N
N

N

HAL

open science

Clustering Multidimensional Extended Objects to Speed
Up Execution of Spatial Queries

Cristian-Augustin Saita, Francois F. Llirbat

» To cite this version:

Cristian-Augustin Saita, Francois F. Llirbat. Clustering Multidimensional Extended Objects to Speed
Up Execution of Spatial Queries. International Conference on Extending Database Technology

(EDBT), 2004, Heraklion, Crete, pp.403-421, 10.1007/b95855 . inria-00000440v2

HAL Id: inria-00000440
https://inria.hal.science/inria-00000440v2
Submitted on 21 Jun 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00000440v2
https://hal.archives-ouvertes.fr

Clustering Multidimensional Extended Objects
to Speed Up Execution of Spatial Queries

Cristian-Augustin Saita and Francois Llirbat

INRIA-Rocquencourt
Domaine de Voluceau, B.P. 105
78153 Le Chesnay Cedex, France
firstname.lastname@inria.fr

Abstract. We present a cost-based adaptive clustering method to im-
prove average performance of spatial queries (intersection, containment,
enclosure queries) over large collections of multidimensional extended ob-
jects (hyper-intervals or hyper-rectangles). Our object clustering strategy
is based on a cost model taking into account the spatial object distribu-
tion, the query distribution, and a set of database and system param-
eters affecting the query performance: object size, access time, transfer
and verification costs. We also employ a new grouping criterion to group
objects in clusters, more efficient than traditional approaches based on
minimum bounding in all dimensions. Our cost model is flexible and can
accommodate different storage scenarios: in-memory or disk-based. Ex-
perimental evaluations show that our approach is efficient in a number
of situations involving large spatial databases with many dimensions.

1 Introduction

In this paper we present a cost-based adaptive clustering solution to faster an-
swer intersection, containment, or enclosure-based spatial queries over large col-
lections of multidimensional extended objects. While a multidimensional point
defines single values in all dimensions, a multidimensional extended object de-
fines range intervals in its dimensions. A multidimensional extended object is
also called hyper-interval or hyper-rectangle. Although a point can be also rep-
resented as an extended object (with zero-length extensions over dimensions)
we are interested in collections of objects with real (not null) extensions.

Motivation. Our work is motivated by the development of new dissemination-
based applications (SDI or Selective Dissemination of Information) [1][8][12].
Such applications involve timely delivery of information to large sets of sub-
scribers and include stock exchange, auctions, small ads, and service delivery.
Let us consider a publish-subscribe notification system dealing with small ads.
An example of subscription is “Notify me of all new apartments within 30 miles
from Newark, with a rent price between 400$ and 7008, having between 3 and 5
rooms, and 2 baths”. In this example, most subscription attributes specify range
intervals instead of single values. Range subscriptions are more suitable for noti-
fication systems. Indeed, subscribers often wish to consult the set of alternative

3

2 Cristian-Augustin Saita and Francois Llirbat

offers that are close to their wishes. Range intervals allow them to express more
flexible matching criteria. High rates of new offers (events), emitted by publish-
ers, need to be verified against the subscription database. The role of the system
is to quickly retrieve and notify all the subscribers matching the incoming events.
The events can define either single values or range intervals for their attributes.
An example of range event is “Apartments for rent in Newark: 3 to 5 rooms, 1
or 2 baths, 600-900”. In such context, subscriptions and events can be rep-
resented as multidimensional extended objects. The matching subscriptions are
retrieved based on intersection, containment, or enclosure queries (spatial range
or window queries). In some applications the reactivity of the notification system
is crucial (stock exchange, auctions). As the number of subscriptions can be large
(millions) and the number of possible attributes significant (tens of dimensions),
an indexing method is required to ensure a good response time. Such method
should cope with large collections of multidimensional extended objects, with
many dimensions, and with high rates of events (actually spatial queries).

Problem Statement. Most multidimensional indexing methods supporting
spatial queries over collections of multidimensional extended objects descend
from the R-tree approach[11]. R-tree employs minimum bounding boxes (MBBs)
to hierarchically organize the spatial objects in a height-balanced tree. Construc-
tion constraints like preserving tree height balance or ensuring minimal page
utilization, corroborated with the multidimensional aspect, lead to significant
overlap between MBBs at node level. During searches, this overlap determines
the exploration of multiple tree branches generating serious performance degra-
dation (notably for range queries). Because the probability of overlap increases
with the number of dimensions [2] [4], many techniques have been proposed to
alleviate the “dimensional curse”. Despite this effort, experiments show that,
for more than 5-10 dimensions, a simple database Sequential Scan outperforms
complex R-tree implementations like X-tree[4], or Hilbert R-tree[9]. This was re-
ported for range queries over collections of hyper-space points [3]. When dealing
with spatially-extended data, the objects themselves may overlap each others,
further increasing the general overlap and quickly leading to poor performance.
For these reasons, R-tree-based methods can not be used in practice on collec-
tions of multidimensional extended objects with more than a few dimensions.

Contributions. We propose a new approach to cluster multidimensional ex-
tended objects, to faster answer spatial range queries (intersection, containment,
enclosure), and to satisfy the requirements outlined in our motivation section:
large collections of objects, many dimensions, high rates of spatial queries, and
frequent updates. Our main contributions are:

1. An adaptive cost-based clustering strategy: Our cost-based clustering strat-
egy takes into account the spatial data distribution and the spatial query dis-
tribution. It is also parameterized by a set of database and system parameters
affecting the query performance: object size, disk access time, disk transfer rate,
and object verification cost. The cost model is flexible and can easily adapt differ-
ent storage scenarios: in-memory or disk-based. Using the cost-based clustering
we always guarantee better average performance than Sequential Scan.

Clustering Multidimensional Extended Objects 3

2. An original criterion for clustering objects: Our adaptive clustering strat-
egy is enabled by a new approach to cluster objects, which consists in clustering
together objects with “similar” intervals on a restrained number of dimensions.
The grouping intervals/dimensions are selected based on local statistics con-
cerning cluster-level data distribution and cluster access probability, aiming to
minimize the cluster exploration cost. Our object clustering proves to be more
efficient than classical methods employing minimum bounding in all dimensions.
Paper Organization. The rest of the paper is organized as follows: Section 2
reviews the related work. Section 3 presents our adaptive cost-based cluster-
ing solution and provides algorithms for cluster reorganization, object insertion,
and spatial query execution. Section 4 presents our grouping criterion. Section 5
provides details on the cost model supporting the clustering strategy. Section 6
considers implementation-related aspects like model parameters and storage uti-
lization. Section 7 experimentally evaluates the efficiency of our technique, com-
paring it to alternative solutions. Finally, conclusions are presented in Section 8.

2 Related Work

During last two decades numerous indexing techniques have been proposed to
improve the search performance over collections of multidimensional objects.
Recent surveys review and compare many of existing multidimensional access
methods [10][6][17]. From these surveys, two families of solutions can be dis-
tinguished. First family descends from the K-D-tree method and is based on
recursive space partitioning in disjoint regions using one or several, alternat-
ing or not, split dimensions: quad-tree, grid file, K-D-B-tree, hB-tree, but also
Pyramid-tree and VA-file !. These indexing methods work only for multidimen-
sional points.Second family is based on the R-tree technique introduced in [11]
as a multidimensional generalization of B-tree. R-tree-based methods evolved in
two directions. One aimed to improve performance of nearest neighbor queries
over collection of multidimensional points: SS-tree, SR-tree, A-tree 2. Since we
deal with extended objects, these extensions do not apply in our case. The other
direction consisted in general improvements of the original R-tree approach, still
supporting spatial queries over multidimensional extended objects: RT-tree[14],
R*-tree[2]. Although efficient in low-dimensional spaces (under 5-10 dimensions),
these techniques fail to beat Sequential Scan in high dimensions due to the
large number of nodes/pages that need to be accessed and read in a random
manner. Random disk page read is much more expensive than sequential disk
page read. In general, to outperform Sequential Scan, no more than 10% of tree
nodes should be (randomly) accessed, which is not possible for spatial range
queries over extended objects with many dimensions. To transform the ran-
dom access into sequential scan, the concept of supernode was introduced in
X-tree[4]. Multiple pages are assigned to directory nodes for which the split
would generate too much overlap. The size of a supernode is determined based

! See surveys [10][6] for further references.
% See surveys [6][17] for further references.

4 Cristian-Augustin Saita and Francois Llirbat

on a cost model taking into account the actual data distribution, but not con-
sidering the query distribution. A cost-based approach is also employed in [7] to
dynamically compute page sizes based on data distribution. In [15] the authors
propose a general framework for converting traditional indexing structures to
adaptive versions exploiting both data and query distributions. Statistics are
maintained in a global histogram dividing the data space into bins/cells of equal
extent/volume. Although efficient for B-trees, this technique is impractical for
high-dimensional R-trees: First, because the number of histogram bins grows
exponentially with the number of dimensions. Second, the deployed histogram
is suitable for hyper-space points (which necessarily fit the bins), but is inap-
propriate for hyper-rectangles that could expand over numerous bins. Except
for the node size constraint, which is relaxed, both X-tree and Adaptive R-tree
preserve all defining properties of the R-tree structure: height balance, minimum
space bounding, balanced split, and storage utilization. In contrast, we propose
an indexing solution which drops these constraints in favor of a cost-based object
clustering. In high-dimensional spaces, VA-File method[16] is a good alternative
to tree-based indexing approaches. It uses approximated (compressed) data rep-
resentation and takes advantage of Sequential Scan to faster perform searches
over collections of multidimensional points. However, this technique can manage
only point data. An interesting study regarding the optimal clustering of a static
collection of spatial objects is presented in [13]. The static clustering problem
is solved as a classical optimization problem, but data and query distributions
need to be known in advance.

3 Cost-based Database Clustering

Our database clustering takes into consideration both data and query distri-
butions, and allows clusters to have different sizes. Statistical information is
associated to each cluster and employed in the cost model, together with other
database and system parameters affecting the query performance: object size,
disk access cost, disk transfer rate, and object check rate. The cost model sup-

cient clusters.

3.1 Cluster Description

A cluster represents a group of objects accessed and checked together during
spatial selections. The grouping characteristics are represented by the cluster
signature. The cluster signature is used to verify (a) if an object can become a
member of the cluster: only objects matching the cluster signature can become
cluster members; (b) if the cluster needs to be explored during a spatial selection:
only clusters whose signatures are matched by the spatial query are explored.
To evaluate the average query cost, we also associate each cluster signature with
two performance indicators:

Clustering Multidimensional Extended Objects 5

1. The number of queries matching the cluster signature over a period of
time: This statistics represents a good indicator for the cluster access probability.
Indeed, the access probability can be estimated as the ratio between the number
of queries exploring the cluster and the total number of queries addressed to the
system over a period of time.

2. The number of objects matching the cluster signature: When combined
with specific database and system parameters (object size, object access, transfer
and verification costs), this statistics allows to estimate the cluster exploration
cost. Indeed, cluster exploration implies individual checking of each of its member
objects.

3.2 Clustering Strategy

The clustering process is recursive in spirit and is accomplished by relocating ob-
jects from existing clusters in new (sub)clusters when such operation is expected
to be profitable. Initially, the collection of spatial objects is stored in a single
cluster, root cluster, whose general signature accepts any spatial object. The ac-
cess probability of the root cluster is always 1 because all the spatial queries are
exploring it. At root cluster creation we invoke the clustering function to estab-
lish the signatures of the potential subclusters of the root cluster. The potential
subclusters of an existing cluster are further referred as candidate (sub)clusters.
Performance indicators are maintained for the root cluster and all its candi-
date subclusters. Decision of cluster reorganization is made periodically after a
number of queries are executed and after performance indicators are updated
accordingly. Clustering decision is based on the materialization benefit function
which applies to each candidate subcluster and evaluates the potential profit
of its materialization. Candidate subclusters with the best expected profits are
selected and materialized. A subcluster materialization consists in two actions:
First, a new cluster with the signature of the corresponding candidate subcluster
is created: all objects matching its signature are moved from the parent cluster.
Second, the clustering function is applied on the signature of the new cluster to
determine its corresponding candidate subclusters. Performance indicators are
attached to each of the new candidate subclusters in order to gather statistics
for future re-clustering. Periodically, clustering decision is re-considered for all
materialized clusters. As a result, we obtain a tree of clusters, where each clus-
ter is associated with a signature and a set of candidate subclusters with the
corresponding performance indicators. Sometimes, the separate management of
an existing cluster can become inefficient. When such situation occurs, the given
cluster is removed from the database and its objects transferred back to the
parent cluster (direct ancestor in the clustering hierarchy). This action is called
merging operation and permits the clustering to adapt changes in object and
query distributions. A merging operation is decided using the merging benefit
function which evaluates its impact on the average spatial query performance.
To facilitate merging operations, each database cluster maintains a reference to
the direct parent, and a list of references to the child clusters. The root cluster
has no parent and can not be removed from the spatial database.

6 Cristian-Augustin Saita and Francois Llirbat

3.3 Functions Supporting the Clustering Strategy

Clustering Function. Based on the signature o, of the database cluster c,
the clustering function v produces the set of signatures {o,} associated to the
candidate subclusters {s} of ¢. Formally, y(o.) = {0s}; 05 € 7(0.) is generated
such that any spatial object qualifying for the subcluster s also qualifies for
the cluster c. It is possible for a spatial object from the cluster ¢ to satisfy the
signatures of several subclusters of c. The clustering function ensures a backward
object compatibility in the clustering hierarchy. This property enables merging
operations between child and parent clusters.
Materialization Benefit Function. Each database cluster is associated with a
set, of candidate subclusters potentially qualifying for materialization. The role of
the materialization benefit function § is to estimate for a candidate subcluster
the impact on the query performance of its possible materialization. For this
purpose, § takes into consideration the performance indicators of the candidate
subcluster, the performance indicators of the original cluster, and the set of
database and system parameters affecting the query response time. Formally, if
0s € v(o¢) (s is a candidate subcluster of the cluster ¢) then

B(s,c) - { > 0 if materialization of s is profitable;
’ < 0 otherwise.
Merging Benefit Function. The role of the merging benefit function p is to
evaluate the convenience of the merging operation. For this purpose, u takes
into consideration the performance indicators of the considered cluster, of the
parent cluster, and the set of system parameters affecting the query response
time. Formally, if o, € y(0,) (a is the parent cluster of the cluster ¢) then

> (if merging c to a is profitable;

ulea) = { < 0 otherwise.

Table 1. Notations

C |set of materialized clusters || parent(c) parent cluster of cluster c
a(c) signature of cluster c children(c) |set of child clusters of cluster c
n(c)| nb. of objects in cluster ¢ ||candidates(c)|set of candidate subclusters of c
q(c)|nb. of exploring queries of c|| objects(c) set of objects from cluster ¢
p(c)| access probability of ¢ B0, 1) benefit functions

3.4 Cluster Reorganization

Regarding an existent cluster, two actions might improve the average query cost:
the cluster could be split by materializing some of its candidate subclusters, or
the cluster could be merged with its parent cluster. Figures 1, 2, and 3 depict
the procedures invoked during the cluster reorganization process. Table 1 sum-
marizes the notations used throughout the presented algorithms.

The main cluster reorganization schema is sketched in Fig. 1. First, the merg-
ing benefit function pu is invoked to estimate the profit of the merging operation.
If a positive profit is expected the merging procedure is executed. Otherwise,
a cluster split is attempted. When none of the two actions is beneficial for the
query performance, the database cluster remains unchanged.

Clustering Multidimensional Extended Objects 7

ReorganizeCluster (cluster c)
1. if p(c,parent(c)) > 0 then MergeCluster(c);
2. else TryClusterSplit(c);

End.
Fig. 1. Cluster Reorganization Algorithm

The merging procedure is detailed in Fig. 2. The objects from the input clus-
ter are transferred to the parent cluster (step 2). This yields the actualization

MergeCluster (cluster c)
1. let a « parent(c);
Move all objects from c to a;
let n(a) < n(a) + n(c);
for each s in candidates(a) do
let M(s,c) < {o € objects(c) | o matches o(s)};
let n(s) < n(s) + card(M(s,c));
for each s in children(c) do
let parent(s) + a;
Remove ¢ from database;

© 00N W

=
5
=

Fig. 2. Cluster Merge Algorithm

of the performance indicators associated to the clusters involved: the number of
objects in the parent cluster, as well as the number of objects for each candidate
subcluster of the parent cluster (steps 4-6). To preserve the clustering hierar-
chy, the parent cluster becomes the parent of the children of the input cluster
(steps 7-8). Finally, the input cluster is removed from database (step 9).

The cluster split procedure is depicted in Fig. 3. The candidate subclusters
promising the best materialization profits are selected in step 1: B is the set
of the best candidate subclusters exhibiting positive profits. If B is not empty

TryClusterSplit (cluster c)
1. let B + {b € candidates(c) | B(b,c) >0 A
B(b,c) > B(d,c),Vd # b € candidates(c)};

2 if (B # 0) then
3 let b € B;
4. Create new database cluster d;
5. let M(b,c) = {o € objects(c) | o matches o(b)};
6 Move M(b, c) objects from ¢ to d;
7 let o(d) < o(b); let n(d) < n(b); let parent(d) « c;
8 let n(c) « n(c) — n(d);
9. for each s in candidates(c) do
10. let M(s,d) < {o € objects(d) | o matches o(s)};
11. let n(s) < n(s) — card(M(s,d));
12. go to 1.
End.

Fig. 3. Cluster Split Algorithm

(step 2), one of its members becomes subject to materialization (step 3): a new
database cluster is created (step 4), the objects qualifying for the selected candi-
date are identified (step 5) and moved from the input cluster to the new cluster

8 Cristian-Augustin Saita and Francois Llirbat

(step 6), the configuration of the new cluster is set in step 7 (signature, number
of objects, parent cluster), the number of remaining objects in the input cluster
is updated (step 10), as well as the number of objects in the candidate subclus-
ters of the input cluster (steps 11-13). Steps 11-13 are necessary because objects
from the input cluster might qualify for several candidate subclusters. This is
possible because the candidate subclusters are virtual clusters. However, once
removed from the input cluster, an object can no more qualify for the candidate
subclusters. The split procedure continues with the selection of the next best
candidate subclusters. The materialization process repeats from step 1 until no
profitable candidate is found. The selection is performed in a greedy manner
and the most profitable candidates are materialized first. To take into consid-
eration the changes from the input cluster and from the candidate subclusters,
induced by subsequent materializations, the set of best candidates B needs to
be re-computed each time (step 1). At the end, the input cluster will host the
objects not qualifying for any of the new materialized subclusters.

3.5 Object Insertion

When inserting a new object in the spatial database, beside the root cluster
whose general signature accepts any object, other database clusters might also
accommodate the corresponding object. These candidate clusters are identified
based on their signatures. Among them, we choose to place the object in the one
with the lowest access probability. Fig. 4 depicts our simple insertion strategy

ObjectInsertion (object o)
1. let B+ {b € C | o matches a(b) Ap(b) <p(c),Vc#beC};

2. let b € B;
3. Insert object o in selected cluster b;
4. let n(b) + n(b) +1;
5. let S < {s € candidates(b) | o matches o(s)};
6. for each s in § do
7. let n(s) « n(s) + 1;
End.

Fig. 4. Object Insertion Algorithm

(steps 1-3). Object insertion needs to update statistics n of the selected cluster,
and of the candidate subclusters of the selected cluster (steps 4-6).

3.6 Spatial Query Execution

A spatial query (or spatial selection) specifies the query object and the spatial
relation (intersection, containment, or enclosure) requested between the query
object and the database objects from the answer set.

Answering a spatial query implies the exploration of the materialized clusters
whose signatures satisfy the spatial relation with respect to the query object. The
objects from the explored clusters are individually checked against the spatial
selection criterion. The spatial query execution algorithm is straightforward and
is depicted in Fig. 5. The number of exploring queries is incremented for each
explored cluster, as well as for the corresponding candidate subclusters virtually
explored (steps 7-10).

Clustering Multidimensional Extended Objects 9

SpatialQuery (query object p) : object set
1. R« 0; // query answer set

2. let X + {c € C | p matches o(c)};
3. for each cluster c € X do
4. for each object o in objects(c) do
5. if (p matches o) then
6. let R + RU{o};
7. q(c) < qlc) + 1;
8. let § « {s € candidates(c) | p matches o(s)};
9. for each s in § do
10. q(s) < q(s) + 1;
11. return R;
End.

Fig. 5. Spatial Query Execution Algorithm

4 Clustering Criterion

This section presents our approach to group objects, more flexible than tradi-
tional methods which are based on minimum bounding in all dimensions. Ba-
sically, it consists in clustering together objects with “similar” intervals on a
restrained number of dimensions. We first define the cluster signatures used to
implement our clustering criterion. Then we present an instantiation of the clus-
tering function which applies on such cluster signatures.

4.1 Cluster Signatures

Let Ny be the data space dimensionality. We consider each dimension taking
values in the domain [0, 1]. A spatial object specifies an interval for each dimen-
sion: 0o = {di[a1,b1],dz[az,bs],...,dn,[an,,bn,]} where [a;, b;] represents the
interval defined by the spatial object o in dimension d; (0 < a; < b; < 1,Vi €
{1,2,...,Ng4}).

A cluster represents a group of spatial objects. To form a cluster we put
together objects defining similar intervals for the same dimensions. By similar
intervals we understand intervals located in the same domain regions (for in-
stance in the first quart of the domain). The grouping intervals/dimensions are
represented in the cluster signature. The cluster signature is defined as

o ={dy [ap™,ao7] ; b, bpor], dy [agn, agee] : (b, bpar]

) dn, [arﬁin,arﬁ:m] : [b%;nabr]@:q }
where o regroups spatial objects whose intervals in dimensions d; start between
a™" and a®®, and end between b and b"%*, Vi € {1,2,..., Ny}. The inter-
vals of variation [a™™,a™*] and [b™", b™%] are used to precisely define the
notion of interval similarity: All the intervals starting in [a™", a™%"] and ending
in [p™i" ™) are considered similar with respect to a™™, a™® p™" and p™o*,

)

Ezample 1. The signature of the root cluster must accept any spatial object. For
this reason, the intervals of variation corresponding to the signature of the root
cluster are represented by complete domains in all dimensions:

o, = {d1[0,1]: [0,1],...,dn,[0,1] : [0,1]}.

10 Cristian-Augustin Saita and Francois Llirbat

Ezample 2. Considering the objects O1,0,,0s3,...,0g from the 2-dimensional
space depicted in Fig. 6, we can form 3 sample clusters as follows:

d2

10 01 and O3 in a cluster represented by o1:
] o1 = {d1[0.00, 0.25) : [0.00, 0.25),
o d2[0.00,1.00] : [0.00, 1.00]};
0.75 : : :
oa Oz and Oy in a cluster represented by o2:
054 , o3 , , o2 = {d1[0.25,0.50) : [0.75, 1.00],
) 06 d»[0.50,0.75) : [0.75, 1.00]};
05)
0.25 el v v Os and Og{zjjn([io(gg 1517115)clu[sote7r5r(1epgg]s. by o3:
i‘cﬂ 08 ‘ a3 = :1-,....,.1
a d»[0.00, 1.00] : [0.00, 1.00]}.
0.00 0.25 0.50 0.75 1.00

Fig. 6. Example 2
4.2 Clustering Function

The role of the clustering function is to compute the signatures of the candidate
subclusters of a given cluster. Many possible signatures can be used to group
objects. A good clustering function should solve the following trade-off: On one
hand, the number of candidate subclusters should be sufficiently large to ensure
good opportunities of clustering. On the other hand, if this number is too large, it
will increase the cost of maintaining statistics (recall that performance indicators
are maintained for each candidate subcluster). Our clustering function works
as follows: Given a cluster signature we iteratively consider each dimension.
For each dimension we divide both intervals of variation in a fixed number of
subintervals. We call division factor and note f the number of subintervals. We
then replace the pair of intervals of variation by each possible combination of
subintervals. We have f2 combinations of subintervals for each dimension and
thus f2 subsignatures®. Since we apply this transformation on each dimension
we obtain Ny- f2 subsignatures. As a result, the number of candidate subclusters
keeps linear with the number of dimensions.

Ezample 3. We consider ¢ from the preceding example and apply the clustering
function on dimension d; using a division factor f = 4. The signatures of the
corresponding candidate subclusters are:

o} = {d,[0.0000,0.0625) : [0.0000,0.0625), d2[0, 1] : [0, 1]}:
o? = {d,[0.0000,0.0625) : [0.0625,0.1250), do[0, 1] : [0, 1]}:
o3 = {d[0.0000,0.0625) : [0.1250,0.1875), do[0, 1] : [0, 1]}
ot = {d[0.0000,0.0625) : [0.1875,0.2500], do[0, 1] : [0, 1]};
o9 = {d1[0.0625,0.1250) : [0.0625,0.1250), d2[0, 1] : [0, 1]}
o8 = {d,[0.0625,0.1250) : [0.1250, 0.1875), d2[0 1] [0,1]};

[[],d ;

ol = {d1[0.0625,0.1250) : [0.1875,0.2500

* When the intervals of variation of the selected dimension are identical, only N; =

w subintervals combinations are distinct because of the symmetry.

Clustering Multidimensional Extended Objects 11

0¥ = {d;[0.1250,0.1875) : [0.1250, 0.1875), d»[0, 1] : [0, 1]};

o? = {d;[0.1250,0.1875) : [0.1875,0.2500], d2[0, 1] : [0, 1]};

a1% = {d;[0.1875,0.2500] : [0.1875,0.2500], d2[0, 1] : [0, 1]}.
There are 16 possible subintervals combinations, but only 10 are valid because
of the symmetry. Similarly, applying the clustering function on dy we use the
subintervals [0.00,0.25), [0.25,0.50), [0.50,0.75) and [0.75,1.00] and obtain 10

more candidate subclusters.

5 Cost Model and Benefit Functions

Our database clustering is based on a cost model evaluating the average query
performance in terms of execution time. The expected query execution time
associated to a database cluster ¢ can be generally expressed as:

Tc:A+pc'(B+nc'C) (1)

where p. represents the access probability associated to the cluster ¢, n. the
number of objects hosted by ¢, and A, B and C three parameters depending on
the database and system characteristics. The access probability and the number
of objects are performance indicators we maintain for each database cluster.
Regarding parameters A, B and C, we consider the following scenarios:

i. Memory Storage Scenario. The spatial database fits the main memory, the
objects from the same clusters are sequentially stored in memory in order to
maximize the data locality and benefit from the memory cache line and read
ahead capabilities of the nowadays processors. In this case:

A represents the time spent to check the cluster signature in order to decide
or not the cluster exploration (signature verification time);

B includes the time required to prepare the cluster exploration (call of the
corresponding function, initialization of the object scan) and the time spent to
update the query statistics for the current cluster and for the candidate subclus-
ters of the current cluster;

C represents the time required to check one object against the selection
criterion (object verification time).

i1. Disk Storage Scenario. The signatures of the database clusters, as well as
the associated statistics and parameters, are managed in memory, while the clus-
ter members are stored on external support. The objects from the same clusters
are sequentially stored on disk in order to minimize the disk head reposition-
ing and benefit from the the better performance of the sequential data transfer
between disk and memory. In this case:

A' = A the same as in the first scenario;

B’ = B plus the time required to position the disk head at the beginning of
the cluster in order to prepare the object read (disk access time), because the
cluster is stored on external support.

C'" = C plus the time required to transfer one object from disk to memory
(object read time).

Materialization Benefit Function. The materialization benefit function f
takes a database cluster ¢ and one of its candidate subclusters s, and evaluates

12 Cristian-Augustin Saita and Francois Llirbat

the impact on the query performance, of the potential materialization of s. To
obtain the expression of 8, we consider the corresponding query execution times
before and after the materialization of the candidate subcluster: Ty.; = T, and
Topt = Ter + T. Tyep represents the execution time associated to the original
database cluster ¢, and T,y; represents the joint execution time associated to
the clusters ¢’ and s resulted after the materialization of the candidate s of c.
The materialization benefit function is defined as

B(s,c) = Toef —Tupt =Tc — (T +Ty) (2)

and represents the profit in terms of execution time, expected from the materi-
alization of the candidate s of ¢. Using (1) to expand T, = A+ p. - (B +n.-C),
To = A+pe - (B+ne-C),and Ty = A+ps-(B+ns-C), and assuming i. po = p,
and ii. no =n. — ng, (2) becomes:

6(870):((pc_ps)'ns'c)_(ps'B)_A (3)

The interest of the materialization grows when the candidate subcluster has
a lower access probability, and when enough objects from the original cluster
qualify for the considered candidate subcluster.

Merging Benefit Function. The merging benefit function p takes a cluster ¢
and its parent cluster a, and evaluates the impact on the query performance
of the possible merging of the two clusters. To obtain the expression of u, we
consider the corresponding query execution times before and after the merging
operation: Tyep = T, + T, and T,y = T,. Tyey represents the joint execution
time associated to the original database cluster ¢ and to the parent cluster a,
and Ty s represents the execution time associated to the cluster a’ resulted from
merging ¢ to a. The materialization benefit function is defined as

IU(C: a) = Tbef - Taft = (Tc + Ta) - Ta’ (4)

and represents the profit in terms of execution time, expected from the merging
operation between clusters ¢ and a. Using (1) to expand T, = A+p.-(B+n.-C),
T, = A+pg-(B+ng-C),and Ty = A4+py - (B+ng -C), and assuming i. pyr = pq
and ii. ng = ng + ne¢, (4) becomes:

N(C=a):A+(pc'B)_((pa_pc)'nc'C) (5)

The interest in a merging operation grows when the access probability of the child
cluster approaches the one of the parent cluster (for instance due to changes in
query patterns), or when the number of objects in the child cluster decreases

too much (due to object removals).

6 Implementation Considerations

Cost Model Parameters. Parameters A, B, and C are part of the cost model
supporting the clustering strategy and depend on the system performance with
respect to the adopted storage scenario. They can be either experimentally mea-
sured and hard-coded in the cost model, or dynamically evaluated for each

Clustering Multidimensional Extended Objects 13

Table 2. I/O and CPU Operations Costs

I/0 Cost CPU Cost
Disk Access Time 15ms Cluster Signature Check 5-10" "ms
Disk Transfer Rate |20MBytes/sec|| Object Verification Rate |300Mbytes/sec
Transfer Time per Byte|4.77 - 10~ ®ms || Verification Time per Byte| 3.18 - 10~ ®ms

database cluster and integrated as model variables to locally support the clus-
tering decision. Cost values for I/O and CPU operations corresponding to our
system are presented as reference in Table 2.

Clustering Function. For the clustering function we used a domain division
factor f = 4. According to Section 4, the number of candidate subclusters asso-
ciated to a database cluster is between 10 *x Ny and 16 x N; where N, represents
the space dimensionality. For instance, considering a 16-dimensional space, we
have between 160 and 256 candidate subclusters for each database cluster. Be-
cause the candidate subclusters are virtual, only their performance indicators
have to be managed.

Storage Utilization. As part of our clustering strategy, each cluster is sequen-
tially stored in memory or on external support. This placement constraint can
trigger expensive cluster moving operations during object insertions. To avoid
frequent cluster moves, we reserve a number of places at the end of each cluster
created or relocated. For the number of reserved places, we consider between 20%
and 30% of the cluster size, thus taking into account the data distribution. In-
deed, larger clusters will have more free places than smaller clusters. In all cases,
a storage utilization factor of at least 70% is ensured.

Fail Recovery. In the disk-based storage case, maintaining the search structure
across system crashes can be an important consideration. For recovery reasons,
we can store the cluster signatures together with the member objects and use an
one-block disk directory to simply indicate the position of each cluster on disk.
Performance indicators associated to clusters might be also saved, on a regular
basis, but this is optional since new statistics can be eventually gathered.

7 Performance Evaluation

To evaluate our adaptive cost-based clustering solution, we performed extensive
experiments executing intersection-based and point-enclosing queries over large
collections of spatial objects (hyper-rectangles with many dimensions and fol-
lowing uniform and skewed spatial distributions). We compare our technique to
Sequential Scan and to R*-tree evaluating the query execution time, the number
of cluster/node accesses, and the size of verified data.

7.1 Experimental Setup

Competitive Techniques. R*-tree is the most successful R-tree variant still
supporting multidimensional extended objects. It has been widely accepted in
literature and often used as reference for performance comparison. Sequential
Scan is a simple technique: it scans the database and checks all the objects

14 Cristian-Augustin Saita and Francois Llirbat

against the selection criterion. Although quantitatively expensive, Sequential
Scan benefits of good data locality, and of sustained data transfer rate between
disk and memory. Sequential Scan is considered a reference in high-dimensional
spaces because it often outperforms complex indexing solutions [3] [5].
Experimental Platform. All experiments are executed on a Pentium III work-
station with 1686 CPU at 650MHz, 768MBytes RAM, several GBytes of sec-
ondary storage, and operating under Red Hat Linux 8.0. The system has a SCSI
disk with the following characteristics: disk access time = 15ms, sustained trans-
fer rate = 20MBps. To test the disk-based storage scenario, we limited the main
memory capacity to 64MBytes and used experimental databases of multidimen-
sional extended objects whose sizes were at least twice larger than the available
memory. This way we forced data transfer between disk and memory.

Data Representation. A spatial object consists of an object identifier and
of N, pairs of real values representing the intervals in the N; dimensions. The
interval limits and the object identifier are each represented on 4 bytes. The
R*-tree implementation follows [2]. In our tests we used a node page size of
16KBytes. Considering a storage utilization of 70%, a tree node accommodates
35 objects with 40 dimensions, and 86 objects with 16 dimensions. Using smaller
page sizes would trigger the creation of too many tree nodes resulting in high
overheads due to numerous node accesses, both in memory and on disk.
Execution Parameters and Performance Indicators. The following pa-
rameters are varied in our tests: number of database objects (up to 2,000,000),
number of dimensions (from 16 to 40), and query selectivity (between 0.00005%
and 50%). In each experiment, a large number of spatial queries is addressed
to the indexing structure and average values are raised for the following perfor-
mance indicators: query execution time (combining all costs), number of accessed
clusters/nodes (relevant for the cost due to disk access operations), size of veri-
fied data (relevant for data transfer and check costs).

Experimental Process. For Sequential Scan, the database objects are loaded
and stored in a single cluster. Queries are launched, and performance indicators
are raised. For R*-tree, the objects are first inserted in the indexing structure,
then query performance is evaluated. For Adaptive Clustering, the database
objects are inserted in the root cluster, then a number of queries are launched to
trigger the object organization in clusters. A database reorganization is triggered
every 100 spatial queries. If the query distribution does not change, the clustering
process reaches a stable state (in less than 10 reorganization steps). We then
evaluate the average query response time. The reported time also includes the
time spent to update query statistics associated to accessed clusters.

7.2 Experiments

Uniform Workload and Varying Query Selectivity (2,000,000 objects).
In the first experiment we examine the impact of the query selectivity on the
query performance. We consider 2,000,000 database objects uniformly-distributed
in a 16-dimensional data space (251MBytes of data) and evaluate the query re-
sponse time for intersection queries with selectivities varying from 0.00005% to

Clustering Multidimensional Extended Objects 15

(A). Memory Storage Scenario Table 1. Memory - Data Access

% 1800 Query|| Clusters |[Expl. %|/Objs. %
Rl Il = /} [Select.| ACT RS |[AC[RS|[AC[RS
E o0] Adapive(AC) ~x 7/t [5e-7 |[25561[24337| 6 | 28 || 9 | 29
§ 1000 i 5e-6 ||24624[24337|] 7 | 35 || 11| 36
g o be-5 |[21168]24337|] 9 [46 || 14 | 47
4 00] 5e-4 ||16150(24337([12 | 58 || 19 | 59
§ 2004 5e-5 ||10483[24337([18 | 72 || 26 | 73
o o T T 5e-2 || 7760 [24337([22 | 93 || 35 | 94
Se-7 5e6 Se5 Se-d Se3 Se-2 Se-l TEoTTI3040 [24337| 54 | 100 71 | 100

Query Selectivity
(B). Disk Storage Scenario Table 2. Disk - Data Access

@ le+06 Query|| Clusters ||[Expl. %|/Objs. %
£ . Select.| AC| RS |[AC[RS [[AC[RS
£ 200000 4 T 5e-7 ||1360[24337][12 | 28 || 19 | 29
5 5e-6 ||1115(24337|[14 | 35 || 22 | 36
3 —— % Ge-5 || 826 [24337|[16 | 46 || 25 | 47
e Ge4 11539 [24337][22 | 58 [32 | 59
§ Apioe () 5e-3 || 464 [24337([28 [72 [[39 | 73
o 1000 T T T T 5e-2 || 276 |24337|[35 | 93 || 49 | 94
5e-7 5e-6 5e-5 5e-4 5e-3 5e-2 5e-1 5e-1 157 124337/ 60 1100 184 [100

Query Selectivity
Fig. 7. Query Performance when Varying Query Selectivity (Uniform Workload)

50%. Each database object defines intervals whose sizes and positions are ran-
domly distributed in each dimension. The intervals of the query objects are also
uniformly generated in each dimension, but minimal/maximal interval sizes are
enforced in order to control the query selectivity. Performance results are pre-
sented in Fig. 7 for both storage scenarios: in-memory and disk-based. Charts A
and B illustrate average query execution times for the three considered methods:
Sequential Scan (SS), Adaptive Clustering (AC), and R*-tree (RS). Tables 1 and
2 compare AC and RS in terms of total number of clusters/nodes, average ratio
of explored clusters/nodes, and average ratio of verified objects. Unlike RS for
which the number of nodes is constant, AC adapts the object clustering to the
actual data and query distribution. When the queries are very selective many
clusters are formed because few of them are expected to be explored. In con-
trast, when the queries are not selective fewer clusters are created. Indeed, their
frequent exploration would otherwise trigger significant cost overhead. The cost
model supporting the adaptive clustering always ensures better performance for
AC compared to SS*. RS is much more expensive than SS on disk, but also in
memory for queries with selectivities over 0.5%. The bad performance of RS con-
firms our expectations: RS can not deal with high dimensionality (16 in this case)

* The cost of SS in memory increases significantly (up to 3x) for lower query selec-
tivities. This happens because an object is rejected as soon as one of its dimensions
does not satisfy the intersection condition. When the query selectivity is low, more
attributes have to be verified on average.

16 Cristian-Augustin Saita and Francois Llirbat

because the MBBs overlap within nodes determines the exploration of many tree
nodes®. AC systematically outperforms RS, exploring fewer clusters and verify-
ing fewer objects both in memory and on disk. Our object grouping is clearly
more efficient. In memory, for instance, we verify three times fewer objects than
RS in most cases. Even for queries with selectivities as low as 50%, when RS
practically checks the entire database, only 71% of objects are verified by AC.
The difference in number of verified objects is not so substantial on disk, but
the cost overhead due to expensive random I/O accesses is remarkably inferior®.
This happens because the number of AC clusters is much smaller than the num-
ber of RS nodes. Compared to the memory storage scenario, the small number
of clusters formed on disk is due to the cost model that takes into considera-
tion the negative impact of expensive random I/O accesses. This demonstrates
the flexibility of our adaptive cost-based clustering strategy. Thanks to it AC
succeeds to outperform SS on disk in all cases.

(A). Memory Storage Scenario Table 1. Memory - Data Access
= 900 Nb.of|| Clusters |Expl. %|/Objs. %
£ os0q 0o 8 1 [Dims.|| AC | RS ||[AC|RS |[AC[RS
E 0] Adeive(AC) x- 76 || 7202 [12092][10 | 58 [[14| 58
§ 500 - 20 ||8520 [15229]| 12| 66 || 17 | 67
3 ;‘gg — 24 |[9214 [18542][12 | 72 || 18| 72
S 500" I 28 |[10419|21975]| 13 | 74 || 18 | 75
§ 100 4 ok KT 52 ||12397|24922|[12 [76 || 17 | 77
o o T T 1 86 ||14281]28420| 13| 77 || 17| 78

1 20 24 28 32 36 40 FOGTIG001(31766]| 11| 78 || 17 | 78
Space Dimensionality
(B). Disk Storage Scenario Table 2. Disk - Data Access
% le+06 Nb.of || Clusters ||[Expl. %||Objs. %
= | |Dims.|[AC] RS |[AC[RS|AC[RS
S 16][226]12092]] 21 | 58 || 31 | 58
5 - 20 ||272]15229| 27| 66 || 34 | 67
3 24 |[311]18542|[23 [72 || 32 | 72
2 10000 - g
J V. *Rsf?elgﬁiiT 28 |[371(21975|[27 | 74 |[35 | 75
[l Adaptive (AC) ------ 32 423124922|| 24 | 76 32| 77
© 1000 T T T 1 36 |[480]28420[[24 | 77 || 32| 78
1620 24 28 32 36 40 T GTIEOG(31766]| 24 | 78 || 32 | 78

Space Dimensionality

Fig. 8. Query Performance when Varying Space Dimensionality (Skewed Data)

Skewed Workload and Varying Space Dimensionality (1,000,000 ob-
jects). With this experiment we intend to demonstrate both the good behavior
with increasing dimensionality and the good performance under skewed data.
Skewed data is closer to reality where different dimensions exhibit different char-
acteristics. For this test, we adopted the following skewed scenario: we generate
uniformly-distributed query objects with no interval constraints, but consider

5 See ratio of explored nodes in Tables 1 and 2.
% Note the logarithmic time scale from Chart 7-B.

Clustering Multidimensional Extended Objects 17

1,000,000 database objects with different size constraints over dimensions. We
vary the number of dimensions between 16 and 40. For each database object,
we randomly choose a quart of dimensions that are two times more selective
than the rest of dimensions. We still control the global query selectivity because
the query objects are uniformly distributed. For this experiment we ensure an
average query selectivity of 0.05%. Performance results are illustrated in Fig. 8.
We first notice that the query time increases with the dimensionality. This is
normal because the size of the dataset increases too from 126MBytes (16d) to
309MBytes (40d). Compared to SS, AC again exhibits good performance, scaling
well with the number of dimensions, both in memory and on disk. AC resists
to increasing dimensionality better than RS. RS fails to outperform SS due to
the large number of accessed nodes (> 72%). AC takes better advantage of the
skewed data distribution, and groups objects in clusters whose signatures are
based on the most selective similar intervals and dimensions of the objects re-
grouped. In contrast, RS does not benefit from the skewed data distribution,
probably due to the minimum bounding constraint, which increases the general
overlap. In memory, for instance, RS verifies four times more objects than AC.
Point-Enclosing Queries. Because queries like “find the database objects con-
taining a given point” can also occur in practice (for instance, in a publish-
subscribe application where subscriptions define interval ranges as attributes,
and events can be points in these ranges), we also evaluated point-enclosing
queries considering different workloads and storage scenarios. We do not show
here experimental details, but we report very good performance: up to 16 times
faster than SS in memory, and up to 4 times on disk, mostly due to the good
selectivity. Compared to spatial range queries (i.e. intersections with spatial ex-
tended objects), point-enclosing queries are best cases for our indexing method
thanks to their good selectivity.

Conclusion on Experiments. While R*-tree fails to outperform Sequential
Scan in many cases, our cost-based clustering follows the data and the query
distribution and always exhibits better performance in both storage scenarios: in-
memory and disk-based. Experimental results show that our method is scalable
with the number of objects and has good behavior with increasing dimensionality
(16 to 40 in our tests), especially when dealing with skewed data or skewed
queries. For intersection queries, performance is up to 7 times better in memory,
and up to 4 times better on disk. Better gains are obtained when the query
selectivity is high. For point-enclosing queries on skewed data, gain can reach a
factor of 16 in memory.

8 Conclusions

The emergence of new applications (such as SDI applications) brings out new
challenging performance requirements for multidimensional indexing schemes.
An advanced subscription system should support spatial range queries over
large collections of multidimensional extended objects with many dimensions
(millions of subscriptions and tens to hundreds of attributes). Moreover, such

18

Cristian-Augustin Saita and Francois Llirbat

system should cope with workloads that are skewed and varying in time. Ex-
isting structures are not well suited for these new requirements. In this paper
we presented a simple clustering solution suitable for such application contexts.
Our clustering method uses an original grouping criterion, more efficient than
traditional approaches. The cost-based clustering allows us to scale with large
number of dimensions and to take advantage of skewed data distribution. Our
method exhibits better performance than competitive solutions like Sequential
Scan or R*-tree both in memory and on disk.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

M. Altimel and M. J. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In Proc. 26th VLDB Conf., Cairo, Egypt, 2000.

. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient

and robust access method for points and rectangles. In Proc. ACM SIGMOD Conf.,
Atlantic City, NJ, 1990.

S. Berchtold, C. B6hm, and H.-P. Kriegel. The Pyramid-technique: Towards break-
ing the curse of dimensionality. In Proc. ACM SIGMOD Conf., Seattle, Washing-
ton, 1998.

S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: An index structure for
high-dimensional data. In Proc. 22nd VLDB Conf., Bombay, India, 1996.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest neigh-
bor” meaningful? Lecture Notes in Computer Science, 1540:217 235, 1999.

C. Bohm, S. Berchtold, and D. A. Keim. Searching in high-dimensional spaces:
Index structures for improving the performance of multimedia databases. ACM
Computing Surveys, 33(3):322 373, 2001.

. C. Béhm and H.-P. Kriegel. Dynamically optimizing high-dimensional index struc-

tures. In Proc. 7th EDBT Conf., Konstanz, Germany, 2000.

F. Fabret, H. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and D. Shasha. Filtering
algorithm and implementation for very fast publish/subscribe systems. In Proc.
ACM SIGMOD Conf., Santa Barbara, California, USA, 2001.

C. Faloutsos and P. Bhagwat. Declustering using fractals. PDIS Journal of Parallel
and Distributed Information Systems, pages 18-25, 1993.

V. Gaede and O. Giinther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170-231, 1998.

A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc.
ACM SIGMOD Conf., 47-57, 1984.

H. Liu and H. A. Jacobsen. Modelling uncertainties in publish/subscribe systems.
In Proc. 20th ICDE Conf., Boston, USA, 2004.

B.-U. Pagel, H.-W. Six, and M. Winter. Window query-optimal clustering of spatial
objects. In Proc. ACM PODS Conf., San Jose, 1995.

T. Sellis, N. Roussopoulos, and C. Faloustos. The R+-tree: A dynamic index for
multi-dimensional objects. In Proc. VLDB Conf., Brighton, England, 1987.

Y. Tao and D. Papadias. Adaptive index structures. In Proc. 28th VLDB Conf.,
Hong Kong, China, 2002.

R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces. In Proc. 24th
VLDB Conf., New York, USA, 1998.

C. Yu. High-dimensional indexing. Transformational approaches to high-
dimensional range and similarity searches. LNCS 2341, Springer-Verlag, 2002.

