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Abstract

Battery lifetime, a primary design constraint for
mobile embedded systems, has been shown to depend
heavily on the load current profile. This paper ex-
plores how scheduling guidelines from battery models
can help in extending battery capacity. It then presents
a ’Battery-Aware Scheduling’ methodology for periodi-
cally arriving taskgraphs with real time deadlines and
precedence constraints. Scheduling of even a single
taskgraph while minimizing the weighted sum of a cost
function has been shown to be NP-Hard [6]. The pre-
sented methodology divides the problem in to two steps.
First, a good DVS algorithms dynamically determines
the minimum frequency of execution. Then, a greedy
algorithm allows a near optimal priority function [5]
to choose the task which would maximize slack recov-
ery. The methodology also ensures adherence of real
time deadlines independent of the choice of the DVS
algorithm and priority function used, while following
battery guidelines to maximize battery lifetime. Bat-
tery simulations carried out on the profile generated by
our methodology for a large set of taskgraphs show that
battery life time is extended up to 23.3% as compared
to existing dynamic scheduling schemes.

1. Introduction

Mobile computing has seen a tremendous growth
in the last decade. Due to the continuously increas-
ing functionality and complex applications being inte-
grated with handheld devices, their energy consump-
tion has seen a major upswing. However, battery en-
ergy densities have not improved as significantly over

the years and this has made battery lifetime a major
constraint in mobile embedded systems design.

Over the last decade a lot of effort has been put in
exploring Dynamic Voltage Scaling (DVS) as a solu-
tion to the trade-off problem. In a DVS scheme, the
supply voltage as well as the frequency of the processor
is scaled at run time to minimize energy consumption,
while satisfying the required speed constraints. Many
hardware and software implementation of voltage scal-
ing methods have been proposed. However, most of
the early DVS techniques assumed the battery Subsys-
tem to be an ideal source of energy which stores or
delivers a fixed amount of energy at a constant out-
put voltage. However, research has shown that this
is not always true and designing to minimize average
power consumption does not necessarily lead to opti-
mum battery lifetime[13]. In reality, it may not be pos-
sible to extract the energy stored in the battery to the
full extent as the energy delivered by a battery heavily
depends on the load current profile.

Initial works in battery-aware scheduling were pri-
marily voltage scaling algorithms trying to optimize a
cost function derived from varied battery models. Both
stochastic [9] and partial differential equation models
[8] have been used. In [7] the authors discuss static
scheduling for DAG’s in a battery operated multipro-
cessor environment using Peukert’s law. [14] describes
a high level analytical battery model which has been
the basis for most of the works that have followed in
this field. Approaches trying to optimize a cost func-
tion derived from the battery model, however were not
suitable for real time operations as they were compu-
tationally intensive and cannot be used in a dynami-



cally changing environment. In [11], the same authors
also demonstrated static scheduling techniques using
voltage scaling for one-time aperiodic tasks based on
heuristics derived from their earlier works. [1] pro-
poses the extension of the idea to multiprocessor en-
vironment.

More recently, there have been attempts to use
heuristics derived from battery model for dynamic
scheduling of periodic tasks. [17] proposes a dynamic
task scheduling algorithm darEDF that tries to main-
tain a locally non-increasing current profile for bat-
tery lifetime extension. [15] discusses the scheduling
of taskgraphs with precedence constraints in multipro-
cessor environment and compares the work with earlier
approach in [7].

This paper attempts to develop a better understand-
ing of battery awareness by painting an intuitive pic-
ture of how the heuristics from battery models ac-
tually help in extending battery lifetime.It then ad-
dresses a very generic form of battery aware scheduling
problem which aims at scheduling periodically arriving
taskgraphs in a single processor environment.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the previous works in Dynamic Voltage
scheduling. Section 3 discusses the battery models and
the guidelines that have been derived from them. Sec-
tion 4 discusses the steps involved in scheduling of con-
ditional taskgraphs ie frequency setting and deciding
on the next task. Section 5 describes the results of the
simulations conducted to compare the various dynamic
scheduling algorithms, and to highlight the utility of
the proposed ”Battery-aware Scheduling” methodol-
ogy. Section 7 concludes the paper.

2. Dynamic Voltage Scheduling

Dynamic Voltage Scaling (DVS) has been a key tech-
nique in exploiting the hardware characteristics of pro-
cessors to reduce energy dissipation by lowering the
supply voltage and operating frequency. A typical sys-
tem configuration for a voltage scalable processor is
described in figure 1.

Figure 1. System Configuration for a Single
Voltage Scalable Processor

Assuming that the efficiency of the DC-DC con-
verter is η and is constant over the range of voltages,

the following equation governs the voltage scaling :

η × Vbat × Ibat = Vproc × Iproc

With the scaling of Vproc by a factor of s, while Vbat is
constant, the current Ibat is scaled by a factor of s3 [1].
Thus slack utilization by voltage scaling can greatly
affect the load profile and battery lifetime.

Although there has been significant amount of work
done in the field of DVS, for an equally diverse range
of problem definitions, we use this Section to discuss
the algorithms we intend to integrate in our method-
ology. [10] proposes ”cycle conserving” ccEDF and
”lookahead” laEDF DVS algorithms. While ccEDF ad-
justs the voltage and clock speed based on run-time
variation in processor utilization alone, laEDF aggres-
sively reduces processor frequency and voltage by es-
timating the minimum amount of work that needs to
be completed by the next deadline while ensuring all
Subsequent deadlines. Both these algorithm return
frequency fref which is the minimum frequency the
system needs to be operated before the current dead-
line so that no deadlines are violated later, but gen-
erally voltage scalable processor can run on a selected
set of frequencies. So, running the processor at exact
fref is not always possible. It has been shown that
using a linear combination of two adjacent available
frequencies(fi < fref < fi+1) is optimal for realizing
the running of processor at fref [4].

Although laEDF has been shown to perform better
than ccEDF, we have used ccEDF in our discussion
due to its simplicity and ease of implementation. In
the simulation Section we have simulated using both
laEDF and ccEDF and compared their performances.

3. Battery Models and Scheduling
Guidelines

Perhaps the most accurate method of modeling a
battery is to model the electro-chemical processes that
take place within the battery. This is the approach
described in [3]. The result is a numerical solution to
a system of partial differential equations. The main
drawbacks of this approach are the long simulation
times required and the large number of parameters that
need to be specified. Other approaches aimed at reduc-
ing the time complexity of low-level simulation are gen-
erally based on constructing an abstract representation
of the battery like ([9],[13]).

This Section includes scheduling guidelines derived
from the analysis of two different battery models:
namely the Kinetic Battery Model [8] and the Diffu-
sion Model of [14]. In order to do so, it is necessary



to prove that the battery models point in the same di-
rection. The formal coherence of these battery models
has been proved in [12] but has not been included in
this paper due to space limitation.

An intuitive proof follows: The kinetic battery
model can be understood as a two well model, com-
prising of an available charge well and a bound charge
well. The available charge well supplies to the load di-
rectly while the bound charge well cannot do so. How-
ever the bound charge well contributes in the replenish-
ment (”Recovery Effect”) of the available charge well.
The charge transfer between the two wells is governed
by the difference in their heights and a rate constant.
The battery is said to be discharged when the available
charge well becomes empty.

(a) Charged State (b) Before recovery

(c) After Recovery (d) Discharged State

electrode electrolyte electroactive species

w

x=0

Figure 2. Diffusion Model from [14]
Correspondingly, the diffusion model can be under-

stood as consisting of an infinite number of wells with
electrolyte being consumed by reduction at the elec-
trode. Transfer occurs between each of these wells due
to diffusion and the battery is said to be discharged
when the well adjacent to the electrode is empty. In
both the cases it is possible to have charge left in the
battery even though its discharged and its voltage has
fallen below cut off.
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infinite wells

c

h2

h1

Ik

i
j

R0

Bound charge Available charge

1 − c

2di /dt = −I + k .(h  − h  )1

dj /dt = − k .(h  − h  )
2 1

Figure 3. Diffusion Model Vs KiBaM
So in essence, the KiBaM is a coarse grain model

where the wells 2-∞ of the infinite well model, have
been mapped to a single well i.e. the bound charge
well. Figure 3 illustrates the idea.Next, we discuss
how the guidelines derived from the battery models
allow us to achieve our goal. In most of our discussion
on how the guidelines help, we would use the KiBaM
model as it is easier to visualize.

Scheduling Guideline 1
A non-increasing discharge current profile is
optimal for maximizing battery lifetime [14]

This guideline implies that a decreasing order of
discharge current profile is optimal to maximize the
charge that can be extracted from the battery. This
can be better understood by taking a look at the 2-well
KiBaM. As mentioned earlier, the rate of the recov-
ery phenomenon from bound charge well to available
charge well is directly proportional to the difference in
the heights of the wells. A large load current leads
to greater difference in the heights and the rate of re-
covery is higher. But if we begin with small currents
and successively increase the currents, small recovery
takes place initially. And with sudden large currents
in the end the available charge well is emptied without
time for recovery while there is still having charge left
in the bound charge well. In the opposite order the
initial high currents lead to depletion of the available
charge well but still charge remains, while there is rapid
recovery and transfer of charge from bound well. The
smaller currents in the end give ample time to extract
charge from the bound well as well. In fact, exper-
iments have shown that a constant infinitesimal load
current would be able to extract the maximum charge
out of a battery (Rate Capacity Effect) [13].

In terms of voltage scaling, a non-increasing current
profile implies that we must schedule in a non-
increasing order of voltage/clock speed assignments.
However such a schedule is not possible for a real
time periodic tasks as we always reduce voltages to
utilize slack due to tasks not taking worst case but
scale up once a fresh instance of tasks arrive in order
to meet deadlines in worst case. So the best that
can be achieved is to have a locally non-increasing
voltage/clock speed, ie the voltage assignments and
clock speed are non-increasing within one instance of
task arrival.

Scheduling Guideline 2
Given a task t to be executed before a deadline
d it is better to lower the frequency and execute
the task than to leave an idle slot and execute
at a higher frequency. [14]



This guideline advocates for the use of any available
slack time for lowering the frequency as far as possi-
ble and giving an idle slot only if it cannot be avoided.
Any idle slot given would imply that later the pro-
cessor would be required to run at a higher frequency
and would consume more energy. This result has been
proved in [14]. This can be understood by realizing
that for extending battery life, it is more important to
minimize net charge consumed and secondary to opti-
mize charge distribution within the wells.

4. Scheduling of taskgraphs with prece-
dence constraints

This Sections deals with solving a general formula-
tion of the scheduling problem for a single processor
environment. The goal is to schedule periodically
arriving taskgraphs while optimizing battery lifetime.
Each taskgraph is a directed acyclic graph (DAG) in
which each node is associated with a task and each
edge defines the precedence relation between the two
tasks. Task graphs considered here are periodic with
deadlines equal to their periods, and all tasks within
a taskgraph should be finished by the deadline of the
taskgraph. The problem can be defined as:

Problem Definition: To find a battery efficient
schedule for a given a set of periodic tasks graphs
(T1, T2, ....Tn) which have corresponding deadlines
(D1,D2, .....Dn), where a taskgraph Ti comprises of
any m interdependent nodes, each of which are in
themselves tasks with given worst case computations
(wci1, wci2, ......wcim).

In our methodology, we divide the problem into two
aspects. One deals with the global frequency selec-
tion (which also determines the current profile) and
the other deals with choosing the local order of tasks
so as to optimize the slack recovery, while maintaining
the precedence constraints and deadlines.

The following subsections discuss the individual as-
pects of the problem and the choice of solution.

4.1. Selecting Frequency

There are many algorithms based on EDF that can
be employed to select the frequency that would ensure
meeting of all Subsequent deadlines. For the current
discussion we have chosen ccEDF from [10] as its an ef-
ficient algorithm that is simple and ensures locally non-
increasing voltage(and hence current) assignments.

The ccEDF works by initially calculating the utiliza-
tion U by summing up the WCi/Di’s for all released
taskgraphs. These WCi’s are themselves a sum of all
wcj ’s of the nodes of the ith taskgraphs. A frequency
fref is selected such that fref = U × fmax. At the
arrival of new taskgraph or at the end of a node in
the running taskgraph the WCi’s are updated, U is
recalculated and a corresponding frequency is selected
again. The pseudocode for the algorithm is described
below.

Algorithm 1 Pseudocode for Frequency setting using
ccEDF
upon release( Taskgraph Ti )
1: WCi =

∑
wcij

2: select frequency()
upon endofnode( Taskgraph Ti, τij )
1: WCi = WCi + acij − wcij

2: select frequency()
select frequency ()
1: U =

∑
WCi/Di

2: fref = U × Fmax return fref

In cases where the jth node of a particular taskgraph
Ti takes less that worst case computation we update
the WCi by removing the worst case wcij component
and replacing it by the actual computation taken acij

so as to utilize the knowledge of actual arrival to allow
further lowering of the frequency. This is done as long
as the new instance of the taskgraph Ti is not released,
whereupon we switch back to the worst case specifi-
cation. Although the algorithms in [10] were meant
to schedule individual tasks with no precedence con-
straint, we have extended them to handle taskgraphs
with precedence constraints.

4.2. Choice of order within EDF

Preemptive Earliest Deadline First(EDF) is an effi-
cient scheduling policy for real time periodic tasks that
ensures a feasible schedule even up to 100% processor
utilization. However given tasks with identical dead-
lines, like in the taskgraphs, its possible to have better
slack recovery and utilization for a specific order of ex-
ecution. Fig 4 describes a motivational example of the
same. The example describes the execution trace of
two tasks with identical deadline=10. Task1 has wc=4
whereas task2 has wc=6. In the case 1 (A and B) the
actual computation is 40% and 60% of wc specifications
for tasks 1 and 2 respectively. And in case 2 (A and
B) they are 60% and 40% of wc specifications respec-
tively. The traces set A and B compare the Largest



Task First(LTF) and Shortest Task First(STF) heuris-
tics. In case 1 STF gives better slack recovery and
utilization, while in case 2 LTF is better.

Figure 4. Example of order affecting slack re-
covery

Many such heuristics exist that try to solve this
problem. [5] describes a near optimal UBS heuristic
that allows the choosing of the order of tasks to min-
imize energy cost function for independent tasks with
common deadline and given worst case specifications.

However, scheduling becomes much more complex
for tasks graphs. Scheduling of even a single task-
graph with precedence constraints while minimizing
the weighted sum of a cost function is known to be NP-
Hard [6]. In order to simplify, its possible to solve the
problem without taking into account interdependen-
cies. Our reduced problem now is to find the schedule
for some m tasks having specified worst case compu-
tations with a common deadline minimizing the total
amount of energy consumed. This problem reduces to
the one in [5] which defines a pubs priority function
and the task having the least value of this function is
scheduled next.

pubs(o, τk) =
Xk

s2
o − s2

o,k

where Xk is the estimate of the amount of CPU cycles
that task(τk) is actually going to require, so is the speed
after the given partial order and so,k is the speed after
adding task τk at the end of the partial order o. The
partial order o at any point is order of tasks that have
been executed up till now.

Xk is used to calculate the priority function, and
even if the estimate is wrong no deadlines are violated.
However, the accuracy of the estimate, definitely de-
termines the optimality of the schedule. If the esti-
mate is very accurate then the schedule obtained will
be near optimal (less than 1% of optimal [5]) , but if
the estimate is bad then the schedule will be more like
a random schedule. One can use various techniques
for accurate estimates of Xk, one of which is to keep
history of previous instances of each task.

After scheduling near optimally for independent
tasks with a simple priority function, the idea can be
extended to handle tasks with interdependencies. It
would be optimum to run the various tasks of a single
taskgraph according to the above mentioned pubs, but
since all tasks are not ready to be scheduled, finding
an optimum schedule would be a very hard problem.
One option is to use this priority function only on the
ready list of tasks. So, when selecting the next task to
be executed out of tasks in the ready list, we choose
the task having the minimum value of pubs.

This is brings us to the issue of what tasks should
comprise of the ready list.
Ready list comprising of nodes of one graph
only
A trivial option is to populate the ready list with tasks
from a single taskgraph with the most imminent dead-
line (which have no precedence constraint or whose
constraints have been satisfied). In other words, the
Ready list at any point in time would comprise of the
independent tasks from the taskgraph with the earli-
est deadline amongst all released taskgraphs. The task
that has the smallest value of the UBS priority function
amongst the ones in Ready list is executed first. Af-
ter the finishing of that task the Ready list is updated.
This is a simple solution that allows all deadlines to
be met since we always follow EDF. Simulations show
that this solution yields good results besides being very
simple to implement. However this solution limits the
choice of tasks to be scheduled and is not optimum
in slack recovery. A more greedy approach that allows
nodes from other released graphs also in the Ready lists
is mentioned below.
Ready list comprising of nodes of all released
graphs
This solution allows the independent tasks from all
taskgraphs which have been released, to be part of the
Ready list. The tasks are scheduled according to the
UBS priority function like in the previous approach.
However since the Ready list does no longer follows
the EDF policy, we need to introduce an additional
feasibility check before scheduling any particular task
to ensure all deadlines are met. The number of condi-
tions that are needed to be checked before scheduling
any task out-of-EDF-order depends on its position in
the EDF order. For example no checks are required for
scheduling a task that belongs to the taskgraph with
the most imminent deadline. And for a task that be-
longs to taskgraph occupying kth position in the EDF
order, k-1 conditions have to be checked. This can
be understood by considering the simple fact that exe-
cuting a task that belongs to taskgraph occupying the
kth position in the EDF order can only jeopardize the



meeting of the deadlines of k-1 taskgraphs before it,
since after them the kth taskgraph becomes most im-
minent and hence would be executed even in case of
simple EDF ordering. So k-1 checks are required to
ensure that the execution of this task would not violate
the deadlines for the taskgraphs which come before it.
Each check is a condition that ensures that the amount
of computations required to be completed in the worst
case to meet the next deadline is less than or equal to
the time left multiplied by the current fref .

The next task scheduled is the one with the mini-
mum pUBS in the Ready list which satisfies the feasibil-
ity check. The checks are conducted in the increasing
order of pUBS value and stopped as soon as a valid
candidate is found. Use of fref in these checks ensure
that the we are not forced to run at higher frequen-
cies even if tasks take their worst case (locally non-
increasing voltage assignments). Described below is
the pseudocode for the feasibility check.

Algorithm 2 Pseudocode for the Feasibility Check
feasibility-check(τi,j , timet, fref)
1: flag ← true
2: for j = 1 to edf-position(τi,j)-1 do
3: sumWC ← 0
4: if sumWC + WCj + wcij > fref · (Dj − t) then

{tasks in the ready-list are indexed according to
the EDF order}

5: flag ← false
6: return flag
7: end if
8: end for
9: return flag

This solution allows more candidates to be reviewed
for the priority function, which in turns allows better
slack recovery and a more efficient schedule. An exam-
ple is presented in figure 5. It compares the the exe-
cution trace of a set of 3 taskgraphs where taskgraphs
T1 has only a single task with wc=5 and D1=20, task-
graph T2 also has a single task with wc=5 and D2=50,
and taskgraph T3 has 3 tasks each having wc=5 and
D3=100. All tasks are released at t=0. The utilization
is 0.5 and hence the fref is set to 0.5 fmax. All tasks
take their wcet and hence the fref does not change dur-
ing the trace. We assume that tasks from taskgraph3
> taskgraph2 > taskgraph1 according the pUBS prior-
ity function. The trace depicts how the methodology
allows the execution of released tasks according to pri-
ority function without violating deadlines and exceed-
ing fref by using the feasibility check. Although in
the example, we have assumed that all tasks take their
wcet, in reality the priority function chooses tasks that

are most likely to take much less than wcet and would
allow maximum slack recovery and scope for energy
minimization.

Figure 5. (a)Trace using Canonical EDF order-
ing, (b)Trace using pUBS based ordering us-
ing Feasibility check .

Throughout the discussion we have used ccEDF for
frequency setting and pUBS priority function for de-
termining the optimal candidate in terms of slack re-
covery. However, under certain conditions, other DVS
schemes or priority function may be more suitable or
efficient. The methodology presented here can be used
with little or no changes with any frequency setting
algorithm and any priority function without deadline
violation. The next Section discusses the simulations
carried out and results that underline the utility of our
methodology.

5. Simulations

C simulations were conducted to compare the var-
ious dynamic scheduling algorithms. The DVS en-
abled processor simulated supports the following three
frequency-voltage tuples [(0.5GHz,3 V), (0.75GHz,4V),
(1.0GHz,5V)]. Task graphs were generated from TGFF
[2] with random dependencies and the worst case com-
putation of each node was chosen randomly following
a uniform distribution. Utilization of the system was
kept to 70%. Actual computation of a task is assumed
to be chosen at random between 20% and 100% of the
WCET. Different execution profiles for the taskgraphs
were generated by the various scheduling algorithms.

Stochastic battery model from [13] was used to es-
timate battery life for the profiles generated by var-
ious scheduling algorithms. A 1.2V Panasonic AAA
NiMH battery with a maximum capacity of 2000 mAh
was considered for simulation. This maximum capac-
ity also defines the theoretical bound on performance
of the battery and should not be confused with the
nominal capacity (which is around 1600mAh for this
battery).

The maximum capacity of the battery is defined as
the charge delivered by it under infinitesimal load [13].



Similarly the charge in the available well (discussed
in Section 3) is defined as the charge that would be
delivered if we were to draw infinite current. We can
evaluate these values by plotting a load vs delivered
capacity curve for the battery and extrapolating the
ends (see Figure 5).

The first set of simulations compare the performance
of PUBS priority function with the LTF based heuristic
presented in [16] in scheduling single DAG’s generated
from Princeton’s TGFF program [2]. The simulation
also compare random schedules, that were generated
by picking up a task randomly every time from the
ready list, and the optimal schedule (in terms of energy
consumption) calculated using exhaustive search. The
results were averaged over a number of single DAG’s
with varying number of nodes and have been presented
in Table 1.

# of tasks Random1 LTF1 pUBS
1

5 1.32 1.25 1.05
6 1.41 1.29 1.14
7 1.33 1.27 1.17
8 1.56 1.44 1.25
9 1.52 1.26 1.21
10 1.35 1.21 1.09
11 1.66 1.53 1.28
12 1.58 1.39 1.31
13 1.57 1.51 1.22
14 1.44 1.37 1.29
15 1.55 1.51 1.32

Table 1. Energy consumption (normalized
w.r.t optimal schedule) by various schedul-
ing policies for different number of tasks in
a taskgraph

We have not considered taskgraphs with more than
15 tasks because it takes prohibitively long time to find
the optimal schedule by exhaustive search on all feasi-
ble schedules.

The second set of simulations are aimed at highlight-
ing the utility of allowing independent tasks from all
released taskgraphs to form the Ready list. They com-
pare the resulting energy consumption of the various
ordering schemes were tested in scheduling increasing
number of taskgraphs with nodes varying from 5 to
15. All schemes employed laEDF for frequency set-
ting. The results have been normalized with respect
to near optimal schedule obtained by removing prece-
dence constraints within the taskgraphs. It can be seen
from Figure 6 that as the number of taskgraphs were
increased, the ordering schemes start diverging from

1Normalized w.r.t optimal schedule

the near optimal. However, the scheme selecting the
next task using pUBS on all released independent tasks,
performs closest to the near optimal among all schemes
compared.

Figure 6. Energy Consumption for Ordering
Schemes Normalized wrt Near-Optimal

The final set of simulations compare the battery life-
times and charged delivered by the combination of var-
ious scheduling schemes. The scheduling schemes are
defined by the DVS algorithm used for frequency set-
ting, the priority function used for choosing the next
task and the Ready list used(ie if it is populated by in-
dependent tasks of the most imminent taskgraph only
or by all released taskgraphs). The table below de-
scribes the schemes and EDF scheduling without any
DVS, laEDF and ccEDF 2 [10] both with random or-
dering, ’Battery-aware Scheduling’(BAS-1) with the
use of a pUBS for ordering among independent tasks
from the most imminent taskgraph and ’Battery-aware
Scheduling’(Bas-2) with the use of a pUBS for ordering
among independent tasks from all released taskgraphs.

Results were obtained by averaging performance of
the various algorithms over a large number (100) of
random taskgraph sets. It can be observed from the
results in Table 2 that scheduling without any DVS
algorithm, consumes a lot of energy per task, there-
fore battery finishes earlier giving very little efficiency.
ccEDF and laEDF 2 [10], while being energy efficient
are not able to fully utilize the battery capacity, there-
fore results in low battery lifetime. The BAS-1 uses
a better priority function making it more energy effi-
cient, and hence is able to extract a larger amount of
charge from the battery, extending battery lifetime and
performance. But BAS-2 allows more tasks to be avail-
able for consideration for the priority function making
it more effective and resulting in the best battery per-
formance.

2Extended to handle Task Graphs



Scheme DVS Algo. Priority fct Ready list Charge Delivered Battery Life
(mAh) (min)

EDF None Random most imminent 1567 74
Cycle Conserving ccEDF Random most imminent 1608 101

Look Ahead laEDF Random most imminent 1607 120
BAS-1 laEDF pUBS most imminent 1723 137
BAS-2 laEDF pUBS all released 1757 148

Table 2. Results of Simulations for different scheduling algorithms when utilization was kept at 70%

6. Conclusion

Energy-autonomous embedded systems have an at-
tached finite-capacity energy source - a battery, that
must be relatively small and light for the embedded
system to be mobile. Consequently, the system en-
ergy budget is severely limited, and efficient energy
utilization becomes one of the key problems in the con-
text of battery-powered embedded computing. In this
paper we have presented a Battery-aware Scheduling
Methodology that facilitates the combining of a good
DVS algorithm with a heuristic based priority func-
tion for scheduling of conditional taskgraphs. Simula-
tions carried out on random tasks graphs and the pro-
files generated by various algorithms illustrate that our
methodology performs up to 47% better than ccEDF
and upto 23.3% better than laEDF scheduling schemes
in terms of battery lifetime. It can result in up to 100%
improvement in battery lifetime over systems with no
DVS. Since the simulated taskgraphs are periodic, this
is also a good measure of the amount of work that was
done by the system before the battery was discharged.
The methodology presented has also been shown to be
generic, and can be used with little or no changes with
any frequency setting algorithm and any priority func-
tion without deadline violation.
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