way of computation is to gather all of separate illustrations in a
single illustration. Their importance in the composition can be characterized with the
weights. Actually, the graphics(1, 2, 3) correspond to three ∆si

c
j

i

, the graphic that will

fusion them with their weights will be∆si
ci

. The graphics(1’, 2’, 3’) correspond to three
qic

j

i

and respectively their fusion will be theqici
of the service.

In the graphics, we do not label the x line, the observation can occur over the time
or single events.

6 Related Work

The work of Xu [11] is one of the closest works to ours. The authors consider the col-
laborative process as an e-contract. The parties have predefined mutual commitments
composed by predefined actions series. Within the commitments, the actions are in-
terconnected with temporal relationships that called constraints. The commitments are
observed during the enactment, the monitoring party puts guards on constraints, the
guards capture how far the commitments have progressed. If there is a non-compliance
to prescribed scheme of actions, the concerned parties are notified.

Sayal et al. present in [6] a set of integrated tools that support business and IT users
in managing process execution quality. The authors providea data model and a generic
architecture(HP Process Manager) to model and compute the execution of processes.
Although the approach is interesting, it suffers heavy analyze of workflow log data.

Cardoso et al. [2] propose a model to manage workflow components from a QoS
perspective. The QoS presented includes three dimensions:time, cost, and reliability.
The QoS measures are applied separately to each workflow taskand then they are auto-
matically computed for the overall QoS of the workflow.

In the literature, there are many examples of Web service composition propositions
that rely the behavior of a Web service to its network level activities such as response
time to any invocation, availability, the probability of response to any invocation etc. In
these approaches, the metrics and events that parameterizethe behavior a service do not
characterize the process manager perspective. In our work,we are mainly concerned by
high level business properties of the processes.

7 Conclusion and outlook

In this paper, we examined the problem of VE maintenance within the context of WS.
In the dynamic context of the Web, each process manager has anindividual policy that
governs the processes. We proposed a generic mechanism thatcan be used to express

monitoring and management policies computing basic semantic features of services.
Our proposition includes a monitoring function that can compute basic relationships
among process metrics, events, and objects. The monitoringis processed with measur-
able and continuous indications of how likely the process isenacted. The management
mechanism we propose, uses a similar mechanism to deal with different alternatives.
It permits the automated comparison of different alternatives according to their basic
properties.

This paper depicts the preliminary concepts our future work. Our aim is to provide a
framework that can monitor and verify the run-time behaviorof the Web processes and
also manage the composition of Web services according to themanagement policies.
The model we proposed requires a complex data model that willexpress basic properties
of processes and the features that characterize their key performance indicators. The
technologies that can support our effort are data warehousing and mining techniques,
complex event processing, workflow and business policy management approaches.

References

1. Jones Caper. Minimizing the risks of software development.Cutter IT Journal, 11(6), June
1998.

2. Jorge Cardoso, Amit P. Sheth, John A. Miller, Jonathan Arnold, andKrys Kochut. Quality
of service for workflows and web service processes.J. Web Sem., 1(3):281–308, 2004.

3. Erik Christensen, Francisco Curbera, Greg Meredith, and SanjivaWeerawarana. Web
Services Description Language (WSDL) 1.1. W3C, 1.1 edition, March 2001. URL:
http://www.w3c.org/TR/wsdl.

4. Alexander Keller and Heiko Ludwig. The wsla framework: Specifyingand monitoring ser-
vice level agreements for web services.J. Network Syst. Manage., 11(1), 2003.

5. David Martin(editor), Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, Sheila
McIlraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, Evren Sirin,
Naveen Srinivasan, and Katia Sycara.OWL-S: Semantic Markup for Web Services, 2004.
URL: http://www.daml.org/services/owl-s/1.1/.

6. Mehmet Sayal, Akhil Sahai, Vijay Machiraju, and Fabio Casati. Semanticanalysis of e-
business operations.J. Network Syst. Manage., 11(1), 2003.

7. T.Andrews, F.Curbera, H.Dholakia, Y.Goland, J.Klein, F.Leymann, K.Liu, D.Roller,
D.Smith, S.Thatte, I.Trickovic, and S.Weerawarana. Business process execution language
for web services. BEA, IBM, Microsoft, SAP, Siebel, 2003.

8. UDDI. Universal Description, Discovery, and Integration of Business for the Web, October
2001. URL: http://www.uddi.org.

9. Wil M. P. van der Aalst, Boudewijn F. van Dongen, Joachim Herbst, Laura Maruster, Guido
Schimm, and A. J. M. M. Weijters. Workflow mining: A survey of issues and approaches.
Data Knowl. Eng., 47(2):237–267, 2003.

10. W3C. Simple Object Access Protocol (SOAP) 1.1, 2000. URL:
http://www.w3c.org/TR/SOAP.

11. Lai Xu and Manfred A. Jeusfeld. Detecting violators of multi-party contracts. In
CoopIS/DOA/ODBASE (1), pages 526–543, 2004.

