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Abstract—Synthesis of robots may be decomposed into two workspace is required the RRR structure may seem to be more
processes:structural synthesis(determine the general arrange- appropriate. But usually such trends will not be sufficient to
ment of the mechanical structure such as the type and number ¢,y determine the optimal robot: indeed many performances

of joints and the way they will be connected) anddimensional h to be taken int t for defini timal robot
synthesig(determine the length of the links, the axis and location ave 10 be taken into account for defining an optimal robot,

of the joints, the necessary maximal joint forces/torques, .). The some of them being highly dependent upon the dimensions of
performances that may be obtained for a robot are drastically the robot (for example the load capacity). Furthermore such
dependent on both synthesis. Although for serial robots general trends cannot be as easily derived for closed-chain robots.
trends may be derived only from the structure a realistic Hence optimal design for a robot implies both type of

comparison between two different structures may only be made thesis. O . in the desi f el d-chai bot

after a careful dimensional synthesis and this is even more so for synthesis. Qur experlenC(_a In the design or closead-c a'r_] robots

C|osed_|00p robot (SUCh as para||e| robots). ha.S Ied us to the fO||OWIng I’ule Of a thumb. I’ObOt W|th
We will present a dimensional synthesis approach based on the an a-priori more appropriate mechanical structure but whose

design requirements that allows one to obtain almost all feasible dimensions have been poorly chosen will exhibit largely lower
g\e/::’?nt aslfilnugtloirr]nfothaaéc%rjn?uﬁ?nnlj?aecgutﬁnzatézgrg]r?c(raesqulgreeT:teiQ;SI' performances than a well dimensionally designed robot with
examples of 6-DOF robot design will be presented. an a-priori less apprqpnate structure L
We are not claiming that structural synthesis is not an
important area but that it cannot be disconnected from dimen-
|. INTRODUCTION sional synthesis. The point is that structural synthesis, although

still in progress, has strong theoretical backgrounds (such as

Although robot_s are usuaIIy. d_eS|gned .to perform a .Iar%%rew and group theories) while, as we will see, dimensional
variety of tasks it is not realistic to believe that a smglg

. . ) hesis lack of such k .H hi ill f
robot will be flexible and performing enough to manage an%n;igzisincna? si/l:l(t:het;?sc ground. Hence this paper will focus

task. On the other hand an end-user may wish to perform

a a set of specific tasks with stringent requirements. Hence I
a fundamental question in robotics is to determine what is ] o
the most appropriate mechanical structure of the robot, beingPimensional synthesis is a problem that has attracted a lot of
given tasks requirements (such as desired workspace, accurdégntion but most of the works focus on design for a specific
load, stiffness, ..). Indeed it is not realistic to believe thatroPot's feature such as workspace [1], [5], [10], [13], [14] or
sophisticated control algorithms coupled with a large numb@fcuracy [7], [21], [22] (this list is far from exhaustive and
of sensors may be able to correct the behavior of a poorly d&¢us on closed-chain robots). _ _ _
signed robot. Furthermore on-board computer power should be/ "€ usual way to solve the optimal design problem is
more appropriately used for high-level tasks (such as planniiig, défine a real-valued functiod” as a weighted sum of
task management, interaction) instead of basic-levels contRgrformance indices; [4]. These indices are real functions

tasks that can be simplified by an appropriate mechani¢gft define a "distance” between a requirement and the perfor-
design. mance of a given robot with a value in the range [0,1]. A value

Design synthesis is a two-steps process: equal to O indicates that the requirement is fully satisfied, a

structure svnthesigletermine the aeneral arranaement O\falue larger than 0 indicates to which extent the requirement is
* y 9 9 viqlated while a value 1 is used when the requirement is fully

f[h_e mechanical structure S.UCh as the type and numloerv?olated. The performance indices are clearly functions of the
joints and the way they will be connected

« dimensional synthesisletermine the length of the Iinks,deSIgn parameters sBL The cost function is then defined as

the axis and location of the joints, .. In this paper C= ZwiPi(P)
the word dimension will have the broad sense of any i
parameter that will influence the robot behavior and igherew; are weights. It is assumed that the optimal design
needed for the manufacturing of the robot solution is obtained for the value of the parametersFn
In some cases general trends for the robot performances rttagt minimize C' and a numerical procedure is used to find
be deduced from the structure. For example we may compéne values ofP which minimize C, usually starting with an
the reachable workspace of serial 3 d.o.f. robot of type PRitial guessP, (note that already that the procedure used for
and RRR: assuming a stroke bffor the linear actuator and athe minimization should be able to find a global minimum of
length L for the links the PPP workspace volume will i the cost function otherwise we may end up with only a local
while it will be ~ 40L3 for the RRR robot. Hence if a large minimum).

. DIMENSIONAL SYNTHESIS, STATE OF THE ART



But this method has many drawbacks. First it is assumed and the problem was in fact to determine an acceptable
that the requirement indices can be defined, can be calculatedhpromise between the two requirements. This advocates the
efficiently (the numerical optimization procedure requires oint that in optimal design we should not try to maximize
large number of evaluation of these indices) and should bae performance without imposing constraint on the minimal
differentiable functions of the design parameters (otherwisalues of other performances (for example Gosselin [6] shows
finding the minimum of the cost-function may be quite diffithat the Gough platform having the largest workspace for a
cult). All these assumptions are difficult to realize in practicgiven stroke of the actuator will have a geometry such that it
for robots: for example what could be the definition of an indexannot be controlled). It may also be considered that in some
that indicates that a cube of given volume must be includedses some requirements amgerativei.e. they must never
in the robot’s workspace ? Evaluation of some indices mde violated while some others may be somewhat relaxed. But
also be a quite difficult problem: for example we may definienposing an imperative requirements in the cost-function is
as index the worst positioning error along a given axis for amjfficult without violating the differentiability constraint and/or
pose of the robot within a prescribed workspace and evaluatiagpwing large violation on the other constraints.
this index is by |tsglfad|ff|cult cqnst.ralned optimization prob- A final drawback of the cost-function approach is that it
lem. Furthermore index evaluation is complex as we look for " . . - . )

o Prowdes only one solution. This causes three main problems:

guaranteedesults (for example for the worst positioning erro . .
we want to be sure to have calculated the global maximum and® Manufacturing tolerancewill be such that the real robot
not a local one). But calculating guaranteed results does not Wil differ from the theoretical one. Hence with only one
automatically imply that we neeexactresults. For example theoretical design solution we cannot guarantee that the
assume that we want to compare two different robots with €@l robot will fulfills the requirements _
respect to a given performance index and that we have art Providing only one solution does not allow to consider
algorithm that provides a valug, such that the real valug secondary requirements that may have not been used in
of the performance index satisfi&sc V, + [0, ey/] whereey the cost-function but may be a decision factor if two
is a user-defined upper bound for the algorithm error: although 0POts safisfy in a similar way the main requirements
we will not compute thexactvalue of the performance index * for providing only one solution we have to assume that
a guaranteed comparison between the 2 robots will be possible the designer masters all the criterion that will lead the
as soon as we are able to define a valueeforsuch that the end-user to a solution. This is seldom the case in practice:
rangesV, + [0, e/] for the 2 robots have no intersection. for example economi(_: considerations will usually play a

We will see later on that we may indeed design such role although the designer cannot be fully aware of their

algorithms and that interestingly their computation time is level of implication

largely dependent upom,. Such way to get a guaranteedVe Will propose now another design methodology.
result is considered as a strong alternative to calculating

exact result that may be quite difficult to obtain becausd#l. A NOTHER DESIGN METHODOLOGY THE PARAMETERS
of complexity reasons or numerical round-off errors in the SPACE APPROACH

calculation. _ _ We will first define the parameters spaceS™ as a n-
Another drawback of the cost-function approach is thgmensional space in which each dimension corresponds to

difficulty in the determination of the weights. These weight§ne of then design parameters of the robot. Hence a point in
are present in the function not only to indicate the priority gf,5¢ space correspond to one unique design of the robot.
the requirements but also to tackle with the units problem in cgnsider now a list ofn requirement Ry, ..., R, } that
the performance indices. For example for a 3-dof translationglfine minimal or maximal allowed values of some robot's
robot if the used performance indices are the workspace VBkformance (such as accuracy, stiffness), or some required
ume and positioning accuracy we are dealing with quantitigg,perties (for example that a set of pre-defined trajectories lie
whose units differ by a ratio of0”: hence the weights must,yithin the robot's workspace) and assume that we are able for
be used to normalize the indices. each requiremenR; to design an algorithm that is able to
The choice of the weights is therefore essential while thegg|culate the regior®; defined as the region of the parameter
is not intuitive rules for determining their values. Furthermorgpaces™ that includes all the robot's design that satisfies the
a small change in the weights may lead to very differeméquirementr;. Then the intersection of all th&; definesall
optimal designs. the robot’s design that satisfie#l the requirements. With this

Even if the cost-function is effective it may lead to incon-appro"JICh we will have found@mpleteanswer to the optimal

clusive result. This was exemplified by Stoughton [23] Whgesign problems as we will have determined all possible design

was wanting to determine special kind of Gough platforrﬁomt'ons' . .
To make this approach practical we are confronted to two

with improved dexterity and a reasonable workspace volume,,.~
Hence Stoughton has considered two criteria in his co fficulties:
function: the dexterity and the workspace volume. He find 1) calculating the regior;

out that these criteria were varying in opposite ways: the 2) computing the intersection of the regions

dexterity was decreasing when the workspace volume wlle calculation of the region is indeed quite difficult as
increasing. Hence there was no optimal design solution pge have basically to determine regions whose borders are



determined by a set of complex highly non-linear relatiorfer x in [2,3]. The interval equivalent of the square function
(but in some cases this may be possible if the number isfdefined by

design parameters is not too high, see [16], [19]). But a good ] 5 _ 5 9
point is that it is not necessary to determine these regiolfg 0)” = [0 if 0 € [a,b], Min(a”, b°) otherwise, Max(a”, b”)]
exactly Indeed determining points of the region close to thﬁence whenz lie in the range [2,3], then? lie in the

border does not make sense as if they are chosen as nommﬁll . . .
range [4,16]. Using the property of the trigonometric func-
parameter value, then the real robot, whose parameter ge [ ] g property g

fibh the interval evaluation ofin([2 [ oximatel
affected by manufacturing tolerances, may in fact have I interval evaluation ofin([2,3]) is approxi y

representative point in the parameters space that is outsﬁmu’o'%g?]' Intervals may also be multiplied and added

% finally the interval evaluation of is approximatel
the Z; regions. Hence computing aapproximationof the -1 4?158 33/2623]I v valuat ¥ is approxi y

regions whose border is sufficiently close to the real border ISNote that the interval evaluation of a function depends on

sufficient. . - . .the analytical form used to define the function. For example
The second point may also be difficult as computing the i (z) may also be written agz — sin(z))? whose interval

tersection of highly nqn—linear varieties may be quite difficul valuation forz in [2,3] is [1.1896,8.1731]. Note that 0 is not
To solve the intersection problem there are two non mutuag cluded in this evaluation: this implies thgtcannot cancel

exclusive approaches: for 2 in [2,3].

» describes (or approximates) the region by a set of geometas it may be noticed in the previous example the interval

rical objects whose intersection can be easily computeglajuation may not give thexactlower and upper bounds of

« use the description of a regioff; as an input for the the function (see the first interval evaluation): there may be an

calculation of the regionz;,, i.e. determine only the ynderestimation of the lower bound and an overestimation of
points of Z;,, that are also points of;. Using this the upper bound (but note that the second interval evaluation
approach there is no need to calculate the intersectignexact for the given range: provided that we compute with
of the regions as the output of the algorithm for regiogn infinite accuracy the bounds of the evaluation are exactly
Z, is already the intersection of the regiofs, ..., Z;  the minimum and maximum of).
The following parts of this paper describes preliminary al- A point is that the differences between the bounds of the in-
gorithms that can be used for this design approach. Thdseval evaluation and the exact minimum/maximum are strictly
algorithms are based on interval analysis, a topics that wecreasing with thevidth of the range for the unknowns (i.e.
will now describe succinctly. the difference between the upper and lower bound of the
ranges).

From a computer view point a very important property is
that interval arithmetics may be implemented to take into
A. Interval arithmetics account computer round-off errors. Any calculation using

] ] ] ) interval arithmetics is then guaranteed to includes the real

Interval arithmetics [18] is a simple method that allowgg)ye of the result. Computer errors are most often not taken

to determine lower and upper bounds for a function beingiqy account in robotics but may play an important role.

given ranges for the unknowns appearing in the function. T&,sider the following example due to Rump: compute the
interval evaluationof a function for given ranges for the, e of f(z,y):

unknowns is a method that allows to determine an interval

that is guaranteed to include the exact lower and upper boundg33. 75,5 + w2 (11z?y? — % — 121y — 2) +5.5¢4° + L

of the function over the possible values of the unknowns in 2y

their ranges. Hence if(z1, x2, ..., z,) is a function of then  for » — 77617,y = 33096. With Scilab or Matlab the
unknownsz; which are restricted to lie in the rang€;, then computed value is about1 1023, in C we get 1.1726, the
the interval evaluation of gives two numbersl, B such that: interval evaluation i§—0.56610%3,0.5551023] while the real
value is~ -0.8273960599. Hence even for a simple function
computer errors may be quite large. Freely available packages
implements interval arithmetics: for our tests we use the C++
packageBIAS/Profil !

IV. INTERVAL ANALYSIS

The simplest interval evaluation method is thegural eval-
uationin which each mathematical operatoof the function
is replaced by an interval equivalest returning an interval
[o, '] such that for allz in a rangeX ¢'(X) < o(z) < B. Notation for interval analysis
o/(X). Interval equivalent exist for all classical mathematical 1,6 |ower and upper bound of an intervélwill be denoted
functions and hence interval arithmetics may be used in mogt~ . 4 the width of this interval iso(X) = X — X. The
cases: in particular all functions (algebraic, trigonometric;?ni’dpoint of an intervalX is defined as: -
exponential) that occur in robotics can be evaluated with
interval arithmetics. , X+ X

Consider for example the function mid(X) = —

f(z) = 2% — 22 sin(z) + sin?(z) Lhttp:/www.ti3.tu-harburg.de/Software/PROFILEnglisch.html



A n-dimensional interval set is calledlax

X = {[&771}7’[&’7”}

in this box is a pose of typé/, and the workspace includes

a singularity. The only case in which we cannot conclude is

obtained when the lower bound is negative while the upper

The width of n-dimensional interval set is the maximal bound is positive. For this type of box we will proceed with

width of its interval components. a bisection that will produce 2 new boxes that will be stored
Bisection is one of the most basic operation of intervd®r further processing.

analysis. For an n-dimensional interval skt the result of ~ Formally the algorithm uses a list of boxésthat initially

a bisection along the variable; is the two new interval set has one elemerif,. The boxes in this list will be proceeded in

L(X), R(X) defined by: sequence and during this process boxes may be added to the

list. The k-th box in the list will be denoted b, the index

k is used to denote which box is currently processedranis

the total number of boxes in the list when the algorithm starts

processing box3;,. We denote byJ,, the interval evaluation

o ) ) of the determinant for the bog,, with lower bound.J, and

C. An application example of interval analysis upper boundJ,. If at a given pose we cannot safely assert
We will illustrate the principle of interval-based algorithmshe sign of the determinant (because of computer round-off

@)
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on a realistic application: the singularity detection for parall@rrors) a flagFk will be raised. We start withk = 0 and the
robots (a detailed presentation of the algorithm can be fouatfjorithm proceeds along the following steps:

in [17]). Singularity is defined as the pose of the robot at 4
which the determinant/—| of the inverse jacobian matrix of

the robot vanishes. A practical consequence of coming close,
to a singularity is that the forces in the legs may become3
very large as these forces are obtained as a ratio whos
denominator igJ ~!|. It is hence quite important to determine
if a pre-defined workspace includes one or more singularities.5)
As usually singularities must be avoided a designer may be
interested in a fast algorithm that gives a straighs-no
answer about the presence of singularities in the prescribed
workspace.

) if & > ng return UNCERTAIN if F has been raised,

otherwise returlNO SINGULARITY

) if Jy>0thenk=k+1,gotol
) if 7, < 0 return SINGULARITY
%) if J, < 0andJ; > 0 and the width of3; is 0, then

raiseF, k=k+1,goto 1

bisectB;, at the variable having the range with the largest
width, store the 2 resulting boxes at positiop+1, ng+
2,ngr1=np+2,k=k+1,goto 1

Although naive in term of efficiency (as we will see in the next

section) the above algorithm is typical of interval analysis. Two
To design such an algorithm we note first that we mawain features are typical:

assume that we know a posé; in the workspace (that is
supposed to have a single component) and that we are able t0
compute the sign of the determinant at this pose (eventually
using interval arithmetics to guarantee the sign): this hypoth-
esis is not necessary but will simplify the presentation of the
algorithm and we will assume, without lack of generality, that
the sign is positive. The main point is that if we are able
to find a pose (or a set of poses), in the workspace at
which the determinant is negative, then any path connecting
My, My must cross a singularity and consequently at least one
singularity exists in the workspace. On the other hand if we
can prove that for any pose in the workspace the determinant
is positive, then the workspace is singularity-free.

For the sake of simplicity we will assume that the workspace
is defined as a set of ranges for theparameters that define
a pose of the robot. In term of interval analysis the workspace
is a boxB.

In view of the above remark interval analysis seems an
appropriate tool to solve this problem. Indeed as an analytical
expression of the determinant is available we may compute an
interval evaluation of the determinant for a given box for the
pose parameters. If the lower bound of this interval evaluation
is strictly positive then we are sure that for all poses in the box e
the determinant is positive and consequently that the box does
not include a singularity. On the other hand if the upper bound
of the interval evaluation is negative, then the determinant for
any pose in the box will be negative: consequently any pose

the result isguaranteedif the result is SINGULAR-

ITY or NO SINGULARITY . If the algorithm returns
UNCERTAIN this means that the current computer
arithmetics does not allow to determine the sign of the
determinant at some poses. In that case it is necessary to
perform a local analysis with an extended arithmetics

« the algorithm is appropriate for distributed implemen-

tation: as the processing of one box is independent
from the processing of the other boxes we may use
a master computer to manage the lidtand to send
boxes in this list to slave computers that perform a few
iterations of the algorithm and returns the result to the
master. If there is no singularity in the workspace the
decrease in computation time compared to a sequential
implementation is a little bit less than the number of
slaves as there is a small overhead for the communication
between the master and the slaves. On the other hand if a
singularity occurs, then the decrease in computation time
may be larger than the number of slaves as a box with a
negative determinant may be found early by a slave while
it may have been processed quite late in the sequential
version

the algorithm may take into account the uncertainties in
the modeling of the robot. Instead of using fixed values
for the geometric parameters in the interval evaluation of
the determinant we may use interval whose width will
be the manufacturing tolerances. In practice this means



that we are testing for singularitiefamily of robots that asx < 2 —y. If we compute the interval evaluation of
includes the real manufactured robot the right term we get [1,3] which implies that< 3: the
The above algorithm has been implemented in a generic range forz may thus be substituted by [0,3]
way for 6-dof robot: Maple is used to compute symbolicalliNumerous other methods, some with parameters, may be used
the determinant (which is the only part of the algorithnio improve the computation time of interval-based algorithms
that is robot's dependent) and write the result in a file thahd thus a high level of expertise may be needed to make the
is parsed for computing the interval evaluation. With thalgorithm works in practice. To conclude memory storage is
improvements proposed in the next section this algorithm rgften mentioned as a limitation of interval analysis but in our
rather efficiently: in the worst observed practical cases we g&iperience a careful storage management allows one to solve
the answer in less than 30 seconds on a 1.2GHz laptop. most problem with a number of storage boxes that has not to

The proposed algorithm may be extended in various wafﬁfcew 100.

We may manage for example more complex workspace as
soon as it can be enclosed in a bounding box and that we V. OPTIMAL DESIGN

have a test to determine if a box is fU"y inSide, fU"y outside We have seen that our opt|ma| design approach requires
or only partly inside the workspace. In that case the aboyge calculation of the region€ and then their intersection.
algorithm is modified to discard any box that is fully outsidgnterval analysis seems to be quite appropriate for the second
the workspace or that is partly inside but for which the lowegart. Indeed if we assume that we are able to obtain the regions
bound of the interval evaluation of the determinant is positives as a set of boxes, then calculating their intersection is

Mechanical constraints on the passive joints of the robot mgyclassical problem in computational geometry that can be

be incorporated by using the same principle. solved easily.
o We are now confronted to the problem of calculating the
D. Interval analysis is not a black box! region Z using interval analysis. As mentioned previously

Basically the worst case complexity of interval-analysigiere is no need to calculagxactlythese regions as points on
based algorithms is exponential because of the use of the border cannot be considered as nominal design parameter
bisection process [12]. In the above algorithm this worst ca¥alues because the effect of manufacturing tolerances may put
complexity may be obtained if we have exactly one singul&ne value of theeal robot parameter outside the regign This
pose within the workspace but such case will very raregoint may be used as an advantage for interval analysis-based
occurs in practice. method by using the following rule:

But the naiv_e_imp!ementaﬁion of the above algorithm will o yosyit of the algorithm should be a set of boxes such
not be very efficient if some improvements are not added [%at for each box the range for each design parameter has a

[11]:_ ] ) ] width which is at least equal to the manufacturing tolerance
« improvement of the interval evaluaticthe interval evalu- oy this parameter

ation of the derivativeg, of the determinant with respect

to the pose parameter, may also be computed. If for The rational behind this rule may be illustrated on an exam-
one of these interval evaluation the lower bound is strictff€- Assume that for a given parameter whose manufacturing
positive or the upper bound is strictly negative, then tH@lerance is[—e, ¢ the algorithm provides the result range
determinant is monotonic with respect to the variable if§-bl- If b —a > 2¢ then we may choose as nominal value
the box. We may hence substitute the interval value 8 the parameter any value in the rangert ¢, b — ¢]: indeed

the variable by the lower or upper bound of its range #§ any such value we may add an arbitrary manufacturing
compute the lower and upper bounds of the determindRterance in the rangé-e, ¢] with a result still in[a, b]. In
which is the purpose of an interval evaluation. Thigther words the parameter value for treal robot will still
calculation must be done recursively: indeed assume tfog such that its representative points in the parameters space
the interval evaluation of the derivativgsfor | from 1 to  Will belong to Z.

i —1 has led to intervals with negative lower bound and !nterval analysis-based method may be thought as a method

positive upper bound while the interval for the derivativé® compute arapproximationof the regionZ in which the
f; has a positive lower bound. To compute the lowefarts ofZ that are too close to the border are eliminated. We

bound of the determinant we will use the valug for Will comment later on on this statement.

x; instead of the range\; = [z;,7;]. But during the e have now to explain how we may design an algorithm
calculation of the derivative$ with [ up toi—1 we have g calculate the regio®. For that purpose we will illustrate

used.; as value forz;: now thatz; has a fixed value the principle on the singularity detection problem.
the interval for some derivatives may change to have a

constant sign, thereby allowing to fix another variable _ ) _

. filtering: some heuristics allows one to decrease the widfh CalculatingZ: the singularity example
of a box "in place”, i.e. without using bisection [2]. Consider now that the inverse jacobian matrix is a function
Consider for example that we must determine what an®t only of the pose parameted§ but also of a set ofn
the values ofz,y such thatz +y < 2 whenz lie in design parameter® = {P,..., P, } that are constrained to
[0,4] andy in [-1,1]. We may write the above inequalitylie in some ranges: hence the set of design parameters must be



included in a boxP,. Each parameterB; has a manufacturing is not always the case in robotics. For example assume that
tolerance[—e¢; /2, ¢;/2]. The problem is now to find possiblewe consider the positioning accuragyX of the robot with
values for the design parameters such that the correspondiegpect to the joint measurement errd&k®. Both quantities
robots are singularity-free over the workspadsg. are linearly related by

The algorithm described in section IV-C, denotdd, will

be used with two modifications: AX =J(X)A6

« only a limited numberV of bisection will be allowed and Where.J is the Jacobian matrix of the robot, whose elements
the algorithm will returrFAIL if this number is exceeded. are functions of the posX and of the design parameters.

« the value of the design parameters are now intervals. AThe following requirement is classical: being given bounds
direct consequence is that at a given pose the determind®"’ on the joint errors determine the design parameters
may not have a constant sign: hence it may be difficidtich that the robot's positioning errors are lower than given
to find a poseM; at which the sign is constant. But thethresholds AX", whatever is the pose of the robot in a
algorithm may start without this knowledge and attributegiven workspace)V. Unfortunately for closed-chain robots
a sign for the determinant as soon as it finds a box in tHee matrix J may be quite complex (or even may not be
list of A, for which the determinant has a constant sigridvailable) while its inverse/ ! may have a simple form.

The algorithm uses a list of boxe®p that initially has one BUt it is possible to state the problem using only!: find
elementP,. The k-th box in the list will be denoted by, the the design parameter8 such that forlaIIX in W all the
index is used to denote which box is currently processed agglutions inAX ]?} the linear sys_tem7‘]\4(X, P)AX = A©

ny, is the total number of boxes in the list when the algorithfith A® < A®™ are included inAX ™.

starts processing boR,.. We will denoteA; (Px) acalltothe  We have thus to solve a classical problem of interval
algorithm A; when the design parameters have as possikifalysis: being given an interval matrix and an interval
values the range described in the Bx. The output of the vector b determine an enclosure of all the solutions of the
algorithm is a file, called theesult file that describes all the |inear interval systemAz = b i.e. a region that includes the
parameters boxes defining the geometries of singularity-fréglution of Az = b for all A,b included inA, b [18], [20]. It
robots. We start wittk = 0 and the algorithm proceeds alongcan be shown that classical methods of linear algebra (such as
the following steps: the Gauss elimination algorithm) may be extended to deal with

1) if k> ny, EXIT this problem. We may directly use these methods to compute

2) if A;1(Px)=SINGULARITY thenk=k+1,gotol an enclosure oAX and store as result the parameters boxes

3) if A;(Px)=NO SINGULARITY then storeP, in the such that this enclosure is included X" . But we may

result file,k =k +1,goto 1 improve their efficiency: indeed these methods assume no
4) if A;(Px)=FAIL or UNCERTAIN then dependency between the element\ofe. the elements of the
a) if w(P;) < ¢; for all j in [1,m], thenk = &k + 1, matricesA that are considered may have any arbitrary value
goto 1 within their ranges inA. In our case there are dependencies
b) bisectP;, at the variable having the range with Petween the elements of~! and not all possible values are
the largest width and verifying(P,) > 2¢ allowed.
c) store the 2 resulting boxes at positiopt+1, ng+2, Our basic method is the Gauss elimination scheme. We
ng+1=nr+2,k=k+1,goto 1l compute an interval evaluatioA (® of A and an interval

The efficiency of this algorithm is influenced by the comEVa|Uati0nb(_O) of b (using the derivatives of the components
plexity of the determinant formulation but also by the paPf A,b to improve these interval evaluations). The Gauss
rameter N. In general for boxesP, having a large width €limination scheme may be written as [20]

it is useless to have a largd. On the oppositeN may 4 4 A= 4G

be large as soon as the width of the box come close to AD — AT T IRy with > k (4)

the manufacturing tolerances. Hence the valueNoshould Aj(-jj_l)

be an increasing function of the boxes width that is usually ‘ ‘ AU=Dpl=1)

empirically determined. b = pl) — 5)
g

B. Calculating Z: other examples The enclosure of the variabl&; can then be obtained from

Apart from the singularity detection algorithm we haveli+1:- - Xn Dy
implemented another algorithm that deals with workspace X; = YV _ZA(_J]';UX,C)/A(_J’_*U (6)
constraints [9]. This algorithm allows one to determine the ! ! 7
design parameters such that a given workspace (that may bev

” . e have improved the interval evaluation of the quantities
specified as a set of poses, of segments in the 3D space or as P q

a set of 6D boxes) must be included in the workspace of tﬁ\gpearmg in the sc?sm((eo?y t.aklng into account the derivatives
robot of the elements ofA'”) b\®) with respect to the pose and de-

sign parameters and propagating them by using the derivatives
Up to now we have assumed that the performance requité-the elements ofAU—1 to calculate the derivatives of the
ment has a closed-form that can be interval evaluated. Teiements ofAU) and use them for the interval evaluation. Our

k>j



experiments have shown that this lead to a drastic increasd=inChoosing the optimal design

term of the tightness of the enclosure. Assume now that we have succeeded in computing the
Note also that this method may be used to determine Whakjions for all requirements and then their intersectibn=
should be the design parameters so that any wrench ima, Clearly we cannot propose to the end-user an infinite
set may be produced at any pose Wf while the joint get of solutions and our purpose is now to propose various
forces/torques are bounded. By duality the method can al?@sign solutions whose representative points lieZjn (i.e.
solve the velocity problems (for bounded joint velocities finqqey satisfy the requirements). But a robot presents various
the design parameters such that any end-effector twist if&formances, denoted secondary requirements, that may not

given set may be realized at any pose/iy). be part of the main requirements but which can be used to
help choosing the best design. Ideally the presented design
C. A critical analysis of the zone calculation solutions should be representative of various compromises

We have presented in the previous section various methd@ween the secondary requirements. Unfortunately there is
to compute an approximation of the regigh However it is NO known method to deal with this problem. Hence we just
not possible to claim that we guarantee to get an approximatié®mple the regionZ, using a regular grid, compute the
of the region that includes all possible values of the desig§condary requirements at the nodes of the grids and retain
parameters, up to the manufacturing tolerances, that will ste most representative solutions.
isfy the performance index. Indeed for complex performancesNote that the algorithms for computing the regighmay
index the overestimation of interval arithmetics may be SO be used to verify that a given design (or a small family
large that only for very small boxes (i.e. whose width i€f design as, for example, the family of robots whose design
lower than the manufacturing tolerances) we can guaranf@ameters have values around nominal values and within
that the performance index is satisfied. But the union of suffgnufacturing tolerances, called tfemily of manufactured
small boxes, that may exist in the intersection of fhe may robot) satisfy a requirement, in which case they will be
constitute boxes whose final width may be larger than tfauch more faster. Using this property and as we will provide
manufacturing tolerances. finally only a finite set of design solution we may relax the

Our experience however is that for robotics problem thf&duirements when computing the regions. For example for
is not the case. But a possibility to tackle this problem e workspace algorithm instead of specifying a whole 6D
to assume that the tolerances are much lower than then f€§lion as desired workspace we may specify only a finite set
one. After calculating the approximation of the regions arfef poses: this will allow a faster calculation of the region in

their intersection we may then decrease the result by the r¥¢ parameters space and we will only have to verify that the
tolerances to get a safe design region. proposed final design solution indeed includes the whole 6

workspace.

Similarly it may happen that for a specific requirement an
L . algorithm for computing the regio® is not available. But
As soon as an approximation of the regio® have 55 so0n as an algorithm for verifying the requirement for the

been determined as a set of boxes in the parameters spaggily of manufactured robots is available our design method
calculating their intersection is a classical problem of COMPYsay still be applied.

tational geometry with complexit®(n log n) for n boxes. But
calculating the intersection may be avoided in a way that even Applications
speed-up the total calculation. Indeed assume that the region

Z, has been computed for the first requirement, leading to &S Mentioned previously we have developed algorithms

list of boxesZ!. For the second requirement instead of usinlg! computing the regior for the following requirements:

P, as single element of the lisfp (and thus looking for workspace, singularity detection, accuracy, velocity and static

all parameters that satisfy the second requirement) we nfEj2!ysis. Such requirements are the most frequently encoun-
use £! as Lp, thereby looking only for the parameters tha{ered for practical app'llcatlons. The des'lgn.methodo'logy has
satisfies both requirements. Proceeding along this line for HIFN P&en used for various practical applications: design of our
requirements will lead to a result that satisfy all requirement@¥/n Prototypes (for example the micro-robot MIPS for medi-
A drawback however is that if one of the algorithm fail to pro¢@! @pplication [15]), fine positioning devices for the European

vide design solutions (or if we want to modify a requiremengpynchrotron Radiation Facility (ESRF) with a load over one
we may have to restart a large part of the calculation. tons and an absolute accuracy better than a micrometer [3],

the CMW milling machine for high-speed manufacturing [24].
We are currently using this design methodology approach with

E. The algorithm in practice Alcatel Space Industry for the development of an innovative
As mentioned previously the algorithm are implemented iffleployable space telescope.

C++ using BIAS/Profil for interval arithmetics and our
own interval analysis libraryALIAS? that offer high-level
modules that are combined for implementing the calculati
of the regionZz.

D. Calculating the intersection of th&

In each of these cases the on-the-shelf algorithms for calcu-
Jating the regionZ has to be adapted to deal with specificities
of the application (for example the large workspace for the
CMW milling machine implies that we have to deal with
2www.inria-sop.fricoprin/logiciel/ALIAS/ALIAS.html passive joint limits while the ESRF one, with a reduced



workspace, such limits do not play a role). But the flexibility17] Merlet J-P. and Daney D. A formal-numerical approach to determine
of interval analysis is large and has allowed us to solve the the presence of singularity within the workspace of a parallel robot. In
bl F.C. Park C.C. lurascu, editogomputational Kinematicspages 167—
problem. 176. EJCK, Seoul, May, 20-22, 2001.
[18] Moore R.E. Methods and Applications of Interval AnalysisSIAM
VI. NCLUSION Studies in Applied Mathematics, 1979.
CONCLUSIO [19] Murray A.P., Pierrot F., Dauchez P., and McCarthy J.M. A planar
The proposed design methodology has the main advantages quaternion approach to the kinematic synthesis of a parallel manipulator.
of providing a large panel of design solution with a guarantr(i? Robotica 15(4):361-365, July - August, 1997.

. . . . . . [20] Neumaier A. Interval methods for systems of equationGambridge
on the satisfaction of the main requirements, even taking into” ynjversity Press, 1990.

account manufacturing tolerances. However its practical ir21] Pittens K.H. and Podhorodeski R.P. A family of Stewart platforms with
plementation needs some expertise in interval analysis for:[? optimal dexterity.J. of Robotic Systemd0(4):463-479, June 1993,

. .. L. . Ryu J. and Cha J. Volumetric error analysis and architecture optimization
algorithm to be efficient. A current restriction is that only no for accuracy of HexaSlide type parallel manipulatobechanism and

time-dependent requirements (i.e. requirements that are not Machine Theory38(3):227-240, 2003.

solution of a differential equations) may be taken into accour$3] Stoughton R. and Arai T. A modified Stewart platform manipulator with
d ) Y improved dexteritylEEE Trans. on Robotics and Automatj@{2):166—

for example we cannot deal with dynamics. However there is 173 april 1993
no theoretical impossibilities to deal with these requirement®!] Wildenberg F. Calibration for hexapod CMW. [2nd Chemnitzer

with interval analysis and this is a prospective for our work. ~ Parallelkinematik Seminarpages 101-112, Chemnitz, - April, 12-13,
2000.

The development of this methodology has been guided by
applications in very different domains: manufacturing, fine
positioning, space and medical applications.

Finally the methodology has been developed to deal with
robots and mechanisms design but may be extended to prob-
lems in other area as well.
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