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Robust and Accurate
Vectorization of Line Drawings

Xavier Hilaire and Karl Tombre

Abstract—This paper presents a method for vectorizing the graphical parts of paper-based line drawings. The method consists of

separating the input binary image into layers of homogeneous thickness, skeletonizing each layer, segmenting the skeleton by a method

based on random sampling, and simplifying the result. The segmentation method is robust with a best bound of 50 percent noise reached

for indefinitely long primitives. Accurate estimation of the recognized vector’s parameters is enabled by explicitly computing their

feasibility domains. Theoretical performance analysis and expression of the complexity of the segmentation method are derived.

Experimental results and comparisons with other vectorization systems are also provided.

Index Terms—Document analysis, graphics recognition and interpretation, vectorization, curve segmentation, performance

evaluation, line drawings.

�

1 INTRODUCTION

THE automated conversion of paper-based documents into
a set of features which can be edited and stored by some

document management software is a problem that has a long
history and which has received considerable attention during
the last decades. In the case of line drawings, the aim is
usually to convert the graphics represented by pixels into
vectors and other simple geometrical features. This problem
of vectorization, i.e., raster-to-vector conversion, has been at
the center of research in graphics recognition for many years
already. A number of techniques have been proposed to solve
this problem, leading to commercial software packages as
well as to research prototypes. All these systems provide
quite acceptable results on simple, moderately noisy docu-
ments, but recognition rates for poor quality and huge
documents such as technical drawings hardly exceed
80 percent in practice, leading to high postvectorization
editing costs [7], [33].

Several reasons may explain this. First, it is very unlikely
that a “blind” segmentation process can provide satisfying
results, not only because the optimal solution for the
segmentation is usually not known, but also because it is
generally not unique. Introducing ad hoc rules or contextual
expert knowledge to obtain better quality solutions there-
fore appears mandatory, and several authors have explored
this pathway [5], [22], [27], [40]. However, due to a potential
combinatorial explosion, such approaches may only pro-
vide limited improvements and still rely on a high quality
low-level vectorization. Also, both the robustness and scale
invariance of most of the cited methods are not known and
only little (if any) theoretical analysis of their performances
have been established so far. At last, a crucial point in most
existing methods is the requirement to tune an important
set of parameters, often set on completely empirical bases.

The context in which the present work was initiated added

another constraint on us, that of high accuracy. The raster-to-

vector conversion method we designed had to be used for

recovering the dimensions and positions of the different

components of architectural drawings with high precision. It

was therefore not enough to detect vectors; their position had

to be very accurate with respect to the original drawing too.
All this convinced us that a robust and accurate vectoriza-

tion method, involving only a limited set of parameters [43]

and including a theoretical analysis of its behavior, would

bring a significant contribution to the field. This paper aims

at presenting such a method. Like most raster-to-vector

conversion systems, it is currently limited to the detection of

straight line segments and circular arcs, the two mostly used

shapes in technical documents. There is, however, no

absolute limitation in the proposed approach which would

prevent it from detecting other kinds of primitives, although

we suspect it to become prohibitively costly in terms of

computational complexity.
The method has been implemented and tested on a wide

variety of line drawings. In particular, we have made use of

the database set up for the international graphics recogni-

tion contests organized during the IAPR international

workshops on graphics recognition [7], [28], [50] to provide

comparative performance evaluations with respect to four

other systems. A probabilistic analysis of the method’s

behavior is also provided.
The remainder of this paper is organized as follows: In

Section 2, we briefly review some other proposed approaches

and point out their main weaknesses. In Section 3, we provide

the necessary material for skeleton-based vectorization. In

Section 4, we describe the details of our method and give a

theoretical analysis of its behavior. Section 5 details the

complexity of the method. Experimental results and perfor-

mance comparisons are provided by Section 6, and the paper

closes with a discussion about lessons learned and further

perspectives of this work in Section 7.
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2 RELATED WORK

Most vectorization methods consist of several processing
steps, including finding the lines in the original raster image,
segmenting the lines found into a set of vectors and arcs, and
performing various postprocessing treatments, to find
better positions for the junction points, to merge some
vectors and remove some others, etc.

As we mentioned in Section 1, postprocessing mostly
consists of adding some kind of contextual knowledge. This
includes simple heuristics to correct the result, setting
junctions straight, merging those which are close to each
other, reconnecting lines split up by a missing pixel [5], or
taking into account the nature of the drawing to progressively
simplify it [40]. Although such approaches can significantly
improve raw results, they tend to introduce a number of
additional thresholds and parameters. Hence, they will not be
considered here because of our need for a robust and
noncontextual method with as few parameters and thresh-
olds as possible. In this section, we will therefore concentrate
our review of literature on the two first steps in vectorization.

2.1 Finding the Lines: Raster-to-Vector Conversion

Raster-to-vector methods may be roughly classified into
three families, depending on the basic technique they rely
on: parametric model fitting, tracking and matching
opposite contours, and skeletonization.

Parametric model fitting consists in using a line model to
detect the lines present in the image. The most general and
best-known technique for that is the Hough transform, which
has nevertheless not been widely used for raster-to-vector
conversion, except some attempts by Dori [10], Kultanen et al.
[25], Yamada [53], and Song and Lyu [38]. These methods
have only been evaluated on simple or very specific cases. The
Hough transform is a global and additive transformation of
an image. It does not guarantee that two noisy discrete lines
having very close respective slopes won’t mix and map into a
dummy peak in parameter space. It is time efficient, but
memory inefficient. However, Song and Lyu have recently
presented a vectorization making use of the Hough trans-
form, but adapted to the analysis of line drawings. Their idea
is to perform a subsampling of the image by finding interest
points through a horizontal and a vertical scan of the image.
Only these points are used in the Hough vote. In addition, the
neighborhood of the points is analyzed to only vote for
plausible angles. All this reduces the computation time and
memory needs of the method and yields promising results.
Still, the methods cited have been designed to extract lines
only, not lines and circular patterns.

Other parametric models have been applied to domain-
specific applications such as finding staff lines [8] or regular
lines in forms [54]. This is related to vectorization methods
using higher-level contextual knowledge and, therefore, not
relevant for the present work, which aims at designing a
general method without a priori contextual knowledge
about the positions or orientations of the lines and arcs.

Tracking and matching opposite contours is an alternative
technique that was tested in the late 1980s [1], [37]. It
provides correct and accurate results if the junctions are
simple. However, it is noise sensitive and fails when it
comes to match complicated structures, even at the price of
an expensive computation time [43].

Skeletonization definitely remains the most widely used
technique for raster to vector conversion [4], [20], [24], [31].

The basic idea is simply to compute some kind of medial
axis of the shape to be vectorized by thinning it or by
looking for the local extrema in its distance transform. This
relies on the assumption that the shapes to be vectorized are
elongated shapes. Once the skeleton has been computed,
the problem of vectorization is reduced to that of segment-
ing a 2D discrete curve into meaningful features.

Unfortunately, the problem is complicated by the cross-
ings and junctions between thick shapes, as parabolic arcs
appear in the continuous space for usual crossings involving
thick segments [3] regardless of the type of skeletonization
methodology used (for an overview of thinning methodolo-
gies, see [26], and for nonthinning-based methods, see [48]).
Most of the existing methods have only limited ability to
detect such parabolic arcs; they approximate them by vectors,
which obviously weakens the quality of the solution and is
confusing for higher level treatments (namely, recognition
and analysis tasks). Early attempts to overcome this draw-
back were performed by Hori and Tanigawa [19], who
proposed to combine skeletonization with contour matching.
The critical point in their method resides in the limitations of
matching at the junctions. Another approach is that of Janssen
and Vossepoel [20], who propose an iterative algorithm based
on maximum threshold morphology to adjust the vectors’
extremities. Their method performs well on simple junctions,
but has the main drawback of relying on local adjustments,
which makes it sensitive to noise. Sensitivity to noise is also a
critical point in SPV, proposed by Dori and Liu [11]. Their
method acts as a simplified and fastened skeletonization
operator, as the orthogonal zig-zag walk only visits a few
pixels on the shapes’ boundaries. Junctions are detected by
the presence of an abnormal border-to-border length with
respect to the average length observed during the walk; as a
result, a junction involving only small segments might be
skipped. The method also requires the settings of more than
10 thresholds.

All the above methods have only limited chances to
properly process junctions and are noise sensitive. Another
more complicated problem is that of extracting circular arcs
from the image [21], [49]. This is generally achieved by
testing whether a subset of adjacent segments can constitute
a circular arc or not; scalability and noise sensitivity of such
methods have unfortunately not been examined.

2.2 Curve Segmentation

With respect to the segmentation of the 2D curves resulting
from the previous step, the literature offers a considerable
number of methods which can be classified in two categories.
First, there are methods using curvature estimation to detect
critical points on the curve [41], sometimes taking scale space
into account [2], [30]. Such methods perform well on curves
that are not too noisy and whose scale variation is reasonable,
but do not explicitly guarantee any upper bound on the most
usual error metrics (such as the integral square error,
Haussdorf distance, etc.). Very soft transitions between a
pair of lines or lines and circles with very large radii, which
are commonly found in technical drawings, make such
methods unsuitable for this class of documents.

Second, some methods operate directly on the curve, either
by minimizing a particular error measure or by splitting or
breaking the curve as long as the local or global error remains
too high. Such methods are known as polygonal approxima-
tion methods [35] and are more suitable to the problem of
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vectorization because of the guarantees they provide. The
most usual criterion used by these methods is that of the
maximum distance between the curve and the segment [36].
This leads to recursive splitting of the curve at the maximum
deviation points until all segments are valid approximations.
As the position of the extrema points of the segments tends to
be constrained by the initial pixel positions, it makes sense for
the method to be followed by a fitting phase, where each
segment is displaced to best fit the original curve. A second
possible criterion is that of the algebraic area of the surface
between the curve and the segment [47]. As this area can be
computed iteratively, very time-efficient iterative methods
have been proposed. A problem with the approach is that it
tends to displace the angular points, as the method only
detects a change of general direction after having followed
several points past the true angle.

However, whatever criterion is chosen, these approx-
imation methods are still lacking with respect to the
requirements of the vectorization problem, as a good
vectorization method should simultaneously extract circu-
lar arcs and segments, scale invariant and robust to
digitization noise as well as to text potentially attached to
the graphics, and should not represent any of the parabolic
arcs that appear in a crossing of primitives as a result of the
skeletonization process.

3 BACKGROUND

The vectorization method we propose improves on that of
Dosch et al. [13] and is fully summarized in Fig. 1. The
reader must note that the first four stages of this method
(binarization, text elimination, thin/thick layers separation,
and skeletonization) should therefore not be considered as a
contribution of the present work. They are recalled here for
the sole sake of clarity.

3.1 Binarization and Filtering

We regard binarization as an optional stage, as most of the
source images to be analyzed are directly available in binary
format. In our system, the binarization stage is followed by
an elementary filtering procedure that fills the holes that the
graphics might carry, removes blobs that may have
appeared outside of them, and performs a morphological
closure. It is possible to obtain a bound on the surface of

spurious holes by resorting to Kanungo et al.’s document
degradation model [23], and to the following result, proven
in [17] (keeping Kanungo et al.’s notations):

Lemma 1. The expectation of the size of a fake hole (due to
degradation) is lower than

�0e
�� þ �

ð�0e�� þ � � 1Þ2
:

The proof is trivial and is not reproduced here. A similar
result may be obtained for blobs.

3.2 Text Elimination

The kind of documents we have to process often contain a text
layer which is not to be vectorized. In addition, this layer may
interfere with the segmentation of the graphics layer into
curves when text touches the graphics. We therefore use the
text/graphics separation method of Tombre et al. [45], which
is based on a method first proposed by Fletcher and Kasturi
[16], with a number of improvements. One of these is the
ability to retrieve in the text layer characters connected to
graphics, provided they belong to a string for which at least
some characters are disconnected and have thus been
detected as a “string seed.” As we will see in Section 6.3,
under certain conditions, our method is actually capable of
retrieving the correct segments and arcs even when the
assumption of string seed presence does not hold.

3.3 Thin/Thick Layer Segmentation

Line drawings can be made by the superimposition of
several layers with different thicknesses, each layer carrying
some specific information. In that case, our system offers
the option of working independently on each thickness
layer. In our implementation, we use mathematical mor-
phology operations to perform thin-thick segmentation: An
erosion is followed by a partial geodesic reconstruction [13].
Alternatively, this could also be done through segmentation
of the distance transform.

Our method actually does not need this and is able to
correctly segment a line drawing with different line
thicknesses.

3.4 Skeletonization

There are many skeletonization algorithms [26] either based
on the iterative deletion of the most outer pixels or on a
distance transform and medial axis computation. In our
vectorization system, we use di Baja’s skeletonization
algorithm [9] for three simple reasons. First, the metric
used in [9] is the (3, 4)-chamfer distance, which effectively
induces a metric over ZZ2 [42]. This means that given a
discrete thick curve in ZZ2, we can expect its skeleton to
coincide with a thin curve of the same nature within a gap
of one pixel. Second, the skeleton is reversible and the
computation of the whole distance transform will allow us
to estimate the thickness of each extracted shape, as
explained further in Section 4. Third, the skeleton is robust.
The detection of saddle points, the computation of the
medial axis from the distance map, and its reduction to unit
width using positive gradients as described in [9] ensures
that skeletal points will always be chosen in the same
manner whenever a choice is possible. In particular, adding
noise points to the boundaries of a shape does not generally
lead to changes in the resulting skeleton [17].
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4 PROPOSED VECTORIZATION METHOD

4.1 Segmenting the Skeleton

4.1.1 Hypothesis, Definitions, and Notations

We assume the documents to be preprocessed as described
in Section 3 until skeletonization. If the option of segmenta-
tion into different thickness layers has been chosen, the
following discussion applies to one such layer at a time. The
skeleton computed with di Baja’s algorithm is connected.
For that reason, we will only have to deal with connected
discrete arcs and skeletal branches, whose definitions are
recalled below.

Definition 1. A discrete simple arc (DSA) is a sequence
ððx1; y1Þ; . . . ; ðxn; ynÞÞ of points of ZZ2 such as 1 � jxiþ1 �
xij þ jyiþ1 � yij � 2 for i ¼ 1; . . . ; n� 1. Furthermore, if
jxn � x1j þ jyn � y1j > 2, the DSA is said to be open.

Definition 2. A discrete skeletal branch (or skeletal branch, for
short) is a DSA whose points ðxi; yiÞ are skeletal points and
such that ðx1; y1Þ and ðxn; ynÞ are skeletal endpoints. A
skeletal endpoint is a skeletal point having either exactly one or
at least three 8-connected neighbors.

In the sequel, we will deal with segmentation of skeletal
branches only. It is assumed that an upper bound f of the
line thickness is known and that the skeleton has been
pruned using this value.

Let C be a skeletal branch; we denote by C½k� its kth pixel
and by C½i::j� the subarc of C containing pixels C½i� to C½j�,
i � j. The Euclidean distance is denoted by dð:; :Þ and j:j
denotes either the length (in number of pixels) or cardin-
ality. For any continuous shape S of the plane, we denote by
DðSÞ its digitization according to the OBQ1 scheme (the
shape is assumed to be a part of the frontier of a closed,
planar object). As stated in Section 1, we are motivated by a
robust segmentation of the skeleton. We therefore propose
to segment any skeletal branch C using fuzzy segments and
fuzzy circular arcs, whose definitions follow:

Definition 3. A DSA C is a fuzzy segment (FS) if there exists a
straight line S of the real plane such that

1. jDðSÞ \ Cj � jCj=2.
2. 8X 2 C; dðX;SÞ � m, where m is a parameter to

specify.

Definition 4. A DSA C is a fuzzy circular arc (FCA) if there

exists a circular arc S of the real plane with radius � and

opening angle � such that

1. jDðSÞ \ Cj � jCj=2.
2. 8X 2 C; dðX;SÞ � m, where m is a parameter to

specify.
3. � � �min and � 2 ½�min; �max�, where �min, �min, and

�max are constants to specify.

The underlying idea in both definitions is that we accept

a given chain of pixels as a segment or as an arc, provided

we can find a continuous shape S around which pixels

stand closer than a certain distance m (see Fig. 2). For

circular arcs, we furthermore require that S satisfies the

validity criteria imposed by �min, �min, and �max. At last, we

require that at least half of the pixels of a candidate arc

coincide with the digitization of S, which is the largest

amount of invalid data we can allow without possible

confusion (in the Cramer-Rao sense).

4.1.2 Main Procedure

The pseudocode for the main procedure of our algorithm is

available in Algorithm 1, in which f is the thickness of the

processed layer and L is initially an empty list. The

algorithm is based on random sampling [15] and operates

as follows (see Fig. 3):

1. Two indexes i and j are randomly chosen along C.
2. The subarc C½i::j� is then tested (lines 6-9), first as a

FS and next as a FCA, in that order. If it is found to
be one or another, then the corresponding extract_
function is called, which finds the lowest and largest
integer indexes i0 and j0 such as i0 � i, j0 � j, and
C½i0::j0� is still a fuzzy primitive of the right type. The
ib and jb indexes, which denote indexes of the
longest primitive found, are updated accordingly.

3. If there is no primitive instantiable from i; j or if the
longest primitive found does not exceed a threshold
valueT , then we jump to Step 1 to make a new attempt,
unless the number of attempts has reached nmax.

4. If a primitive could be found by the previous steps
(regardless of it being longer than T or not), then it is
added to L and the segmentation is reconducted on
the remaining parts of C. Otherwise, we terminate in
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failure and apply an alternative method, namely, the
split and merge segmentation algorithm [34].

In this procedure, T is a confidence threshold on length
upon which we accept any found primitive and break the
repeat loop in order to accelerate the process. In other
words, if we can find any primitive longer than T , then we
retain it; otherwise, we loop at most nmax times to retain the
longest primitive we found. Setting proper values for T and
nmax is therefore highly desirable; we detail how to do this in
Section 5.3.

Algorithm 1 Pseudocode for the main procedure of our
segmentation method.

1: Function partition (C, m)
2: Let l jCj, n 0, ðib; jbÞ  ð0; 0Þ
3: repeat
4: Randomly choose i and j such as 1 � i < j � l
5: stop  false, ði0; j0Þ  ð0; 0Þ
6: if test segmentðC; i; j;mÞ then
7: ði0; j0Þ  extract segmentðC; i; j;mÞ
8: else if test arcðC; i; j;mÞ then
9: ði0; j0Þ  extract arcðC; i; j;mÞ

10: else
11: n nþ 1
12: end if
13: if j0 � i0 > jb � ib then
14: ðib; jbÞ  ði0; j0Þ
15: end if
16: until n � nmax or jb � ib > T
17: if jb � ib 6¼ 0 then
18: Add the found primitive C½ib::jb� to L
19: if ib � 2 then SegmentðC½1::ib�;mÞ end if
20: if jb � l� 1 then SegmentðC½jb::l�;mÞ end if
21: else
22: Segment C using the split and merge algorithm and

add the result to L.
23: end if
24: End

4.1.3 Fuzzy Primitive Test and Extension

The test_ and extract_ functions used in Algorithm 1 both
require to test whether a given discrete arc C is a FS or a
FCA. According to Definitions 3 and 4, this question may
only be answered by building and updating the corre-
sponding feasibility domains in the dual space, which
requires OðndÞ time with d ¼ 2 for FS and d ¼ 3 for FCA.

Rather than using such a costly procedure, we slightly
weaken the test by using linear regression; that is, we obtain
S in Definitions 3 and 4 by fitting a line or a circle to C using
the algebraic least squares method. This approach is
justified by the two following lemmas, both proven in [17]:

Lemma 2. Let C be an FS or FCA, T̂T be the estimate shape of C
using the least square method, and ĈC be the discrete arc
obtained by rounding each point of T̂T to the nearest integer
couple in ZZ2. Then, it holds that

jC \ ĈCj
jCj ¼ 1�Oð1=jCjÞ:

Lemma 3. Addition of bounded and centered noise to a FS or
FCA C does neither change the conditions nor the values
toward which their respective least squares estimates converge
as jCj ! 1.

Both lemmas ensure that recovering all the valid pixels
of a fuzzy primitive is always possible when its length
becomes arbitrarily large. We conducted and compared
both approaches and found only little difference for
sufficiently large primitives (length � 10 pixels). Therefore,
the results reported in Section 6 follow the linear regression
approach.

4.2 Optimization

The result of the segmentation stage is a set of primitives
that approximate the skeleton of a particular layer of the
document. This set, however, may not yet be considered as
the solution to vectorization for two obvious reasons: 1) we
segmented the skeleton of the image, not the image itself; as
a result, we still have to get rid of the skeletal arcs that
appear in crossings of primitives, and 2) we considered only
skeletal branches, which implies that any primitive of the
ground truth has been detected as fragmented if it is hit by
any other at a crossing.

The optimization stage addresses these problems. It
consists of a simplification and a unification procedure that
are applied in turn, independently. Both procedures share a
connectivity graph G built immediately after the segmenta-
tion stage; this graph has the following properties:

. Its nodes are the primitives found upon completion
of the segmentation stage.

. Any of its edges denotes a connection between two
primitives. The edges are unoriented.
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Fig. 3. (a) Illustration of the random sampling procedure used in Algorithm 1. (b) The gray pixels may either belong to the lines or to their closest
parabolic arc in the case of an L junction.



4.2.1 Simplification of the Skeleton

The simplification procedure eliminates the spurious arcs that
appeared inside the crossings of primitives during skeletoni-
zation. It uses the basic underlying assumption that any
discrete arc with length lower than an acceptance threshold f
may be removed, provided that the remaining primitives are
sufficient to explain and reconstruct the image. To detail this
procedure,wefirstgiveafewdefinitionsandresults from[17].

Definition 5. The preimage of a DSA X is the set of all the
primitives of the plane whose digitization fully includes X . It
is denoted PreðXÞ.
Dorst and Smeulders [12] gave a characterization of the

feasibility domain of discrete segments in the dual space: It
consists of a quadrilateral with at most four vertices (Fig. 4).
From their result, it immediately follows that the preimage
of a discrete segment can be represented using at most two
segments and four half-lines. For discrete circular arcs, we
proved in [17] that the preimage could only have three
possible shapes, using a lemma from O’Rourke et al. [32].
These shapes are presented in Fig. 5.

We now consider the intersection of two discrete
primitives that we define in a particular manner:

Definition 6. Let P and Q denote two discrete primitives, L and
R the integer endpoints of P, and �II the complement of the
source image. We say that P joinsQ by L (respectively, by R)
and denote P ‘L Q (respectively, P ‘R Q) if and only if there
exist two discrete primitives X and Y such that:

1. P � X , Q � Y, and X \ Y 6¼ ;,
2. ðX [ YÞ \ �II ¼ ;, and
3. 9K 2 X [ Y : ½RK� \ ½RL� ¼ ½RL� (respectively,
½LK� \ ½LR� ¼ ½LR�),

where ½xy� is the discrete primitive included inX with endpoints
x and y. Note that X \ Y is used because this intersection is not
necessarily reduced to a single point in the case of circles. Also,
note that K always belongs to a connected component of
PreðXÞ \ PreðYÞ; this connected component is called the
L-endpoint domain (respectively, R-endpoint domain) of P.

An illustration of this definition is given in Fig. 6. In each
case, the idea is the same:P andQbeing given, if we can find a
piece of discrete shape that completely overlaps P and
permits to reachQwhile remaining inside the image, then we
have P ‘L Q or P ‘R Q, or possibly both, depending on the
nature of P and Q and on which points the linking piece of
primitive stems from. In all cases, �R and �L define the
feasible region of the endpointsR andL. In the following, we
will always assume that any discrete primitive has two
endpoints L andR: The full discrete circle can be viewed as a
circular arc whose endpoints are identical, but it can be
processed exactly the same way as segments and open
circular arcs.

With the above material, we are now ready to explain the
simplify procedure detailed in Algorithm 3. This procedure
operates in two stages. First, for each long primitive
(length � f), we seek for similar neighbor primitives that
can be reached through a chain of short primitives—those
might be removed. This is done by the search function, whose
pseudocode is available in Algorithm 2 and which returns the
list of all possible paths stemming from a given node n and
leading either to a long primitive or to an end of chain of short
primitives. To each node that represents a long primitive, the
list of these paths is being attached. For any node n, we
process all the paths P we find and look at p, the last element
of the path P. Several cases may then occur:
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. p is a short primitive: The edges defined by the path
P are simply marked as deletable.

. p is a long primitive and p ‘L n (respectively,
p ‘R n): We redefine �L (respectively, �R) as the
proper component of PreðnÞ \ PreðpÞ following
Definition 6. The endpoint L (respectively, R) can
then be chosen as any integer point of �L (respec-
tively, �R) in subsequent calls.

. p is a long primitive, but p 6‘L n and p 6‘R n: nothing
happens.

As the two first cases lead to a valid intersection, the edges
formed by all the found paths between the two primitives are
marked for deletion. Finally, all marked edges and
all unconnected nodes of G are removed. Note that
Algorithm 3 is provided in its simplest form for the sake of
clarity and may be optimized in many ways; in particular:

1. The computations of PreðnÞ \ PreðgÞ for various n
and p, and the information “does n ‘L lastðP Þ or
n ‘R lastðP Þ?” can be cached.

2. The redundancies of the deletions can also be
avoided by resorting to some proper data structures.

3. Most importantly, if the required endpoints have to be
output as integers, which is actually the case for the
VEC format [6] used in Section 6, then all the geometric
operations may be handled in ZZ2 rather than IR2.

The latter point greatly simplifies the implementation of
the method, as handling nonlinear pieces of curves for circles
as well as irrational representation and precision issues
becomes irrelevant. Our implementation does a little bit
better: We allow a rational representation of all points by
subsampling the various domain boundaries. All geometric
operations are then carried out using standard algorithms on
polygons with rational vertices coordinates. It is, however,
noticeable that the method we describe is still valid in IR2, but
at thepriceofmuchcostlier algorithmsduetoprecision issues.

Algorithm 2 Pseudocode of the auxiliary search function
used in the simplification stage.

1: Function search (n;G)
2: L ;; mark n
3: for x 2 neighborsðn;GÞ such that x is not marked do
4: if lengthðxÞ � f or ðT  searchðx;GÞÞ ¼ ; then
5: L L [ fxg
6: else
7: for t 2 T do
8: L L [ fxtg
9: end for

10: end if
11: end for

12: unmark n; return L
13: End search

Algorithm 3 Pseudocode for the simplify procedure of the
optimization stage.

1: Procedure simplify (G)
2: for n 2 G such that lengthðnÞ � f do
3: for P 2 search ðn;GÞ do
4: let p be the last element of path P ;

remove ðlengthðpÞ < fÞ
5: if not remove then
6: if p ‘L n then
7: redefine �LðpÞ according to Definition 6;

remove true
8: end if
9: if p ‘R n then

10: redefine �RðpÞ according to Definition 6;
remove true

11: end if
12: end if
13: if remove then
14: add edge ðn; lastðP ÞÞ to G if it doesn’t exist
15: mark all edges defined by P for deletion
16: end if
17: end for
18: end for
19: remove all edges from G marked for deletion
20: remove all unconnected nodes from G
21: End simplify

To illustrate how Algorithm 3 works, consider the case of
the X junction in Fig. 7. The branches in this junction have
unequal thicknesses, and we may not expect them to meet at a
single point (Fig. 7a). We assume that A;B;C;D are long
segments that have been properly recognized during the
segmentation stage, whereas a; b; c; d; i; j; k are spurious arcs
withlengthsmaller thanf (Fig.7b).Weobtain theconnectivity
graph G of Fig. 7c and, node by node, the following paths:
A! fbBg, B! fcdC; cdkD; cdijDg, C ! fdcB; dkD; dijDg,
D! fkdcB; kdC; jidC; jidcBg.StartingfromA,weobtainthat
A leads to B and that A ‘R B, so the graph is modified
accordingly (Fig.7d).FromB, weobtain twocandidatesC and
D, but onlyB ‘R C, so the edgesBc; cd; dC are deleted, the arc
BC is added, andG is modified (Fig.7e). FromC, we find three
paths, among which one leads to B which has already been
processed and the two others lead to D. Since C ‘R D, we
deleteCd; dk; kD; di; ij; jD and insertCD (Fig. 7f). Processing
from D is the symmetrical case of processing from C and
doesn’tchangeanything.Finally, the remaining,unconnected
nodes are simply deleted (Fig. 7g). We therefore obtain
the connectivity graph of Fig. 7h and the X junction is
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Fig. 6. Illustration of Definition 6. (a) P ‘R Q, but P 6‘L Q, Q 6‘R P , and Q 6‘L P . (b) P ‘L Q and Q ‘L P , but P 6‘R Q and Q 6‘R P . (c) No joint

relation at all.



reconstructed as illustrated in Fig. 7i. It is worth noting that
reconstructing a given junction generally leads to more than a
single solution. It may be interesting to group primitives that
overlap each other as much as possible, as we suggested
in [18]. It is even sometimes desirable to determine
the concurrency of lines through the calculation of the
maximal clique of their intersection graph [46], which is an
NP-complete problem. The solution we suggest is therefore
somewhat arbitrary, but has the advantage to preserve
connectivity and is able to find the “carrier” primitives in a
junction—primitives can only be grown, never reduced.

4.2.2 Unifying Primitives

Due to the crossing of primitives, we also need to cope with
the problem of recovering from primitive fragmentation
whenever it occurred. The unification test we use involves
Lemmas 2 and 3 and the following domain construction
procedure: Let Q and P be two adjacent fuzzy primitives;
we unify them into a new primitive iff we can find a
continuous segment or circle S such as

jDðQÞ \DðSÞj � jDðQÞj=2 and jDðPÞ \DðSÞj � jDðPÞj=2:
ð1Þ

Most of the time, unifying two primitives Q and P will
result in a primitive S for which PreðSÞ � PreðP Þ [ PreðQÞ.
As a result, some concurrency relations established during
the simplification stage may have to be reconsidered.
Indeed, two cases of the figure may occur:

. Wefindthat theendpointdomainsofQandP stillhave
a nonempty intersection withPreðRÞ: In this case, this
intersection defines the new endpoint domains.

. We find that the previous intersection is empty: In
this case, we simply disconnect the new primitive
from those previously attached to its endpoints.

Disconnecting primitives in the latter case results in the
processing of two independent primitives and is most of the

time desirable (as an example, consider a full circle inter-
rupted by a line). However, it may also become an arbitrary
decision in certain cases (Shall an X junction be reconstructed
with four segments and a point or only with two segments?).
Also, note that there exists an arbitrary order within which
primitives eligible for unification can be processed. In our
method, we first process those that are the most likely; that is,
we maintain a table of all couples of adjacent primitives that
satisfy (1) and always process first the pair that maximizes the
quantity jDðSÞ \DðQÞj þ jDðSÞ \DðPÞj.

4.3 Final Parameters Estimation

This last stage aims at estimating the parameters of the
found shapes and their thickness. It is done once, after all
other stages.

4.3.1 Estimating the Shape Parameters

Estimation of the shape parameters for the case of segments
is straightforward from their domains. First, recall from
Section 4.2 that, M being L or R, the fact that P ‘M Q results
in a nonempty domain �M (Fig. 8), inside which the
endpoint M will have to lie. The optimal coordinates of M
are the respective expectations of x and y over �M if we
assume a uniform distribution of the feasible points in IR2.
In other words,

P ¼ 1

areað�MÞ

Z
D2�M

xðDÞdD;
Z
D2�M

yðDÞdD
� �

:

Second, observe from the left of Fig. 8a that a similar
domain may also be built in the case of a “free” endpointM by
considering the set of points in the neighborhood of M that
don’t increase the digitization of the segment (or circular arc).

For circles, �M is bounded by two circles with centers �i

and �e (not necessarily identical) and radii �i and �e. The
optimal circle is centered in the middle of �i and �e and has
radius 1

2 ð�i þ �eÞ. For circular arcs, the estimation is slightly
more complicated, because the problem is overconstrained.
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Fig. 7. Processing of an X junction by Algorithm 3. (a) Source image, (b) resulting segmentation, (c) connectivity graph G, (d), (e), (f), (g), and

(h) action of Algorithm 3, and (i) the reconstructed junction.



As for circles, we obtain an optimal estimated circle � with

radius � (see Fig. 8b), but the optimal endpoints L andRmay

not necessarily lie on it. We therefore have two possibilities:

Either we set pointsL andR and seek for a nonoptimal radius

or we determine � with an optimal radius and seek for

nonoptimal L and R points on it. We adopted the latter.

4.3.2 Thickness Estimation

The thickness of the primitives remains quite unreliable
information in practice as it is known most of the time with
only limited accuracy. Three simple reasons explain this:
1) There is an obvious dependency to the binarization
scheme. 2) The shapes are noisy. 3) Even for nonnoisy
shapes and a fixed threshold binarization scheme, the
theoretical precision is rather poor (for example, any real
half-plane may be moved along the Ox or Oy axes of a
distance in the interval �

ffiffiffi
2
p

=2; 1½ depending on the plane
orientation without affecting its digitization).

The ð3; 4Þ-distance transform computed during skeletoni-
zation provides a straightforward solution to obtain a lower
bound of the thickness of a shape. Let I be the digital image
and T be the ð3; 4Þ-distance distance of I. A point p 2 T with
maximal label v ensures that there exists a discrete ball
centered on p with radius v that is fully included in I. Two
cases may then occur, depending on whether p is the sole
point having the maximal label in its eight-neighborhood to
the exception of other skeletal points or not. This test is
directly related to the local parity of the thickness. If p is
alone (odd local thickness), then v is the value of the
thickness with the ð3; 4Þ-distance. Otherwise (even local
thickness), the local description of the shape is a union of
balls, in which case, we can deduce the thickness from the
diameter of this union and add 3/2 to the current label’s
value to correct the estimate. At last, we also have to cope
with noise and dummy characters or primitives touching the
graphics, which may alter the values of the thickness. We
therefore estimate the thickness of each segmented shape
with skeleton C using the following method:

1. For any pixel p ¼ ði; jÞ 2 C, let Ep ¼ fðx; yÞ 2 T :
maxðjx� ij; jy� jjÞ � 1 and T ðx; yÞ ¼ T ði; jÞg.

2. Collect a set L of values by adding the following
value vp for each p 2 C to it:

vp ¼
T ðpÞ if jEpj � 3
T ðpÞ þ 3=2 otherwise:

�

3. Compute the median value t of L and retain 2t=3� 1
as the thickness.

5 COMPLEXITY AND PERFORMANCE ANALYSIS

This section evaluates the complexity of the algorithms

involved in our method. We also provide clues to set the T

andnmax parameters for the segmentation step (Algorithm 1).

We assume an image h� w pixels wide, containing

p connected components. The lowest maximal surface area

of these components is denoted by s. The segmentation stage

is assumed to process n skeletal branch, each formed of

l pixels in the worst case, and N denotes the highest number

of primitives carried by at least one of these branches.

5.1 Preprocessing Steps

The first steps, which we “inherited” from previous work

(see Section 3), do not present particular high complexity.

Noise filtering is essentially linear. Text elimination is based

on classical connected component analysis which can also

be performed in linear time.
Thin-thick separation is performed by iterating elemen-

tary morphological operations a limited number of times.

More precisely, letS be the source image from which we wish

to extract parts with thickness at least equal to some e > 0. If

r ¼ bðe� 1Þ=2c, the operation consists of iterating r elemen-

tary erosions, followed by rþ 1 dilations and intersections

with the original image. The computational complexity for

separating into two layers is therefore in OðrhwÞ.

5.2 Skeletonization

The time necessary to complete the skeletonization step is

bounded by that of the computation of the ð3; 4Þ-chamfer

distance. It turns out to beOðhwÞ in a sequential scheme [42].

5.3 Skeleton Segmentation

We provide a more detailed analysis of Algorithm 1 in

order to establish its complexity and assess its perfor-

mances. Consider a fuzzy primitive C with length l.

Assuming stochastic noise, let � be the probability that a

given point of C is incorrect. Then, the probability to obtain

at least dl=2e incorrect points in C is

P ðn � dl=2ejCÞ ¼
Xl

k¼dl=2e

l

k

� �
�kð1� �Þl�k: ð2Þ

An elementary study of the right expression in (2) shows

a convergence toward 0 as l!1 whenever � < 1=2. As a

result, there always exists a value of T sufficiently large so

that l > T ) P ðn � ljCÞ < " holds for any " > 0. Moreover,
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Fig. 8. Use of the preimage and endpoint domains to estimate the parameters of (a) segments and (b) circular arcs.



if � is small, then P ðn � ljCÞ vanishes rapidly as l increases;
more precisely,

P ðn � dl=2ejCÞ ¼ O �b
l
2cþ1

� �
:

Table 1 provides a few values of P ðn � dl=2ejCÞ given l
and �. The reader may observe that these values depend
on the parity of l, which is no surprise given (2). Of course,
the problem of estimating � remains, as we are not
supposed to know it before runtime. However, we may see
from Table 1 that setting T � 25 leads to quite acceptable
values for any � � 0:4.

Suppose now that C is made of N primitives of integer
length l=N < T . We denote by E1 the event “i and j belong
to the same ground truth Primitive,” by E2 the event “C½i::j�
has more correct than incorrect Points,” and by E3 the event
“Algorithm 1 finds a primitive within nmax trials.”

The test and extract functions cannot fail if both E1 and
E2 occur, so we have

P ðE3jCÞ � 1� 1� P ðE1jCÞP ðE2jCÞð Þnmax

which immediately leads to

nmax �
logð1� P ðE3jCÞÞ

logð1� P ðE1jCÞP ðE2jCÞÞ
: ð3Þ

Obviously, P ðE1Þ ¼ 1=N and the expression of P ðE2jCÞ
given by (2) may be assumed to be close to 1. If we neglect
it, we can rewrite (3) as

nmax 	
logð1� �Þ

logð1� 1=NÞ ð4Þ

in which � ¼ P ðE3jCÞ represents the desired probability that
Algorithm 1 succeeds after nmax trials under the hypothesis
made on C. In our system, we use (4) to determine nmax. The
worst case corresponds to a systematic failure of
Algorithm 1 after nmax iterations, followed by the applica-
tion of the split and merge algorithm. Each iteration of
Algorithm 1 runs in linear time with the number of pixels
carried by the candidate fuzzy primitive and, finally, the
complexity of the split and merge algorithm in the worst
case is Oðl log lÞ. It therefore follows that the time complex-
ity of the segmentation stage in the worst case is

O nl log lþ logð1� �Þ
logð1� 1=NÞ

� 	� �
:

A noticeable fact is that, because of the log terms, the
above expression is exponential with regards to both � and
N . This means that the method we suggest is not suitable
for large values of N and that we will always have to
tolerate a few chances for failure if we want to avoid
irrelevant computational times.

5.4 Optimization

The worst case for the simplification stage occurs when the
ground truth is made of n skeletal branches all cutting each
other. In that case, the execution time of Algorithm 3 is
bounded byOðn2Þ (for the path search, the deletion of edges,
but also the computation of the domains and their
intersections).

In the unification stage, the equation of the potential,

unifying primitive is known in constant time, but the fuzzy

primitive test requires linear time with regard to the

number of pixels to test. The worst case occurs when all

the primitives can be unified in a single one, with the

additional constraint that only a single segment is inte-

grated at a time (for example, with n adjacent, collinear

segments). In that case, the resulting complexity is Oðn2lÞ.

6 EXPERIMENTAL RESULTS

We evaluated the capabilities of our method over the set of

images used during the third, fourth, and fifth IAPR contests

on graphics recognition [7], [28], [50], held, respectively, at the

GREC 1999, GREC 2001, and GREC 2003 workshops. Whereas

a minimal tuning of the different systems’ parameters was

allowed during the third contest, no preparation and human

intervention was permitted at all during the fourth and the

fifth. In order to make a fair comparison of our results with

those obtained by the contestants, we strictly conformed to the

contests’ respective policies during our experiments. In particular,

the default settings we used to obtain the results reported

hereafter are the following:

. Thickness evaluation: f automatically set to twice the
highest evaluated thickness from the (3,4)-distance
transform image.

. Bounds for circular parameters: ð�min; �min; �maxÞ ¼
ð0:2rd; 15;maxðw; hÞÞ, where w; h are the image’s
dimensions.

. Other parameters: m ¼ 1, � ¼ 0:9999 (4), filtering
turned on.

With the exception of the images from the first contest,

these default parameters are systematically applied to all

images without any change. Our method has been imple-

mented as a 64-bit application running on PowerPC

architecture, and the results and times reported hereafter

have been obtained on an Apple PowerMac dual-G5,

2.7GHz computer with 2.5GB memory. All the results, as

well as an evaluation version of our method, are available

for download at http://qgar.loria.fr/ranvec.

6.1 General Performances

To give an overall idea of the performances our method can

achieve, we first considered the set of images from the third

contest. This set consists of 10 real, large images (typical

resolution: 4; 800� 4; 600 pixels) containing architectural

maps and technical drawings; illustrations are available in

Fig. 9. Since a minimal tuning of parameters was allowed

during this contest, we slightly modified the setup

described previously in the following way: For each class

of images (architectural maps, technical drawings), the user
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TABLE 1
A Few Values of P ðn � dl=2ejCÞ Given l and �



is asked for a crude estimation of �min and �max; other

parameters were left unchanged.
Results are presented in Table 2, obtained with the official

data of the contest. This table adheres to Phillips and

Chhabra’s evaluation methodology [33] and has been

obtained thanks to their evaluation software set with default

parameters and text evaluation turned off. The processing

time varies from 2mn,14s to 4mn,42s per image.

6.2 Arc Detection Capabilities

We evaluate our method’s ability to extract circular arcs by
following the rules of the fourth and fifth contests. The
fourth contest contained three real, scanned images (p1.tif
to p3.tif) and four synthetic images with Gaussian and high-
frequency noise added on one side (g05.tif, f03.tif); hard-
pencil, and wrapping effects on the other side (h03.tif,
w03.tif). Samples are given in Fig. 11b.

Complete results are available on the left of Table 3, in
which we also include results from [39] for the sake of
comparison. The reader, however, may observe two impor-
tant points. First, the VRI scores presented in Table 3 are
different from the official results of the contest; our explana-
tion is the following: During the contest, the circular bounds
ð�min; �min; �maxÞ for all images were estimated from a test
image given prior to the contest, and the content of this image
was also very close to that of the four synthetic images. This
not only explains the very good scores obtained by all
contestants for the synthetic images, but also why the average
performance drops when it comes to processing real images,
as retuning parameters was not allowed. Second, the
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Fig. 9. Two parts of images used during the third contest.

TABLE 2
Edit Cost Index (ECI) Values Obtained by the Participating Systems
at the Third IAPR Contest on Graphics Recognition and by Method

All these values have been computed with text evaluation turned off. The best result for each image is emphasized in bold.

TABLE 3
Left: VRI Scores Obtained for Different Systems on the Images Used During the Fourth IAPR Contest

on Graphics Recognition (From Various Sources); Right: Same Results for the Fifth Contest



conditions in which results have been obtained in [39] are not
stated by the authors. Regarding execution times, whereas
synthetic images syn_*.tif were all of very similar complexity
and could be processed at around 8s each, real images p1.tif,
p2.tif, and p3.tif were of unequal complexities and leaded to
respective times 7s, 12s, and 1mn23s.

We applied again the same test procedure to the data of
the fifth contest. The results are available at the right of
Table 3 and in Fig. 10. Finally, Fig. 11 illustrates the
behavior of our method with regard to the four types of
noise described above. These results corroborate Lemmas 2
and 3 for Gaussian and high-frequency noise: There is a
relatively good resistance for these kinds of noise, whereas
the scores collapse for the two other types, either due to the
disconnection of components (and, therefore, fragmenta-
tion) for hard pencil or to the m parameter set too tight to
tolerate large displacements for the wrapping effects.

6.3 Robustness

A critical point for any vectorization system is its ability to
distinguish text and graphical parts, as they are usually
processed independently. The text/graphics separation
method mentioned in Section 3.2 is able to process
characters attached to graphical shapes, provided that for
every text block, there exists a string seed of at least two
characters not attached to any graphical shape.

However, our method is still able to eliminate text when
the previous condition does not hold, provided that the
length acceptance threshold f used in Section 4.2 is set at a
sufficiently high value. In short, we rely on the fact that
a character, once skeletonized, can’t be explained by
Algorithm 1 by any combination of graphical shapes with
lengths all greater than f . Fig. 12a gives a first example of such

a situation: A sufficiently large value of f not only permits to
eliminate the text, but also removes the dummy skeleton
segment remaining at the center of the X junction. A similar
behavior may be observed on a complete image in Fig. 12b.

It is also noticeable that, because of the criteria used
during the simplification stage (Definition 6 for simplifica-
tion, (1) for unification), it is impossible that the resulting
vectorization lies outside the image. This prevents precision
and robustness issues; in particular, it ensures that a
character remained attached to graphical part, once vector-
ized, creates aberrant results: At worst, its vectorization is
not deleted and remains as such in the output.

6.4 Other Noticeable Details

Fig. 13 provides further details about the obtained results.
Figs. 13a and 13b are two examples of correctly vectorized
extracts of images from the third contest. Fig. 13c reveals an
interesting point: Despite appearances, the lines in the
staircase do not meet at a single point; indeed, either the
staircase has been designed to fulfill this, or the drawing is
simply not correct. At last, Fig. 13d shows an almost correct
vectorization of the drawing: Essential parts of the shapes
have been properly extracted, but small circular arcs are
sometimes recognized as straight lines.

7 CONCLUSION

In this paper, we have presented a robust and accurate
vectorization method which does not include domain knowl-
edge and can thus be used on a variety of graphics-rich
documents. The method is based on the random sampling
paradigm and has the main following features:
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Fig. 10. Vectorization of some of the images from the fifth contest. From left to right, in each group: source image, vectorized arcs, vectorized lines;

(a) image 1.tif, (b) image 2_n4.tif, (c) image 3_100.tif, and (d) image 4_230.tif.



. it segments the skeleton into the set of the most
probable graphical primitives,

. it avoids fragmentation of the curve,

. it removes fake primitives without using ad hoc
rules, and

. it yields excellent precision in the positioning of the
junction points.

The method is presently limited to finding straight
segments and circular arcs, although it could be extended to
other primitives.

Obviously, the method has higher computational com-
plexity than simple ad hoc rules applied to the skeleton, but
it remains usable; in our opinion, this is the price of the
genericity and accuracy of the method.
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Fig. 11. (a) VRI scores [29] obtained with our method for various types of noise (abscissas: noise levels as defined in [51]; ordinates: VRI scores).

(b) Sample test images with no noise, Gaussian noise, hard pencil, and wrapping effects added.

Fig. 12. Examples of text elimination. (a) From left to right; source image, direct vectorization (no text/graphics separation) with acceptance threshold

f ¼ 4, with f ¼ 15. (b) From left to right: source image, result of text/graphics separation, result vectorization with f ¼ 20.

Fig. 13. A few noticeable elements properly vectorized with our vectorization method.



Of course, the method still relies on a reasonably
successful text-graphics segmentation and can be taken
astray by characters or other noise touching the graphical
parts; however, we have seen that, under certain conditions,
the method remains robust in the presence of some isolated
text components. Being a noncontextual method, it also fails
on some specific situations (such as X junctions with very
small opening angles) for which simple contextual knowl-
edge rules would probably lead to reliable and correct
graphical interpretations.

Actually, we don’t think that any form of contextual
knowledge should be avoided, but we feel that it should be
used in complement to accurate and robust generic
methods. Therefore, the proposed method can very well
be used as the basis for contextual vectorization methods, in
which knowledge about the graphical configurations
searched for might be added to the model.

More generally, we also believe that there is room for
improvement of the method itself by taking advantage of
some kind of coarse-to-fine approach. The idea would be to
use the present method to detect the most obvious primitives.
These primitives would then be merged in a hierarchical way,
starting with those having the highest confidence. The
merging process can take advantage of locally available
information and of contextual knowledge to perform some
kind of “intelligent” reconstruction of the vector data.
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