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Clustering Multidimensional Extended Obje
tsto Speed Up Exe
ution of Spatial QueriesCristian-Augustin Saita and Fran
�ois LlirbatINRIA-Ro
quen
ourtDomaine de Volu
eau, B.P. 10578153 Le Chesnay Cedex, Fran
efirstname.lastname�inria.frAbstra
t. We present a 
ost-based adaptive 
lustering method to im-prove average performan
e of spatial queries (interse
tion, 
ontainment,en
losure queries) over large 
olle
tions of multidimensional extended ob-je
ts (hyper-intervals or hyper-re
tangles). Our obje
t 
lustering strategyis based on a 
ost model taking into a

ount the spatial obje
t distribu-tion, the query distribution, and a set of database and system param-eters a�e
ting the query performan
e: obje
t size, a

ess time, transferand veri�
ation 
osts. We also employ a new grouping 
riterion to groupobje
ts in 
lusters, more eÆ
ient than traditional approa
hes based onminimum bounding in all dimensions. Our 
ost model is 
exible and 
ana

ommodate di�erent storage s
enarios: in-memory or disk-based. Ex-perimental evaluations show that our approa
h is eÆ
ient in a numberof situations involving large spatial databases with many dimensions.1 Introdu
tionIn this paper we present a 
ost-based adaptive 
lustering solution to faster an-swer interse
tion, 
ontainment, or en
losure-based spatial queries over large 
ol-le
tions of multidimensional extended obje
ts. While a multidimensional pointde�nes single values in all dimensions, a multidimensional extended obje
t de-�nes range intervals in its dimensions. A multidimensional extended obje
t isalso 
alled hyper-interval or hyper-re
tangle. Although a point 
an be also rep-resented as an extended obje
t (with zero-length extensions over dimensions),we are interested in 
olle
tions of obje
ts with real (not null) extensions.Motivation. Our work is motivated by the development of new dissemination-based appli
ations (SDI or Sele
tive Dissemination of Information) [1℄[8℄[12℄.Su
h appli
ations involve timely delivery of information to large sets of sub-s
ribers and in
lude sto
k ex
hange, au
tions, small ads, and servi
e delivery.Let us 
onsider a publish-subs
ribe noti�
ation system dealing with small ads.An example of subs
ription is \Notify me of all new apartments within 30 milesfrom Newark, with a rent pri
e between 400$ and 700$, having between 3 and 5rooms, and 2 baths". In this example, most subs
ription attributes spe
ify rangeintervals instead of single values. Range subs
riptions are more suitable for noti-�
ation systems. Indeed, subs
ribers often wish to 
onsult the set of alternative
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�ois Llirbato�ers that are 
lose to their wishes. Range intervals allow them to express more
exible mat
hing 
riteria. High rates of new o�ers (events), emitted by publish-ers, need to be veri�ed against the subs
ription database. The role of the systemis to qui
kly retrieve and notify all the subs
ribers mat
hing the in
oming events.The events 
an de�ne either single values or range intervals for their attributes.An example of range event is \Apartments for rent in Newark: 3 to 5 rooms, 1or 2 baths, 600$-900$". In su
h 
ontext, subs
riptions and events 
an be rep-resented as multidimensional extended obje
ts. The mat
hing subs
riptions areretrieved based on interse
tion, 
ontainment, or en
losure queries (spatial rangeor window queries). In some appli
ations the rea
tivity of the noti�
ation systemis 
ru
ial (sto
k ex
hange, au
tions). As the number of subs
riptions 
an be large(millions) and the number of possible attributes signi�
ant (tens of dimensions),an indexing method is required to ensure a good response time. Su
h methodshould 
ope with large 
olle
tions of multidimensional extended obje
ts, withmany dimensions, and with high rates of events (a
tually spatial queries).Problem Statement. Most multidimensional indexing methods supportingspatial queries over 
olle
tions of multidimensional extended obje
ts des
endfrom the R-tree approa
h[11℄. R-tree employs minimum bounding boxes (MBBs)to hierar
hi
ally organize the spatial obje
ts in a height-balan
ed tree. Constru
-tion 
onstraints like preserving tree height balan
e or ensuring minimal pageutilization, 
orroborated with the multidimensional aspe
t, lead to signi�
antoverlap between MBBs at node level. During sear
hes, this overlap determinesthe exploration of multiple tree bran
hes generating serious performan
e degra-dation (notably for range queries). Be
ause the probability of overlap in
reaseswith the number of dimensions [2℄ [4℄, many te
hniques have been proposed toalleviate the \dimensional 
urse". Despite this e�ort, experiments show that,for more than 5-10 dimensions, a simple database Sequential S
an outperforms
omplex R-tree implementations like X-tree[4℄, or Hilbert R-tree[9℄. This was re-ported for range queries over 
olle
tions of hyper-spa
e points [3℄. When dealingwith spatially-extended data, the obje
ts themselves may overlap ea
h others,further in
reasing the general overlap and qui
kly leading to poor performan
e.For these reasons, R-tree-based methods 
an not be used in pra
ti
e on 
olle
-tions of multidimensional extended obje
ts with more than a few dimensions.Contributions. We propose a new approa
h to 
luster multidimensional ex-tended obje
ts, to faster answer spatial range queries (interse
tion, 
ontainment,en
losure), and to satisfy the requirements outlined in our motivation se
tion:large 
olle
tions of obje
ts, many dimensions, high rates of spatial queries, andfrequent updates. Our main 
ontributions are:1. An adaptive 
ost-based 
lustering strategy: Our 
ost-based 
lustering strat-egy takes into a

ount the spatial data distribution and the spatial query dis-tribution. It is also parameterized by a set of database and system parametersa�e
ting the query performan
e: obje
t size, disk a

ess time, disk transfer rate,and obje
t veri�
ation 
ost. The 
ost model is 
exible and 
an easily adapt di�er-ent storage s
enarios: in-memory or disk-based. Using the 
ost-based 
lusteringwe always guarantee better average performan
e than Sequential S
an.
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ts 32. An original 
riterion for 
lustering obje
ts: Our adaptive 
lustering strat-egy is enabled by a new approa
h to 
luster obje
ts, whi
h 
onsists in 
lusteringtogether obje
ts with \similar" intervals on a restrained number of dimensions.The grouping intervals/dimensions are sele
ted based on lo
al statisti
s 
on-
erning 
luster-level data distribution and 
luster a

ess probability, aiming tominimize the 
luster exploration 
ost. Our obje
t 
lustering proves to be moreeÆ
ient than 
lassi
al methods employing minimum bounding in all dimensions.Paper Organization. The rest of the paper is organized as follows: Se
tion 2reviews the related work. Se
tion 3 presents our adaptive 
ost-based 
luster-ing solution and provides algorithms for 
luster reorganization, obje
t insertion,and spatial query exe
ution. Se
tion 4 presents our grouping 
riterion. Se
tion 5provides details on the 
ost model supporting the 
lustering strategy. Se
tion 6
onsiders implementation-related aspe
ts like model parameters and storage uti-lization. Se
tion 7 experimentally evaluates the eÆ
ien
y of our te
hnique, 
om-paring it to alternative solutions. Finally, 
on
lusions are presented in Se
tion 8.2 Related WorkDuring last two de
ades numerous indexing te
hniques have been proposed toimprove the sear
h performan
e over 
olle
tions of multidimensional obje
ts.Re
ent surveys review and 
ompare many of existing multidimensional a

essmethods [10℄[6℄[17℄. From these surveys, two families of solutions 
an be dis-tinguished. First family des
ends from the K-D-tree method and is based onre
ursive spa
e partitioning in disjoint regions using one or several, alternat-ing or not, split dimensions: quad-tree, grid �le, K-D-B-tree, hB-tree, but alsoPyramid-tree and VA-�le 1. These indexing methods work only for multidimen-sional points.Se
ond family is based on the R-tree te
hnique introdu
ed in [11℄as a multidimensional generalization of B-tree. R-tree-based methods evolved intwo dire
tions. One aimed to improve performan
e of nearest neighbor queriesover 
olle
tion of multidimensional points: SS-tree, SR-tree, A-tree 2. Sin
e wedeal with extended obje
ts, these extensions do not apply in our 
ase. The otherdire
tion 
onsisted in general improvements of the original R-tree approa
h, stillsupporting spatial queries over multidimensional extended obje
ts: R+-tree[14℄,R�-tree[2℄. Although eÆ
ient in low-dimensional spa
es (under 5-10 dimensions),these te
hniques fail to beat Sequential S
an in high dimensions due to thelarge number of nodes/pages that need to be a

essed and read in a randommanner. Random disk page read is mu
h more expensive than sequential diskpage read. In general, to outperform Sequential S
an, no more than 10% of treenodes should be (randomly) a

essed, whi
h is not possible for spatial rangequeries over extended obje
ts with many dimensions. To transform the ran-dom a

ess into sequential s
an, the 
on
ept of supernode was introdu
ed inX-tree[4℄. Multiple pages are assigned to dire
tory nodes for whi
h the splitwould generate too mu
h overlap. The size of a supernode is determined based1 See surveys [10℄[6℄ for further referen
es.2 See surveys [6℄[17℄ for further referen
es.
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�ois Llirbaton a 
ost model taking into a

ount the a
tual data distribution, but not 
on-sidering the query distribution. A 
ost-based approa
h is also employed in [7℄ todynami
ally 
ompute page sizes based on data distribution. In [15℄ the authorspropose a general framework for 
onverting traditional indexing stru
tures toadaptive versions exploiting both data and query distributions. Statisti
s aremaintained in a global histogram dividing the data spa
e into bins/
ells of equalextent/volume. Although eÆ
ient for B-trees, this te
hnique is impra
ti
al forhigh-dimensional R-trees: First, be
ause the number of histogram bins growsexponentially with the number of dimensions. Se
ond, the deployed histogramis suitable for hyper-spa
e points (whi
h ne
essarily �t the bins), but is inap-propriate for hyper-re
tangles that 
ould expand over numerous bins. Ex
eptfor the node size 
onstraint, whi
h is relaxed, both X-tree and Adaptive R-treepreserve all de�ning properties of the R-tree stru
ture: height balan
e, minimumspa
e bounding, balan
ed split, and storage utilization. In 
ontrast, we proposean indexing solution whi
h drops these 
onstraints in favor of a 
ost-based obje
t
lustering. In high-dimensional spa
es, VA-File method[16℄ is a good alternativeto tree-based indexing approa
hes. It uses approximated (
ompressed) data rep-resentation and takes advantage of Sequential S
an to faster perform sear
hesover 
olle
tions of multidimensional points. However, this te
hnique 
an manageonly point data. An interesting study regarding the optimal 
lustering of a stati

olle
tion of spatial obje
ts is presented in [13℄. The stati
 
lustering problemis solved as a 
lassi
al optimization problem, but data and query distributionsneed to be known in advan
e.3 Cost-based Database ClusteringOur database 
lustering takes into 
onsideration both data and query distri-butions, and allows 
lusters to have di�erent sizes. Statisti
al information isasso
iated to ea
h 
luster and employed in the 
ost model, together with otherdatabase and system parameters a�e
ting the query performan
e: obje
t size,disk a

ess 
ost, disk transfer rate, and obje
t 
he
k rate. The 
ost model sup-ports the 
reation of new 
lusters and the dete
tion and removal of older ineÆ-
ient 
lusters.3.1 Cluster Des
riptionA 
luster represents a group of obje
ts a

essed and 
he
ked together duringspatial sele
tions. The grouping 
hara
teristi
s are represented by the 
lustersignature. The 
luster signature is used to verify (a) if an obje
t 
an be
ome amember of the 
luster: only obje
ts mat
hing the 
luster signature 
an be
ome
luster members; (b) if the 
luster needs to be explored during a spatial sele
tion:only 
lusters whose signatures are mat
hed by the spatial query are explored.To evaluate the average query 
ost, we also asso
iate ea
h 
luster signature withtwo performan
e indi
ators:
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ts 51. The number of queries mat
hing the 
luster signature over a period oftime: This statisti
s represents a good indi
ator for the 
luster a

ess probability.Indeed, the a

ess probability 
an be estimated as the ratio between the numberof queries exploring the 
luster and the total number of queries addressed to thesystem over a period of time.2. The number of obje
ts mat
hing the 
luster signature: When 
ombinedwith spe
i�
 database and system parameters (obje
t size, obje
t a

ess, transferand veri�
ation 
osts), this statisti
s allows to estimate the 
luster exploration
ost. Indeed, 
luster exploration implies individual 
he
king of ea
h of its memberobje
ts.3.2 Clustering StrategyThe 
lustering pro
ess is re
ursive in spirit and is a

omplished by relo
ating ob-je
ts from existing 
lusters in new (sub)
lusters when su
h operation is expe
tedto be pro�table. Initially, the 
olle
tion of spatial obje
ts is stored in a single
luster, root 
luster, whose general signature a

epts any spatial obje
t. The a
-
ess probability of the root 
luster is always 1 be
ause all the spatial queries areexploring it. At root 
luster 
reation we invoke the 
lustering fun
tion to estab-lish the signatures of the potential sub
lusters of the root 
luster. The potentialsub
lusters of an existing 
luster are further referred as 
andidate (sub)
lusters.Performan
e indi
ators are maintained for the root 
luster and all its 
andi-date sub
lusters. De
ision of 
luster reorganization is made periodi
ally after anumber of queries are exe
uted and after performan
e indi
ators are updateda

ordingly. Clustering de
ision is based on the materialization bene�t fun
tionwhi
h applies to ea
h 
andidate sub
luster and evaluates the potential pro�tof its materialization. Candidate sub
lusters with the best expe
ted pro�ts aresele
ted and materialized. A sub
luster materialization 
onsists in two a
tions:First, a new 
luster with the signature of the 
orresponding 
andidate sub
lusteris 
reated: all obje
ts mat
hing its signature are moved from the parent 
luster.Se
ond, the 
lustering fun
tion is applied on the signature of the new 
luster todetermine its 
orresponding 
andidate sub
lusters. Performan
e indi
ators areatta
hed to ea
h of the new 
andidate sub
lusters in order to gather statisti
sfor future re-
lustering. Periodi
ally, 
lustering de
ision is re-
onsidered for allmaterialized 
lusters. As a result, we obtain a tree of 
lusters, where ea
h 
lus-ter is asso
iated with a signature and a set of 
andidate sub
lusters with the
orresponding performan
e indi
ators. Sometimes, the separate management ofan existing 
luster 
an be
ome ineÆ
ient. When su
h situation o

urs, the given
luster is removed from the database and its obje
ts transferred ba
k to theparent 
luster (dire
t an
estor in the 
lustering hierar
hy). This a
tion is 
alledmerging operation and permits the 
lustering to adapt 
hanges in obje
t andquery distributions. A merging operation is de
ided using the merging bene�tfun
tion whi
h evaluates its impa
t on the average spatial query performan
e.To fa
ilitate merging operations, ea
h database 
luster maintains a referen
e tothe dire
t parent, and a list of referen
es to the 
hild 
lusters. The root 
lusterhas no parent and 
an not be removed from the spatial database.
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�ois Llirbat3.3 Fun
tions Supporting the Clustering StrategyClustering Fun
tion. Based on the signature �
 of the database 
luster 
,the 
lustering fun
tion 
 produ
es the set of signatures f�sg asso
iated to the
andidate sub
lusters fsg of 
. Formally, 
(�
)! f�sg; �s 2 
(�
) is generatedsu
h that any spatial obje
t qualifying for the sub
luster s also quali�es forthe 
luster 
. It is possible for a spatial obje
t from the 
luster 
 to satisfy thesignatures of several sub
lusters of 
. The 
lustering fun
tion ensures a ba
kwardobje
t 
ompatibility in the 
lustering hierar
hy. This property enables mergingoperations between 
hild and parent 
lusters.Materialization Bene�t Fun
tion. Ea
h database 
luster is asso
iated with aset of 
andidate sub
lusters potentially qualifying for materialization. The role ofthe materialization bene�t fun
tion � is to estimate for a 
andidate sub
lusterthe impa
t on the query performan
e of its possible materialization. For thispurpose, � takes into 
onsideration the performan
e indi
ators of the 
andidatesub
luster, the performan
e indi
ators of the original 
luster, and the set ofdatabase and system parameters a�e
ting the query response time. Formally, if�s 2 
(�
) (s is a 
andidate sub
luster of the 
luster 
) then�(s; 
)! �> 0 if materialization of s is pro�table;� 0 otherwise:Merging Bene�t Fun
tion. The role of the merging bene�t fun
tion � is toevaluate the 
onvenien
e of the merging operation. For this purpose, � takesinto 
onsideration the performan
e indi
ators of the 
onsidered 
luster, of theparent 
luster, and the set of system parameters a�e
ting the query responsetime. Formally, if �
 2 
(�a) (a is the parent 
luster of the 
luster 
) then�(
; a)! �> 0 if merging 
 to a is pro�table;� 0 otherwise:Table 1. NotationsC set of materialized 
lusters parent(
) parent 
luster of 
luster 
�(
) signature of 
luster 
 
hildren(
) set of 
hild 
lusters of 
luster 
n(
) nb. of obje
ts in 
luster 
 
andidates(
) set of 
andidate sub
lusters of 
q(
) nb. of exploring queries of 
 obje
ts(
) set of obje
ts from 
luster 
p(
) a

ess probability of 
 �(); �() bene�t fun
tions3.4 Cluster ReorganizationRegarding an existent 
luster, two a
tions might improve the average query 
ost:the 
luster 
ould be split by materializing some of its 
andidate sub
lusters, orthe 
luster 
ould be merged with its parent 
luster. Figures 1, 2, and 3 depi
tthe pro
edures invoked during the 
luster reorganization pro
ess. Table 1 sum-marizes the notations used throughout the presented algorithms.The main 
luster reorganization s
hema is sket
hed in Fig. 1. First, the merg-ing bene�t fun
tion � is invoked to estimate the pro�t of the merging operation.If a positive pro�t is expe
ted the merging pro
edure is exe
uted. Otherwise,a 
luster split is attempted. When none of the two a
tions is bene�
ial for thequery performan
e, the database 
luster remains un
hanged.
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ts 7ReorganizeCluster ( 
luster 
 )1. if �(
; parent(
)) > 0 then MergeCluster(
);2. else TryClusterSplit(
);End. Fig. 1. Cluster Reorganization AlgorithmThe merging pro
edure is detailed in Fig. 2. The obje
ts from the input 
lus-ter are transferred to the parent 
luster (step 2). This yields the a
tualizationMergeCluster ( 
luster 
 )1. let a parent(
);2. Move all obje
ts from 
 to a;3. let n(a) n(a) + n(
);4. for ea
h s in 
andidates(a) do5. letM(s; 
) fo 2 obje
ts(
) j o mat
hes �(s)g;6. let n(s) n(s) + 
ard(M(s; 
));7. for ea
h s in 
hildren(
) do8. let parent(s) a;9. Remove 
 from database;End. Fig. 2. Cluster Merge Algorithmof the performan
e indi
ators asso
iated to the 
lusters involved: the number ofobje
ts in the parent 
luster, as well as the number of obje
ts for ea
h 
andidatesub
luster of the parent 
luster (steps 4-6). To preserve the 
lustering hierar-
hy, the parent 
luster be
omes the parent of the 
hildren of the input 
luster(steps 7-8). Finally, the input 
luster is removed from database (step 9).The 
luster split pro
edure is depi
ted in Fig. 3. The 
andidate sub
lusterspromising the best materialization pro�ts are sele
ted in step 1: B is the setof the best 
andidate sub
lusters exhibiting positive pro�ts. If B is not emptyTryClusterSplit ( 
luster 
 )1. let B  fb 2 
andidates(
) j �(b; 
) > 0 ^�(b; 
) � �(d; 
); 8d 6= b 2 
andidates(
)g;2. if (B 6= ;) then3. let b 2 B;4. Create new database 
luster d;5. letM(b; 
) = fo 2 obje
ts(
) j o mat
hes �(b)g;6. MoveM(b; 
) obje
ts from 
 to d;7. let �(d) �(b); let n(d) n(b); let parent(d) 
;8. let n(
) n(
)� n(d);9. for ea
h s in 
andidates(
) do10. letM(s; d) fo 2 obje
ts(d) j o mat
hes �(s)g;11. let n(s) n(s)� 
ard(M(s;d));12. go to 1.End. Fig. 3. Cluster Split Algorithm(step 2), one of its members be
omes subje
t to materialization (step 3): a newdatabase 
luster is 
reated (step 4), the obje
ts qualifying for the sele
ted 
andi-date are identi�ed (step 5) and moved from the input 
luster to the new 
luster
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�ois Llirbat(step 6), the 
on�guration of the new 
luster is set in step 7 (signature, numberof obje
ts, parent 
luster), the number of remaining obje
ts in the input 
lusteris updated (step 10), as well as the number of obje
ts in the 
andidate sub
lus-ters of the input 
luster (steps 11-13). Steps 11-13 are ne
essary be
ause obje
tsfrom the input 
luster might qualify for several 
andidate sub
lusters. This ispossible be
ause the 
andidate sub
lusters are virtual 
lusters. However, on
eremoved from the input 
luster, an obje
t 
an no more qualify for the 
andidatesub
lusters. The split pro
edure 
ontinues with the sele
tion of the next best
andidate sub
lusters. The materialization pro
ess repeats from step 1 until nopro�table 
andidate is found. The sele
tion is performed in a greedy mannerand the most pro�table 
andidates are materialized �rst. To take into 
onsid-eration the 
hanges from the input 
luster and from the 
andidate sub
lusters,indu
ed by subsequent materializations, the set of best 
andidates B needs tobe re-
omputed ea
h time (step 1). At the end, the input 
luster will host theobje
ts not qualifying for any of the new materialized sub
lusters.3.5 Obje
t InsertionWhen inserting a new obje
t in the spatial database, beside the root 
lusterwhose general signature a

epts any obje
t, other database 
lusters might alsoa

ommodate the 
orresponding obje
t. These 
andidate 
lusters are identi�edbased on their signatures. Among them, we 
hoose to pla
e the obje
t in the onewith the lowest a

ess probability. Fig. 4 depi
ts our simple insertion strategyObje
tInsertion ( obje
t o )1. let B  fb 2 C j o mat
hes �(b) ^ p(b) � p(
); 8
 6= b 2 Cg;2. let b 2 B;3. Insert obje
t o in sele
ted 
luster b;4. let n(b) n(b) + 1;5. let S  fs 2 
andidates(b) j o mat
hes �(s)g;6. for ea
h s in S do7. let n(s) n(s) + 1;End. Fig. 4. Obje
t Insertion Algorithm(steps 1-3). Obje
t insertion needs to update statisti
s n of the sele
ted 
luster,and of the 
andidate sub
lusters of the sele
ted 
luster (steps 4-6).3.6 Spatial Query Exe
utionA spatial query (or spatial sele
tion) spe
i�es the query obje
t and the spatialrelation (interse
tion, 
ontainment, or en
losure) requested between the queryobje
t and the database obje
ts from the answer set.Answering a spatial query implies the exploration of the materialized 
lusterswhose signatures satisfy the spatial relation with respe
t to the query obje
t. Theobje
ts from the explored 
lusters are individually 
he
ked against the spatialsele
tion 
riterion. The spatial query exe
ution algorithm is straightforward andis depi
ted in Fig. 5. The number of exploring queries is in
remented for ea
hexplored 
luster, as well as for the 
orresponding 
andidate sub
lusters virtuallyexplored (steps 7-10).
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ts 9SpatialQuery ( query obje
t � ) : obje
t set1. R ;; // query answer set2. let X  f
 2 C j � mat
hes �(
)g;3. for ea
h 
luster 
 2 X do4. for ea
h obje
t o in obje
ts(
) do5. if (� mat
hes o) then6. let R  R[ fog;7. q(
) q(
) + 1;8. let S  fs 2 
andidates(
) j � mat
hes �(s)g;9. for ea
h s in S do10. q(s) q(s) + 1;11. return R;End. Fig. 5. Spatial Query Exe
ution Algorithm4 Clustering CriterionThis se
tion presents our approa
h to group obje
ts, more 
exible than tradi-tional methods whi
h are based on minimum bounding in all dimensions. Ba-si
ally, it 
onsists in 
lustering together obje
ts with \similar" intervals on arestrained number of dimensions. We �rst de�ne the 
luster signatures used toimplement our 
lustering 
riterion. Then we present an instantiation of the 
lus-tering fun
tion whi
h applies on su
h 
luster signatures.4.1 Cluster SignaturesLet Nd be the data spa
e dimensionality. We 
onsider ea
h dimension takingvalues in the domain [0; 1℄. A spatial obje
t spe
i�es an interval for ea
h dimen-sion: o = fd1[a1; b1℄; d2[a2; b2℄; : : : ; dNd [aNd ; bNd ℄g where [ai; bi℄ represents theinterval de�ned by the spatial obje
t o in dimension di (0 � ai � bi � 1;8i 2f1; 2; : : : ; Ndg).A 
luster represents a group of spatial obje
ts. To form a 
luster we puttogether obje
ts de�ning similar intervals for the same dimensions. By similarintervals we understand intervals lo
ated in the same domain regions (for in-stan
e in the �rst quart of the domain). The grouping intervals/dimensions arerepresented in the 
luster signature. The 
luster signature is de�ned as� = fd1 [amin1 ; amax1 ℄ : [bmin1 ; bmax1 ℄; d2 [amin2 ; amax2 ℄ : [bmin2 ; bmax2 ℄;: : : ; dNd [aminNd ; amaxNd ℄ : [bminNd ; bmaxNd ℄ gwhere � regroups spatial obje
ts whose intervals in dimensions di start betweenamini and amaxi , and end between bmini and bmaxi , 8i 2 f1; 2; : : : ; Ndg. The inter-vals of variation [amin; amax℄ and [bmin; bmax℄ are used to pre
isely de�ne thenotion of interval similarity: All the intervals starting in [amin; amax℄ and endingin [bmin; bmax℄ are 
onsidered similar with respe
t to amin; amax; bmin and bmax.Example 1. The signature of the root 
luster must a

ept any spatial obje
t. Forthis reason, the intervals of variation 
orresponding to the signature of the root
luster are represented by 
omplete domains in all dimensions:�r = fd1[0; 1℄ : [0; 1℄; : : : ; dNd [0; 1℄ : [0; 1℄g.
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�ois LlirbatExample 2. Considering the obje
ts O1; O2; O3; : : : ; O8 from the 2-dimensionalspa
e depi
ted in Fig. 6, we 
an form 3 sample 
lusters as follows:
O1

O2

O4
O3

O6

O5

O7 O8

d2

0.75

0.50

1.00

0.25

0.00 0.25 0.50 0.75 1.00
d1

O1 and O2 in a 
luster represented by �1:�1 = fd1[0:00; 0:25) : [0:00; 0:25);d2[0:00; 1:00℄ : [0:00; 1:00℄g;O3 and O4 in a 
luster represented by �2:�2 = fd1[0:25; 0:50) : [0:75; 1:00℄;d2[0:50; 0:75) : [0:75; 1:00℄g;O5 and O6 and O8 in a 
luster repres. by �3:�3 = fd1[0:50; 0:75) : [0:75; 1:00℄;d2[0:00; 1:00℄ : [0:00; 1:00℄g:Fig. 6. Example 24.2 Clustering Fun
tionThe role of the 
lustering fun
tion is to 
ompute the signatures of the 
andidatesub
lusters of a given 
luster. Many possible signatures 
an be used to groupobje
ts. A good 
lustering fun
tion should solve the following trade-o�: On onehand, the number of 
andidate sub
lusters should be suÆ
iently large to ensuregood opportunities of 
lustering. On the other hand, if this number is too large, itwill in
rease the 
ost of maintaining statisti
s (re
all that performan
e indi
atorsare maintained for ea
h 
andidate sub
luster). Our 
lustering fun
tion worksas follows: Given a 
luster signature we iteratively 
onsider ea
h dimension.For ea
h dimension we divide both intervals of variation in a �xed number ofsubintervals. We 
all division fa
tor and note f the number of subintervals. Wethen repla
e the pair of intervals of variation by ea
h possible 
ombination ofsubintervals. We have f2 
ombinations of subintervals for ea
h dimension andthus f2 subsignatures3. Sin
e we apply this transformation on ea
h dimensionwe obtain Nd �f2 subsignatures. As a result, the number of 
andidate sub
lusterskeeps linear with the number of dimensions.Example 3. We 
onsider �1 from the pre
eding example and apply the 
lusteringfun
tion on dimension d1 using a division fa
tor f = 4. The signatures of the
orresponding 
andidate sub
lusters are:�11 = fd1[0:0000; 0:0625) : [0:0000; 0:0625); d2[0; 1℄ : [0; 1℄g;�21 = fd1[0:0000; 0:0625) : [0:0625; 0:1250); d2[0; 1℄ : [0; 1℄g;�31 = fd1[0:0000; 0:0625) : [0:1250; 0:1875); d2[0; 1℄ : [0; 1℄g;�41 = fd1[0:0000; 0:0625) : [0:1875; 0:2500℄; d2[0; 1℄ : [0; 1℄g;�51 = fd1[0:0625; 0:1250) : [0:0625; 0:1250); d2[0; 1℄ : [0; 1℄g;�61 = fd1[0:0625; 0:1250) : [0:1250; 0:1875); d2[0; 1℄ : [0; 1℄g;�71 = fd1[0:0625; 0:1250) : [0:1875; 0:2500℄; d2[0; 1℄ : [0; 1℄g;3 When the intervals of variation of the sele
ted dimension are identi
al, only Nf =f �(f+1)2 subintervals 
ombinations are distin
t be
ause of the symmetry.
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ts 11�81 = fd1[0:1250; 0:1875) : [0:1250; 0:1875); d2[0; 1℄ : [0; 1℄g;�91 = fd1[0:1250; 0:1875) : [0:1875; 0:2500℄; d2[0; 1℄ : [0; 1℄g;�101 = fd1[0:1875; 0:2500℄ : [0:1875; 0:2500℄; d2[0; 1℄ : [0; 1℄g:There are 16 possible subintervals 
ombinations, but only 10 are valid be
auseof the symmetry. Similarly, applying the 
lustering fun
tion on d2 we use thesubintervals [0:00; 0:25), [0:25; 0:50), [0:50; 0:75) and [0:75; 1:00℄ and obtain 10more 
andidate sub
lusters.5 Cost Model and Bene�t Fun
tionsOur database 
lustering is based on a 
ost model evaluating the average queryperforman
e in terms of exe
ution time. The expe
ted query exe
ution timeasso
iated to a database 
luster 
 
an be generally expressed as:T
 = A+ p
 � (B + n
 � C) (1)where p
 represents the a

ess probability asso
iated to the 
luster 
, n
 thenumber of obje
ts hosted by 
, and A, B and C three parameters depending onthe database and system 
hara
teristi
s. The a

ess probability and the numberof obje
ts are performan
e indi
ators we maintain for ea
h database 
luster.Regarding parameters A, B and C, we 
onsider the following s
enarios:i. Memory Storage S
enario. The spatial database �ts the main memory, theobje
ts from the same 
lusters are sequentially stored in memory in order tomaximize the data lo
ality and bene�t from the memory 
a
he line and readahead 
apabilities of the nowadays pro
essors. In this 
ase:A represents the time spent to 
he
k the 
luster signature in order to de
ideor not the 
luster exploration (signature veri�
ation time);B in
ludes the time required to prepare the 
luster exploration (
all of the
orresponding fun
tion, initialization of the obje
t s
an) and the time spent toupdate the query statisti
s for the 
urrent 
luster and for the 
andidate sub
lus-ters of the 
urrent 
luster;C represents the time required to 
he
k one obje
t against the sele
tion
riterion (obje
t veri�
ation time).ii. Disk Storage S
enario. The signatures of the database 
lusters, as well asthe asso
iated statisti
s and parameters, are managed in memory, while the 
lus-ter members are stored on external support. The obje
ts from the same 
lustersare sequentially stored on disk in order to minimize the disk head reposition-ing and bene�t from the the better performan
e of the sequential data transferbetween disk and memory. In this 
ase:A0 = A the same as in the �rst s
enario;B0 = B plus the time required to position the disk head at the beginning ofthe 
luster in order to prepare the obje
t read (disk a

ess time), be
ause the
luster is stored on external support.C 0 = C plus the time required to transfer one obje
t from disk to memory(obje
t read time).Materialization Bene�t Fun
tion. The materialization bene�t fun
tion �takes a database 
luster 
 and one of its 
andidate sub
lusters s, and evaluates
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�ois Llirbatthe impa
t on the query performan
e, of the potential materialization of s. Toobtain the expression of �, we 
onsider the 
orresponding query exe
ution timesbefore and after the materialization of the 
andidate sub
luster: Tbef = T
 andTaft = T
0 + Ts. Tbef represents the exe
ution time asso
iated to the originaldatabase 
luster 
, and Taft represents the joint exe
ution time asso
iated tothe 
lusters 
0 and s resulted after the materialization of the 
andidate s of 
.The materialization bene�t fun
tion is de�ned as�(s; 
) = Tbef � Taft = T
 � (T
0 + Ts) (2)and represents the pro�t in terms of exe
ution time, expe
ted from the materi-alization of the 
andidate s of 
. Using (1) to expand T
 = A+ p
 � (B + n
 �C),T
0 = A+p
0 �(B+n
0 �C), and Ts = A+ps �(B+ns �C), and assuming i. p
0 = p
and ii. n
0 = n
 � ns, (2) be
omes:�(s; 
) = ((p
 � ps) � ns � C)� (ps �B)�A (3)The interest of the materialization grows when the 
andidate sub
luster hasa lower a

ess probability, and when enough obje
ts from the original 
lusterqualify for the 
onsidered 
andidate sub
luster.Merging Bene�t Fun
tion. The merging bene�t fun
tion � takes a 
luster 
and its parent 
luster a, and evaluates the impa
t on the query performan
eof the possible merging of the two 
lusters. To obtain the expression of �, we
onsider the 
orresponding query exe
ution times before and after the mergingoperation: Tbef = T
 + Ta and Taft = Ta0 . Tbef represents the joint exe
utiontime asso
iated to the original database 
luster 
 and to the parent 
luster a,and Taft represents the exe
ution time asso
iated to the 
luster a0 resulted frommerging 
 to a. The materialization bene�t fun
tion is de�ned as�(
; a) = Tbef � Taft = (T
 + Ta)� Ta0 (4)and represents the pro�t in terms of exe
ution time, expe
ted from the mergingoperation between 
lusters 
 and a. Using (1) to expand T
 = A+p
 �(B+n
 �C),Ta = A+pa �(B+na �C), and Ta0 = A+pa0 �(B+na0 �C), and assuming i. pa0 = paand ii. na0 = na + n
, (4) be
omes:�(
; a) = A+ (p
 � B)� ((pa � p
) � n
 � C) (5)The interest in a merging operation grows when the a

ess probability of the 
hild
luster approa
hes the one of the parent 
luster (for instan
e due to 
hanges inquery patterns), or when the number of obje
ts in the 
hild 
luster de
reasestoo mu
h (due to obje
t removals).6 Implementation ConsiderationsCost Model Parameters. Parameters A, B, and C are part of the 
ost modelsupporting the 
lustering strategy and depend on the system performan
e withrespe
t to the adopted storage s
enario. They 
an be either experimentally mea-sured and hard-
oded in the 
ost model, or dynami
ally evaluated for ea
h
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ts 13Table 2. I/O and CPU Operations CostsI/O Cost CPU CostDisk A

ess Time 15ms Cluster Signature Che
k 5 � 10�7msDisk Transfer Rate 20MBytes/se
 Obje
t Veri�
ation Rate 300Mbytes/se
Transfer Time per Byte 4:77 � 10�5ms Veri�
ation Time per Byte 3:18 � 10�6msdatabase 
luster and integrated as model variables to lo
ally support the 
lus-tering de
ision. Cost values for I/O and CPU operations 
orresponding to oursystem are presented as referen
e in Table 2.Clustering Fun
tion. For the 
lustering fun
tion we used a domain divisionfa
tor f = 4. A

ording to Se
tion 4, the number of 
andidate sub
lusters asso-
iated to a database 
luster is between 10 �Nd and 16 �Nd where Nd representsthe spa
e dimensionality. For instan
e, 
onsidering a 16-dimensional spa
e, wehave between 160 and 256 
andidate sub
lusters for ea
h database 
luster. Be-
ause the 
andidate sub
lusters are virtual, only their performan
e indi
atorshave to be managed.Storage Utilization. As part of our 
lustering strategy, ea
h 
luster is sequen-tially stored in memory or on external support. This pla
ement 
onstraint 
antrigger expensive 
luster moving operations during obje
t insertions. To avoidfrequent 
luster moves, we reserve a number of pla
es at the end of ea
h 
luster
reated or relo
ated. For the number of reserved pla
es, we 
onsider between 20%and 30% of the 
luster size, thus taking into a

ount the data distribution. In-deed, larger 
lusters will have more free pla
es than smaller 
lusters. In all 
ases,a storage utilization fa
tor of at least 70% is ensured.Fail Re
overy. In the disk-based storage 
ase, maintaining the sear
h stru
turea
ross system 
rashes 
an be an important 
onsideration. For re
overy reasons,we 
an store the 
luster signatures together with the member obje
ts and use anone-blo
k disk dire
tory to simply indi
ate the position of ea
h 
luster on disk.Performan
e indi
ators asso
iated to 
lusters might be also saved, on a regularbasis, but this is optional sin
e new statisti
s 
an be eventually gathered.7 Performan
e EvaluationTo evaluate our adaptive 
ost-based 
lustering solution, we performed extensiveexperiments exe
uting interse
tion-based and point-en
losing queries over large
olle
tions of spatial obje
ts (hyper-re
tangles with many dimensions and fol-lowing uniform and skewed spatial distributions). We 
ompare our te
hnique toSequential S
an and to R*-tree evaluating the query exe
ution time, the numberof 
luster/node a

esses, and the size of veri�ed data.7.1 Experimental SetupCompetitive Te
hniques. R*-tree is the most su

essful R-tree variant stillsupporting multidimensional extended obje
ts. It has been widely a

epted inliterature and often used as referen
e for performan
e 
omparison. SequentialS
an is a simple te
hnique: it s
ans the database and 
he
ks all the obje
ts



14 Cristian-Augustin Saita and Fran
�ois Llirbatagainst the sele
tion 
riterion. Although quantitatively expensive, SequentialS
an bene�ts of good data lo
ality, and of sustained data transfer rate betweendisk and memory. Sequential S
an is 
onsidered a referen
e in high-dimensionalspa
es be
ause it often outperforms 
omplex indexing solutions [3℄ [5℄.Experimental Platform. All experiments are exe
uted on a Pentium III work-station with i686 CPU at 650MHz, 768MBytes RAM, several GBytes of se
-ondary storage, and operating under Red Hat Linux 8.0. The system has a SCSIdisk with the following 
hara
teristi
s: disk a

ess time = 15ms, sustained trans-fer rate = 20MBps. To test the disk-based storage s
enario, we limited the mainmemory 
apa
ity to 64MBytes and used experimental databases of multidimen-sional extended obje
ts whose sizes were at least twi
e larger than the availablememory. This way we for
ed data transfer between disk and memory.Data Representation. A spatial obje
t 
onsists of an obje
t identi�er andof Nd pairs of real values representing the intervals in the Nd dimensions. Theinterval limits and the obje
t identi�er are ea
h represented on 4 bytes. TheR*-tree implementation follows [2℄. In our tests we used a node page size of16KBytes. Considering a storage utilization of 70%, a tree node a

ommodates35 obje
ts with 40 dimensions, and 86 obje
ts with 16 dimensions. Using smallerpage sizes would trigger the 
reation of too many tree nodes resulting in highoverheads due to numerous node a

esses, both in memory and on disk.Exe
ution Parameters and Performan
e Indi
ators. The following pa-rameters are varied in our tests: number of database obje
ts (up to 2,000,000),number of dimensions (from 16 to 40), and query sele
tivity (between 0.00005%and 50%). In ea
h experiment, a large number of spatial queries is addressedto the indexing stru
ture and average values are raised for the following perfor-man
e indi
ators: query exe
ution time (
ombining all 
osts), number of a

essed
lusters/nodes (relevant for the 
ost due to disk a

ess operations), size of veri-�ed data (relevant for data transfer and 
he
k 
osts).Experimental Pro
ess. For Sequential S
an, the database obje
ts are loadedand stored in a single 
luster. Queries are laun
hed, and performan
e indi
atorsare raised. For R*-tree, the obje
ts are �rst inserted in the indexing stru
ture,then query performan
e is evaluated. For Adaptive Clustering, the databaseobje
ts are inserted in the root 
luster, then a number of queries are laun
hed totrigger the obje
t organization in 
lusters. A database reorganization is triggeredevery 100 spatial queries. If the query distribution does not 
hange, the 
lusteringpro
ess rea
hes a stable state (in less than 10 reorganization steps). We thenevaluate the average query response time. The reported time also in
ludes thetime spent to update query statisti
s asso
iated to a

essed 
lusters.7.2 ExperimentsUniform Workload and Varying Query Sele
tivity (2,000,000 obje
ts).In the �rst experiment we examine the impa
t of the query sele
tivity on thequery performan
e.We 
onsider 2,000,000 database obje
ts uniformly-distributedin a 16-dimensional data spa
e (251MBytes of data) and evaluate the query re-sponse time for interse
tion queries with sele
tivities varying from 0.00005% to
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Table 2. Disk - Data A

essQuery Clusters Expl. % Objs. %Sele
t. AC RS AC RS AC RS5e-7 1360 24337 12 28 19 295e-6 1115 24337 14 35 22 365e-5 826 24337 16 46 25 475e-4 539 24337 22 58 32 595e-3 464 24337 28 72 39 735e-2 276 24337 35 93 49 945e-1 157 24337 60 100 84 100Fig. 7. Query Performan
e when Varying Query Sele
tivity (Uniform Workload)50%. Ea
h database obje
t de�nes intervals whose sizes and positions are ran-domly distributed in ea
h dimension. The intervals of the query obje
ts are alsouniformly generated in ea
h dimension, but minimal/maximal interval sizes areenfor
ed in order to 
ontrol the query sele
tivity. Performan
e results are pre-sented in Fig. 7 for both storage s
enarios: in-memory and disk-based. Charts Aand B illustrate average query exe
ution times for the three 
onsidered methods:Sequential S
an (SS), Adaptive Clustering (AC), and R*-tree (RS). Tables 1 and2 
ompare AC and RS in terms of total number of 
lusters/nodes, average ratioof explored 
lusters/nodes, and average ratio of veri�ed obje
ts. Unlike RS forwhi
h the number of nodes is 
onstant, AC adapts the obje
t 
lustering to thea
tual data and query distribution. When the queries are very sele
tive many
lusters are formed be
ause few of them are expe
ted to be explored. In 
on-trast, when the queries are not sele
tive fewer 
lusters are 
reated. Indeed, theirfrequent exploration would otherwise trigger signi�
ant 
ost overhead. The 
ostmodel supporting the adaptive 
lustering always ensures better performan
e forAC 
ompared to SS4. RS is mu
h more expensive than SS on disk, but also inmemory for queries with sele
tivities over 0.5%. The bad performan
e of RS 
on-�rms our expe
tations: RS 
an not deal with high dimensionality (16 in this 
ase)4 The 
ost of SS in memory in
reases signi�
antly (up to 3x) for lower query sele
-tivities. This happens be
ause an obje
t is reje
ted as soon as one of its dimensionsdoes not satisfy the interse
tion 
ondition. When the query sele
tivity is low, moreattributes have to be veri�ed on average.
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�ois Llirbatbe
ause the MBBs overlap within nodes determines the exploration of many treenodes5. AC systemati
ally outperforms RS, exploring fewer 
lusters and verify-ing fewer obje
ts both in memory and on disk. Our obje
t grouping is 
learlymore eÆ
ient. In memory, for instan
e, we verify three times fewer obje
ts thanRS in most 
ases. Even for queries with sele
tivities as low as 50%, when RSpra
ti
ally 
he
ks the entire database, only 71% of obje
ts are veri�ed by AC.The di�eren
e in number of veri�ed obje
ts is not so substantial on disk, butthe 
ost overhead due to expensive random I/O a

esses is remarkably inferior6.This happens be
ause the number of AC 
lusters is mu
h smaller than the num-ber of RS nodes. Compared to the memory storage s
enario, the small numberof 
lusters formed on disk is due to the 
ost model that takes into 
onsidera-tion the negative impa
t of expensive random I/O a

esses. This demonstratesthe 
exibility of our adaptive 
ost-based 
lustering strategy. Thanks to it ACsu

eeds to outperform SS on disk in all 
ases.
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Scan  (SS)
R*-tree (RS)
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Table 2. Disk - Data A

essNb.of Clusters Expl. % Objs. %Dims. AC RS AC RS AC RS16 226 12092 21 58 31 5820 272 15229 27 66 34 6724 311 18542 23 72 32 7228 371 21975 27 74 35 7532 423 24922 24 76 32 7736 480 28420 24 77 32 7840 520 31766 24 78 32 78Fig. 8. Query Performan
e when Varying Spa
e Dimensionality (Skewed Data)Skewed Workload and Varying Spa
e Dimensionality (1,000,000 ob-je
ts). With this experiment we intend to demonstrate both the good behaviorwith in
reasing dimensionality and the good performan
e under skewed data.Skewed data is 
loser to reality where di�erent dimensions exhibit di�erent 
har-a
teristi
s. For this test, we adopted the following skewed s
enario: we generateuniformly-distributed query obje
ts with no interval 
onstraints, but 
onsider5 See ratio of explored nodes in Tables 1 and 2.6 Note the logarithmi
 time s
ale from Chart 7-B.
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ts 171,000,000 database obje
ts with di�erent size 
onstraints over dimensions. Wevary the number of dimensions between 16 and 40. For ea
h database obje
t,we randomly 
hoose a quart of dimensions that are two times more sele
tivethan the rest of dimensions. We still 
ontrol the global query sele
tivity be
ausethe query obje
ts are uniformly distributed. For this experiment we ensure anaverage query sele
tivity of 0.05%. Performan
e results are illustrated in Fig. 8.We �rst noti
e that the query time in
reases with the dimensionality. This isnormal be
ause the size of the dataset in
reases too from 126MBytes (16d) to309MBytes (40d). Compared to SS, AC again exhibits good performan
e, s
alingwell with the number of dimensions, both in memory and on disk. AC resiststo in
reasing dimensionality better than RS. RS fails to outperform SS due tothe large number of a

essed nodes (> 72%). AC takes better advantage of theskewed data distribution, and groups obje
ts in 
lusters whose signatures arebased on the most sele
tive similar intervals and dimensions of the obje
ts re-grouped. In 
ontrast, RS does not bene�t from the skewed data distribution,probably due to the minimum bounding 
onstraint, whi
h in
reases the generaloverlap. In memory, for instan
e, RS veri�es four times more obje
ts than AC.Point-En
losing Queries. Be
ause queries like \�nd the database obje
ts 
on-taining a given point" 
an also o

ur in pra
ti
e (for instan
e, in a publish-subs
ribe appli
ation where subs
riptions de�ne interval ranges as attributes,and events 
an be points in these ranges), we also evaluated point-en
losingqueries 
onsidering di�erent workloads and storage s
enarios. We do not showhere experimental details, but we report very good performan
e: up to 16 timesfaster than SS in memory, and up to 4 times on disk, mostly due to the goodsele
tivity. Compared to spatial range queries (i.e. interse
tions with spatial ex-tended obje
ts), point-en
losing queries are best 
ases for our indexing methodthanks to their good sele
tivity.Con
lusion on Experiments. While R*-tree fails to outperform SequentialS
an in many 
ases, our 
ost-based 
lustering follows the data and the querydistribution and always exhibits better performan
e in both storage s
enarios: in-memory and disk-based. Experimental results show that our method is s
alablewith the number of obje
ts and has good behavior with in
reasing dimensionality(16 to 40 in our tests), espe
ially when dealing with skewed data or skewedqueries. For interse
tion queries, performan
e is up to 7 times better in memory,and up to 4 times better on disk. Better gains are obtained when the querysele
tivity is high. For point-en
losing queries on skewed data, gain 
an rea
h afa
tor of 16 in memory.8 Con
lusionsThe emergen
e of new appli
ations (su
h as SDI appli
ations) brings out new
hallenging performan
e requirements for multidimensional indexing s
hemes.An advan
ed subs
ription system should support spatial range queries overlarge 
olle
tions of multidimensional extended obje
ts with many dimensions(millions of subs
riptions and tens to hundreds of attributes). Moreover, su
h
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�ois Llirbatsystem should 
ope with workloads that are skewed and varying in time. Ex-isting stru
tures are not well suited for these new requirements. In this paperwe presented a simple 
lustering solution suitable for su
h appli
ation 
ontexts.Our 
lustering method uses an original grouping 
riterion, more eÆ
ient thantraditional approa
hes. The 
ost-based 
lustering allows us to s
ale with largenumber of dimensions and to take advantage of skewed data distribution. Ourmethod exhibits better performan
e than 
ompetitive solutions like SequentialS
an or R*-tree both in memory and on disk.Referen
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