Drawing $K_n$ in Three Dimensions with One Bend per Edge

Olivier Devillers 1 Hazel Everett 2 Sylvain Lazard 2 Maria Pentcheva 2 Stephen Wismath 3
1 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée
2 VEGAS - Effective Geometric Algorithms for Surfaces and Visibility
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We give a drawing of $K_n$ in 3D in which vertices are placed at integer grid points and edges are drawn crossing-free with at most one bend per edge in a volume bounded by $O(n^{2.5})$.
Document type :
Conference papers
Complete list of metadatas

Cited literature [11 references]  Display  Hide  Download

https://hal.inria.fr/inria-00000374
Contributor : Maria Pentcheva <>
Submitted on : Thursday, September 29, 2005 - 1:06:31 PM
Last modification on : Wednesday, February 13, 2019 - 2:58:21 PM
Long-term archiving on : Thursday, April 1, 2010 - 10:34:07 PM

Identifiers

  • HAL Id : inria-00000374, version 1

Collections

Citation

Olivier Devillers, Hazel Everett, Sylvain Lazard, Maria Pentcheva, Stephen Wismath. Drawing $K_n$ in Three Dimensions with One Bend per Edge. 13th International Symposium on Graph Drawing - GD'2005, Sep 2005, University of Limerick, Ireland. ⟨inria-00000374⟩

Share

Metrics

Record views

399

Files downloads

191